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Abstract

We discuss an analysis of the probability density function (pdf)
of turbulent velocity increments based on the class of normal in-
verse Gaussian distributions. It allows for a parsimonious descrip-
tion of velocity increments that covers the whole range of amplitudes
and all accessible scales from the finest resolution up to the integral
scale. The analysis is performed for three different data sets obtained
from a wind tunnel experiment, a free-jet experiment and an at-
mospheric boundary layer experiment with Taylor-Reynolds numbers
Rλ = 80, 190, 17000, respectively. The application of a time change in
terms of the scale parameter δ of the normal inverse Gaussian distri-
bution reveals some universal features that are inherent to the pdf of
all three data sets.
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1 Introduction

Since the pioneering work of Kolmogorov (1962) and Obukhov (1962), in-
termittency of the turbulent velocity field plays a central role in turbulence
research. Intermittency refers to the fact that fluctuations around the mean
velocity occur in clusters and are more violent than expected from Gaus-
sian statistics. Furthermore, the frequency of large fluctuations increases
with increasing resolution. In terms of moments of velocity increments
u(s) ≡ v(σ + s) − v(σ), intermittency in turbulence is usually described
by approximate multifractal scaling of structure functions

Sn(s) = E{(v(σ + s) − v(σ))n} ∝ |s|τ(n). (1)

Here, v(σ) is one component of the velocity (usually along the mean flow) at
position σ and the lag s is within the so-called inertial range. The inertial
range is defined as the range of scales where the spectrum E(k) (the Fourier
transform of the correlation function of the velocity field) displays a power
law E(k) ∝ k−5/3 (Frisch (1995)). The term multifractal scaling is due to
the non-linear dependence of the scaling exponents τ(n) > 0 on the order n.

Multifractal scaling of velocity increments is assumed to hold in the limit
of infinite Reynolds number (Frisch (1995)). However, experiments show that
the scaling behaviour (1) might be poor, even for large Reynolds numbers
(Sreenivasan and Antonia (1997), Arneodo et al (1996)). Furthermore, even
if the scaling relation (1) holds, the inertial range still covers only part of
the accessible scales where intermittency is observed. One way to improve
the characterization of intermittency by means of (1) consists of applying the
concept of Extended Self-Similarity (ESS) introduced by Benzi et al (1993).
Plotting structure function of order n against those of some order n′ < n
improves the accuracy of (1) in most cases and leads to an extension of the
scaling range. The theoretical foundation of this effect is not understood in
detail.

From a probabilistic point of view, (1) expresses a scaling relation for the
moments of the probability density function (pdf) of velocity increments. A
proper estimation of higher-order moments requires an accurate estimation
of the tails of the pdf. Thus it may be advantageous to directly work with
the pdf. In terms of the pdf, intermittency refers to the increase of the
non-Gaussian behaviour of the pdf of velocity increments with decreasing
lag.

A typical scenario is characterized by a Gaussian shape for the large scales
(larger than scales at the inertial range), turning to exponential tails within
the inertial range and stretched exponential tails for dissipation scales (below
the inertial range). This change of shape across all scales clearly reveals
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the inadequacy of a characterization of intermittency solely via multifractal
scaling of structure functions (which is observed only within the inertial
range).

A detailed parsimonious description of the pdf of velocity increments not
only contributes to a basic understanding of intermittency in turbulence, but
also has important applications in engineering problems. Its relevance for the
description of turbulent combustion and other applications was discussed in
detail by Kuznetsov and Sabelnikov (1990).

Existing work about the pdf of velocity increments concentrates on a
description of the tails of the pdf or characterizes the pdf only within the
inertial range.

Exponential tails ∝ exp(−bu) for the pdf of velocity increments with lags
within the inertial range are reported in Castaing et al (1990), Gagne et al
(1994) and Chabaud et al (1994). A detailed investigation of the logarith-
mic decrement b(s) as a function of the lag s is performed in Praskovsky
and Oncley (1994). They propose a power-law b(s) ∝ sβ with β ≈ 0.17 as
a reasonable fit within the inertial range. Vincent and Meneguzzi (1991),
Kailasnath et al (1992), Stolovitzky et al (1993) and Tabeling et al (1996)
extend the description of the tails from exponentials to stretched exponen-
tials ∝ exp(bum) to include dissipative scales below the inertial range and
integral scales above the inertial range. The stretching exponent m appears
to vary continuously from 0.5 in the dissipation range up to 2 for integral
scales (Kailasnath et al (1992)). Lewis and Swinney (1999) report stretched
exponential tails with stretching exponents m restricted to m ≥ 1 for a flow
between concentric cylinders at Reynolds numbers where there is no inertial
range, i.e. no scaling of the spectrum. Noullez et al (1997) and van de Water
and Herweijer (1999) compare the tails of the pdf of longitudinal (where the
lag s is along the direction of the mean flow) and transversal velocity incre-
ments (where the lag s is perpendicular to the direction of the mean flow)
and find stretched exponentials in both cases.

There are a number of theoretical models that incorporate the exponen-
tial behaviour of the tails of the pdf of velocity increments and attempt to
describe the inertial range statistics for all amplitudes of the velocity field.
Most of these are based on the multifractal description and thus restricted
to the inertial range.

Benzi et al (1991) connect the multifractal scaling of absolute velocity
increments |u(s)| with Gaussian large scale fluctuations and derive a super-
position of stretched exponentials for the pdf of velocity increments with lags
s within the inertial range. In this and similar approaches, the observed skew-
ness of velocity increments (which is due to a stretching of vortex lines and
relates to the energy transfer towards small scales) is neglected. A similar
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approach with a discrete superposition of Gaussian distributions is proposed
in Kailasnath et al (1992).

In Tchéou et al (1999), moments of absolute velocity increments are linked
to the pdf by a simple integral relation. Using an asymptotic relation, the
non-skewed, i.e. symmetrized, pdf can be constructed from the multifractal
scaling spectrum τ(n).

Castaing et al (1990) start from the log-normal model of Kolmogorov
(1962) and Obukhov (1962). They fit the variance of the scale-dependent
energy dissipation rate ε by a power law and assume all quantities conditioned
on fixed ε as being Gaussian. In this framework they find a superposition of
Gaussian distributions with log-normal variances as an empirical model for
the non-skewed inertial-range pdf.

Arimitsu, T. and Arimitsu, N. (2001a,b,c,d), Beck (2000) and Beck et al
(2001) combine the multifractality of velocity increments with statistics that
are constructed from generalized measures of entropy, i.e. extensive Rényi or
non-extensive Tsallis entropy. The multifractal aspect of their analysis again
restricts to inertial range statistics.

Renner, Peinke and Friedrich (2001) use an approach that is not based
on multifractality of velocity increments. They derive numerically the pdf
of velocity increments from a Fokker-Planck approach that includes the ob-
served skewness of the pdf. However, the Markov-hypothesis of the velocity
field breaks down for scales below the Taylor scale which is within the inertial
range. Thus they are not able to include dissipation scale statistics.

In summary, these references focus on the tails, on the inertial range
and/or on absolute velocity increments.

According to Frisch (1995), it is an open question whether different ranges
of scales (dissipative, inertial and integral scales) require different functional
forms of the pdf of velocity increments or whether it is possible to find one
functional form for the pdf that is varying continuously with the scale.

The aim of the present work is to answer this question in favour of a
unified description at all scales. We provide an empirical description of the
skewed pdf of velocity increments that covers all accessible scales and provides
a reasonable fit for all amplitudes within one tractable class of distributions.
It turns out that normal-inverse Gaussian (NIG) distributions are flexible
enough to achieve this goal with high accuracy.

Section II.A gives a summary of the mathematical properties of NIG
distributions, and Section II.B provides a summary of the type of data we
analyse. Section III and Section IV contain the main results. The pdf of
velocity increments for all lags and all amplitudes can be fitted within the
four-parameter class of NIG distributions. The quality of the fit is inde-
pendent of the lag s and independent of the kind of experiment. We also
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perform an analysis of the tails of the pdf in terms of stretched exponen-
tials; the estimates of the stretching exponents m as a function of the lag s
are in conformity with classical findings. The variability features of the four
parameters are examined in more detail in Section IV. The use of the scale
parameter δ of the NIG distribution as a generic time change reveals some
universal features for the remaining parameters of the NIG distributions and
for the stretching exponents m that describe the tails. Section V concludes.

2 Background

This Section gives a brief overview of the mathematical properties of the
normal inverse Gaussian distribution, that are essential for the analysis per-
formed in subsequent Sections. We also provide a brief description of the
kind of data we use for our analysis.

2.1 NIG distributions

The normal inverse Gaussian law, with parameters α, β, µ and δ, is the dis-
tribution on the real axis R having probability density function

p(x; α, β, µ, δ) = a(α, β, µ, δ)q

(

x − µ

δ

)

−1

K1

{

δαq

(

x − µ

δ

)}

eβx (2)

where q(x) =
√

1 + x2 and

a(α, β, µ, δ) = π−1α exp
{

δ
√

α2 − β2 − βµ
}

(3)

and where K1 is the modified Bessel function of the third kind and index 1.
The domain of variation of the parameters is given by µ ∈ R, δ ∈ R+, and
0 ≤ |β| < α. The distribution is denoted by NIG(α, β, µ, δ).

If X is a random variable with distribution NIG(α, β, µ, δ) then the cu-
mulant generating function of X, i.e. K(θ; α, β, µ, δ) = log E{eθX}, has the
form

K(θ; α, β, µ, δ) = δ{
√

α2 − β2 −
√

α2 − (β + θ)2} + µθ. (4)

It follows immediately from this that if x1, ..., xm are independent normal
inverse Gaussian random variables with common parameters α and β but
individual location-scale parameters µi and δi (i = 1, ..., m) then x+ = x1 +
...+xm is again distributed according to a normal inverse Gaussian law, with
parameters (α, β, µ+, δ+).
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Furthermore, the first four cumulants of NIG(α, β, µ, δ), obtained by dif-
ferentiation of (4), are found to be

κ1 = µ +
δρ

√

1 − ρ2
, κ2 =

δ

α(1 − ρ2)3/2
(5)

and

κ3 =
3δρ

α2(1 − ρ2)5/2
, κ4 =

3δ(1 + 4ρ2)

α3(1 − ρ2)7/2
, (6)

where ρ = β/α. Hence, the standardised third and fourth cumulants are

κ̄3 =
κ3

κ
3/2
2

= 3
ρ

{δα(1 − ρ2)1/2}1/2
and κ̄4 =

κ4

κ2
2

= 3
1 + 4ρ2

δα(1 − ρ2)1/2
. (7)

We note that the NIG distribution (2) has semiheavy tails; specifically,

p(x; α, β, µ, δ) ∼ const. |x|−3/2 exp (−α |x| + βx) as x → ±∞ , (8)

as follows from the asymptotic relation

Kν(x) ∼
√

π/2x−1/2e−x as x → ∞. (9)

The normal inverse Gaussian law NIG(α, β, µ, δ) has the following impor-
tant characterisation in terms of the bivariate Brownian motion with drift.
Let B(t) = {B1(t), B2(t)} be a bivariate Brownian motion starting at (µ, 0)
and having drift vector (β, γ) where β ∈ R and γ ≥ 0. Furthermore, let T
denote the time when B1 first reaches level δ > 0 and let X = B2(T ). Then
X ∼ NIG(α, β, µ, δ) with α =

√

β2 + γ2.

It is often of interest to consider alternative parametrisations of the nor-
mal inverse Gaussian laws. In particular, letting ᾱ = δα and β̄ = δβ, we
have that ᾱ and β̄ are invariant under location—scale changes.

NIG shape triangle For some purposes it is useful, instead of the
classical skewness and kurtosis quantities (7), to work with the alternative
asymmetry and steepness parameters χ and ξ defined by

χ = ρξ (10)

and
ξ = (1 + γ̄)−1/2 (11)
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Figure 1: The shape triangle of the normal inverse Gaussian distributions
(NIG distributions) with the log density functions of the standardized distri-
butions, i.e. with mean 0 and variance 1, corresponding to the values (χ, ξ) =
(±0.8,0.999), (±0.4,0.999), (0.0,0.999), (±0.6,0.75), (±0.2,0.75), (±0.4,0.5),
(0.0,0.5), (±0.2,0.25) and (0.0,0.0). The coordinate system of the log densi-
ties is placed at the corresponding value of (χ, ξ) with the scale being 1/20 of
the original. Furthermore, the line corresponding to ρ = 0.1, i.e. χ = 0.1ξ,
is shown.

where ρ = β/α = β̄/ᾱ and γ̄ = δγ = δ
√

α2 − β2. Like κ̄3 and κ̄4,
these parameters are invariant under location-scale changes and the domain
of variation for (χ, ξ) is the normal inverse Gaussian shape triangle

{(χ, ξ) : −1 < χ < 1, 0 < ξ < 1}.

The distributions with χ = 0 are symmetric, and the normal and Cauchy
laws occur as limiting cases for (χ, ξ) near to (0, 0) and (0, 1), respectively.
Figure 1 gives an impression of the shape of the NIG distributions for various
values of (χ, ξ).

Note in this connection that κ̄3 and κ̄4 may be reexpressed as

κ̄3 = 3γ̄−1 ρ

{(1 + ρ2)(1 − ρ2)1/2}1/2
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and

κ̄4 = 3γ̄−1 1 + 4ρ2

(1 − ρ4)1/2

from which it follows that for small ρ we have approximately ξ
.
= (1 +

3/κ̄4)
−1/2 and κ̄3

.
= ρκ̄4 (compare to (10)); Thus the roles of χ and ξ are

rather similar to those of the classical quantities κ̄3 and κ̄4. Note also that
ρ may be considered as an alternative asymmetry parameter, see Figure 1;
this is of some particular interest in turbulence, cf. Section IV.A.

A systematic study of the class of normal inverse Gaussian distribu-
tions, and of associated stochastic processes, was begun in Barndorff-Nielsen
(1995,1997,1998a,b,c). Further theoretical developments and applications are
discussed in Rydberg (1997,1999), Prause (1999), Eberlein (2000), Raible
(2000), Barndorff-Nielsen and Shephard (1999,2000,2002), Barndorff-Nielsen
and Prause (2001), Barndorff-Nielsen and Levendorskii (2001), Asmussen and
Rosinski (2001), Cont and Tankov (2004). As discussed in the papers cited
and in references given there, the class of NIG distributions and processes
have been found to provide accurate modelling of a great variety of empirical
findings in the physical sciences and in financial econometrics. (The wider
class of generalised hyperbolic distributions, introduced in Barndorff-Nielsen
(1977), provides additional possibilities for realistic modelling of dynamical
processes, see references in the papers cited above.)

2.2 Description of the data

Our analysis of the relevance of NIG distributions for turbulent velocity incre-
ments is based on three data sets obtained from three different experiments.
In the following, we will refer to these data sets using the abbreviations data
set I for the atmospheric boundary layer experiment, data set II for the free-
jet experiment and data set III for the wake-flow experiment. We only give
a brief description of the experiments and list in Table I as the main pa-
rameters the Reynolds number Rλ based on the Taylor microscale, the mean
velocity U , the sampling frequency f and the estimated decorrelation time
T . For more details, we refer to Dhruva (2000) and Sreenivasan and Dhruva
(1998) for data set I, Renner, Peinke and Friedrich (2001) for data set II and
Antonia and Pearson (2000) for data set III.

Data set I consists of the one point time record of the longitudinal (along
the mean flow) velocity-component in the atmospheric boundary layer at a
height of 35 m above the ground. The total size of the record is 2 × 107.

Data set II consists of the one point time record of the longitudinal
velocity-component in a free-jet experiment. A jet of dry air, continuously
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Characteristic parameters
data set Rλ U f T
I 17000 8.3 5 20000
II 190 2.26 8 240
III 80 5.13 10 50

Table 1: Characteristic parameters Reynolds number Rλ, U (unit m/s), f
(unit kHz) and T (in units of the finest resolution 1/f) for the three data
sets.

Sample characteristics
data set s ∈ L NL

I [4, 280] 400 50000
[300, 680] 800 25000
[700, 1500] 1600 12500
[1600, 3800] 4000 5000
[4000, 9500] 10000 2000

II [2, 200] 250 50000
[220, 380 500 25000
[400, 880] 1000 12500

III [2, 102] 130 30000

Table 2: Description of the data used to estimate the pdf of velocity incre-
ments.

streaming into the experimental chamber through a nozzle, develops in a sur-
rounding of dry air which is in rest. Shear forces which arise at the edge of the
jet lead to growing instabilities and finally turbulence. The time series was
measured in the middle of the jet at a distance, where fluctuations around
the mean can be assumed to be homogeneous, isotropic and stationary. The
total number of records is 12.5× 106. Data set III consists of the one point
time record of the longitudinal velocity-component in a wake generated by a
flat plate, normal to the flow and placed downstream in the contraction of
an open circuit wind tunnel. The total sample size is 4.2 × 106.

For the estimation of the pdf of velocity increments we normalized each
of the velocity records by its standard deviation. Furthermore, we divided
each data set, for each lag, into non-overlapping subsets of equal length
and calculated the velocity increments at the center of each subset, i.e. the
analyzed data for each lag s are of the form v((2i − 1)L/2 + s/2) − v((2i −
1)L/2 − s/2), i = 1, . . . , NL. Table II lists the length L of the subsets and
the sample size NL for each lag s (in units of the finest resolution 1/f).
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3 Distribution of velocity increments

In this Section, we examine the pdf of temporal velocity increments

u(s) ≡ v(t + s) − v(t) (12)

for all three data sets, where t and the temporal lag s are measured in units
of the finest temporal resolution 1/f and f is the sampling frequency. Note
that we are not using Taylor’s frozen flow hypothesis (Frisch (1995)), which
would translate (12) into v(σ−Us)−v(σ), where U is the mean velocity and
x denotes the spatial position. With our definition (12) of velocity increments
we expect a positively skewed pdf according to the reversed sign of the famous
Kolmogorov 4/5-th law (Kolmogorov (1941a,b)).

As the main result of this Section we state that the pdf of temporal veloc-
ity increments can well be fitted by a normal inverse Gaussian distribution
for all amplitudes and all temporal lags s, ranging from the finest resolution
1/f up to the largest lags, where a proper statistical inference is feasible. We
also show that the quality of the fit of the pdf is the same for all three data
sets and also works equally well for all temporal lags. Thus we are able to
give a complete description of the marginal pdf of velocity increments within
one class of probability distributions.

3.1 NIG analysis

The analysis of the pdf of the turbulent velocity increments, from the data
described in Section II.B, is performed using maximum likelihood estimation
of the four parameters α, β, µ and δ of the NIG(α, β, µ, δ) distribution. The
numerical estimation uses the routine “hyp”, a program consisting of various
numerical and graphical procedures for assessing the reasonableness of an
analysis using one of the generalised hyperbolic distributions, in particular
the NIG distribution. It provides the estimates of the parameters of the
NIG distribution and evaluates the agreement between the observed and the
estimated distribution.

Figures 2-4 illustrate, by examples, the results of the approximation of
the empirical pdf of velocity increments within the class of NIG distributions
for our three data sets. The lags shown in Figures 2-4 vary over the whole
range of lags that allow for a proper estimation of the empirical pdf. The
largest lags are well inside the Gaussian regime for data sets II and III, while
for data set I the Gaussian limit is not reached. For the lags allowing proper
estimation but which are not represented in these Figures the accuracy of
the approximation is equally good. Results for those lags can be downloaded
from http://home.imf.au.dk/schmiegl/NIG.
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Figure 2: Approximation of the pdf of velocity increments within
the class of NIG distributions for data set I and lags s =
4, 8, 20, 52, 148, 300, 600, 2000, 8000 (in units of the finest resolution 1/f).
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Figure 3: Approximation of the pdf of velocity increments within
the class of NIG distributions for data set II and lags s =
2, 6, 22, 50, 100, 200, 520, 760, 880 (in units of the finest resolution 1/f).
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Figure 4: Approximation of the pdf of velocity increments within the class
of NIG distributions for data set III and lags s = 2, 4, 6, 10, 20, 30, 50, 74, 100
(in units of the finest resolution 1/f).
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The overall impression we get from Figures 2-4 strongly supports the rel-
evance of NIG distributions for describing the pdf of velocity increments for
all lags s. The quality of the fit is independent of the kind of data and in-
dependent of the lag s. Discrepancies between the NIG approximation and
the empirical pdf occur for large amplitudes where the pdf become approxi-
mately . 10−6. The deviations at large amplitudes show up when the scatter
of the data becomes visible and thus we may expect the goodness of fit to
increase with increasing sample size.

The analysis within the class of NIG distributions clearly exhibits the
well-known characteristics of the evolution of the pdf of velocity increments
across all lags. For data set I and II we observe stretched exponentials
within the dissipative scales, turning to exponential tails and finally reaching
Gaussian-like shapes for the very large lags. In Section III.C we show that the
tails indeed behave as stretched exponentials and we estimate the stretching
exponents as a function of the lag s. For data set III we do not observe
convex stretched exponentials but a smooth change from exponential tails
to Gaussian tails. This observation is in conformity with results reported in
Lewis and Swinney (1999) where the absence of convex stretched exponentials
for the tails is connected to the absence of an inertial range. Figures 5-6 show
the spectrum E(k), i.e. the Fourier transform of the correlation function of
the velocity field, for data sets I and III. The wave number k is related to
the lag s via k = f/(2s), where f is the sampling frequency (Table I). The
spectrum of data set II can be found in Renner, Peinke and Friedrich (2001).
Data sets I and II clearly display a scaling range for the spectrum which
defines the inertial range (Frisch 1995). For data set III we are not able to
associate a proper scaling range.

To complete the analysis of this Section we show the parameters α(s),
β(s), µ(s) and δ(s) of the fitted NIG(α(s), β(s), µ(s), δ(s)) distributions in
Figure 7. Leaving aside the scatter at large lags, all parameters roughly follow
a smooth curve with comparable range of values. The estimated parameters
for data sets II and III seem to have a similar dependence on the lag s
while data set I shows a different behaviour, in particular for the parameters
α(s) and β(s). This is not surprising since the Reynolds numbers of data
sets II and III are comparable in order. In Section IV, we propose useful
combinations of these parameters that clearly indicate universal features,
common to all three data sets, that are hidden in Figure 7. It turns out that
a time change from s to δ(s) (Figure 7 (c)) leads, for each of the three data
sets, to a striking collapse of the remaining parameters onto a single curve,
assigning the role of a Reynolds number dependent inner clock to the scale
parameter δ.
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Figure 5: Spectrum E(k) for data set I. The line indicates the slope −5/3.

Figure 6: Spectrum E(k) for data set III. The line indicates the slope −5/3.
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Figure 7: Estimated parameters α(s), β(s), δ(s) and −µ(s) as functions of
the lag s (in units of the finest resolution 1/f) for data set I (◦), data set II
(M) and data set III (+) in double logarithmic representation.
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3.2 Stretched exponential tails

The analysis of the pdf of velocity increments based on the class of NIG
distributions in the last Section showed the evolution from convex tails for
small lags through exponential tails for moderate lags and finally to Gaussian-
like tails for large lags (Figures 2-4). For comparison with classical findings
we now quantify these observations in terms of stretched exponential tails

p(u) ∝ exp{bum} (13)

for large amplitudes u. We somewhat arbitrarily define large amplitudes
u for a given lag s as increments that exceed 10% of the largest observed
amplitude. We performed a least mean square fit for the stretching exponent
m in (13) for the right tail of the NIG distributions for lags that correspond
to those in Figures 2-4. Figure 8 illustrates some examples for the quality of
the fit of stretched exponentials to the tails for all three data sets. We observe
stretched exponentials of the form (13) for all lags and the whole range of
large amplitudes in conformity with results reported in the literature.

These findings are not in contrast to the stated asymptotically semiheavy
tails (8) for NIG distributions. Semiheavy tails occur at very large amplitudes
which do not appear in our analysis. The observed stretched exponentials
(13) in Figure 8 describe intermediate amplitudes. In this respect it is to note
that Noullez et al (1997) give some arguments in favour of only a finite range
of amplitudes with stretched exponential behaviour for turbulent velocity
data.

Figure 9 (a) shows the estimated stretching exponents m as a function of
the lag s. For data set I, the largest observed stretching exponent is clearly
below the Gaussian value 2, which indicates that the large scale limit of data
set I is away from Gaussianity. We come back to this kind of behaviour in
Section IV.A where we investigate the global shape of the pdf in more detail.
For data sets II and III the stretching exponent reaches the Gaussian limit
but does not display the strong convexity of the pdf of data set I.

The overall impression of Figure 9 (a) does not reveal any universal be-
haviour between the three data sets. However, Figure 9 (b) shows the same
stretching exponents m but now as a function of the estimated scale param-
eter δ (Figure 7 (c)). We observe a striking collapse of the three sets of
exponents m on one single curve. The location of each set of exponents on
this common curve apparently depends on the Reynolds number and in gen-
eral on the kind of large scale fluctuations. The dependence seems, however,
to be weak since there is a large region where the three data sets overlap.

The time change from s to δ(s) revealed universal features for the stretch-
ing exponents that were hidden in the dependence on the lag s. In Section
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Figure 8: Fit of stretched exponentials ∝ exp{bxm} (dashed line) to the tails
of the NIG distributions (solid lines) for data set I with lag s=8,148,2000, for
data set II with lag s=6,100,760 and for data set III with lags s=4,20,74 (in
units of the finest temporal resolution 1/f). The represented lags correspond
to those of the middle columns of Figures 2-4.
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Figure 9: Stretching exponents m as a function of the lag s (a) and as function
of the scale parameter δ (b) for data set I (◦), data set II (M) and data set
III (+). Abscissae are represented in logarithmic scales.

IV.B we will encounter more examples of this kind of universality.

4 Universality and Parsimony

In Section III we showed that NIG distributions are able to approximate
the pdf of temporal velocity increments for all lags ranging from the finest
resolution up to the largest scales. The NIG distributions are characterized
by four parameters α(s), β(s), δ(s) and µ(s) whose dependence on the lag
s will be examined in the following. We mainly focus on shape triangles,
introduced in Section II.B, as a descriptive tool for the characterization of
the global shape of NIG distributions, and on various combinations of the
parameters that allow for a parsimonious and, to a certain extent, universal
description of the fitted NIG distributions.

4.1 Shape triangles

The NIG shape triangle is a plotting device for showing the asymmetric and
non-Gaussian character of a given NIG distribution. The parameters χ and
ρ are associated to the degree of asymmetry of the given distribution while
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Figure 10: (a) Shape triangle for the evolution of the pdf of velocity incre-
ments across lags for data set I. (b) Amplification of the relevant part of (a).
The numbers denote the lags of several of the velocity increments, as used in
Figure 1. All represented lags can be read off from Figure 17 (a).
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Figure 11: (a) Shape triangle for the evolution of the pdf of velocity incre-
ments across lags for data set II. (b) Amplification of the relevant part of
(a). The numbers denote the lags of several of the velocity increments, as
used in Figure 1. All represented lags can be read off from Figure 17 (a).
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Figure 12: (a) Shape triangle for the evolution of the pdf of velocity incre-
ments across lags for data set III. (b) Amplification of the relevant part of
(a). The numbers denote the lags of several of the velocity increments, as
used in Figure 1. All represented lags can be read off from Figure 17 (a).
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(χ, ξ) reflects the degree of non-Gaussianity, with the limit (χ, ξ) → (0, 0) for
a normal distribution, see Figure 1. Figures 10-12 show the shape triangles
and amplifications of the relevant part of the triangles for data sets I-III.
Each symbol corresponds to the maximum likelihood estimate of (ξ, χ) at
one given lag s (which can be read off from Figure 17 (a)).

While data sets II and III clearly approach the Gaussian limit at the
origin for large lags, this is not observed for data set I. The non-Gaussian
behaviour for large lags for data set I already appeared in connection with
the stretching exponent m < 2 for the tails. The difference in the large scale
behaviour might be due to the fact that experiments II and III are performed
under controlled and steady conditions, while experiment I involves unsteady
large scale fluctuations, leading to a limit that is away from Gaussianity.
However it is not clear to what extent this limit describes the dynamics of
large scale fluctuations since we could not resolve all lags up to the estimated
decorrelation time T = 20000 for data set I (Table II).

Some common features are clearly visible in the shape triangles. First, we
observe that the path within the shape triangle is restricted to the same re-
gion 0 ≤ χ < 0.2, i.e. all three data sets exhibit the same kind of asymmetry,
irrespective of the Reynolds number. Furthermore, we observe that the slope
1/ρ = α/β (consult eq.(10)) of all three paths across lags is roughly constant
for each data set and of the same order 10 − 20. Thus, the evolution of the
pdf from its initial asymmetric state to its final state follows approximately
a type of universal, linear behaviour. Differences show up in the initial and
final states which are near the origin for data sets II and III and some other
state for data set I, which is symmetric, but does not have Gaussian steep-
ness. The initial and final state in the shape triangle clearly depend on the
Reynolds number and the experimental situation. However the way these
two shapes are connected across lags follows a simple, approximately linear
evolution that is very similar for all three data sets.

4.2 Smooth parameters and universality

This Section gives a more detailed description of the parameters of the fitted
NIG distributions. The estimated values of the four parameters α(s), β(s),
µ(s) and δ(s) as shown in Figure 7 follow different curves for each data set.
Of course, we can also choose various combinations of these parameters as
our basic parameters. In the following we will focus on combinations that
are smooth and have a simple, in particular monotonic dependence on the
lag s. We choose the scale parameter δ, the ratio α/δ and the steepness ξ as
the set of parameters that are convenient for our purposes. We are able to
restrict to three parameters instead of four once we use the stationarity of
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Figure 13: Comparison of −µ(s) (◦) with δ(s)β(s)/
√

α2(s) − β2(s) (×) for
data set I in double logarithmic representation.

the velocity field which implies that the cumulant of first order (5) vanishes.
Thus, we expect µ(s) to be of the form

µ(s) = − δ(s)β(s)
√

α(s)2 − β(s)2
. (14)

Figures 13-15 show −µ(s) and δ(s)β(s)/
√

α(s)2 − β(s)2 as a function of the
lag s for each of our data sets. Besides some scatter for data set I, relation
(14) is confirmed for all three data sets with high accuracy.

The scale parameter δ(s) as a function of the lag s is shown in Figure 7
(c). Leaving aside the scatter for large lags that is due to the decrease of
the sample size with increasing lag, we observe a monotonically increasing
function of the lag s. For intermediary lags an approximate scaling range
becomes visible which increases with increasing Reynolds number. In the
following we will, in view of the monotonicity, think of δ(s) as a time change
and investigate the other parameters α/δ and ξ as functions of δ(s).

The usefulness of this time change was already shown in Section III.B
where we observed an approximate collapse of the stretching exponents m(δ)
for the tails. A similar behaviour can be observed for the parameters (α/δ)(δ)
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Figure 14: Comparison of −µ(s) (◦) with δ(s)β(s)/
√

α2(s) − β2(s) (×) for
data set II in double logarithmic representation.

and ξ(δ) in their dependence on δ. Figure 16 (a) shows α/δ as function of the
lag s and Figure 16 (b) as a function of δ for our three data sets. For both
of the two parameter sets there is a striking collapse onto one single curve.
Each data set is covering a certain part of this common curve in the (δ, α/δ)
space, with large overlapping regions. It is to note that the corresponding
plots of α/δ as a function of the lag s (Figure 16 (a)) show a rather different
behaviour for each data set. It is the time change with δ(s) that causes the
collapse on one, apparently universal curve.

A similar kind of universality can be observed for the steepness parameter
ξ when plotted as a function of δ. Figure 17 shows the comparison of ξ(s) as
a function of the lag s and ξ(δ) as function of the scale parameter δ for all
three data sets. The same striking collapse of the three parameter sets on a
single, universal curve can be observed.

The collapse of the various parameter sets is not perfect, but to a first
approximation it seems to hold for all lags. We come back to the accuracy of
the collapse of ξ(δ) at the end of this Section. Here we state that, to a first
approximation, a universal and parsimonious description of the pdf of velocity
increments for all three data sets can be achieved using the three functions
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Figure 15: Comparison of −µ(s) (◦) with δ(s)β(s)/
√

α2(s) − β2(s) (×) for
data set III in double logarithmic representation.

δ(s), (α/δ)(δ) and ξ(δ) as the basic parameters to describe the evolution of
the pdf across lags. The scale parameter δ(s) is the basic time change for
each data set and allows for an approximately universal description of the
remaining parameters. This universality is characterized by the striking fact
that the parameters (α/δ)(δ) and ξ(δ) for each data set follow one universal
function. It is the time change δ(s) that embodies most of the differences
between the data sets.

Some remarks about the interpretation of our choice of basic parameters
are in order. The scale parameter δ(s) has the advantage of being mono-
tonically increasing with the lag s and thus provides a natural time change
for each data set. The parameter ξ describes the steepness of the NIG dis-
tribution and is invariant under scale-location transforms. As one of the
parameters of the shape triangle it serves as a global parameter for the evo-
lution of the shape across lags. The third parameter α/δ is closely related
to the second order structure functions. In our investigation of the empirical
pdf, we have β � α for not too large lags. Thus we approximate to first
order S2 = κ2 ≈ δ/α (consult eq. (5)). Universal features as shown by
the collapse of α/δ are thus related to universal featurs of the second order

26



Figure 16: (a) Comparison of (α/δ)(s) as a function of the lag s with (b)
(α/δ)(δ) as a function of the scale parameter δ for data set I (◦), data set II
(M) and data set III (+) in double logarithmic representation.

Figure 17: (a) Comparison of ξ(s) as a function of the lag s with (b) ξ(δ)
as a function of the scale parameter δ for data set I (◦), data set II (M) and
data set III (+) in double logarithmic representation.
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structure functions. This universality even applies when there is no inertial
range as for data set III. A related kind of time change that applies for iner-
tial range statistics only, is given by the concept of Extended Self-Similarity
(Benzi et al (1993)). There, some structure function of order n′ serves as a
time change for structure functions of higher orders n > n′, which leads in
most cases to a more pronounced and more extended scaling behaviour of
structure functions. We come back to this point in Section V.

The universal behaviour of α/δ and ξ reveals itself as the approximate
collapse of these parameters on single curves, one for α/δ and one for ξ. For
α/δ we did not find a simple analytical expression for the universal shape
that is visible in Figure 16 (b). However for the steepness ξ it is possible to
detect a simple exponential behaviour

ξ(δ) = exp(−aδb) (15)

for a certain, but extended range of δ and for each individual data set. The
estimated exponents b of the three data sets are different, thus indicating the
limitations of the collapse of ξ on one single curve. The apparent universal
shape of ξ as a function of δ is due to the fact that the curves given by the
exponential laws (15), for each data set, are very close to each other with
extended overlaps.

Figure 18 shows log(− log(ξ)) as a function of log(δ) for data set I. We
observe an extended range of δ-values where the exponential behaviour (15)
holds to high accuracy with a = 0.56 and b = 0.36. Translating the δ
coordinate back to temporal lags s (Figure 7 (c)), we get the range s ∈
[12, 1000] that is over three orders of magnitude. This kind of exponential
behaviour also holds for data set II and III. From Figures 19-20, we clearly
see that the exponential behaviour (15) holds for s ∈ [10, 500] for data set II
and s ∈ [4, 80] for data set III, thus covering most of the lags we looked at
in our analysis. The estimated values are a = 0.43, b = 0.54 for data set II
and a = 0.35, b = 0.49 for data set III.

For the moment we do not have a theoretical explanation for this kind
of exponential law. An important point in this respect is the fact that the
same exponential behaviour was observed for data on wind shear consisting
of changes in headwind speed experienced by aircraft during landing phase
(Barndorff-Nielsen et al (1989)). Despite the obvious fundamental difference
to the kind of data we use in our analysis, there appears to be the common
feature of the steepness ξ to depend exponentially on the scale parameter δ.

28



Figure 18: Illustration of the linear dependence of log(− log(ξ)) on log(δ) for
data set I. The straight line is of the form 0.36 log(δ) − 0.56.
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Figure 19: Illustration of the linear dependence of log(− log(ξ)) on log(δ) for
data set II. The straight line is of the form 0.54 log(δ) − 0.43.
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Figure 20: Illustration of the linear dependence of log(− log(ξ)) on log(δ) for
data set III. The straight line is of the form 0.49 log(δ) − 0.35.
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5 Conclusions

We performed a statistical analysis of the pdf of turbulent velocity increments
for three rather different data set, different in experimental conditions and
in Reynolds number. We found that the pdf of velocity increments can be
well fitted within the class of NIG(α, β, µ, δ) distributions for all lags, from
the finest resolution up to the largest lags that allow for a proper statistical
estimation of the parameters α, β, µ and δ. The resolution of the tails was
shown to be in conformity with classical findings, that is an evolution of the
tails from stretched exponentials to Gaussian-like shapes. The illustrative
representation of the evolution of the shape of the pdf across lags with the
help of shape triangles revealed a simple, linear and universal behaviour for
all three data sets.

The analysis within the class of NIG distributions comes with four param-
eters α, β, µ and δ, where one, choosen to be µ, depends on the other three
parameters α, β and δ in a precise way due to the stationarity of the velocity
data. The remaining three parameters α(s), β(s) and δ(s) as functions of
the lag s depend on s in a non-universal way. However, once we introduce a
time change, from s to δ(s), striking universal features can be detected.

It turns out that maximum likelihood estimates of the parameter com-
binations α/δ and ξ, when plotted as functions of the scale parameter δ,
collapse (to first order) on single, apparently universal curves, one for α/δ
and one for ξ, with large overlapping regions. The individual characteristics
of each data set are thus largely captured by the scale parameter δ(s). In
addition, we find that the stretching exponents m describing the tails of the
pdf also collapse on one single curve when plotted as a function of the scale
parameter δ. Note that we normalised each data set by its standard devia-
tion. However, it does not change the form of the functional dependence of
α/δ, ξ and m on the scale parameter δ.

In summary we are able to parsimoniously describe all three data sets by
two universal curves and one individual time change δ(s) for each data set.

We were able to show the existence of a simple exponential behaviour
for ξ(δ) for a wide range of δ values. This exponential law seems to have
far-reaching applicability since it is also reported for a rather different kind
of turbulent data set.

The universal features we were able to show for turbulent velocity incre-
ments goes far beyond the usual multifractal description which in general is
appropriate only for a restricted range of lags (a fraction of the inertial range)
and very high Reynolds numbers, where universal scaling exponents τ(n) for
structure functions (1) are expected. Our three data sets covered a range
of Reynolds numbers where, on the one hand, an inertial range was clearly
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visible (data sets I and II), while on the other hand, no inertial range could
be detected (data set III). Thus, our findings concerning universal features of
the distributional properties of velocity increments apply without reference
to inertial range dynamics.

For the moment, our analysis has to be understood as a purely empirical
study. We have no clear physical interpretation of why the time change
δ(s) works so surprisingly well in detecting universal features for the pdf of
turbulent velocity increments. There is a whole range of challenging problems
that immediately come to mind.

We expect some kind of relation to the concept of Extended Self-Similarity
for inertial range statistics. Larger data sets should allow for an accurate
rewriting of our findings in terms of structure functions via the relations (5)
and (6) and thus clarify the connection to the structure function based time
change of Extended Self-Similarity.

The analysis of more data sets is needed to shed light on the dependence of
the time change δ(s) on the Reynolds number and on the kind of experiment
that is performed. Another important point concerns the similarities between
our data sets and the one that is described in Barndorff-Nielsen et al (1989).
Both data show the same exponential law (15).

A third issue concerns the implications of our results for the understand-
ing of the dependence structure of the velocity field. We intend to study the
dependence structure in subsequent work.
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