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This paper deals with queues and insurance risk processes where a generic
service time, resp. generic claim, has the form U ∧K for some r.v. U with dis-
tribution B which is heavy–tailed, say Pareto or Weibull, and a typically large
K, say much larger than EU . We study the compound Poisson ruin proba-
bility ψ(u) or, equivalently, the tail P(W > u) of the M/G/1 steady–state
waiting time W . In the first part of the paper, we present numerical values
of ψ(u) for different values of K by using the classical Siegmund algorithm
as well as a more recent algorithm designed for heavy–tailed claims/service
times, and compare the results to different approximations of ψ(u) in order to
figure out the threshold between the light–tailed regime and the heavy–tailed
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the asymptotic exponential decay rate γ = γ(K) in a more general truncated
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1 Introduction

This paper deals with queues and insurance risk processes where a generic service
time, resp. generic claim, has the form U ∧K for some r.v. U with a heavy–tailed
distribution, say Pareto or Weibull, and a typically large K, say much larger than
EU .

An earlier study in this setting and some motivation has been given by Jelenković
[12] in the queueing context. In insurance risk, Hipp [11] noted that many reinsur-
ance contracts (the simplest of which is stop–loss) will lead to an actual claim of this
type. Certainly in this area, there will most often be an upper limit to a claim, and
the extensive use of heavy–tailed modeling is then oftened defended by an argument
roughly saying that working with a heavy tail gives a better approximation than a
light one in the relevant range. An empirical investigation of this was the original
stimulus for the present study.

We will work in the framework of the compound Poisson ruin probability ψ(u)
or, equivalently, the tail P(W > u) of the M/G/1 steady–state waiting time W (to
justify ’equivalently’: ψ(u) = P(W > u) holds provided the Poisson rates are the
same, say β, the claim size distribution, say B, of the risk process is the same as
the service distribution of the queue and the rate of premium inflow for the risk
process is 1; see [3], p. 399). Then light–tailed assumptions predict (we will use use
the customary notation f(u) ∼ g(u) as u→ ∞ to denote f(u)/g(u) → 1, u→ ∞)

ψ(u) = P(W > u) ∼ Ce−γu, u→ ∞, (1)

where γ > 0 is the solution of β
(

EeγU − 1
)

= γ and C = (1 − ρ)/
(

βE[UeγU ] − 1),
whereas with heavy tails one has

ψ(u) = P(W > u) ∼ ρ

1 − ρ
BI(u), u→ ∞, (2)

where BI is the integrated tail distribution with density P(U > x)/EU . When
B = B(K) is the distribution of U ∧K, we will write ψK(u), WK etc.

In our truncated heavy–tailed setting, the conditions for (1) are certainly fulfilled
so that (1) will be superior to (2) for sufficiently large u. On the other hand,
with a large K one would expect (2) to be better for small u The key issue is to
quantify this range. Our numerical results will show what came as a surprise at
least to us, that it is virtually always better to work with (1) and that it provides an
excellent approximation even for small u and largeK. We also perform a comparison
with an adaptation of an approximation of [12] which deals with the behaviour of
ψK(u) = P(WK > u) when u and K both go to ∞ at roughly the same rate (see
Appendix B for more details). Finally, since the exact values of ψK(u) = P(WK > u)
have to be found by simulation, the study also gives an opportunity to check out
whether simulation algorithms initially worked out for either light or heavy tails
have the better performance in the truncated heavy–tailed regime.

In addition to these empirical points, the paper also investigates a more mathe-
matical issue; the asymptotics of the exponential decay rate (often denoted adjust-
ment coefficient in insurance risk) γ = γ(K) as K → ∞, and we give a discussion of
some of the implications for the approximations of ψK(u). To this end, we choose
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to work in the following setting, which is more general than the compound Poisson
framework: We let γ = γ(K) be the root of the Lundberg equation κ(K)(α) = 0,

where κ(K) is the Lévy exponent of the process
{

X
(K)
t = J

(K)
t + Yt

}

where
{

J
(K)
t

}

is a pure jump process with J
(K)
t −J (K)

t− = (Jt−Jt−)∧K for some jump process {Jt}
with Lévy measure being regularly varying at ∞ and {Yt} is a Lévy process with
finite mean and no upwards jumps. The investigation of the asymptotic behaviour
of γ is in Section 3. Finally, in Section 4 and Appendix C, we briefly consider a
subexponential example different from regular variation, a heavy–tailed Weibull B.

2 Numerical examples

We considered the stable M/G/1 queue with service time distribution B being
Pareto with indices α = 3/2 (often argued to be a typical value with finite mean but
infinite variance) as well as α = 5/2. The traffic intensity was ρ = 0.4 and ρ = 0.8
and we considered K = 10, 100 and 1000, giving a totality of 12 different sets of
parameter combinations.

Note that in this case stability means

1 > ρ = β
(

∫ K

0

αx

(x+ 1)α+1
dx+K

∫ ∞

K

α

(x+ 1)α+1
dx

)

.

To get numerical values of ψ(u) = P(W > u), we used simulation. As is well
known ([6], [10]), the evaluation of small probabilities by simulation requires some
sophistication. Up to recently, most algorithms developed required light tails. The
classical one, which we use here, is due to Siegmund and amounts to importance
sampling where β is changed to to β(γ) = β + γ and B(K)( dx) to

B(K;γ)( dx) =
eγx

EeγX(K)
B(K)( dx) (3)

where γ = γ(K) has to be found numerically as the solution of β(B̂(K)(γ) − 1) = γ.
See [2], pp. 287–290.

The algorithms for heavy tails of the literature have a different form and all rely
on the Pollaczeck–Khinchine formula

ψ(u) = P(W > u) = P(Y1 + · · ·+ YN > u) (4)

where the Yi are i.i.d. with distribution BI and N is an independent geometric r.v.
with parameter ρ. We use the one from [5] (documented there to be superior to
earlier ones from [4] or [14] in the traditional genuinely heavy–tailed setting) where
the estimator of P(Y1 + · · ·+ Yn > u) is

nBI

(

Mn−1 ∨ (u− Sn−1)
)

(5)

where Mn = max(Y1, . . . , Yn) and Sn = Y1 + · · ·+ Yn. Thus, in our Pareto example
the Yi have density

fY (u) =
α− 1

(u+ 1)α[1 − 1/(K + 1)α−1]
I(0 ≤ u < K)
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where I(·) is the indicator function.
Figures 1–12 give the waiting time tail, estimated by the two simulation algo-

rithms for all 12 combinations of α, ρ,K, as well as the three types of approximations
outlined in Section 1. The details of the simulations are straightforward except that
it is not trivial to perform efficient sampling from the tilted measure in (3) when
B(K) is truncated Pareto. We present our solution to this problem in Appendix A.

It is somewhat ambiguous how to implement the heavy tail approximation (2),
more precisely whether to use the untruncated Pareto distribution B or the trun-
cated version B(K). We have included both possibilities; in the figures, “Heavy-
tailappr” refers to the truncated case whereas “w.t.” is short for without truncation.
“CL” stands for the Cramér–Lundberg approximation, see (1), and “Jelenković” to
the adaptation of the approximation of [12] given in Theorem B.2 in Appendix B.

The conclusions we draw from the figures go in two directions, the quality of the
approximations and the reliability of the simulation algorithms, and are as follows:

• The two simulation algorithms produce similar estimates when u ∈ [0, K].
For larger u, (5) has a skewness problem because even if the algorithm is
unbiased in the usual sense, most of the estimates it produces will be zero

because B
(K)

I (y) = 0 for y > K. When comparing the two algorithms we note
that each iteration in the Siegmund algorithm requires roughly 10 times the
CPU time needed for each iteration in (5) when u ∈ [0, K]. This must be
accounted for in the comparison and we use 5000 iterations for each estimate
in the Siegmund case and 50000 iterations in (5). In Table 1 we present the
relative error defined as the halfwidth of the 95% confidence interval divided
by the point estimate for certain combinations of K,α, u, ρ for the Siegmund
algorithm and (5). We conclude that for small u, u < K, say, the algorithm
(5) performs better (in terms of lower variance) than the Siegmund algorithm,
which on the other hand is superior as soon as u ≥ K and produces very
reliable estimates. The reason why so few ’+’ are seen in the plots is simply
that we use a logarithmic scale and ignore all estimates equal to zero.

• The results provided by the heavy–tailed approximation without truncation
are not very convincing. In contrast, for u > K the values are off the true
ones (the Siegmund estimates) by orders of magnitude no matter the values
of K,α, u, ρ. The best results are in Figure 7, but even there, the overall fit in
[0, K] is hardly better than the Cramér–Lundberg algorithm.

• The heavy–tailed approximation with truncation has the problem of dropping
off to 0 near u = K, as is also clear from the expression. Again, one may as
well use the Cramér–Lundberg approximation in [0, K].

• The Jelenković approximation improves as K grows, as it should in view of
Theorem B.2, and also as α grows (we believe that our figures appearing more
jagged than the ones in [12] is due largely to our smaller values of α). It is
better than the heavy–tailed approximations in terms of giving the correct
order of magnitude, but can still not compete with the Cramér–Lundberg
approximation.
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ρ α K u Siegmund (5)

0.4 3/2 1000 500 0.03 0.0072
1000 0.0453 0.0416
2000 0.038 0.6223

0.4 3/2 100 50 0.0218 0.0087
100 0.0267 0.0287
200 0.0245 0.23

0.4 3/2 10 5 0.0143 0.0083
10 0.0163 0.0205
20 0.0157 0.0772

0.8 3/2 1000 500 0.0179 0.0119
1000 0.0193 0.0243
2000 0.0188 0.1204

0.8 3/2 100 50 0.01 0.011
100 0.0101 0.0174
200 0.0099 0.0428

0.8 3/2 10 5 0.0048 0.0088
10 0.005 0.0121
20 0.005 0.0204

0.4 5/2 1000 500 0.0949 0.0057
1000 0.1439 0.1323
2000 0.1922 —

0.4 5/2 100 50 0.0479 0.0079
100 0.0561 0.0453
200 0.0559 1.1548

0.4 5/2 10 5 0.0216 0.0116
10 0.0229 0.0295
20 0.0218 0.2215

0.8 5/2 1000 500 0.0698 0.0091
1000 0.0687 0.0382
2000 0.0916 —

0.8 5/2 100 50 0.0312 0.0208
100 0.0257 0.0359
200 0.027 0.5018

0.8 5/2 10 5 0.008 0.0114
10 0.0077 0.0173
20 0.0077 0.0379

Table 1: Comparison of relative errors
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Figure 1: α = 1.5, ρ = 0.4 and K = 1000.
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Figure 2: α = 1.5, ρ = 0.4 and K = 100.
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Figure 3: α = 1.5, ρ = 0.4 and K = 10.
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Figure 4: α = 1.5, ρ = 0.8 and K = 1000.
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Figure 5: α = 1.5, ρ = 0.8 and K = 100.
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Figure 6: α = 1.5, ρ = 0.8 and K = 10.
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Figure 7: α = 2.5, ρ = 0.4 and K = 1000.
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Figure 8: α = 2.5, ρ = 0.4 and K = 100.
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Figure 9: α = 2.5, ρ = 0.4 and K = 10.
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Figure 10: α = 2.5, ρ = 0.8 and K = 1000.
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Figure 11: α = 2.5, ρ = 0.8 and K = 100.
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Figure 12: α = 2.5, ρ = 0.8 and K = 10.
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3 Exponential decay rates and truncation

Let {Jt} be a pure jump Lévy process with Lévy measure ν satisfying

∫ ∞

−∞
|x|ν( dx) <∞, ν(x) =

∫ ∞

x

ν( du) = L(x)/xα,

for some function L(x) which is slowly varying at infinity ( lim
x→∞

L(tx)/L(x) = 1 for

all t > 0) and α > 1. For each K, we consider the jump process
{

J
(K)
t

}

with Lévy

measure ν(K) given by

ν(K)( dx) =











ν( dx) if x < K

ν(K) if x = K

0 otherwise.

Further, we let {Yt} be a Lévy process with representation

Yt = µt+ σBt + Y j
t

where {Bt} is standard Brownian motion and
{

Y j
t

}

is a jump process with finite

mean and without upwards jumps, i.e. the Lévy measure of
{

Y j
t

}

, ξ, satisfies

ξ(R+) = 0,

∫ 0

−∞
xξ( dx) <∞.

For each K we define the process
{

X
(K)
t

}

by X
(K)
t = J

(K)
t +Yt. The Lévy exponent

is then

κ(K)(s) = log E exp
{

sX
(K)
1

}

=
(

∫ K

−∞

(

esx − 1
)

ν( dx) +
(

esK − 1
)

ν(K)
)

+ sµ+ σ2s2/2 +

∫ 0

−∞
(esx − 1)ξ( dx),

which we, in obvious notation, write as

(

A(s) +B(s)
)

+ sµ+ σ2s2/2 +

∫ 0

−∞
(esx − 1)ξ( dx),

and we define γ(K) as the solution of the Lundberg equation κ(K)
(

γ(K)
)

= 0. We

will further assume that EJ1 + EY1 < 0 which implies that EX
(K)
1 < 0 for all K and

hence that γ(K) > 0. We have:

Theorem 3.1 Under the stated assumptions on regular variation and negative drift,

it holds as K → ∞ and ν, ξ fixed that

γ(K) =
1

K

[

(α−1) logK+log logK− logL(K)+log
[

−(EJ1 +EY1)(α−1)
]

+o(1)
]

.

(6)

12



For convenience, we state a slightly less general version of this result, adapted
to the present study. Let F be a distribution on (0,∞) with density of the form
f(x) = αL(x)/xα+1 for some α > 1 and some slowly varying function L(x) (then
the tail F (x) is of order L(x)/xα, see (17)). Let µF denote the mean. Consider for

each K a compound Poisson process
{

X
(K)
t

}

with a drift term such that the jumps
have distribution F truncated at K. That is,

X
(K)
t =

Nt
∑

i=1

Xi ∧K − θt

where the Xi are i.i.d. with common distribution F and {Nt} is an independent
Poisson process, with rate say β. The Lévy exponent is then

κ(K)(s) = log E exp
{

sX
(K)
1

}

= β
(

∫ K

0

(

esx − 1
)

f(x) dx+
(

esK − 1
)

F (K)
)

− sθ.

In this case, where we assume that βµF − θ < 0 so that γ(K) > 0 for all K, we have:

Corollary 3.1 For the compound Poisson process case, under the stated assump-

tions on regular variation and negative drift, it holds as K → ∞ and β fixed that

γ(K) =
1

K

[

(α−1) logK+log logK− logL(K)+log
[

(θ−βµF )(α−1)
]

+o(1)
]

. (7)

Proof. In the compound Poisson case, EJ1 = βµF and EY1 = −θ. Now we just apply
Theorem 3.1. 2

In view of Corollary 3.1, a tempting conclusion is that (1) and (2) are almost the
same for u = K so that u = K would appear the natural value where to switch from
the heavy–tailed to the light–tailed approximation which could also be intuitively
appealing. More precisely, ignoring constants the ratio of logarithms at u = K is

−γ(K)K

logBI(K)
∼ −(α− 1) logK

−(α− 1) logK
= 1.

I.e., the dominant factors in both approximations should have the common value
K−(α−1). The numerical results in Section 2 show, however, that (1) and (2) are
quite far apart at u = K. The flaw in the argument just given is that we have
ignored that C = CK varies with K. More precisely, we will show below that the
following result holds:

Proposition 3.1 CK ∼ 1

(α− 1) logK
, K → ∞.

Turning to the proof of Theorem 3.1, we need the following lemma:

Lemma 3.1 Let γ = γ(K) be positive constants such that γ(K)K = c logK +
o(logK), K → ∞, where c is a positive constant. Then, under the stated assumption

on slow variation of L(x),

A(γ) = γEJ1 + o
(L(K)eγK

Kα

)

.
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Proof. Define

T (γ) = A(γ)/γ =

∫ K

−∞

eγx − 1

γ
ν( dx)

which we write as

T =

∫ 1/γ

−∞

eγx − 1

γx
xν( dx) +

∫ K

1/γ

eγx − 1

γ
ν( dx). (8)

We now observe that on −∞ < x < 1/γ,
∣

∣

eγx−1
γx

∣

∣ < e − 1, and thus dominated

convergence together with EJ1 <∞ and lim
t→0

et − 1

t
= 1 implies

∫ 1/γ

−∞

eγx − 1

γx
xν( dx) → EJ1, γ → 0

Let 0 < r < 1, and pick δ ∈ (1 − r, 1). If we perform partial integration and make
the change of variables y = γx in the second integral of (8) we get, if we let z = γK,

∫ K

1/γ

eγx − 1

γ
ν( dx) = −ν(K)

ez − 1

γ
+ ν(1/γ)

e − 1

γ
+

∫ K

1/γ

eγxν(x) dx

= −ν(K)
ez − 1

γ
+ ν(1/γ)

e − 1

γ
+ γα−1

∫ z

1

eyL(y/γ)

yα
dy

= −ν(K)
ez − 1

γ
+ ν(1/γ)

e − 1

γ
+ γα−1

∫ (1−δ)z

1

eyL(y/γ)

yα
dy

+ γα−1

∫ z

(1−δ)z

eyL(y/γ)

yα
dy. (9)

Let 0 < ε1 < (r− 1 + δ)c. We now pick 1 < R(ε1) <∞ such that L(x) ≤ xε1 if x ≥
R(ε1). This is possible because L(x) is slowly varying, see e.g. Theorem A.3.3 p.
566 in [8] or Lemma 2, p. 277 in [9]. We then obtain

∫ (1−δ)z

1

eyL(y/γ)

yα
dy ≤

∫ R(ε1)

1

eyL(y/γ)

yα
dy +

∫ (1−δ)z

R(ε1)

ey (y/γ)ε1

yα
dy.

(Since z → ∞, we may (and shall) assume that (1 − δ)z > R(ε1) so that all
splittings of integrals above make sense.) The slow variation of L(x) implies that
L(tx)/L(x) → 1, x→ ∞ uniformly on each compact interval, and thus in particular
on [1, R(ε1)]. This gives us that

∫ R(ε1)

1

eyL(y/γ)

yα
dy ∼ L(1/γ)

∫ R(ε1)

1

ey

yα
dy,

because, for any ε > 0 and sufficiently small γ,

(1 − ε)L(1/γ)

∫ R(ε1)

1

ey

yα
dy <

∫ R(ε1)

1

eyL(y/γ)

yα
dy

< (1 + ε)L(1/γ)

∫ R(ε1)

1

ey

yα
dy.

(10)
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L(1/γ) is o(erγK), since, for any 0 < ε2 < cr, it may be bounded by (1/γ)ε2 for small

γ and erγK has Krc as dominant factor. For the part
∫ (1−δ)z

R(ε1)
ey (y/γ)ε1

yα dy, we use that

∫ (1−δ)z

R(ε1)

ey (y/γ)ε1

yα
dy ∼ 1

γε1

e(1−δ)z

((1 − δ)z)α−ε1
, (11)

which follows directly from

∫ z

a

ey

yβ
dy ∼ ez

zβ
, z → ∞ (12)

(to see this, substitute t = ey in (12) and use Karamata’s theorem, e.g. [7], Propo-
sition 1.5.8., p. 26). The assumption γK ∼ c logK together with (11) gives

∫ (1−δ)z

R(ε1)

ey (y/γ)ε1

yα
dy ∼ C

e(1−δ)zKε1

(logK)α
,

where C is a constant. 0 < ε1 < (r−1+δ)c now implies
∫ (1−δ)z

R(ε1)
ey (y/γ)ε1

yα dy = o(erγK).

Using the slow variation of L(x), the arguments leading to (10) and (12), we get
that

∫ z

(1−δ)z

eyL(y/γ)

yα
dy ∼ L(z/γ)ez

zα
=
L(K)eγK

(γK)α
.

From (9) it now follows thatA(γ) = γEJ1+o(L(K)eγK/Kα), since −ν(K)(eγK−1) ∼
−L(K)eγK/Kα and ν(1/γ) = o(L(K)eγK/Kα). The last claim follows from

lim
K→∞

∣

∣

∣

ν(1/γ)Kα

L(K)eγK

∣

∣

∣
= lim

K→∞

∣

∣

∣

L(1/γ)γαKα

L(K)eγK

∣

∣

∣
≤ lim

K→∞

∣

∣

∣

cαKc/2(logK)α

DeγK

∣

∣

∣
= 0

where D > 0 is a constant such that lim
K→∞

|L(K)| ≥ D. 2

Proof of Theorem 3.1. Let ε > 0. For simplicity of notation, we omit K and ε in
much what follows and let

γ± =
1

K

[

(α− 1) logK + log logK − logL(K) + log
[

−(EJ1 + EY1)(α− 1)
]

± ε
]

,

γ = γ(K) etc. Since γ±K → ∞, we get

B(γ±) ∼ L(K)

Kα
eγ±K = −L(K)

Kα

Kα−1 logK(α− 1)
(

EJ1 + EY1

)

e±ε

L(K)

= −(α− 1) logK
(

EJ1 + EY1

)

e±ε

K
∼ −γ±

(

EJ1 + EY1

)

e±ε.

To complete the proof, it suffices to show that κ(γ−) < 0 < κ(γ+) for all large K,
because this implies γ ∈ (γ−, γ+) and, since ε is arbitrary, the assertion (6). The
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proofs are identical for γ+ and γ−, so we treat only γ+. The preceeding lemma tells
us that A(γ+) ∼ EJ1γ+. Thus

κ(γ+) = A(γ+) +B(γ+) + µγ+ + σ2γ2
+/2 +

∫ 0

−∞
(eγ+x − 1)ξ( dx)

= γ+

(

A(γ+)/γ+ +B(γ+)/γ+ + µ+ σ2γ+/2 +

∫ 0

−∞

eγ+x − 1

γ+
ξ( dx)

)

∼ γ+

(

EJ1 −
(

EJ1 + EY1

)

eε + EY1

)

= γ+(1 − eε)
(

EJ1 + EY1

)

> 0

where we used EY1 <∞, the fact that lim
t→0

(et−1)/t = 1 and dominated convergence

to get
∫ 0

−∞

eγ+x − 1

γ+
ξ( dx) →

∫ 0

−∞
xξ( dx).

This completes the proof. 2

Proof of Proposition 3.1. For simplicity, we suppress K and let U = X1 ∧ K,
Jt = J

(K)
t etc. Since C = CK = (1 − ρ)/

(

βE[UeγU ] − 1
)

= (1 − ρ)/
(

E[J1e
γJ1 ] − 1

)

,

we seek the asymptotic behaviour of E[J1e
γJ1 ] with γ = γ(K) as in Corollary 3.1

with θ = 1. To this end, we write

E[J1e
γJ1 ] =

∫ K

0

ueγu αL(u)

(u+ 1)α+1
du+KeγK

∫ ∞

K

αL(u)

(u+ 1)α+1
du. (13)

We express (13) as E[J1e
γJ1 ] = a+b. It is immediate from Karamata’s theorem that

b ∼ KeγKL(K)/(K + 1)α ∼ eγKL(K)/Kα−1 ∼ (α− 1)(1 − βµF ) logK,

so we turn to the part a. By using the same arguments as in the proof of Lemma
3.1, we find that for some 0 < δ < 1 we get, where z = γK,

a =

∫ 1/γ

0

ueγu αL(u)

(u+ 1)α+1
+ αγα−1

[
∫ (1−δ)z

1

eyL(y/γ)

yα
dy +

∫ z

(1−δ)z

eyL(y/γ)

yα
dy

]

∼ βµF + αγα−1

∫ z

(1−δ)z

eyL(y/γ)

yα
dy ∼ βµF + αγα−1L(K)

ez

zα

→ βµF + α(1 − βµF ),

and a is therefore of smaller order than b and thus asymptotically immaterial. The
claim now follows if we note that ρ→ βµF . 2
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4 A Weibull example

The regularly varying case is without question the main example of heavy tails, but
also other cases like log–normal or Weibull distributions have received attention. For
the sake of completeness, we briefly include a Weibull example, P(U > x) = e−xβ

.
For heavy tails, one needs 0 < β < 1 and we took β = 1/2 (motivated in part by
the fact that this is the only case where we can establish the asymptotics of γ(K),
see Appendix C). As in the Pareto case, the simulations are straightforward and we
take ρ = 0.4 and ρ = 0.8 and K = 10, 100 and 1000. Note that we may use the same
methodology as in Algorithm 1 to generate random numbers from the distribution
with density

f(u) = eγu e−
√

u

2
√
uEeγX(K)

(in the third step we now just simulate a Weibull r.v.). Relative errors of the two
different algorithms for different parameter combinations are in Table 2. As in the
Pareto case we used 5000 iterations for each simulation in the Siegmund algorithm
and 50000 iterations in (5). We see that in this case the Siegmund algorithm per-
forms better than (5) even when u ∈ [0, K] for some parameter combinations.

ρ β K u Siegmund (5)

0.4 1/2 1000 500 0.2948 0.025
1000 0.0698 0.0371
2000 0.0961 —

0.4 1/2 100 50 0.0308 0.0195
100 0.0299 0.0671
200 0.0294 1.1773

0.4 1/2 10 5 0.0126 0.0077
10 0.0146 0.0188
20 0.0137 0.0635

0.8 1/2 1000 500 0.0612 0.3046
1000 0.037 0.1494
2000 0.0445 —

0.8 1/2 100 50 0.0105 0.0167
100 0.0103 0.0341
200 0.0102 0.1279

0.8 1/2 10 5 0.004 0.0082
10 0.0042 0.0113
20 0.0042 0.0182

Table 2: Comparison of relative errors
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Figure 13: β = 1/2, ρ = 0.4 and K = 1000.
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Figure 14: β = 1/2, ρ = 0.4 and K = 100.
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Figure 15: β = 1/2, ρ = 0.4 and K = 10.
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Figure 16: β = 1/2, ρ = 0.8 and K = 1000.
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Figure 17: β = 1/2, ρ = 0.8 and K = 100.
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Figure 18: β = 1/2, ρ = 0.8 and K = 10.
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A Generating r.v.’s from B(K;γ)

Algorithm 1 The following acceptance/rejection algorithm produces random num-
bers from the distribution defined by (3).

1) Divide the interval [0, K) into the subintervals Ji = [xi−1, xi), i = 1, . . . , N
where xj = jK/N .

2) For each subinterval Ji, compute

pi =

∫

Ji

B(K;γ)( dx).

This is done numerically.

3) A r.v. X with the desired distribution is obtained by first choosing interval Ji

with probability pi and taking X = K with probability 1 − ∑N
j=1 pj. For the

given interval, simulate a Pareto r.v. conditioned to belong to Ji, x (easily done
by using the standard inversion algorithm), which is accepted with probability
eγ(x−xi).

That this gives a r.v. with the desired density follows since we in the third step pick
Ji with probability B(K;γ)(Ji) and then sample from the conditional distribution
µi(·) = B(K;γ)(· ∩ Ji)/B

(K;γ)(Ji). The minimal acceptance probability in step 3 is

e−γK/N ∼ e−(α−1) log K/N = K−(α−1)/N , K → ∞ (14)

in view of Corollary 3.1. 2

We observe that for α = 3/2, N = 100 and an extreme case like K = 109, the
asymptotic expression in (14) suggests that the minimal acceptance probability, p,
is in the vicinity of 90%. For smaller K, p is obviously larger.

B The Jelenković approximation

Let Z,Z1, Z2, . . . be a sequence of non–negative i.i.d. random variables with density
f(x) = L(x)/xα, α > 1 with L slowly varying and ZK , ZK

1 , Z
K
2 , . . . i.i.d. with

density
fK(x) = f(x)/P

(

0 ≤ Z ≤ K
)

, 0 ≤ x ≤ K. (15)

We quote the following theorem from Jelenković [12]:

Theorem B.1 Let RK
n =

∑n
i=1 Z

K
i , n ≥ 1. If f(x) = L(x)/xα, α > 1, then for

any constant C > 0, fixed k = 0, 1, . . ., fixed 0 < δ < 1, and uniformly for all

k + 1 ≤ n ≤ C logK,

P
(

RK
n ≥ (k + δ)K

)

∼
(

n

k + 1

)

hk(δ)
L(K)k+1

K(k+1)(α−1)
, (16)
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as K → ∞, where

hk(δ) =

∫

0≤xi≤1, 1≤i≤k+1
x1+···+xk+1≥k+δ

x−α
1 · · ·x−α

k+1 dx1 · · ·dxk+1.

We use this result to obtain an approximation of ψK(u) = P
(

WK > u
)

. To this end,
recall the Pollaczeck–Khinchine formula

ψK(u) = P
(

WK > u
)

= P
(

Y K
1 + · · · + Y K

N > u
)

where the Y K
i are i.i.d. with distribution B

(K)
I and N is an independent geometric

r.v. with parameter ρ. It holds that

B
(K)
I ( dx) =

{

P
(

U > x
)

dx/E
(

U ∧K
)

if x ≤ K

0 if x > K,

and

P
(

U > x
)

=

∫ ∞

x

α
L(u)

uα+1
du ∼ L(x)

∫ ∞

x

α

uα+1
du =

L(x)

xα
, x→ ∞, (17)

by Karamata’s theorem. Thus the density of B
(K)
I is of the form described in (15),

and we have the following result:

Theorem B.2 Suppose that ρ < 1 is fixed throughout. As K → ∞ it holds, for

each fixed k = 0, 1, . . . and fixed 0 < δ < 1 that

P
(

WK > (k + δ)K
)

∼ hk(δ)

(

ρL(K)

(1 − ρ)K(α−1)

)k+1

.

Proof. The details are very close to the proof of Theorem 2 in [12] and therefore
omitted. 2

Note that hk(δ) is difficult to express analytically for k > 0. However, the following
observation makes it easy to numerically evaluate hk(δ):

hk(δ) = E

[

U−α
1 · · ·U−α

k+1;

k+1
∑

i=1

Ui ≥ k + δ

]

where U1, . . . , Uk+1 are independent r.v.’s uniformly distributed on [0, 1], so we may
estimate hk(δ) by using standard Monte Carlo integration.

C The asymptotics of γ(K) in the Weibull example

Theorem C.1 Let γ = γ(K) be the root of the Lundberg equation for a compound

Poisson process with intensity β, jump distribution F truncated at K and drift term

−θ. If F (u) = e−
√

u and θ > 2β, then it holds as K → ∞ that

γ(K) =
1

K

[√
K − logK

2
+ log

[θ − 2β

2

]

+ o(1)
]

.
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Proof. Let κ(K)(s), µF etc. be defined as in Section 3. For simplicity, we omit K in
much what follows. Then

κ(s) = κ(K)(s) = β

∫ K

0

(esx − 1)
e−

√
x

2
√
x

dx+ β(esK − 1)e−
√

K − θs

= A(s) +B(s) − θs.

For ε > 0 we now define

γ± =
1

K

[√
K − logK

2
+ log

[θ − 2β

2

]

± ε
]

and show that κ(γ−) < 0 < κ(γ+). Let

T (γ+) = A(γ+)/γ+ = β

∫ 1/γ+

0

eγ+x − 1

γ+

e−
√

x

2
√
x

dx+

∫ K

1/γ+

eγ+x − 1

γ+

e−
√

x

2
√
x

dx. (18)

By dominated convergence and the fact that lim
t→0

(et − 1)/t = 1 we get that the first

part of (18) tends to βµF = 2β. In the second part we make the change of variables
z =

√
γ+x and get that

∫ K

1/γ+

eγ+x − 1

γ+

e−
√

x

2
√
x

dx ∼ 1

γ+

∫ K

1/γ+

eγ+x e−
√

x

2
√
x

dx

=
1

γ+
3/2

e−1/4γ+

∫

√
γ+K

1

e(z−1/2
√

γ+)2 dz ≡ I.

We may write I as

I =
1

γ+
3/2

e−1/4γ+

∫

√
γ+K−1/2

√
γ+

1−1/2
√

γ+

ez2

dz

and it is easy to see that
√
γ+K − 1/2

√
γ+ ∼ K1/4/2 → ∞ and we get

I ∼ 1

γ+
3/2

e−1/4γ+

(

1

2(1/2
√
γ+ − 1)

e(1/2
√

γ+−1)2

+
1

2(
√
γ+K − 1/2

√
γ+)

e(
√

γ+K−1/2
√

γ+)2
)

∼ 1

γ+
3/2

(

√
γ+e1−1/

√
γ+ +

1

2(
√
γ+K − 1/2

√
γ+)

eγ+K−
√

K

)

∼ K3/4

(

1

K1/4
e1−K1/4+O(K−1/4 log K) +

1

K1/4
e− log K/2+log((θ−2β)/2)+ε

)

where we used that
∫ t

a

ey2

dy ∼ et2

2t
, t→ ∞,
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√
γ+K − 1/2

√
γ+ ∼ K1/4/2 and γ+ ∼ 1/

√
K. Now it follows that I → eε(θ −

2β)/2, K → ∞ and thus A(γ+) ∼ γ+(2β + eε(θ − 2β)/2). It is easily seen that
B(γ+) ∼ γ+eε(θ − 2β)/2. We now get that

κ(γ+) = A(γ+) +B(γ+) − θγ+ ∼ γ+(2β + eε(θ − 2β)/2 + eε(θ − 2β)/2 − θ)

= γ+(2β + eε(θ − 2β) − θ) = γ+((eε − 1)(θ − 2β)) > 0.

In an identical way we show that κ(γ−) < 0. This concludes the proof. 2
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