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Abstract

In this paper we discuss some approaches to modeling extremely large values
in multivariate time series. In particular, we discuss the notion of multivari-
ate regular variation as key to modeling multivariate heavy-tailed phenom-
ena. The latter notion has found a variety of applications in queuing theory,
stochastic networks, telecommunications, insurance, finance and other areas.
We contrast this approach with modeling multivariate extremes by using the
multivariate student distribution and copulas.

Key Words and Phrases: Multivariate regular variation, heavy-tailed distribution,
extreme value distribution, copula, elliptical distribution

1 Introduction

Over the last few years heavy-tailed phenomena have attracted a lot of attention.
Those include turbulences and crashes of the financial and insurance markets, but
also strong deviations of weather and climate phenomena from the average behavior.
More recently, the Internet and more generally the enormous increase of computer
power have led to collections of huge data sets which cannot be handled by clas-
sical statistical methods. Among others, teletraffic data (such as on/off times of
computers, lengths and transfer times of files, etc.) exhibit not only a non-standard
dependence structure which cannot be described by the methods of classical time
series analysis, but these data also have clusters of unusually large data. It has been
recognized early on in hydrology and meteorology, but also in insurance practice
that the distributions of the classical statistical theory (such as the normal and the
gamma family) are of restricted use for modeling the data at hand. The description
of these data by the median, expectation, variance or by moment related quantities
such as the kurtosis and skewness are of rather limited value in this context. For the
actuary it is not a priori of interest to know what the expectation and the variance
of the data are, be he is mainly concerned with large claims which might arise from
scenarios similar to the WTC disaster. Such events are extremely rare and danger-
ous. It would be silly to use the (truncated) normal or the gamma distributions
to capture such an event by a mean-variance analysis. The devil sits in the tail
of the distribution. It is the tail of the distribution that costs the insurance and
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financial industry billions of dollars (only the WTC disaster has cost the reinsur-
ance industry about 20 billion $ US by now; see Sigma (2003)). It is the tail of the
distributions of the file sizes and transition times of files that causes the unpleasant
behavior of our computer networks. Although the Internet is a traffic system which,
unlike the German Autobahn, has thousands of extremely fast lanes, this system is
not always able to handle the amounts of information to be transferred and, like the
German Autobahn, is subject to traffic jam caused by huge files representing movies,
pictures, DVDs, CDs which make the difference. They cannot be modeled by the
exponential or gamma distributions, very much in contrast to classical queuing and
network theory, where the exponential distribution was recognized as adequate for
modeling human behavior in telephone or other costumer-service systems. By now
there is general agreement that the modern teletraffic systems are well described
by distributions with tails much heavier than the exponential distribution; see e.g.
Willinger et al. (1995); cf. Mikosch et al. (2002) and Stegeman (2002).

Early on, distributions with power law tails have been used in applications to
model extremely large values. The Pareto distribution was introduced in order to
describe the distribution of income in a given population (Pareto (1896/97)). Al-
though the world has changed a lot since Pareto suggested this distribution at the
end of the 19th century, it still gives a very nice fit to the world income distribu-
tion. The Pareto distribution is also a standard distribution for the purposes of
reinsurance, where the largest claims of a portfolio are taken care of. The Pareto
distribution in its simplest form can be written as

F(z)=1-F(z) = (¢/x)*, x>c, some positive c.

As expected this distribution does in general not give a great fit to data in the center
of the distribution, but it often captures the large values of the data in a convincing
way. Of course, one can shift the distribution to the origin by introducing a location
parameter, but the fit in the center would not become much better in this way.

The Pareto distribution appears in a completely different theoretical context,
namely as the limit distribution of the excesses of an iid sequence X1, ..., X, with
distribution F' above a high threshold. To be more precise, the only limit distribution
of the excess distribution of the X;’s is necessarily of the form (up to changes of
location and scale)

(1.1) lim  PXy—u>z|X;>u) — (14+£2);"7 =GCel),

ulep,utz<zp

r€eR,

(Pickands (1975), Balkema and de Haan (1974), cf. Embrechts et al. (1997), Section
3.4), where

rp =sup{z € R: F(z) <1}

is the right endpoint of the distribution F' and the shape parameter £ € R. For £ =0
the limit has to be interpreted as the tail of the standard exponential distribution.
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Figure 1.1 Left: Plot of 9558 S&P500 daily log-returns from January 2, 1953, to
December 31, 1990. The year marks indicate the beginning of the calendar year.
Right: QQ-plot of the S&P500 data against the normal distribution whose mean and
variance are estimated from the data. The data come from a distribution which has
much heavier left and right tail than the normal distribution.

The so defined limit distribution G¢ is called the generalized Pareto distribution
(GPD). Relation (1.1) holds only for a restricted class of distributions F'. Indeed,
(1.1) is satisfied if and only if a limit relation of the following type holds for suitable
constants d, € R, ¢, > 0, and the partial maxima M, = max(Xi,...,X,) (see
Embrechts et al. (1997), Chapter 3):

(1.2) P (M, —d) <z) — exp {—(1 +gx);1/f} = He(z),
n—oo,r €R.

For ¢ = 0 the distribution has to be interpreted as the Gumbel distribution Hy(x) =
e ¢ ". The limit distribution is called the generalized extreme value distribution
and (up to changes of scale and location) it is the only possible non-degenerate
limit distribution for centered and normalized maxima of iid sequences. We say
that the underlying distribution F' belongs to the maximum domain of attraction
of the extreme value distribution He (F € MDA(Hg)). The case & > 0 is partic-
ularly interesting for modeling extremes with unlimited values. Then the extreme
value distribution H¢ can be reparametrized and written as the so-called Fréchet
distribution with o = €1

—e

Do (r)=e ™", 2>0.

Every distribution F' € MDA(®,,) is completely characterized by the relation

(1.3) Fz)=1-F(z) = , x>0,

where L is a slowly varying function, i.e., L is a positive function on (0, c0) with
property L(cx)/L(x) — 1 as & — oo for every ¢ > 0. Notice that distributional tails
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of type (1.3) are a slight generalization of distributions with pure power law tails
such as the Pareto distribution. It is a semiparametric description of a large class of
distributions; the slowly varying functions L represent a nuisance parameter which
is not further specified. This is very much in agreement with real-life data analyzes
where it is hard to believe that the data come from a pure Pareto distribution. In
particular, L is not specified in any finite interval which leaves the question about
the form of the distribution F' in its center open. Several distributions with a name
have regularly varying right tail, i.e., (1.3) holds, e.g. the Pareto, Burr, log-gamma,
student, Cauchy, Fréchet and infinite variance stable distributions; see Embrechts
et al. (1997), p. 35, for definitions of these distributions.

The stable distributions consist of the only possible non-degenerate limit distri-
butions H for the partial sums S, = X; 4+ --- + X,, of an iid sequence (X;) with
distribution F', i.e., there exist constants ¢, > 0, d,, € R, such that

Q;ILIEOP(C;I(S” —d,) <z)=H(z), zeR.

We say that F' belongs to the domain of attraction of the stable distribution H
(F' € DA(H)). The best known stable distribution is the normal whose domain of at-
traction contains all F' with slowly varying truncated second moment fly\ s y2dF ()
(Feller (1971)), i.e., it contains almost all distributions of interest in statistics. The
remaining stable distributions are less known; they have infinite variance and so are
the members of their domains of attraction. In particular, every infinite variance
stable distribution is characterized by a shape parameter a € (0,2) which appears
as the tail parameter of these distributions H,. Moreover, it also appears in the
tails of distributions F' € DA(H,):

L(z)

(1.4) F(—z) ~ P and F(z) ~q Liz)

xa

, x>0,

where L is slowly varying and p,q > 0 such that p + ¢ = 1. Relation (1.4) is also
referred to as tail balance condition and F' is said to be reqularly varying with index
a€(0,2).

Regular variation also occurs in a surprising way in solutions to stochastic recur-
rence equations. We consider here the simplest one-dimensional case. Assume the
stochastic recurrence equation

(15) }/;‘/:At}/tfl"FBta tEZ,

has a strictly stationary causal solution, where ((A;, B;)) constitute an iid sequence
of non-negative random variables. Causality refers to the fact that Y; is a function
only of (Ag, Bs), s < t. A sufficient condition for the existence of such a solution
is given by Elog™ Ay < oo, Elogt By < oo and Elog Ay < 0. Equations of type
(1.5) occur in the context of financial time series models. For example, the cel-
ebrated (2003 Nobel prize winning) ARCH and GARCH models of Engle (1982)
and Bollerslev (1986) can be embedded in a stochastic recurrence equation. We
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Figure 1.2 2493 Danish fire insurance claims in Danish Kroner from the period
1980-1992. The data (left) and a QQ-plot of the data against standard exponential
quantiles (right). The data have tail much heavier than the exponential distribution.

illustrate this with the GARCH(1,1) model (generalized autoregressive conditionally
heteroscedastic model of order (1,1)) which is given by the equation

XtZO'tZt, U?:Q0+Q1Xf_1+610't2_1, teZ.

Here (Z;) is an iid sequence with EZ; = 0 and var(Z;) = 1 and o9 > 0, ay, 5
are non-negative parameters. Obviously, Y; = o7 satisfies the stochastic recurrence
equation (1.5) with A; = a; Z? | + 1 and B; = ap. An important result by Kesten
(1973) (see also Goldie (1991)) says that under general conditions on the distribution
of Ay the equation

(1.6) EAf =1
has a unique positive solution x; and then for some ¢ > 0,
(1.7) PYy>z)~ca ™, z— .

In particular, the mentioned ARCH and GARCH models have marginal distribution
with regularly varying tail of type (1.7). For a GARCH(1,1) model, (1.6) turns into

E(oleg =+ 61)"i = 1,

which has a solution k1, e.g. when Z; is normally distributed. Hence Y, = of
satisfies (1.6) and a standard argument on regular variation implies that P(Xy > z)
~ ¢z=%/2 This is a rather surprising result which says that light-tailed input
(noise) can cause heavy-tailed output in a non-linear time series. Such a result is
impossible for linear processes (such as ARMA processes) driven by iid noise; see
e.g. Embrechts et al. (1997), Appendix A3, or Mikosch and Samorodnitsky (2000).
We refer to Basrak et al. (2000a,b) as general references on GARCH and regular
variation, to Embrechts et al. (1997), Section 8.4, for an introduction to stochastic
recurrence equations and the tails of their solutions. See also Mikosch (2003) for a
survey paper on financial time series models, their extremes and regular variation.
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Figure 1.3 A time series of measured file sizes handled by a webserver. The data
(left) and a QQ-plot of the data against standard exponential quantiles (right). The
data have tail much heavier than the exponential distribution.

The conclusion of this introduction should be that one-dimensional distributions
with regularly varying tails are very natural for modeling extremal events when
large values are involved. Since there exists some theoretical background why these
distributions occur in different contexts, it is only consequent to fit them to real-
life data. On the other hand, distributions such as the gamma, the exponential or
the normal distributions are less appropriate for fitting extremes when large values
occur.

It is the aim of the next section to discuss multivariate regular variation as a suit-
able tool for modeling multivariate extremes. We continue in Section 3 by discussing
some of the alternative approaches such as the multivariate student distribution and
copulas for modeling multivariate data with very large values.

2 Multivariate regularly varying distributions

Over the last few years there has been some search for multivariate distributions
which might be appropriate for modeling very large values such as present in fi-
nancial or insurance portfolios. The multivariate Gaussian distribution is not an
appropriate tool in this context since there is strong evidence that heavy-tailed
marginal distributions are present. Nevertheless it has become standard in risk
management to apply the multivariate Gaussian distribution, e.g. for calculating
the Value at Risk (VaR). A major reason for the use of the normal distribution is
its “simplicity”: linear combinations of the components of a normally distributed
vector X are normal and the distribution of X is completely determined by its mean
and covariance structure.

It is the aim of this section to introduce multivariate distributions which have,
in a sense, power law tails in all directions. We will also indicate that these distri-
butions appear in a natural way, e.g. as domain of attraction conditions for weakly
converging partial sums and componentwise maxima of iid vectors.



To start with, we rewrite the defining property of a one-dimensional regularly
varying distribution F' (see (1.4)) as follows: for every ¢ > 0,

. P(x7'X; € (t,00])
2 AT PX > 2)

. Pa7X; € [~o0,t))
(2.9) 2R > )

=qt™* = p(t, o0],

=pt™ " = p[—o0,—1].

These relations are immediate from the properties of regularly varying functions;
see e.g. Bingham et al. (1987). Notice that the right hand expressions can be
interpreted as the p-measure of the sets (¢, 00| and [—oo, —t), where p is defined on
the Borel sets of R\{0}:

du(z) = a[p|z] " o) (@) + 27 (g0 (2)] dx.
Relations (2.8) and (2.9) can be understood as convergence of measures:

P(.Tile c ) v

(2.10) pa(-) = PN p(-), w— o0,

where - refers to vague convergence on the Borel o-field of R\{0}. This simply
means in our context that p,(A) — p(A) for every Borel set A C R\{0} which is
bounded away from zero and satisfies p(0A) = 0. We refer to Kallenberg (1983) or
Resnick (1987) for the definition and properties of vaguely converging measures.

Relation (2.10) allows one to extend the notion of regular variation to Euclidean
space. Indeed, we say that the vector X with values in R? and its distribution are
reqularly varying with limiting measure p if the relation

P(‘/I;ilX. 6 ) v
2.11 ) = = ), )
(2.11) ()= Pz M) T
holds for a non-null measure p on the Borel o-field 22 R* \ {0}. Again, this relation
means nothing but p,(A) — p(A) for any set A C R\ {0} which is bounded away
from zero and satisfies u(0A) = 0. Regular variation of X implies regular variation
of |X]| with a positive index a and therefore

P(z7'X € tA) P(|X] > tx)

pe(t A) = P(X| > tz) P(X|> z)

— p(A) ™.

This means that p satisfies the homogeneity property pu(tA) = t=*u(A), and we
therefore also say that X is reqularly varying with index «.
Now define the sets

A(t,S)={x:|x| >t,xe€ S},
where t > 0 and S C S?!, the unit sphere of R? with respect to a given norm, and

X = x/|x].
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The defining property of regular variation also implies that

P(X|>tz,X € S)
P(IX| > =)

- :U/(A(t? S)) = t_aM<A(17 S)) )

(2.12) Ha(A(t, 9)) =

where we assume Utlhat n(0A(1,S)) = 0. Since sets of the form A(t, S) generate vague
convergence in R"\{0}, (2.11) and (2.12) both define regular variation of X. The
totality of the values u(A(1,S)), for any Borel set S C S, defines a probability
measure P(@ € -) on the Borel o-field of S*!, the so-called spectral measure of
w. The spectral measure P(© € -) and the index a > 0 completely determine the
measure /.

The notion of multivariate regular variation is a natural extension of one-dimen-
sional regular variation. Indeed, regular variation of iid X,;’s with index a € (0, 2) is
equivalent to the property that centered and normalized partial sums X; +---+ X,
converge in distribution to an a-stable random vector; see Rvaceva (1962). More-
over, the properly normalized and centered componentwise partial maxima of the
X,;’s, i.e.,

i=1,...,n i=1,...,n

(lmax Xi(l), .., Imax Xi(d)>

converge in distribution to a multivariate extreme value distribution whose marginals
are of the type Fréchet ®, for some a > 0 if and only if the vector of the compo-
nentwise positive parts of X; is regularly varying with index «; see de Haan and
Resnick (1977), Resnick (1987). Moreover, Kesten (1973) proves that, under gen-
eral conditions, a unique strictly stationary solution to the d-dimensional stochastic
recurrence equation

Yt:Ath_1+Bt, tGZ,

exists and satisfies
(2.13) P((x,Yy) >x) ~c(x)xz™™, x— 00,

for some positive ¢(x), k1, provided x # 0 has non-negative components. Here
((A¢,By)) is an iid sequence, where A; are d x d matrices and By are d-dimensional
vectors, both with non-negative entries. Kesten’s result implies in particular, that
the one-dimensional marginal distribution of a GARCH process is regularly varying;
see the discussion in Section 1. Unfortunately, the definition of multivariate regular
variation of a vector Y in the sense of (2.11) or (2.12) and the definition via linear
combinations of the components of Y in the sense of (2.13) are in general not known
to be equivalent; see Basrak et al. (2000a), Hult (2003).

Well known multivariate regularly varying distributions are the multivariate stu-
dent, Cauchy and F-distributions as well as the extreme value distributions with
Fréchet marginals and the multivariate a-stable distributions with « € (0, 2). In the
context of extreme value theory for multivariate data the spherical representation
of the limiting measure u (see (2.12)) has a nice interpretation. Indeed, we see that
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Figure 2.1 Left: Scatterplot X, = (X;_1, Xy) of the teletraffic data from Figure 1.3.
Right: Estimated spectral density on [0,7/2]. The density is estimated from the
values Xy with |X;| > 80000. The density has two clear peaks at the angles 0 and
/2, indicating that the components of X, behave like iid components far away from

0.

X is regularly varying with index « and spectral measure P(© € -) if and only if
for sets S C S*! with P(©@ € 9S) =0 and ¢ > 0,

P(X| >t
o POX] > ta)

S~ =t d lim P(z™'X X — P(O '
oo P(X] > ) and  lim P(z7'X € S [[X|>z) = P(© € 5)

This means that the radial and the spherical parts of a regularly varying vector X
become “independent” for values |X| far away from the origin. For an iid sample of
multivariate regularly varying X;’s the spectral measure tells us about the likelihood
of the directions of those X;’s which are farthest away from zero.

The spectral measure can be estimated from data; we refer to de Haan and
Resnick (1993), de Haan and de Ronde (1998) and Einmahl et al. (2001). For
two-dimensional vectors X; we can write @ = (cos(®),sin(®)) and estimate the
distribution of ® on [—7, 7]. Assuming a density of ®, one can estimate this spectral
density; see e.g. Figures 2.1 and 2.2 for some attempts. Figure 2.1 shows the typical
shape of a spectral measure when the components of X; are independent. Then
the spectral measure is concentrated at the intersection of the unit sphere with the
axes, i.e., the spectral measure is discrete. This is in contrast to the case of extremal
dependence when the spectral measure is concentrated not only at the intersection
with the axes. Figure 2.2 gives a typical shape of a spectral density where the
components of the vectors X; exhibit extremal dependence. The two valleys at the
angles —m/4 and 37 /4 show that X, ; and X; are not extreme together when they
have different signs. However, the peak at —3m /4 shows that X; ; and X, are quite
likely to be extreme and negative. There is a peak at zero indicating that X, _; can
be large and positive, whereas X; is “less extreme” the next day.

The aim of this section was to explain that the notion of regularly varying dis-
tribution is very natural in the context of extreme value theory. As the notion of
one-dimensional regular variation, it arises as domain of attraction condition for
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Figure 2.2 Left: Scatterplot (X,—1, X;) of the S&IP500 data from Figure 1.1.
Right: Estimated spectral density on [—m,w|. The vertical lines indicate multiples of

/4.

partial maxima and partial sums of iid vectors X;. There exist, however, enormous
statistical problems if one wants to fit regularly varying distributions. Among oth-
ers, one needs large sample sizes (thousands of data, say) in order to come up with
reasonable statistical answers. Successful applications of multivariate extreme value
theory have been conducted in dimensions 2 and 3; see e.g. the survey paper by
de Haan and de Ronde (1998) for hydrological applications. The limitations of the
method are due to the fact that one has to estimate multivariate measures.

In the one-dimensional case, the generalized extreme value distribution (see (1.2))
is the only limit distribution for normalized and centered partial maxima of iid
data. This is equivalent to the weak convergence of the excesses to the generalized
Pareto distribution. Modern extreme value statistics mostly focuses on fitting the
generalized Pareto distribution (GPD) via the excesses (so-called POT — peaks over
threshold method; see Embrechts et al. (1997), Chapter 6). Although desirable, in
the multivariate case a general result of Balkema-deHaan-Pickands type (see (1.1))
is not available so far, but see Tajvidi (1996) and Balkema and Embrechts (2004)
for some approaches.

We mention in passing that the notion of multivariate regular variation also
allows for extensions to function spaces. De Haan and Lin (2002) applied regular
variation in the space D[0, 1] of cadlag functions on [0,1] in order to describe the
extremal behavior of continuous stochastic processes. Hult and Lindskog (2004)
extended these results to cadlag jump functions with the aim of describing the
extremal behavior of, among others, Lévy processes with regularly varying Lévy
measure.
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3 A discussion of some alternative approaches to
multivariate extremes

Various other classes of multivariate distributions have been proposed in the context
of risk management with the aim of finding a realistic “heavy-tailed” distribution.
Those include the multivariate student distribution; see e.g. Glasserman (2004),
Section 9.3. As mentioned above, these distributions are regularly varying. Their
spectral measure is completely determined by their covariance structure; any student
distribution has representation in law

1 ~
__AZ,
Xa/d

where AA" = ¥ is a covariance matrix ¥ (for d > 2 the covariance matrix of X
exists and is given by d¥/(d — 2)), x2 is x*-distributed with d degrees of freedom
and Z consists of iid standard normal random variables. Moreover, Z and x?3 are
independent. This may be attractive as regards the statistical properties of such
distributions, but it is questionable whether the extremal dependence structure of
financial data is determined by covariances. The student distribution has a rather
limited flexibility as regards modeling the directions of the extremes.

A second approach has been suggested by using copulas. For simplicity, assume in
the sequel that the vector X = (X,Y) 24 X; is two-dimensional and its components
have continuous distributions Fx and Fy, respectively. Define for any distribution

function G its quantile function by

x 4

G~ (t)=inf{z e R:G(z) >t}, te(0,1).

Then
PPy (X) <z, Fy (Y) <y)=C(z,y),

is a distribution on (0, 1)?, referred to as the copula of (X,Y). Of course, F (X)
and Fy~ (YY) are uniformly distributed on (0, 1) and the dependence between X and
Y sits in the copula function C'. Copulas have been used in extreme value statistics
for several decades; see e.g. the survey paper by de Haan and de Ronde (1998) or the
monograph by Galambos (1987). The purpose of copulas in extreme value statistics
is to transform the marginals of the vectors X; to distributions with comparable
size; otherwise the extremal behavior of an iid sequence (X;) would be determined
only by the extremes of one dominating component. (Another standard method is
to transform the marginals of X; to standard Fréchet (®;) marginals.) Thus the
transformation of the data to equal marginals makes statistical sense if we cannot
be sure that the marginals have comparable tails.

It is however wishful thinking if one believes that copulas help one to simplify
the statistical analysis of multivariate extremes. The main problem in multivariate
extreme value statistics for data with very large values is the estimation of the
spectral measure (which gives one the likelihood of the directions of extremes) and
the index of regular variation (which gives one the likelihood of the distance from
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the origin where extremes occur) or, equivalently, the estimation of the measure p.
It is an illusion to believe that one can estimate these quantities “in a simpler way”
by introducing copulas.

We list here various problems which arise by using copulas.

1. What is a reasonable choice of a copula? If one accepts that the extreme value
theory outlined above makes some sense, one should search for copulas which
correspond to multivariate extreme value distributions or multivariate regu-
larly varying distribution. Since copulas stand for any dependence structure
between X and Y it is not a priori clear which copulas obey this property.
The choice of some ad hoc copula such as the popular arithmetic copula is
completely arbitrary.

2. Should one use extreme value copulas? So-called extreme value copulas have
been suggested as possible candidates for copulas for modeling extremes, such
as the popular Gumbel copula. These copulas are obtained by transforming
the marginals of some very specific parametric multivariate extreme value dis-
tribution to the unit cube, imposing some very specific parametric dependence
structure on the extremes, very much in the spirit of assuming a multivariate
student distribution as discussed above. The fit of an extreme value copula
needs to be justified by verifying that the data come from an extreme value
generating mechanism. For example, if we consider the annual maximal heights
of sea waves at different sites along the Dutch coast, it can be reasonable to
fit a multivariate extreme value distribution to these multivariate data. Then
the data are extremes themselves. In other cases it is questionable to apply
extreme value copulas.

3. How do we transform the marginals to the unit cube? Since we do not know F'y
or Fy~ we would have to take surrogates. The empirical quantile functions are
possible candidates. However, the empirical distribution function has bounded
support. This means we would not be able to capture extremal behavior
outside the range of the sample. Any other approach, for example by fitting
GPDs to the marginals and inverting them to the unit cube can go wrong as
well, as long as we have not got any theoretical justification for the approach.
Moreover, if we are interested in a practical statistical problem we also have
to back-transform the marginals from the unit cube to the original problem.
There we make another error. In some cases a theoretical justification for such
an approach has been given in the context of 2- or 3-dimensional extreme value
statistics; see again the survey paper by de Haan and de Ronde (1998). In the
latter paper it is also mentioned that the same kind of problems arises if one
wants to transform the marginals to other distributions such as the standard
Fréchet distribution.

4. Do copulas overcome the curse of dimensionality? One can fit any parametric
copula to any high-dimensional data set. As explained above, in general,
one will fit a distribution which has nothing in common with the extremal
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structure of the data. But given the copula is in agreement with the extremal
dependence structure of the data, copula fitting faces the same problems as
multivariate extreme value statistics which so far can give honest answers for
2- or 3-dimensional problems.

The discussion about which multivariate non-Gaussian distributions are reasonable
and mathematically tractable models for extremes is not finished. The aim of this
paper was to recall that there exists a probabilistic theory for multivariate extremes
that can serve as the basis for honest statistical techniques. Whether one gains by
other ad hoc methods is an open question.
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