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ACTIVITY RATES WITH VERY HEAVY TAILS

THOMAS MIKOSCH AND SIDNEY RESNICK

Abstract. Consider a data network model in which sources begin to transmit at renewal
time points {Sn}. Transmissions proceed for random durations of time {Tn} and transmis-
sions are assumed to proceed at fixed rate unity. We study M(t), the number of active sources
at time t, a process we term the activity rate process, since M(t) gives the overall input rate
into the network at time t. Under a variety of heavy-tailed assumptions on the inter-renewal
times and the duration times, we can give results on asymptotic behavior of M(t) and the

cumulative input process A(t) =
R t

0
M(s) ds.

1. The model, notation, preliminary results.

Consider an ordinary renewal process {Sn, n ≥ 0} such that

S0 = 0, Sn =

n∑

i=1

Xi, n ≥ 1,

and {Xn, n ≥ 1} is a sequence of iid non-negative random variables with common distribution
F . At time point Sn, an event begins of duration Tn, where we assume {Tn, n ≥ 0} is
a sequence of iid non-negative random variables with common distribution G and {Tn} is
independent of {Xn}. The event which was initiated at Sn terminates at Sn + Tn. In a data
network context, Sn would be the time a user initiates a file download and Tn is the download
time. In an insurance context, Sn is the time of a disaster or accident and Tn is the length of
time during which all insurance claims from this incident are received so that Sn + Tn is the
latest time a claim from the nth accident is received.

A process of interest is

(1.1) M(t) =

∞∑

n=1

1[Sn≤t<Sn+Tn], t > 0,

the number of active downloads at time t or the number of active claims at time t. If {Sk}
are the points of a homogeneous Poisson process with intensity λ, the point process K =∑∞

k=1 ε(Sk,Tk) is a Poisson random measure with state space [0,∞)2 and mean measure λLEB×
G; see Resnick (1992), Proposition 4.4.1 on p. 317. Hence (Resnick (1992), Proposition 4.3.1)
M(t) = K({(x, y) : 0 ≤ x ≤ t < x+ y}) is a Poisson random variable and asymptotic analysis
is relatively easy. It is the aim of this paper to deal with the case when the renewal process
{Sk} is not a Poisson process. This creates many interesting problems many of which we have
solved. We build a general theory about M which paralls and supplements the one for M
Poisson.

Sidney Resnick’s research was partially supported by NSF grant DMS-0303493 at Cornell University. Grate-
ful acknowledgment is made to the University of Copenhagen for hospitality and support for a week in summer
2002 and also May 12-19, 2004. Thomas Mikosch’s research is partially supported by MaPhySto, The Danish
Research Foundation: Network in Mathematical Physics and Stochastics, DYNSTOCH, a research training
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In particular, we will consider the asymptotic behavior of M(t) and obtain some novel
approximations. We also seek to understand the behavior of the cumulative process

(1.2) A(t) =

∫ t

0
M(u) du, t ≥ 0,

which, in the data networks interpretation corresponds to cumulative work inputted provided
each transmission initiated at renewal epochs proceeds at unit rate. In particular, we consider
the very heavy-tailed cases when

F̄ (x) = 1 − F (x) ∼ x−αLF (x), Ḡ(x) = 1 − G(x) ∼ x−βLG(x), x → ∞ ,

and 0 ≤ α, β ≤ 1 and some slowly varying functions LF , LG. Concerning the relationship of
F and G, we assume one of the following:

(1) Comparable tails: β = α and F̄ (x) ∼ c Ḡ(x), c > 0, as x → ∞ so that the
distribution tails of X1 and T1 are essentially the same. To avoid having to keep
writing annoying constants, we assume c = 1.

(2) G heavier-tailed:
(a) 0 < β < α < 1 or, if β = α, then F̄ (x)/Ḡ(x) → 0 as x → ∞ so that the

distribution tail of X1 is lighter than the distribution tail of T1.
(b) 0 = β < α < 1 so that the distribution tail of T1 is slowly varying and thus again

heavier than that of X1.
(3) F heavier-tailed: β > α so that the distribution tail of X1 is heavier than the

distribution tail of T1.

The process M has attracted attention in the data network literature since, under the
assumption of unit input rate, it corresponds to traffic per unit time which, in several data
measurement studies, has been empirically identified as self-similar or possessing long range
dependence; see Crovella and Bestavros (1996), Garrett and Willinger (1994), Leland et al.
(1994), Park and Willinger (2000). Some standard attempts to provide model based explana-
tions of this empirically observed phenomenon use the infinite source Poisson model in which
{Sn} are homogeneous Poisson points and {Tn} are iid with Ḡ regularly varying with index
β > 1. This leads to M possessing long range dependence in the sense of covariances slowly
decreasing with lag. See for example, the standard argument in Resnick (2003) and Park and
Willinger (2000). However, the Poisson based model often does not fit collected data well
(Guerin et al. (2003)) and file sizes are sometimes modeled with heavier tails than β > 1
(Arlitt and Williamson (1996), Resnick and Rootzén (2000)), and it is of interest to consider
behavior of models with different assumptions. Hence the present study.

In Resnick and Rootzén (2000), queuing is allowed in the sense that inputs are processed
by a server and the contents process is studied under the assumption that β < 1. We have
not attempted to model the processing of offered load in this paper. Some of our composition
arguments used later have the flavor of ones employed by Meerschaert and Scheffler (2004),
Becker-Kern et al. (2004). However, ours are applied to random measures instead of càdlàg
functions as in the latter reference. We finally mention that the methods and techniques of this
paper are related to work on Poisson shot noise processes with infinite variance stable limits
(see Klüppelberg et al. (2003) and the references therein) and to renewal reward processes
with infinite variance stable limits; see Pipiras et al. (2004). The novel approach of this paper
is to avoid the Poisson assumption on the renewal process which leads to a variety of rather
interesting technical difficulties which we could resolve in some cases.

This paper is organized as follows. In Section 1.1 we give some of the notation used
throughout the paper. We continue in Section 1.2 with a mean value analysis of M(t) from
which we gain preliminary information about the rate of growth of this process as t → ∞ under
different distributional assumption on F and G. In Section 1.3 we study the distributional
limits of the renewal counting function of the points {Sn} and of its inverse function. In
Section 2 we study the case of very heavy-tailed F and G when α, β < 1. In Section 2.1 we start
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by studying the asymptotic behavior of M(t) as t → ∞ in the Case (1) of comparable tails.
It turns out that M(t) converges in distribution to a random variable which is conditionally
Poisson distributed. Section 2.2 is devoted to Case (2) of heavier-tailed G. In this case
[F̄ (t)/Ḡ(t)]M(t) converges in distribution to some random variable. In Section 3 we study
the case of “lighter-tailed” F in the sense that α = 1 or EX1 < ∞. In Section 3.1 we study
the case when EX1 < ∞ and β ∈ (0, 1). In this case, [t Ḡ(t)]−1M(t) converges in probability
to a deterministic limit. A similar result holds when α = 1 and EX1 = ∞; see Section 3.2.
When both T1 and X1 have finite mean it is natural to work with a stationary version of M ;
see Section 3.3 for such a construction. Section 4 deals with the asymptotic behavior of the
cumulative work process A. We understand its limit behavior when EX1 < ∞ and β ∈ (1, 2)
(infinite variance stable limits; see Section 4.1), when both T1 and X1 have finite variance
(Brownian motion limits,; see Section 4.2) and when 0 < α, β < 1 (the limit is an integral
with respect to the inverse of an infinite variance stable subordinator; see Section 4.3). We
conclude in Section 5 with some unresolved problems.

We present in Table 1 a summary of some of the limiting behavior of M(t).

Table 1. Limiting behavior of M(t) as t → ∞.

Conditions Limit behavior of M(t) as t → ∞
0 < α < 1
F̄ ∼ Ḡ

M(t) ⇒ random limit.

0 ≤ β < α < 1
or 0 < α = β < 1 and F̄ = o(Ḡ)

F̄ (t)

Ḡ(t)
M(t) ⇒ random limit.

0 < β < 1
M(t)

tḠ(t)
⇒ constant

E(X1) < ∞
M(t) − random centering√

tḠ(t)
⇒ Gaussian rv

0 < β ≤ α = 1
M(t)

tḠ(t)µ(t)
⇒ constant

E(X1) = ∞ µ(t)= truncated 1st moment

E(X1) < ∞
E(T1) < ∞ Stationary version of M(·) exists

1.1. Basic notation. In this section we introduce some of the basic notation used throughout
the paper.

µX = EX1 , µT = ET1 , σ2
X = Var(X1) , σ2

T = Var(T1) , E = [0,∞) × (0,∞] ,

C
+
K(S) the space of continuous functions on S with compact support, equipped with

the uniform topology

D[0,∞) the Skorokhod space of real-valued càdlàg functions on [0,∞) equipped with
the J1-topology

D([0,∞, R2)) the Skorokhod space of R
2-valued càdlàg functions on [0,∞) equipped with

the J1-topology
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D
↑[0,∞) subspace of D[0,∞) containing the non-decreasing functions f such that

f(0) = 0 and f(∞) = limx→∞ f(x) = ∞

εx point mass as x

f← the right-continuous inverse of a monotone function f
f←(x) = inf{y : f(y) > x}

LEB Lebesgue measure

M+(S) the space of non-negative Radon measures on S

Mp(E) the space of Radon point measures on E

νγ a measure on (0,∞] given by νγ(x,∞] = x−γ , γ > 0, x > 0.

PRM(µ) Poisson random measure on E with mean measure µ.

⇒ convergence in distribution

For information on the space D[0,∞) we refer to Billingsley (1968), Resnick (1986), Whitt
(2002). For information on point processes, random measures and vague convergence, see
Kallenberg (1983), Resnick (1987). There one can also find information about the spaces M+,
Mp.

1.2. Mean value analysis when α, β < 1. The mean value asymptotic behavior of M(t)
can be obtained essentially from Karamata’s Tauberian theorem. Let

U(x) =
∞∑

n=0

Fn∗(x), x > 0 ,

be the renewal function for the ordinary renewal sequence {Sn}. Since 0 < α < 1 we have
Feller (1971), p. 471,

(1.3) U(x) ∼
(
Γ(1 − α) Γ(1 + α) F̄ (x)

)−1 ∼ c(α)xα/LF (x), x → ∞.

Therefore it follows that, as t → ∞,

EM(t) =

∫ t

0
U(dx) Ḡ(t − x) =

∫ 1

0

Ḡ(t(1 − s))

Ḡ(t)

U(tds)

U(t)

(
Ḡ(t)U(t)

)
(1.4)

∼ c(α)

∫ 1

0
(1 − s)−βαsα−1ds

Ḡ(t)

F̄ (t)
= c′(α)

Ḡ(t)

F̄ (t)
.

Thus, in Case (1) of comparable tails, EM(t) converges to a constant while in Case (2), where

G is heavier-tailed, EM(t) → ∞. In Case (3), EM(t) → 0 and hence M(t)
L1→ 0, so Case (3)

may be of lesser interest. It corresponds to the case where renewals are so sparse relative to
event durations that at any time there is not likely to be an event in progress. We will not
consider this case.

1.3. Behavior of the renewal counting function when 0 < α < 1. Define for x ≥ 0,

N(x) =

∞∑

n=0

1[Sn≤x] = inf{n : Sn > x} .

Note that N(x) = S←(x), where S = {S[t], t ≥ 0}. Next, let
∑

k ε(tk ,jk) be PRM(LEB × να)
on E. The process

Xα(t) =
∑

tk≤t

jk, t ≥ 0,
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is α-stable Lévy motion with Lévy measure να; see Samorodnitsky and Taqqu (1994). Finally,
define the quantile function of F :

b(t) ∼ (1/F̄ )←(t) , t → ∞ .

When α > 0, we can always choose b as continuous and strictly increasing function; see for
example, Seneta (1976) and Bingham et al. (1987).

A standard result is that the renewal epochs are asymptotically stable. In fact, if

X(s)(t) =
S[st]

b(s)
, t ≥ 0,

then in D[0,∞) we have as s → ∞, (see, for example, Resnick (1986))

(1.5) X(s) ⇒ Xα .

Furthermore, the inverse processes also converge in D[0,∞):
(
X(s)

)← ⇒ X←α .

Unpacking this last result, we get

N(b(s)·)
s

⇒ X←α (·)(1.6)

in D[0,∞) or, equivalently, F̄ (s)N(s·) ⇒ X←α (·) or, equivalently,

1

s

∞∑

n=0

ε Sn
b(s)

⇒ X←α ,

in M+[0,∞), where we have used X←α to indicate both the monotone function and the measure.
The inverse X←α of the stable subordinator Xα, α ∈ (0, 1), is a well-studied process in the Lévy
process literature; see, for example, Bertoin (1996), Section III.2, or Sato (1999), Chapter 9.

2. Activity rates when α, β < 1

2.1. Case 1: Comparable tails. Consider Case (1), where the tails of F and G are asymp-
totically equivalent. We begin with a result which describes the behavior of the counting
function of the points {(Sk, Tk), k ≥ 0}.

Define the mapping T : D
↑[0,∞) × M+(E) 7→ M+

(
E) by

(2.1) T (x,m) = m̃ ,

where m̃ is defined by

m̃(f) =

∫∫
f(x(u), v)m(du, dv) , f ∈ C

+
K(E) .

This means that T replaces the usual time scale of m by one determined by the function x.
If m is a point measure with representation m =

∑
k ε(τk ,yk), then

T (x,m) =
∑

k

ε(x(τk),yk) .

Theorem 2.1. Suppose the Case (1) assumptions hold with F̄ (x) ∼ Ḡ(x), as x → ∞, 0 <
α < 1, and let N∞ =

∑
k ε(tk ,jk) be PRM(LEB × να). Then in Mp(E) we have as s → ∞,

N∗s =

∞∑

k=0

ε( Sk
b(s)

,
Tk
b(s)

) ⇒ N∗∞ = T (Xα, N∞) =
∑

k

ε(Xα(tk),jk).(2.2)
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Remark 2.2. The distribution of N∗∞ can be specified by giving its Laplace functional. For
f : E 7→ [0,∞), we have,

E

(
e−N∗

∞
(f)
)

= E

(
exp

{
−
∫∫

E

(
1 − e−f(Xα(s),y)

)
ds να(dy)

})
.

Proof. Begin with the statement (Resnick (1986, 1987)) that in Mp(E) we have as s → ∞,

∞∑

k=0

ε( k
s
,

Tk
b(s)

) ⇒ N∞.

Since {Sk} is independent of {Tk}, we then get the joint convergence in D[0,∞) × Mp(E),
using (1.5), (

S[s·]

b(s)
,
∞∑

k=0

ε( k
s
,

Tk
b(s)

)
)

⇒
(
Xα, N∞

)
.

The function T is a.s. continuous at
(
Xα, N∞

)
. Hence

T

(
S[s·]
b(s)

,

∞∑

k=0

ε( k
s
,

Tk
b(s)

)
)

=

∞∑

k=0

ε(S[sk/s]
b(s)

,
Tk
b(s)

) =

∞∑

k=0

ε( Sk
b(s)

,
Tk
b(s)

) ⇒ T
(
Xα, N∞

)
.

�

From this result, we get the desired result about M , the number of active sources or events.

Corollary 2.3. The finite-dimensional distributions of the counting function M(t) defined in
(1.1) satisfy as s → ∞,

M(s t) =
∞∑

k=0

1[Sk
s
≤t<

Sk+Tk
s

] ⇒ M∞(t) =
∑

k

1[Xα(tk)≤t<Xα(tk)+jk] .

Conditionally on X←α , the limit M∞(t) is Poisson with mean Λ(t) =
∫ t
0 (t− u)−αdX←α (u) and

hence the generating function of M∞(t) is

E
(
τM∞(t)

)
= E exp{(τ − 1)Λ(t)} , τ ∈ (0, 1) .
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Figure 1. A path of the process M for α = β = 0.9 (left) and α = β = 0.6 (right).

Proof. Fix t > 0. An important point to note is that Λ(t) < ∞ a.s. To prove this claim we
first note that

EX←α (u) = uα
E
(
X−α

α (1)
)

= dα uα.
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This results from the self-similar scaling of the Lévy process Xα:

EX←α (u) =

∫ ∞

0
P
[
X←α (u) > x

]
dx =

∫ ∞

0
P
[
u > Xα(x)

]
dx

=

∫ ∞

0
P
[
u > x1/αXα(1)

]
dx = uα

E
(
X−α

α (1)
)

= dα uα.

The quantity dα is finite; see Zolotarev (1986).
We prove Λ(t) < ∞ a.s. for t = 1 as an example of the method. Writing f(u) = (1− u)−α,

0 < u < 1, and observing that f(0) = 1, we have
∫ 1

0
f(u) dX←α (u) − X←α (1) =

∫ 1

0

(
f(u) − f(0)

)
dX←α (u) =

∫ 1

0

∫ u

0
f ′(s) ds dX←α (u)

=

∫ 1

0

(∫ 1

s
dX←α (u)

)
α(1 − s)−α−1 ds

=α

∫ 1

0

(
X←α (1) − X←α (s)

)
(1 − s)−α−1 ds.

Taking expectations, we have

E

(∫ 1

0
f(u) dX←α (u)

)
=dα + α dα

∫ 1

0
(1 − sα)(1 − s)−α−1 ds .

Now, apart from constants, the second term is
∫ 1
0

(
1 − (1 − s)α)

)
s−α−1ds. The problem for

integrability is near 0. But as s ↓ 0, the integrand is asymptotic ∼ αs−α which, for 0 < α < 1,
is integrable. This verifies Λ(1) < ∞ a.s.

Next we prove M(b(s)t) ⇒ M∞(t) for fixed t > 0. As before we choose t = 1 in order to
demonstrate the method. For positive ε, let

Bε = {(u, v) : u ≤ 1 < u + v , v > ε} ,

which is relatively compact in E. By virtue of Theorem 2.1, N∗s (Bε) ⇒ N∗∞(Bε) . Also, by
monotone convergence and using Λ(1) < ∞, with probability 1,

N∗∞(Bε) ↑ N∗∞(B0) = M∞(1) < ∞
From the Converging Together Theorem (Billingsley (1968), Theorem 4.2, p. 25), it suffices
to show, for any δ > 0, that

lim
ε→0

lim sup
n→∞

P[|N∗s (Bε) − N∗s (B0)| > δ] = 0 .(2.3)

Observe that

N∗s (B0) − N∗s (Bε) =
∑

k

1[
Sk≤b(s)<Sk+Tk ,Tk≤εb(s)

] ,

By Chebyshev’s inequality, it suffices to show that the expectation of this last quantity has a
double limit which is zero. We have∑

k

P
[
Sk ≤ b(s) < Sk + Tk , Tk ≤ ε b(s)

]

=

∫ 1

1−ε

∑

k

F k∗(b(s) dx) P
[
1 − x < Tk/b(s) ≤ ε

]

=

∫ 1

1−ε
U(b(s) dx)

[
Ḡ(b(s) (1 − x)) − Ḡ(b(s) ε)

]

=

∫ 1

1−ε

Ḡ(b(s)(1 − x)) − Ḡ(b(s) ε)

Ḡ(b(s))

U(b(s) dx)

U(b(s))
U(b(s)) Ḡ(b(s))
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→ c(α)

∫ 1

1−ε
[(1 − x)−α − ε−α] dxα as s → ∞

→ 0 as ε ↓ 0.

Thus we proved M(b(s) t) ⇒ M∞(t) for fixed t > 0. The convergence of the finite-dimensional
distributions follows analogously by an application of Theorem 2.1. Since b can be chosen
continuous and strictly increasing, we may rephrase the latter limit relation as M(s t) ⇒
M∞(t). �

Remark 2.4. The above proof rests on a continuous mapping argument applied to the weak
convergence relation (2.2). A similar argument ensures the joint convergence

(F̄ (s)N(s),M(s)) ⇒ (X←α (1) ,M∞(1)) .

In particular,

M(s)

N(s)

d
= F̄ (s)

M∞(1)

X←α (1)
(1 + oP(1)) .

Thus M(s)/N(s) is essentially of the order F̄ (s) ∼ Ḡ(s). Compare this with the case when
Ḡ is heavier-tailed than F̄ (Remark 2.8). Then M(s)/N(s) ∼ Ḡ(s).

2.2. Case 2: G is heavier-tailed. In this section we assume the Case (2) conditions 0 ≤
β ≤ α < 1 and if 0 < α = β, then F̄ (t)/Ḡ(t) → 0, as t → ∞. Recall the definition of the
measure νγ given by νγ(x,∞] = x−γ , for x > 0, some γ > 0. For γ = 0, we interpret this as
ν0 = ε∞, i.e., the unit mass at ∞.

As in the previous section we first prove a limit result for the point process generated by
the scaled points (b(s))−1(Sk, Tk). Later we use this result in order to derive a distributional
limit for M(s) as s → ∞.

Theorem 2.5. Assume the Case (2) conditions. Then in M+(E) we have

F̄ (b(s))

Ḡ(b(s))

∞∑

k=0

ε( Sk
b(s)

,
Tk
b(s)

) ⇒ T (Xα , LEB × νβ) ,(2.4)

where T was defined in (2.1).

Remark 2.6. Note that the normalization in (2.4) for both Sk and Tk is by the quantile
function b(s) = (1/F̄ )←(s) for the lighter-tailed distribution. Since this is inappropriate for
Tk, it should not be too surprising that the pre-multification by the ratio of the tails (which
goes to 0) is necessary.

Proof. Begin by observing that

s F̄ (b(s))

Ḡ(b(s))
Ḡ(b(s)·) v→ νβ ,

in M+(0,∞], where
v→ denotes vague convergence in the Borel σ-field of (0,∞]. Hence from

Resnick (1987), Example 3.5.7, see also a proof in Resnick (1986), we get

F̄ (b(s))

Ḡ(b(s))

[s]∑

k=0

ε Tk
b(s)

⇒ νβ .

This may be extended as in the proof of Resnick (1987), Proposition 3.21, to show in M+(E),

F̄ (b(s))

Ḡ(b(s)

∞∑

k=0

ε( k
s

,
Tk
b(s)

) ⇒ LEB × νβ .
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From independence we get the joint convergence in D[0,∞) × M+(E),
(

S[s·]

b(s)
,
F̄ (b(s))

Ḡ(b(s))

∞∑

k=0

ε( k
s

,
Tk
b(s)

)
)

⇒ (Xα , LEB × νβ) .

Now apply the a.s. continuous map T (see (2.1)) to get (2.4). �

From this result, we get the desired result about M , the number of active sources or events.

Corollary 2.7. The finite-dimensional distributions of the counting function M defined in
(1.1) satisfy as s → ∞,

(2.5)
F̄ (s)

Ḡ(s)
M(s t) ⇒

∫ t

0
(t − u)−β dX←α (u).

For any fixed t,
∫ t

0
(t − u)−β dX←α (u)

d
= t−β α

∫ 1

0
(1 − u)−β dX←α (u) .
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Figure 2. A path of the process M for α = 0.9, β = 0.2 (left) and α = 0.9,
β = 0.4 (right).

Remark 2.8. In particular, for 0 = β < α < 1, we get

F̄ (s)

Ḡ(s)
M(s t) ⇒ X←α (t) .

Coupled with (1.6) we conclude as s → ∞,

M(s)

N(s)
∼ Ḡ(s)

P→ 0 .

Proof. We again consider the case of a fixed t > 0; the convergence of the finite-dimensional
distributions is analogous. We evaluate the convergence in (2.4) on the set {(u, v) : 0 ≤ u ≤
t < u + v}. After a truncation and Slutsky style argument outlined in (2.3), we get

F̄ (b(s))

Ḡ(b(s))
M(b(s) t) ⇒ T (Xα, LEB × νβ)(f) ,(2.6)
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where T is the mapping defined in (2.1) and f(u, v) = 1[u≤t<u+v]. Evaluating the right side,
we find

T (Xα, LEB × νβ)(f) =

∫ ∫
f(Xα(v), x) dv dνβ(x) =

∫ X←α (t)

0
(t − Xα(v))−β dv

=

∫ t

0
(t − v)−β dX←α (v) ,

which is the convolution of the measure νβ and the non-decreasing function X←α . The integral
also equals

t−β

∫ 1

0
(1 − v)−β dX←α (tv)

d
= t−βα

∫ 1

0
(1 − v)−β dX←α (v) .

Since b can be chosen continuous and strictly increasing, the M(b(s)t) in (2.6) may be replaced
by M(s t). This concludes the proof. �

3. Activity rates when α = 1 or µX < ∞
In this section we collect some results about the activity rates when either µX is finite or

µX = ∞ and F̄ is regularly varying with index −1.

3.1. The case when F has finite mean and 0 < β < 1. For mean value analysis of M(t),
we have from (1.4),

EM(t) =

∫ t

0
Ḡ(t − x)U(dx) =

∫ 1

0
Ḡ(t(1 − x))U(t dx) .

Hence

EM(s)

s Ḡ(s)
→
∫ 1

0
(1 − x)−β µ−1

X dx = µ−1
X (1 − β)−1 .

This suggests what the correct normalization for M(t) should be.

Proposition 3.1. Under the assumptions 0 < µX < ∞ and β ∈ (0, 1), the finite-dimensional
distributions of M satisfy

1

s Ḡ(s)
M(s t) ⇒ µ−1

X (1 − β)−1 t1−β , s → ∞ .

0 500 1000 1500
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)

0 200 400 600 800 1000

0
2
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4

0
6

0

t

M
(t

)

Figure 3. A path of the process M for α = 2, β = 0.2 (left) and α = 20,
β = 0.5 (right).
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Proof. Since β ∈ (0, 1), we have sḠ(s) → ∞ as s → ∞. Therefore as s → ∞
s (s Ḡ(s))−1 G(s·) v→ νβ(3.1)

in (0,∞]. This is equivalent to (see Resnick (1987), Example 3.5.7, see also proof in Resnick
(1986))

1

sḠ(s)

∞∑

k=0

εTk
s

⇒ νβ ,

in M+[0,∞), and this can be extended to

1

sḠ(s)

∞∑

k=0

ε(k
s
,
Tk
s

) ⇒ LEB × νβ ,(3.2)

in M+(E). The law of large numbers for {Sk} together with (3.2) yields as s → ∞,
(

S[s·]

s
,

1

sḠ(s)

∞∑

k=0

ε( k
s
,
Tk
s

)
)

⇒ (µX · , LEB × νβ) .

Therefore, as in earlier sections, for any fixed t, as s → ∞,

M(st)

s Ḡ(s)
⇒ T (µX · , LEB × νβ)(f) ,

where f(u, v) = 1[u≤t<u+v]. Evaluating the right side, one obtains
∫ ∫

1[µX v≤t<µX v+x] dv νβ(dx) =

∫ t/µX

v
(t − µX v)−β dv = µ−1

X (1 − β)−1 t1−β .

Since the limit is deterministic, this implies the convergence of the finite-dimensional distri-
butions in D[0,∞). �

This result generalizes equation (2.7) in Resnick and Rootzén (2000). Since the limit
is deterministic, Proposition 3.1 should be regarded as the first order behavior of M and
suggests there may be second order behavior involving a Gaussian limit as in Theorem 1, p.
760 in Resnick and Rootzén (2000). We have the following result.

Proposition 3.2. Suppose that 0 ≤ β < 1 and µX < ∞, and define for s > 0

Ws(t) :=
M(st) −

∑N(st)
k=1 Ḡ(st − Sk)√
sḠ(s)

, t ≥ 0.

Then as s → ∞, the finite dimensional distributions of Ws(·) converge to those of

W∞(·)√
µX(1 − β)

where W∞(·), is a mean-zero Gaussian process with covariance function

C(t1, t2) := t1−β
2 − (t2 − t1)

1−β , 0 ≤ t1 ≤ t2.

Remark 3.3. The limiting process is self-similar with index 1−β. Except for the case β = 0,
W∞ does not have stationary increments and then it is Brownian motion.

It would be desirable to replace the random centering
∑N(st)

k=1 Ḡ(st−Sk) by
∫ st
0 Ḡ(st−u) du

µX

but it is not clear this is in general possible since N(s) − s/µX is of order
√

s while
√

sḠ(s)
is of order s(1−β)/2 and (1 − β)/2 < 1/2.

In the case when Sk are the points of a homogeneous Poisson process the hypothesis of
replacing the random centering by the expectation EM(s·) can be made to work by following
the lines of the proof in Klüppelberg and Mikosch (1995). (There it is assumed that the shot
noise has non-decreasing sample paths which is inessential for the proof in our situation.) In
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this case, the convergence can be strengthened to a functional CLT (in (D[0,∞), J1)) with
the limiting process described above.

Proof. We begin by showing one-dimensional convergence and then give the covariance cal-
culation.

Define S = σ(Sk, k ≥ 1), for the σ-field generated by the renewal times. Conditionally on
S, M(s) is a sum of independent, non-identically distributed Bernoulli random variables

M(s) =

N(s)∑

k=1

1[Tk>s−Sk].

Thus ∑N(s)
k=1 1[Tk>s−Sk] −

∑N(s)
k=1 Ḡ(s − Sk)√

Var
(∑N(s)

k=1 1[Tk>s−Sk] | S
) ⇒ N(0, 1),

provided the denominator converges to ∞ as s → ∞. To see this note that

Var
(N(s)∑

k=1

1[Tk>s−Sk] | S
)

=

N(s)∑

k=1

Ḡ(s − Sk)G(t − Sk)

=

∫ s

0
Ḡ(s − u)G(s − u)N(du)

=

∫ 1

0
Ḡ(s(1 − u))G(s(1 − u))N(sdu).

Now almost surely, as s → ∞,
S[s·]/s → µX(·),

locally uniformly, and therefore also

N(s·)/s → 1

µX
(·),

locally uniformly. Thus it follows that

Var
(∑N(s)

k=1 1[Tk>s−Sk] | S
)

sḠ(s)
=

∫ 1

0

Ḡ(s(1 − u))

Ḡ(s)
G(s(1 − u))

N(sdu)

s

→
∫ 1

0
(1 − u)−β du

µX
=

1

µX(1 − β)
,

if 0 ≤ β < 1. Note in this case, that sḠ(s) → ∞.
Thus we conclude that

P[Ws(1) ≤ x|S] → P[W∞(1)/
√

µX(1 − β) ≤ x],

and taking expectations, we get the same result unconditionally.
For the covariance calculation we again proceed conditionally on S. Suppose 0 ≤ t1 ≤ t2.

Then

Cov(Ws(t1), Ws(t2) | S) =
1

sḠ(s)

N(st1)∑

k=1

Cov
(
1[Tk>st1−Sk], 1[Tk>st2−Sk] | S

)

(since the sums for Ws(t2) involving terms with N(st1) < k ≤ N(st2) are conditionally
independent of terms appearing for Ws(t1))

=
1

sḠ(s)

N(st1)∑

k=1

(
Ḡ(st2 − Sk) − Ḡ(st1 − Sk)Ḡ(st2 − Sk)

)
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=

∫ t1

0

Ḡ(s(t2 − u))

Ḡ(s)

N(sdu)

s
−
∫ t1

0

Ḡ(s(t1 − u))

Ḡ(s)
Ḡ(s(t2 − u))

N(sdu)

s

→
∫ t1

0
(t2 − u)−β du

µX
=

t1−β
2 − (t2 − t1)

1−β

µX(1 − β)
.

�

3.2. The case 0 < β < α = 1 with EX1 = ∞. Then
∫ x
0 F̄ (u) du is slowly varying which

is the necessary and sufficient condition for relative stability in probability to hold (Feller
(1971), p. 236); that is

Sn

nµ(n)

P→ 1, n → ∞,

where

µ(n) = E

(
X11[X1≤b(n)]

)
.

As in (3.1), since sḠ(sµ(s)) → ∞, this leads to

s
( 1

sḠ(sµ(s))

)
G(sµ(s)·) v→ νβ(·)

and therefore we have as s → ∞,
(

S[s·]

sµ(s)
,

1

Ḡ(sµ(s))

∑

k

ε( k
s
,

Tk
s µ(s)

)
)

⇒ (·, LEB × νβ) .

Applying composition yields

1

Ḡ(sµ(s))

∑

k

ε( Sk
sµ(s)

,
Tk

s µ(s)

) ⇒ T
(
·, LEB × νβ

)
.

Finally, we get for t > 0,

M(sµ(s) t)

sḠ(sµ(s))
⇒ t1−β

1 − β
.

Since the limit is deterministic the convergence of the finite-dimensional distributions is im-
mediate. This implies the following result which is analogous to Proposition 3.1.

Proposition 3.4. Under the assumptions µX = ∞ and 0 < β < α = 1, the finite-dimensional
distributions of M satisfy

M(s t)

sḠ(s)/µ(s)
⇒ t1−β

1 − β
, s → ∞ .

3.3. The case when F and G have finite mean. Then we have from the Key Renewal
Theorem

EM(t) =

∫ t

0
Ḡ(t − x)U(dx) → µT

µX
.

This suggests that there exists a stationary version of the process M . We make this precise
in what follows.

As s → ∞,
∞∑

k=0

εSk−s ⇒
∞∑

k=0

ε
S

(0)
k

,

in Mp([0,∞)), where {S(0)
k , k ≥ 0} is the stationary renewal sequence, so that

P
[
S

(0)
0 > x

]
=

1

µX

∫ ∞

x
F̄ (u) du,
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(Resnick (1992)). Since {Tk} is independent of {Sk} we get

∞∑

k=0

ε(Sk−s,Tk) ⇒
∞∑

k=0

ε
(S

(0)
k ,Tk)

,

in Mp([0,∞)2), where {Tk} is independent of {S(0)
k }. We therefore conclude that as s → ∞,

for any t > 0

∞∑

k=0

ε(Sk−s,Tk)({(u, v) : 0 ≤ u ≤ t < u + v})(3.3)

⇒
∞∑

k=0

ε(
S

(0)
k ,Tk

)({(u, v) : 0 ≤ u ≤ t < u + v})

=

∞∑

k=0

1[
S

(0)
k ≤t<S

(0)
k +Tk

].

Note that the left side of (3.3) is not all of M(t + s), since from (3.3) we only have

∞∑

k=1

1[s≤Sk≤t+s≤Sk+Tk].

The difference between this and M(t + s) has expectation

∫ s

0
U(du)Ḡ(t + s − u) → 1

µT

∫ ∞

0
Ḡ(u + t)du =

1

µT

∫ ∞

t
Ḡ(u)du.

However, the way to construct a stationary version of M is clear: start with {Sk} a stationary
renewal sequence on all of R and define for t > 0

M (0)(t) =
∑

k

1[Sk≤t<Sk+Tk].

We observe, additionally, that even when the renewal process is a Poisson process, M is only
stationary if one defines the Poisson process on all of R.

0 200 400 600 800 1000

1
2

3
4

5
6

t

M
(t

)

Figure 4. A path of the process M for α = 20, β = 2.
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4. The cumulative work process

In the Introduction we mentioned that the workload process A(t) is of major interest in
the network context. The following decomposition of A(t) will be useful:

A(t) =

∫ t

0
M(s) ds =

N(t)∑

i=1

min(Ti, t − Si)

=

N(t)∑

i=1

Ti1[Si+Ti≤t] +

N(t)∑

i=1

(t − Si) 1[Si+Ti>t]

=I1 + I2(4.1)

=

N(t)∑

i=1

Ti −
N(t)∑

i=1

Ti1[Si+Ti>t] +

N(t)∑

i=1

(t − Si) 1[Si+Ti>t]

=I11 − I12 + I2 .(4.2)

4.1. The case µX < ∞, β ∈ (1, 2). Define the quantile function of G:

σ(t) ∼ (1/Ḡ)←(t) , t → ∞ .

We always choose σ(t) continuous and strictly increasing.

Theorem 4.1. Assume β ∈ (1, 2). Moreover, assume that the renewal process N is non-
arithmetic and that either F̄ is regularly varying with index −α ∈ [−2,−1) or σ2

X < ∞.

(1) Suppose F̄ is regularly varying and either
(a) α > β or
(b) α = β and F̄ (x) = o(Ḡ(x)) or
(c) σ2

X < ∞.
Set

As(u) = σ(s)−1
(
A(su) − suµT/µX

)
, u ≥ 0.

Then as s → ∞,

As(·) ⇒ µ
−1/β
X Xβ(·) ,(4.3)

where Xβ is a β-stable spectrally positive Lévy motion on [0,∞).
(2) If F̄ is regularly varying α = β and F̄ (x) ∼ c Ḡ(x), then (4.3) holds, where Xβ is

β-stable Lévy motion with skewness parameter (4.6).
(3) If F̄ is regularly varying and α < β or α = β and Ḡ(x) = o(F̄ (x)), then, as s → ∞

(b(s))−1 [A(· s) − s (·)µT /µX ] ⇒ µ
−1/α
X Xα(·) ,

where Xα is spectrally negative β-stable Lévy motion.

Here ⇒ refers to convergence of the finite-dimensional distributions; it cannot be strength-
ened to weak convergence in the Skorokhod space (D[0,∞), J1) since A has continuous sample
paths and the limiting process has jumps.

Proof. We have for γ ∈ (0, 1)

(σ(t))−1
EI2 = (σ(t))−1

∫ t

0
(t − x) Ḡ(t − x)U(dx)

≤ (σ(t))−γ

∫ t

0
(t − x) Ḡ(t − x) (σ(t − x))−1+γ U(dx)

∼ µ−1
X (σ(t))−γ

∫ ∞

0
x Ḡ(x) (σ(x))−1+γ dx .
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The right hand integral is finite for small γ. We conclude that EI2 = o(σ(t)).
We have

EI12 =

∫ t

0
E
[
T11[T1>t−x]

]
U(dx) .

By Karamata’s Theorem (see Bingham et al. (1987)),

E
[
T11[T1>t]] ∼ (β − 1)−1 t P

[
T1 > t

]
.

Mohan (1976) proved for a non-arithmetic renewal process N that U(t) − µ−1
X t = Ũ(t) is

regularly varying with index 2 − α if F̄ is regularly varying with index −α, α ∈ (1, 2], and

Ũ(t) → c for some positive c if σ2
X < ∞ (cf. Resnick (1992), p. 243).

Hence, for F̄ regularly varying with index −α ∈ (−2,−1),

EI12 = µ−1
X

∫ t

0
E
[
T11[T1>x]

]
dx +

∫ 1

0

E
[
T11[T1>t(1−x)]

]

E
[
T11[T1>t]

] Ũ(t dx)

Ũ(t)

(
Ũ(t) E

[
T11[T1>t]

])

∼ c(β) t2 P
[
T1 > t

]
+ c(α, β)

∫ 1

0
(1 − x)1−β x1−α dx

(
Ũ(t) t P

[
T1 > t

])

= o(σ(t)) .

Now consider the case when σ2
X < ∞ or σ2

X = ∞ and F̄ is regularly varying with index −2.
Then, as above,

EI12 ∼ c(β) t2 P
[
T1 > t

]
+

∫ t

0
E
[
T11[T1>t−x]

]
Ũ(dx) .

We integrate by parts:
∫ t

0
E
[
T11[T1>t−x]

]
Ũ(dx) = E

[
T11[T1>0]

]
Ũ(t) − E

[
T11[T1>t]

]
Ũ(0) −

∫ t

0
Ũ(x) dE

[
T11[T1>t−x]

]

= E
[
T11[T1>0]

]
Ũ(t) −

∫ t

0
Ũ(x) P

[
T1 > t − x

]
dx .

Since Ũ is slowly varying and µT < ∞ it also follows in this case that EI12 = o(σ(t)).
Notice that

I11 −
µT

µX
t =

N(t)∑

i=1

(Ti − µT ) + µT (N(t) − t/µX)

=

N(t)∑

i=1

(Ti − µT ) + µT

(
N(t) −

SN(t)

µX

)
+ O(XN(t)+1)

=

N(t)∑

i=1

(
Ti −

µT

µX
Xi

)
+ O(XN(t)+1) .

From the above decomposition we conclude that

(σ(t))−1[A(t·) − t · µT /µX ] = (σ(t))−1

N(t·)∑

i=1

(
Ti −

µT

µX
Xi

)
+ oP (1) ,

which equation holds for the finite-dimensional distributions.
Since Ḡ is regularly varying we have

(4.4) P
[
Ti −

µT

µX
Xi > x

]
∼ Ḡ(x) ,
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(cf. Resnick (1986), Lemma 4.2). If F̄ is regularly varying with positive index we also have

P

[
Ti −

µT

µX
Xi ≤ −x

]
∼ F̄ (µXx/µT ) ∼ (µT /µX)α F̄ (x) .

If σ2
X < ∞

(4.5) P

[
Ti −

µT

µX
Xi ≤ −x

]
≤ P

[
−µT

µX
Xi ≤ −x

]
= o(Ḡ(x)) .

Regular variation of Ḡ and the conditions (4.4) and (4.5) imply that in (D[0,∞), J1) (see
Gikhman and Skorohod (1969), Chapter IX.6)

(σ(t))−1

[t·]∑

i=1

(
Ti −

µT

µX
Xi

)
= (σ(t))−1

[t·]∑

i=1

(Ti − µT ) + (σ(t))−1

[t·]∑

i=1

(
µT − µT

µX
Xi

)

= (σ(t))−1

[t·]∑

i=1

(Ti − µT ) + oP (1)

⇒ Xβ(·) ,

where Xβ is a spectrally positive β-stable Lévy motion. Notice that (4.5) also holds when
α > β or α = β and F̄ (x) = o(Ḡ(x)). Hence the same result applies.

If α = β and F̄ (x) ∼ c Ḡ(x), the corresponding limit theory yields that

(σ(t))−1

[t·]∑

i=1

(
Ti −

µT

µX
Xi

)
⇒ Xβ ,

where Xβ is a β-stable Lévy motion with skewness parameter

1 − 2(1 + c−1(µX/µT )α)−1 ∈ [−1, 1] .(4.6)

If α < β or if α = β and Ḡ(x) = o(F̄ (x)), then

(b(t))−1

[t·]∑

i=1

(
Ti −

µT

µX
Xi

)
⇒ Xα

for a spectrally negative α-stable Lévy motion.
Therefore

(
N(t·)

t
, (b(t))−1

[t·]∑

i=1

(Ti − µT )

)
⇒ (µ−1

X · ,Xα)

in D([0,∞), R2). By a continuous mapping argument we conclude that

(b(t))−1

(
A(t·) − µT

µX
· t

)
⇒ µ

−1/α
X Xα(·) ,

where ⇒ refers to the convergence of the finite-dimensional distributions.
The cases when Xβ appears in the limit is completely analogous and therefore omitted. �

4.2. The case when X1 and T1 have finite variance. Under the assumptions σ2
T < ∞

and σ2
X < ∞, the Key Renewal Theorem yields

EI2 =

∫ t

0
(t − x) Ḡ(t − x)U(dx) → µ−1

X

∫ ∞

0
x Ḡ(x) dx < ∞ ,

EI12 =

∫ t

0
E
[
T11[T1>t−x]

]
U(dx) → µ−1

X

∫ ∞

0
E
[
T11[T1>x]

]
dx < ∞ .



18 THOMAS MIKOSCH AND SIDNEY RESNICK

On the other hand, similar arguments as in Section 4.1 show that

t−1/2
(
I11 −

µT

µX
t
)

= t−1/2

N(t)∑

i=1

(
Ti −

µT

µX
Xi

)
+ oP (1) .

Following the ideas of the proof on p. 108 in Embrechts et al. (1997), it is now easy to derive
the following result:

Proposition 4.2. Assume σ2
T < ∞ and σ2

X < ∞. Then

t−1/2
(
A(t·) − µT

µX
t ·
)
⇒
([

σ2
T + (µT σX/µX)2

]
µ−1

X

)1/2
B(·) ,

where B is standard Brownian motion and ⇒ refers to convergence of the finite-dimensional
distributions.

4.3. The case 0 < β,α < 1. Observe that

EI2

Ḡ(t)U(t)
= t

∫ 1

0
(1 − x)

Ḡ(t(1 − x))

Ḡ(t)

U(t dx)

U(t)

∼ c(α) t ,

EI1

E[T11[T1≤t]]U(t)
=

∫ 1

0

E[T11[T1≤t(1−x)]]

E[T11[T1≤t]]

U(t dx)

U(t)
∼ c(α, β) .

This means that EI2 and EI1 are of the same order tḠ(t)U(t) ∼ t1−β+αL(t). The term I11

is of order tα/β (see Proposition 4.3 below) and hence is either of larger order than EI1 when
α > β, or of smaller order when α < β. The analysis of A(t) cannot be based just on I11 in
this case; one has to understand the interplay between I1 and I2.

Since N and (Ti) are independent,

(
t−1N(b(t)·) , (σ(t))−1

[t·]∑

i=1

Ti ⇒ (X←α (·),Xβ(·))
)

(4.7)

in D([0,∞), R2). Then by a continuous mapping argument

(σ(t))−1

N(b(t)·)∑

i=1

Ti ⇒ Xβ(X←α (·)) .

Since b(t) and σ(t) can be chosen as continuous functions, we can change time:

(σ(b←(t)))−1

N(t·)∑

i=1

Ti ⇒ Xβ(X←α (·)) ,

in D[0,∞). Now observe that σ(b←(t)) ∼ σ(1/F̄ (t)).

Proposition 4.3. Assume 0 < β,α < 1. Then

(σ(1/F̄ (t)))−1

N(t·)∑

i=1

Ti ⇒ Xβ(X←α (·)) ,

where the convergence is in (D[0,∞), J1), Xβ is β-stable spectrally positive Lévy motion on
[0,∞) and X←α is the inverse process to the α-stable Lévy motion defined in Section 1.3, and
both processes are independent.

Despite this result, it turns out that A(t) needs a different normalization and we must
proceed by relying on Theorem 2.5.
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Theorem 4.4. Suppose the Case (2) assumptions hold: 0 ≤ β ≤ α < 1 and if α = β, then
F̄ (s)/Ḡ(s) → 0, as s → ∞. Then A satisfies the relation

(4.8)
F̄ (s)

sḠ(s)
A(st) ⇒

∫ t

0

(t − u)1−β

1 − β
dX←α (u), t ≥ 0 ,

in (D[0,∞), J1).

Remark 4.5. The convergence in (4.8) is the result one expects by integrating to the limit
in (2.5). It suggests that Corollary 2.7 may hold in the M1-topology (Whitt (2002)) since
integration is continuous in that topology. However, we have not been able to verify this.

Proof. We start by verifiying the convergence of the finite-dimensional distributions and focus
on the case of a fixed t. We again decompose A(t) = I1 + I2 as defined in (4.1). The idea is
to express both I1 and I2 as functions of the random measure in (2.4).

Fix δ > 0. The map

(4.9) m 7→
(∫∫

0≤u≤t,δ<v
u+v≤t

v m(du, dv),

∫∫

0≤u≤t,δ<v
u+v>t

(t − u)m(du, dv)

)

from M+(E) 7→ [0,∞)2 is continuous at measures in

Λ :=
{
m ∈ M+(E) : m({0 × [0,∞)}) = m({(u, v) : u + v = t, v ≥ δ})

= m([0,∞) × {δ}) = m({t} × [δ, 0)) = 0
}

.

To see this, write, for instance
∫∫

0≤u≤t,δ<δ
u+v≤t

v m(du, dv) =

∫∫

[0,∞)2
1[0,t](u) v 1{u≤t,δ<v,u+v≤t}(u, v)m(du, dv)

=

∫∫
f(u, v)m(du, dv),

and proceed as in the proof of the Helly-Bray lemma. An almost identical argument applies
to the continuity of the second integral. Referring to Theorem 2.5, note that,

P[T (Xα, LEB × νβ) ∈ Λc] = 0.

Therefore by continuous mapping, as s → ∞,

(I1,δ(t), I2,δ(t))

=
F̄ (b(s))

Ḡ(b(s))

(N(b(s)t∑

k=1

Tk

b(s)
1[ Tk

b(s)
≤t−

Sk
b(s)

,
Tk
b(s)
≥δ
],

N(b(s)t∑

k=1

(
t − Sk

b(s)

)
1[ Tk

b(s)
>t−

Sk
b(s)

,
Tk
b(s)
≥δ
]
)

⇒ (I
(∞)
1,δ (t), I

(∞)
2,δ (t))

=

(∫∫

u≤t,v≥δ
u+v≤t

vT (Xα, LEB × νβ)(du, dv),

∫∫

u≤t,v≥δ
u+v>t

(t − u)T (Xα, LEB × νβ)(du, dv)

)
.

As δ ↓ 0,

(I
(∞)
1,δ (t), I

(∞)
2,δ (t)) ⇒

(∫ t

0

β

1 − β
(t − u)1−βdX←α (u),

∫ t

0
(t − u)1−βdX←α (u)

)
.

Note the sum of the last two terms is
∫ t

0

1

1 − β
(t − u)1−βdX←α (u),
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as claimed in the statement (4.8).
So it remains to show for any η > 0,

(4.10) lim
δ↓0

lim sup
s→∞

P[|Ij,δ(t) − Ij | > η] = 0, j = 1, 2.

For j = 1 the probability is

P

[
F̄ (b(s))

Ḡ(b(s))

N(b(s)t∑

k=1

Tk

b(s)
1[ Tk

b(s)
≤t−

Sk
b(s)

,
Tk
b(s)
≤δ
] > η

]

≤η−1 F̄ (b(s))

Ḡ(b(s))
E

(N(b(s)t∑

k=1

Tk

b(s)
1[ Tk

b(s)
≤t−

Sk
b(s)

,
Tk
b(s)
≤δ
]
)

(Chebyshev)

=η−1 F̄ (b(s))

Ḡ(b(s))

∫ b(s)t

0
E

( T1

b(s)
1[T1≤b(s)t−u,T1≤b(s)δ]

)
U(du)

=η−1

∫ t

0

E

(
T11[T1≤((t−y)∧δ)b(s)]

)

b(s)Ḡ(b(s))
F̄ (b(s))U(b(s)dy)

=

∫ t

t−δ

E

(
T11[T1≤((t−y)b(s)]

)

b(s)Ḡ(b(s))
F̄ (b(s))U(b(s)dy)

+ η−1

∫ t−δ

0

E

(
T11[T1≤δb(s)]

)

b(s)Ḡ(b(s))
F̄ (b(s))U(b(s)dy)

=A + B .

Now for A we have the bound (apart from the factor η−1),

A ≤
E

(
T11[T1≤δb(s)]

)

b(s)Ḡ(b(s))

(
F̄ (b(s))U(b(s)t) − F̄ (b(s))U(b(s)(t − δ))

)

and as s → ∞. This is asymptotic to

∼ c1δ
1−β
(
c2t

α − c2(t − δ)α
)
→ 0, δ ↓ 0 .

For B we have

B ∼ cδ1−βF̄ (b(s))U(b(s)(1 − δ)) ∼ cδ1−β(1 − δ)α → 0, (δ ↓ 0) .

For j = 2 in (4.10), we have for the probability

P

[
F̄ (b(s))

Ḡ(b(s))

N(b(s)t)∑

k=1

(
t − Sk

b(s)

)
1[ Tk

b(s)
>t−

Sk
b(s)

,
Tk
b(s)
≤δ
] > η

]

≤ η−1 F̄ (b(s))

Ḡ(b(s))
E

(
(
t − Sk

b(s)

)
1[ Tk

b(s)
>t−

Sk
b(s)

,
Tk
b(s)
≤δ
] > η

)
,
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Letting S = σ(Sk , k ≥ 1), we get by iterating expectations

= η−1 F̄ (b(s))

Ḡ(b(s))
EE

(N(b(s)t)∑

k=1

(
t − Sk

b(s)

)
1[ Tk

b(s)
>t−

Sk
b(s)

,
Tk
b(s)
≤δ
] > η | S

)

= η−1 F̄ (b(s))

Ḡ(b(s))
E

(N(b(s)t)∑

k=1

(
t − Sk

b(s)

)
P [b(s)t − Sk < Tk ≤ b(s)δ | S]

)

= η−1 F̄ (b(s))

Ḡ(b(s))
E

(N(b(s)t)∑

k=1

(
t − Sk

b(s)

)(
Ḡ(b(s)t − Sk) − Ḡ(b(s)δ)

)

+

)

= η−1 F̄ (b(s))

Ḡ(b(s))

∫ t

0
(t − u)

(
Ḡ(b(s)(t − u)) − Ḡ(b(s)δ)

)
+
U(b(s)du)

≤ η−1

∫ t

t−δ
(t − u)

Ḡ(b(s)(t − u))

Ḡ(b(s))
F̄ (b(s))U(b(s)du)

∼ c

∫ t

t−δ
(t − u)1−βduα (s → ∞)

→ 0 (δ ↓ 0).

This proves convergence of the one-dimensional distributions in Theorem 4.4. The conver-
gence of the finite dimensional distributions is straightforward: The multivariate analog of
the map in (4.9) is also almost surely continuous and once this is noted, it is clear how to
proceed.

The tightness of the converging processes in (D[0,∞), J1)) follows from the convergence of
the finite-dimensional distributions together with the observation that the sample paths of
A and of the limiting process are monotone and continuous; see Jacod and Shiryaev (1987),
Theorem VI.3.37. �

5. Unresolved problems

Several questions remain unanswered.

5.1. The case µX < ∞ and β ∈ (0, 1). An analysis similar to what was performed at the
beginning of Subsection 4.3, shows that EI1 and EI2 are of the same order and of lower order
than I11; see below. Hence I11 does not help here.

By the independence of N and (Ti),

(
t−1N(t·) , (σ(t))−1

[t·]∑

i=1

Ti

)
⇒
(
µ−1

X · ,Xβ

)
,

in D([0,∞), R2), where Xβ is spectrally positive β-stable Lévy motion. By a continuous
mapping argument,

(σ(t))−1

N(t·)∑

i=1

Ti ⇒ µ
−1/β
X Xβ(·) ,

in (D[0,∞), J1). A similar argument as for Proposition 4.3 finally gives the following result:
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Proposition 5.1. Assume β ∈ (0, 1) and µX < ∞. Then

(σ(t))−1

N(t·)∑

i=1

Ti ⇒ µ
−1/β
X Xβ(·)

in (D[0,∞), J1), where Xβ is spectrally positive β-stable Lévy motion on [0,∞).

Referring to Proposition 3.2, we would expect a Gaussian limit for A(t) in this case.

5.2. Other problems. Here is a list of problems whose resolution is unsatisfactory:

(1) The Gaussian limit in Proposition 3.2 is only obtained after a random centering. It
can be replaced by the expected value if {Sk} constitutes a Poisson process. When
can the random centering be replaced by a non-random centering?

(2) The Gaussian approximation in Proposition 3.2 is only in the sense of convergence of
finite-dimensional distributions. We suspect that the convergence can be considerably
strengthened allowing integration to the limit which would resolve the asymptotic
behavior of A(t).

(3) We expect that the mode of convergence in Corollary 2.7 can be strengthened. If so,
this would provide a convenient way to obtain Theorem 4.4.

(4) Connections to data networks rarely occur according to a Poisson process, and it is
unlikely they occur according to a renewal process (Guerin et al. (2003)). What more
general class of connection models would be tractable?

(5) Transmissions do not occur at unit rate as assumed here and more general models are
needed.
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S. Resnick. Modeling data networks. In B. Finkenstadt and H. Rootzen, editors, SemStat:

Seminaire Europeen de Statistique, Exteme Values in Finance, Telecommunications, and
the Environment, pages 287–372. Chapman-Hall, London, 2003.

S. Resnick and H. Rootzén. Self-similar communication models and very heavy tails. Ann.
Applied Probability, 10:753–778, 2000.

G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes. Chapman &
Hall, New York, 1994.
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