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Abstract

Lorentzian simplicial quantum gravity is a non-perturbatively defined theory of quan-
tum gravity which predicts a positive cosmological constant. Since the approach is
based on a sum over space-time histories, it is perturbatively non-renormalizable even
in three dimensions. By mapping the three-dimensional theory to a two-matrix model
with ABAB interaction we show that both the cosmological and the (perturbatively) non-
renormalizable gravitational coupling constant undergo additive renormalizations consis-
tent with canonical quantization.
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Introduction

Defining a theory of quantum gravity as a suitable sum over space-time histories is an
appealing proposition, since it can in principle be done in a completely background-
independent and non-perturbative way, with the structure of space-time being determined
dynamically. In two space-time dimensions, such a program can be carried out success-
fully, although in this case – because of the absence of propagating gravitons – it may
be more appropriate to talk about a theory of “quantum geometry” rather than one of
quantum gravity. A well-known example is the non-perturbative lattice formulation of 2d
(Euclidean) gravity which reproduces quantum Liouville theory in the limit of vanishing
lattice spacing [1, 2, 3]. Attempts to use similar combinatorial and matrix-model tech-
niques to extract information about the non-perturbative structure of higher-dimensional
gravity have until recently met with little success. However, if one performs the sum
over geometries over space-times of Lorentzian (as opposed to Riemannian) signature,
matrix-model methods can be applied profitably in the non-perturbative quantization of
three-dimensional quantum gravity, as was first shown in [4]. This line of investigation
will be pursued further in the present work.

Quantum gravity in three space-time dimensions represents an interesting case in be-
tween dimensions two and four. On the one hand, it contains no propagating gravitational
degrees of freedom and can be reduced classically to a finite-dimensional physical phase
space, both in a metric [5] and a connection (Chern-Simons) formulation [6].1 Neverthe-
less, the unreduced theory in terms of the metric gµν appears to be non-renormalizable
when one tries to expand around a fixed background geometry, just as in four dimensions.
A definition of three-dimensional quantum gravity via a “sum over geometries” therefore
seems to require a genuinely non-perturbative construction, and in turn may shed light
on the problem of non-renormalizability of the full, four-dimensional theory, where an
explicit classical reduction is not available.

A non-perturbative definition of the sum over geometries in three- and four-dimen-
sional quantum gravity was proposed in [7, 8]. Unlike previous approaches, this method
of “Lorentzian dynamical triangulations” or “Lorentzian simplicial quantum gravity” uses
space-time geometries with physical, Lorentzian signature, rather than positive-definite
Riemannian geometries as a fundamental input. Details on the classes of geometries
included in the path sum and on earlier two-dimensional work that provided the moti-
vation for this approach can be found in [9, 8, 10]. In view of the recent observational
progress in cosmology (see [11] for a recent review) we should point out that the physical,
renormalized cosmological constant in all of these models is necessarily positive.

In this paper, we will present an explicit analysis of the renormalization behaviour of
the 3d Lorentzian model, using a matrix-model formulation. This follows previous work
which analyzed the phase structure of three-dimensional quantum gravity (for spherical
spatial topology) with the help of computer simulations [12, 13, 14], and a demonstration
[4] that 3d Lorentzian dynamical triangulations can be mapped to graph configurations
generated by the so-called ABAB-matrix model [15].

Within continuum approaches to quantum gravity there have also been attempts to
prove the non-perturbative renormalizability of gravity beyond dimension two, starting
with an analysis of the theory in 2+ε dimensions [16, 17, 18]. More recently, an effective
average action approach has produced evidence of a non-trivial fixed point through an

1Whether and to what extent the associated quantum theories are related is still a contentious issue.
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Figure 1: The fundamental building blocks of 3d Lorentzian quantum gravity interpolate
between adjacent spatial slices of integer times t and t+1, and are labelled according to
the numbers (it, it+1) of their vertices lying in the two slices.

analysis of renormalization group flow equations [19, 20, 21].

Quantum gravity and the ABAB-matrix model

We start out with a brief description of the three-dimensional Lorentzian simplicial space-
times appearing in the sum over geometries, and the construction of the partition function.
In the standard formulation of the model, the spatial hypersurfaces of constant integer
proper time t are given by two-dimensional equilateral triangulations, each corresponding
to a unique piecewise flat 2d geometry. These are the same geometries as appear in
the construction of 2d Euclidean quantum gravity, which is known to be rather robust
with regard to changes in both the types of building blocks used and their gluing rules
[22]. We exploited this universality in [4] by using 2d spatial geometries made up of
equilateral squares instead of triangles, and accordingly changing the 3d building blocks
from tetrahedra only to a set of tetrahedra and pyramids.

Any two neighbouring spatial quadrangulations at times t and t+1 can be connected
(in many inequivalent ways) by a three-dimensional “sandwich” geometry constructed
from these building blocks, as indicated in Fig.1. The square base of a pyramid (or an
upside-down pyramid) coincides with a square of the spatial slice at time t (or t+1),
whereas the tetrahedral building block is needed to connect between the two types of
pyramids within the same sandwich.

The amplitude for propagation from an initial quadrangulation g1 to a final one g2

in n proper-time steps is obtained by summing over all geometrically distinct ways of
stacking n sandwich geometries ∆t = 1 in between g1 and g2, in such a way that their
2d boundary geometries match pairwise at integer times. The weight of each geometry is
given by a discretized version of the Einstein action, here conveniently taken as the Regge
action for piecewise linear geometries [23]. After Wick-rotating, the partition function (or
proper-time propagator) can be written as

Z(κ, λ; g1, g2, n) =
∑

T ,∂T =g1∪g2

1

CT

e−S(T ), (1)

where CT is the order of the automorphism group of the (generalized) triangulation T ,
and the sum is over all T with fixed boundaries g1 and g2 of the kind just described. The
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gravitational action, including a cosmological term, is given by

S(T ) = −κ
(

N14(T )+N41(T )−N22(T )
)

+λ
(

N14(T )+N41(T )+
1

2
N22(T )

)

, (2)

where N41(T ) and N14(T ) count the numbers of pyramids and upside-down pyramids and
N22(T ) the number of tetrahedra contained in a given triangulation T . The simplicity
of the Regge action in our case stems from the fact that we use only two types of build-
ing blocks, and contributions to volumes and curvatures (in the form of deficit angles)
occur only in terms of a few basic units (see [8, 4] for further details). The simplicial
action contains two dimensionless coupling constants κ and λ, related to their continuum
counterparts by2

κ =
a

4πG(0)

(

− π + 3 cos−1 1

3

)

, λ =
a3Λ(0)

24
√

2π
, (3)

where a is a geodesic lattice cut-off with the dimension of length. It should be emphasized
that these are “näıve” relations between the dimensionless lattice coupling constants and
those of the continuum theory, which will not be valid in the quantum theory. As we shall
see in due course, additive renormalizations of both coupling constants will be needed in
that case.

We can rewrite the partition function (1) as

Z(κ, λ; g1, g2, n) =
∑

N

e−λN
∑

TN

1

CTN

eκ(N14(TN )+N41(TN )−N22(TN )), (4)

where the sum over the total space-time volume N = N14 + N41 + 1
2
N22 has been pulled

out, together with the accompanying Boltzmann weight e−λN , and the remaining sum
runs over all triangulations TN of fixed volume N , whose Boltzmann weights depend on
the curvature term multiplying κ. To leading order, the number of triangulations at fixed
volume grows exponentially with the volume, leading to the asymptotic behaviour

f(N ; g1, g2) eλc(κ)N , (5)

for the second sum in (4), where f(N ; g1, g2) indicates subleading terms in N . It follows
immediately that for a given κ the regularized quantum gravity model is only well defined
(that is, its state sum converges) for λ > λc(κ), corresponding to the region above the crit-
ical line in the phase diagram of Fig. 2. The critical line limits the region of convergence
of the partition function Z. Taking λ → λc(κ) from inside this region of convergence, the
average value of (suitable powers of) N will diverge, corresponding to the limit of infinite
lattice volume. Such a limit is clearly necessary if a continuum limit in any conventional
sense is to be achieved.

The continuum limit is obtained by scaling the lattice spacing a to zero while keeping
the continuum time T = n · a fixed (and therefore, increasing the number n of discrete
time steps at a rate 1/a). Different, non-canonical scaling relations between T and a
are in principle possible3, but the computer simulations of [12] supported the presence of

2Note that our cosmological constant Λ(0) is defined as the quantity that multiplies the volume term
∫

d3x
√

g. More conventionally this term would be called Λ(0)/(8πG(0)).
3In two-dimensional Euclidean quantum gravity the proper time T scales anomalously and one has to

keep n
√

a fixed [24]. By contrast, the scaling in two-dimensional Lorentzian simplicial quantum gravity
is canonical [9]. The relation between the two formulations is well understood [25].
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Figure 2: The phase diagram of 3d Lorentzian quantum gravity in the plane spanned by
the bare inverse gravitational coupling κ and the bare cosmological constant λ, together
with the canonical approach to a point (κ0, λc(κ0)) on the critical line.

canonical scaling in 3d quantum gravity. More precisely, we expect to leading order in a
a scaling of the form

a

G
= κ − κ0, a3Λ = λ(κ) − λc(κ), (6)

as illustrated in Fig. 2. The approach to the critical line is governed by the dimensionless
combination G3Λ which serves as the true, “observable” coupling constant of 3d quantum
gravity. The physics underlying (6) is as follows: for a given value of the bare inverse
gravitational coupling κ the average discrete space-time volume 〈N〉 and its dimensionful
counterpart 〈V 〉 behave like

〈N〉 ∼ 1

λ − λc(κ)
=⇒ 〈V 〉 := a3〈N〉 ∼ a3

λ − λc(κ)
, (7)

that is, the number of building blocks diverges in the limit as λ → λc(κ). The physical
requirement that the continuum volume 〈V 〉 remain finite and be proportional to the
inverse renormalized cosmological constant 1/Λ fixes the second scaling relation in (6).
The first relation is then determined by demanding that G3Λ be a dimensionless coupling
constant of the theory. This is precisely achieved by approaching a given point (κ0, λc(κ0))
on the critical curve according to the canonical scaling assignment (6). Note in passing
that there is no way of obtaining a renormalized cosmological coupling Λ ≤ 0, in agreement
with our earlier remarks. Also, we choose the approach to the critical line such that the
sign of the renormalized Newton constant is standard and positive.

Our construction raises the question of whether or not physics depends on the choice
of κ0. Indications from the computer simulations of the model are that the final result is
independent of the value of κ0 in the range probed [12]. We will discuss in the following
how this question can be addressed analytically.

Let gt and gt+1 be two spatial quadrangulations at t and t+1, and 〈gt+1|T̂ |gt〉 the
transition amplitude or proper-time propagator for the single time step from t to t+1. By
definition, T̂ is the transfer matrix in the sense of Euclidean lattice theory, and can be
shown to satisfy the usual properties of a transfer matrix [8]. The propagator for n time
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steps is obtained by an n-fold iteration,

Z(κ, λ; g1, g2, n) = 〈g2|T̂ n|g1〉. (8)

Consider now the matrix model of two hermitian M × M-matrices with partition
function

Z(α1, α2, β) =

∫

dAdB e−Mtr (A2+B2−
α1
4

A4−
α2
4

B4−
β

2
ABAB). (9)

In the context of the large-M expansion the free energy F can be expressed as

M2F (α1, α2, β) ≡ − log Z(α1, α2, β) =

∞
∑

h=0

Mχ(h)Fh(α1, α2, β), (10)

where χ(h) = 2− 2h is the Euler number of the quadrangulations dual to the four-valent
graphs generated by the matrix model. It was argued in [4] that the transfer matrix for
transitions between two spatial geometries gt and gt+1 of genus h is related to Fh(α1, α2, β)
according to

Fh(α1, α2, β) =
∑

Nt,Nt+1

e−ztNt−zt+1Nt+1

∑

gt+1(Nt+1),gt(Nt)

〈gt+1(Nt+1)|T̂ |gt(Nt)〉h, (11)

where Nt and Nt+1 denote the numbers of squares of the quadrangulations defining the
spatial geometries at times t and t + 1, both of Euler number χ(h). Pulling out the
double-sum over discrete boundary volumes is convenient when studying the transfer
matrix per se (see [9, 26] for an analogous procedure in two space-time dimensions). The
two dimensionless boundary constants zt and zt+1 can be viewed as cosmological coupling
constants for the boundary areas. For the purposes of the present paper we will choose
particular values for zt and zt+1, in such a way that the relations

α1 = α2 = eκ−λ, β = e−( 1

2
λ+κ), (12)

hold between the matrix model coupling constants αi, β, and the bare gravitational and
cosmological coupling constants 1/κ and λ of three-dimensional gravity. The relations
(12) were derived previously in [4], and we will use them in the next section to trans-
late the canonical approach (6) to the matrix model and draw conclusions about the
renormalization behaviour of the theory.

The derivation of eq. (12) requires some explanation. Generic matrix elements of T̂
in (11) grow exponentially with the total discrete three-volume N = Nt+Nt+1+N22/2,
reflecting the fact that there are exponentially many three-geometries which interpolate
between two given two-geometries gt and gt+1. This exponential growth is taken care of by
the combined additive renormalizations of the cosmological and gravitational constants,
as discussed earlier in this section.

There is a completely analogous entropy for the boundary two-geometries, since the
number of quadrangulations of a given topology and a given discrete two-volume Nt grows
exponentially with Nt. Just as in the case of the three-volume, this exponential growth
can be cancelled by an additive renormalization, in this case of the boundary cosmologi-
cal constant zt, leading to a renormalized boundary cosmological constant multiplying a
continuum area. Assume that the second sum in (11) grows like ezc(Nt+Nt+1) to leading
order in the boundary two-volumes, and renormalize zt and zt+1 canonically according to

zt = zc + a2Zt, zt+1 = zc + a2Zt+1. (13)
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Figure 3: The phase diagram of 3d Lorentzian quantum gravity in the plane spanned
by the two coupling constants β and α of the matrix model, together with the canonical
approach to a point (β0, α0) on the critical line. The end point (βc, αc = βc) of the
diagonal s=1 separates phase A from phase B.

Defining the continuum area At of a quadrangulation of Nt squares by At := Nta
2, the

total area contribution in the exponential in (11) becomes

(zc − zt)Nt + (zc − zt+1)Nt+1 = −(ZtAt + Zt+1At+1), (14)

as anticipated. In this article, we set Zt = Zt+1 = 0, corresponding to zt = zt+1 = zc in
(11), since we are only interested in the bulk coupling constants Λ and G. This implies
the symmetry α1 = α2, as well as the relation (12). From a technical point of view it
means that we have to deal only with the symmetric ABAB-matrix model which, contrary
to the asymmetric model, has been solved explicitly [15].

Renormalization of 3d gravity

The canonical approach (6) to a critical point (κ0, λ0) on the critical line of the (κ, λ)-
coupling constant plane, Fig.2, can be mapped via (12) to the (β, α)-plane, as shown in
Fig.3. Let F (α, β) denote the free energy of the symmetric ABAB-matrix model, and set
α1 = α2 ≡ α. It is convenient to change variables from (β, α) to (s, r), where

s =
β

α
, r =

√

α2 + β2. (15)

The upper right-hand quadrant of the α-β-plane corresponds to r, s ∈ [0,∞]. Approaching
a point (βc(s), αc(s)) on the critical line from below along a line segment of constant s, the
coordinate r will vary between 0 and rc(s)=

√

αc(s)2 + βc(s)2. According to [15], F (α, β)
or F (s, r) are analytic functions of their arguments below the critical line. Moreover,
approaching the critical line along s=const, F (r, s) has an expansion

F (s, r) − F (s, rc(s)) = c1(s)δr + c2(s)δr
2 + c5/2(s)δr

5/2 + c3(s)δr
3 + · · · (16)
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in the vicinity of the critical point (s, rc(s)), where δr=rc(s)−r and where the coefficients
ci(s) are analytic functions of s for both 0 < s < 1 and 1 < s < ∞. Around the special
point (s, rc(s))=(1, rc(1)) which separates the so-called A-phase (s < 1) from the B-phase
(s > 1), the behaviour is more complicated than the one given in (16). As discussed in
[4], phase A is the one relevant for canonical quantum gravity and we will consider only
coupling constant variations inside phase A.

The straight approach along s = const to the critical line underlying (16) is not the one
relevant for three-dimensional quantum gravity, since it would translate to a curve in the
(κ, λ)-plane which approaches the corresponding critical point (κ0, λ0) non-tangentially.
In the notation of (6), this would imply κ − κ0 ∝ λ(κ) − λc(κ), in contradiction with the
scaling relations (6). Stated differently, insisting on canonical dimensions for G and Λ
and a finite Λ, the gravitational coupling G would have to go to infinity like 1/a2 when
the cut-off is removed.

One can of course repeat the analysis of [15] for an arbitrary approach to the critical
line. However, rather than giving the technical details of this, let us just state the final
result for the case at hand. We can approach a critical point (β0, α0) along any curve
(β(a), α(a)), where for convenience we have identified the curve parameter a with the
lattice cut-off. For the canonical gravitational interpretation to be valid, the scaling must
follow (6), that is, both the tangent and the curvature of the curve (β(a), α(a)) must
agree with those of the critical line (βc(s), αc(s)) at the point (β0, α0). The difference
between the two curves will only appear in their third-order derivatives, as indicated by
Fig.3. In order to investigate the analyticity properties of the free energy, we perform a
decomposition

F (α(a), β(a)) − F (α0, β0) =
(

F (α, β) − F (αc, βc)
)

+
(

F (αc, βc) − F (α0, β0)
)

, (17)

where, in the notation of Fig.3, the approaching curve (κ(a), λ(a)) translates into (β(a),
α(a)), (βc, αc) corresponds to the point (κ, λc(κ)), and (β0, α0) to (κ0, λ0) on the critical
line. To evaluate the first difference in (17) we can use

α − αc ∼ Λa3 + · · · , β − βc ∼ Λa3 + · · · , (18)

as well as the expansion (16). In the second difference we can use

αc − α0 ∼ −a/G + · · · , βc − β0 ∼ −a/G + · · · , (19)

without any reference to the renormalized cosmological constant Λ, defined by (6). This
happens because both (β0, α0) and (βc, αc) lie on the critical line, whereas Λ is a measure
of the distance from the critical line. The important point is that – as long as we stay in
phase A – the difference F (αc, βc)−F (α0, β0) is entirely analytic in αc−α0. We conclude
that the non-analytic behaviour of the free energy occurs as a function of the cosmological
coupling constant alone. This non-analyticity ensures the existence of an infinite-volume
limit of 3d quantum gravity in the sense of (7). The renormalized gravitational coupling
constant G plays no role in taking the continuum limit, which is entirely dictated by the
non-analytic part of F (α, β).

Let us discuss this behaviour in some more detail. The free energy F (α, β) of the
matrix model serves as the partition function of the sum over sandwich configurations of
the three-dimensional Lorentzian gravity model, as described above. Its continuum limit
is associated with a limit where the number N of 3d building blocks diverges, and a → 0,
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while keeping the continuum three-volume V = Na3 finite. This large-N behaviour is
related to the expansion

F (α, β) =
∑

N14,N41,N22

N (N14, N41; N22) αN14+N41βN22, (20)

of F (α, β) into large powers of α and β, where N (N14, N41; N22) denotes the number of
three-geometries constructed from (N14, N41, N22) building blocks between neighbouring
spatial surfaces at t and t+1 (see [4] for details). The non-analytic part of F (α, β) is
associated with simultaneous infinitely large powers of α and β, which in turn is reflected
in a finite radius of convergence of the power expansion.

We will denote the non-analytic part of F (α, β) by Fsingular(α, β), and it is only this
part that should be kept when discussing the continuum limit. Thus, returning to the
expansion (16), the first two terms on the right-hand side are irrelevant to a poten-
tial continuum limit dictated by the non-analytic term (rc − r)5/2. Likewise, the term
F (αc, βc)−F (α0, β0) in eq. (17) can be ignored when discussing continuum physics. The
term F (α, β)−F (αc, βc) in that relation is similar to the quantity (16) which characterizes
the non-tangential approach to a critical point. The continuum expression which survives
is therefore

Fsingular(Λ, G) ∼
(

Λa3
)5/2

. (21)

One would obtain the same expression in the 2d (Euclidean) quantum gravity interpre-
tation given in [15], except that the power of the lattice cut-off would be different. This
is due to the tangential approach to the critical point in the present case, reflecting the
different physical properties of the higher-dimensional gravity theory.

One should keep in mind that Fsingular is not identical with the partition function (4)
for three-dimensional quantum gravity for n=1, but rather is a particular sum of matrix
elements of the transfer matrix between two adjacent constant proper-time slices, which
are separated by one lattice unit a. However, as was also argued in [4], the study of
this sum is sufficient to exhibit the renormalization behaviour of the bare gravitational
and cosmological coupling constants.4 The only way in which the (perturbatively) non-
renormalizable gravitational coupling constant G makes an appearance in 3d Lorentzian
quantum gravity is by fixing the approach to the chosen critical point κ0, and thereby
defining the dimensionless quantity

λ − λc(κ)

(κ − κ0)3
= const. = ΛG3. (22)

Consequently, all observables we may think of calculating in this formulation will be of
the form

O(Λ, G) = Λdim/3F (ΛG3) (23)

after the continuum limit has been performed, where “dim” refers to the mass dimension
of the observable O.

4In an analogous analysis of two-dimensional simplicial Lorentzian quantum gravity one also can
deduce the renormalization of the cosmological constant from the study of the same restricted combination
of matrix elements.
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Discussion

Three-dimensional simplicial Lorentzian quantum gravity gives an explicit realization of
the summation over three-geometries. As in all quantum theories with a cut-off, a pre-
scription must be given of how to remove the cut-off and recover the underlying continuum
quantum field theory; we did this by specifying the renormalization of the bare coupling
constants of the theory. The relation of the model to the ABAB-matrix model allowed us
to give a detailed discussion of a possible renormalization of the gravitational and cosmo-
logical coupling constants, consistent both with the existence of an infinite-volume limit
of the model and with a canonical scaling of the renormalized coupling constants.

The bare gravitational and the bare cosmological coupling constants turned out to
be subject to additive renormalizations. The perturbative non-renormalizability of the
gravitational coupling constant is resolved in this non-perturbative approach by the fact
that the renormalized gravitational coupling constant only appears in the particular com-
bination (22), defined by the canonical approach to the critical line.

One way to obtain more detailed information about the continuum limit would be by
analyzing the full transfer matrix, instead of the contracted version we have studied in
the present work. From the transfer matrix one can extract the continuum proper-time
Hamiltonian Ĥ by virtue of the relation

T̂ = e−aĤ ≈ Î − aĤ. (24)

This can be done explicitly in both two-dimensional Lorentzian and Euclidean simplicial
quantum gravity, where the Hamiltonian is a differential operator in a single variable, the
one-volume of the spatial universe. Three-dimensional quantum gravity is more involved
since the spatial geometries at a fixed time constitute an infinite-dimensional field space,
spanned by the conformal factor and a finite number of Teichmüller parameters. However,
from our knowledge of the classical, canonical structure of the theory we do not expect
the conformal part of the geometry to play a dynamical role. From this point of view –
in addition to any Teichmüller parameters – at most the constant mode of the conformal
factor (equivalently, the two-dimensional total area) of the spatial geometry should appear
in the Hamiltonian.

We know that at the discretized level there are transitions between any pair of two-
geometries of the same topology, that is, all matrix elements of T̂ are non-vanishing.
It would be very interesting to understand in detail how the matrix elements lose their
sensitivity to anything but the Teichmüller parameters and the total area in the continuum
limit. Although the ABAB-matrix model cannot be used to address the issue of how
the dependence of the transfer matrix on the conformal factor drops out, solving its
asymmetric version (with α1 6= α2) would determine the dependence of the transfer matrix
(and thus the quantum Hamiltonian) on the area of the spatial boundaries. We hope to
return to this issue in the near future.
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