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Abstract

In this paper we give some new criteria for identifying the components
of a probability measure, in its Lebesgue decomposition. This enables us to
give new criteria to identify spectral types of self adjoint operators on Hilbert
spaces, especially those of interest.

1 Introduction

In the spectral theory of self adjoint operators it is of interest to identify the type
of the spectrum. This problem is equivalent to identifying the components of the
spectral measures. The components of a probability measure can be identified via
a transform of the measure. Two of these are well known, viz. the Fourier trans-
form and the Borel transform. In this paper we address the question of identifying
the components using a more general transform. We give results using a general
approximate identity, and an associated continuous wavelet transform.

Concerning the literature, the connection between an approximate identity and
the continuous wavelet transform was discussed in the book by Holschneider [1],
while wavelet coefficients of fractal measures were studied by Strichartz in [4]. In
the theory of selfadjoint operators finer decomposition of spectra with respect to
Hausdorff measures was first used by Last [2] and general criteria for recovering a
measure from its Borel transform was done by Simon [3].
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2 The criteria

We need to introduce conditions on our function ψ. Several of these can be relaxed
in some of the results. We use the standard notation 〈x〉 = (1 + x2)1/2.

Assumption 2.1. Assume that ψ ∈ C1(R), ψ(0) = 1, ψ is even, and there exist
C > 0 and δ > 1, such that

|ψ(x)|+ |xψ′(x)| ≤ C〈x〉−δ, x ∈ R. (2.1)

We set Aψ =
∫
R
ψ(x) dx and assume that Aψ 6= 0.

In the sequel we always impose this assumption on ψ. We introduce the notation

ψa(x) = ψ(x/a) and ψ̃a(x) = 1
a
ψa(x), a > 0. (2.2)

In particular, the family {A−1
ψ ψ̃a} is an approximate identity. Let µ be a probability

measure on R in what follows, with Lebesgue decomposition µ = µs +µac. Let f be
a function. We recall that the convolution (f ∗ µ)(x) =

∫
f(x− y)dµ(y) is defined,

when the integral converges. Since ψ is bounded, the convolution ψa ∗ µ is defined
for all a > 0.

For 0 ≤ α ≤ 1 we define

(dαµ)(x) = lim
ε↓0

µ((x− ε, x+ ε))

(2ε)α
, (2.3)

whenever the limit on the right hand side exists.
We can now state the results. We first give results based on ψa and ψ̃a, and then

on an associated continuous wavelet transform.

Theorem 2.2. Let µ be a probability measure. Then

1. Let ψ satisfy Assumption 2.1. Then for every continuous function f of compact
support, the following is valid.

lim
a→0

∫
(ψ̃a ∗ µ)(x)f(x)dx = Aψ

∫
f(x) dµ(x).

2. lim
a→0

(ψa ∗ µ)(x) = µ({x}).

3. Assume 0 < α ≤ 1 and (dαµ)(x) finite. Then we have

lim
a→0

a−α(ψa ∗ µ)(x) = cα(dαµ)(x), (2.4)

where cα =
∫∞

0
α2αyα−1ψ(y)dy.

Remark 2.3. (1) Equation (2.4) implies that if µ is purely singular, then the limit
of ψ̃a ∗ µ(x) is zero almost everywhere with respect to the Lebesgue measure, since
the derivative (d1µ)(x) = 0 almost everywhere for purely singular µ.
(2) If x is not in the topological support of µ, then for each 0 ≤ α ≤ 1,

lim
a→0

a−αψa ∗ µ(x) = 0.
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Our next theorem is a bit more and the first part is analogous to Wiener’s
theorem and its extension by Simon [3].

Theorem 2.4. Let µ be a probability measure. Then for any bounded interval (c, d)
the following are valid.

1. Let C =

∫
R

|ψ(x)|2 dx, then

lim
a→0

1

a

∫ d

c

|(ψa ∗ µ)(x)|2dx

= C
( ∑
x∈(c,d)

µ({x})2 + 1
2

[
µ({c})2 + µ({d})2

])
. (2.5)

2. For 0 < p < 1, we have

lim
a→0

∫ d

c

∣∣(ψ̃a ∗ µ)(x)
∣∣pdx = |Aψ|p

∫ d

c

∣∣∣dµac

dx
(x)

∣∣∣p dx. (2.6)

This theorem has the following corollary.

Corollary 2.5. Let µ be a probability measure. Then we have the following results

1. µ has no point part in [c, d], if and only if

lim inf
a→0

1

a

∫ d

c

∣∣(ψa ∗ µ)(x)
∣∣2 dx = 0. (2.7)

2. If µ has no absolutely continuous part in (c, d), if and only if for some p,
0 < p < 1,

lim inf
a→0

∫ d

c

∣∣(ψ̃a ∗ µ)(x)
∣∣p dx = 0. (2.8)

Now to state the results in terms of the continuous wavelet transform, we intro-
duce

h(x) = ψ(x) + xψ′(x). (2.9)

Under Assumption 2.1 we clearly have

|h(x)| ≤ C〈x〉−δ, (2.10)

with the δ from the assumption. Integration by parts and (2.9) imply that h satisfies
the admissibility condition for a continuous wavelet, i.e.

∫∞
−∞ h(x) dx = 0.

Thus we can define the continuous wavelet transform of a probability measure µ
as

Wh(µ)(b, a) =
1

a

∫ ∞

−∞
h
(
(b− y)/a

)
dµ(y). (2.11)
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The connection between the approximate identity and this transform is

−a ∂
∂a

(ψ̃a ∗ µ)(b) = Wh(µ)(b, a). (2.12)

This result follows from

−a ∂
∂a

(
1

a
ψ

(x
a

))
=

1

a

(
ψ

(x
a

)
+
x

a
ψ′

(x
a

))
,

and the definitions.
We have the following analogue of Theorem 2.2:

Theorem 2.6. Let µ be a probability measure. Then we have the following results:

1. We have

lim
ε↓0

ε

∫ ∞

ε

Wh(µ)(b, a)
da

a
= µ({b}). (2.13)

2. Let 0 < α ≤ 1. Assume that (dαµ)(b) exists. Then

lim
ε↓0

ε1−α
∫ ∞

ε

Wh(µ)(b, a)
da

a
= cα(dαµ)(b), (2.14)

where cα was defined in Theorem 2.2.

Remark 2.7. We note that for 0 < α < 1 we can replace
∫∞
ε

by
∫M

ε
for any M > 0.

See the proof of the Theorem.

We also have the following analogue of Theorem 2.4(1).

Theorem 2.8. Let µ be a probability measure. Then for any bounded interval (c, d)
we have the following result. Let

Ch =

∫
R

|h(x)|2 dx,

Then we have

lim
a↓0

∫ d

c

|Wh(µ)(b, a)|2 db

= Ch

( ∑
x∈(c,d)

µ({x})2 + 1
2

(
µ({c})2 + µ({d})2

))
. (2.15)

Even when the quantity (dαµ)(x) does not exist, it is possible to say something
on the wavelet transforms, to cover the cases of measures which are not supported
on the sets where such limits exist. Set

Cα
µ,ψ(x) = lim sup

a→0

ψa ∗ µ
aα

(x) and Dα
µ(x) = lim sup

ε→0

µ((x− ε, x+ ε))

(2ε)α
.

Then we have
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Theorem 2.9. Let µ be a probability measure, and let ψ satisfy Assumption 2.1.
Then Cα

µ,ψ(x) is finite for any x, whenever Dα
µ(x) is finite for the same x, and, if ψ

is non-negative, they are both finite or both infinite.

Remark 2.10. The above theorem implies that if lim supa→0

∣∣(ψ̃a ∗µ)(x)
∣∣ <∞ for all

x ∈ (c, d), then there is no singular part of µ supported in (c, d).

Finally as an application of the above theorems we consider H to be a separable
Hilbert space and A a selfadjoint operator. Then

Theorem 2.11. Suppose A is a selfadjoint operator on H. Consider a function ψ
satisfying Assumption 2.1. Then

1. λ is in the point spectrum of A, if for some f ∈ H, ‖f‖ = 1,

lim
a→0

〈
f, ψa(A− λ)f

〉
= 0.

2. Let B ⊂ R be a Borel set of positive Lebesgue measure. Then B ∩ σac(A) 6= ∅,
if for some f ∈ H, ‖f‖ = 1,

lim
a→0

〈
f, ψ̃a(A− λ)f

〉
6= 0, for a.e. λ ∈ B.

3. The point spectrum of A in (c, d) is empty, if and only if for some orthonormal
basis {fn}, of H, one has for every n,

lim inf
a→0

1

a

∫ d

c

∣∣〈fn, ψa(A− λ)fn
〉∣∣2 dλ = 0.

4. The absolutely continuous spectrum of A in (c, d) is empty, if and only if for
some orthonormal basis {fn} of H, one has for every n and some 0 < p < 1,

lim inf
a→0

∫ d

c

∣∣1
a

〈
fn, ψa(A− λ)fn

〉∣∣p dλ = 0.

3 Proofs

Throughout the computations below the letter C denotes a constant, whose value
may vary from line to line.

Proof of Theorem 2.2: Part (1): Since f is a continuous function of compact
support and ψa is bounded for each a > 0, f(x)ψa(x − y) is absolutely integrable
and the integral is uniformly bounded in y ∈ R. Therefore, by an application of
Fubini, a change of variable x → ax + y and dominated convergence theorem, in
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that order, it follows that

lim
a→0

∫
dx f(x)

(
ψ̃a ∗ µ

)
(x) = lim

a→0

∫
dx f(x)

∫
ψ̃a(x− y) dµ(y)

= lim
a→0

∫
dµ(y)

∫
f(x)ψ̃a(x− y) dx

= lim
a→0

∫
dµ(y)

∫
f(ax+ y)ψ(x) dx

=

∫
dµ(y)

∫
(lim
a→0

f(ax+ y))ψ(x) dx

=

∫
f(y)dµ(y) ·

∫
ψ(x) dx.

Part (2): This is a direct consequence of the definition of the integral noting that
pointwise we have

lim
a→0

ψa(x) =

{
0, if x 6= 0,

1, if x = 0.

We also need to use the dominated convergence theorem to interchange the limit
and the integral.
Part (3): Let Φµ denote the distribution function of µ. Then we have

1

aα

∫
R

ψa(x− y) dµ(y)

= − 1

aα

∫
R

d

dy
ψ

(
(x− y)/a

)
Φµ(y) dy

=
1

aα

∫
R

ψ′(y)Φµ(x− ay) dy

= −
∫ ∞

0

ψ′(y)(2y)α
Φµ(x+ ay)− Φµ(x− ay)

(2ay)α
dy, (3.1)

where in the first step we used integration by parts, the next step changed variables
and in the last step used the oddness of ψ′ to split the integral into the positive and
negative half lines and multiplied by appropriate powers.

We observe that

(dαµ)(x) = lim
a→0

Φµ(x+ ay)− Φµ(x− ay)

(2ay)α

for each y ∈ R, and is finite by assumption. Furthermore, the function (Φµ(x +
ay) − Φµ(x − ay))(2ay)−α is a bounded measurable function, such that we due to
(2.1) we can take the limits inside the integral sign in (3.1) and use the dominated
convergence theorem.

Now doing an integration by parts gives the value of the integral as stated in the
theorem.
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Proof of Theorem 2.4: Part (1): We have

1

a

∫ d

c

∣∣ψa ∗ µ(x)
∣∣2 dx =

∫∫
dµ(y1) dµ(y2)

∫ d

c

dx
1

a
ψa(x− y1)ψa(x− y2).

Since the function ψa is bounded, the interval (c, d) is bounded, and µ is a probability
measure, the right hand side integral converges absolutely, so we used Fubini to
interchange integrals to get the equality above. Let

ha(y1, y2) =

∫ d

c

dx
1

a
ψa(x− y1)ψa(x− y2).

Suppose y1 6= y2, then using the bound
∣∣ψ(x)

∣∣ ≤ C〈x〉−δ, we see that the bound∣∣ha(y1, y2)
∣∣ ≤ C

a

∫ ∞

−∞

〈
(x+ y2 − y1)/a

〉−δ〈x/a〉−δ dx
=
C

a

( ∫
|x|≤|y1−y2|/2

+

∫
|x|≥|y1−y2|/2

)
(· · · ) dx

≤ Caδ

|y1 − y2|δ

∫ ∞

−∞
〈x/a〉−δ d(x/a)

≤ Caδ

|y1 − y2|δ

is valid. It follows that lima→0 ha(y1, y2) = 0 for y1 6= y2. It remains to consider
y1 = y2. This is done by noting that

ha(y1, y1) =

∫ d

c

1

a

∣∣ψa(x− y1)
∣∣2dx =

∫ (d−y1)/a

(c−y1)/a

∣∣ψ(x)
∣∣2dx,

from which taking limits, we obtain the stated value for the coefficient, either C or
C/2, based on whether c < y1 < d or y1 = c, d, using the evenness of ψ. Now to
complete the proof, we note the estimate∣∣ha(y1, y2)

∣∣ ≤ C

∫
R

〈x/a〉−δd(x/a) ≤ C0,

where the constant C0 is independent of a, y1, and y2. Thus the proof is completed
used the dominated convergence theorem.
Part (2): We adapt the arguments in [3] to the case at hand. We split the measure
in three components: µ = µ1 + µ2 + µ3. Here dµ1 = (1 − χ[c−1,d+1]) dµ, dµ2 = g dx
with g ∈ L1([c− 1, d+1]), and µ3 is purely singular, and supported on [c− 1, d+1].
We have for x ∈ [c, d] the estimate∣∣(ψ̃a ∗ µ1)(x)

∣∣ ≤ C

∫
R\[c−1,d+1]

a−1〈(x− y)/a〉−δ dµ1(y) ≤ Caδ−1.

We now look at the µ2 part. We have, for 0 < p < 1, by the reverse Hölder inequality∫ d

c

∣∣(ψ̃a ∗ g)(x)− Aψg(x)
∣∣p dx ≤ (∫ d

c

∣∣(ψ̃a ∗ g)(x)− Aψg(x)
∣∣ dx)p(d− c)1−p,
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which implies that ψ̃a ∗ g → Aψg in Lp((c, d)), 0 < p ≤ 1.
Now we will show that the singular part µ3 does not contribute to the limit. So

assume that µ3 is purely singular and that its support S is contained in [c−1, d+1].
Since µ3 is singular, by the definition of support, S satisfies µ3(R \ S) = 0 and
|S| = 0, with | · | denoting the Lebesgue measure. By the regularity of the Lebesgue
measure, given an ε > 0, there is an open set O ⊂ (c− 2, d + 2), such that S ⊂ O,
with |O \ S| < ε. We also have |O| ≤ |O \ S| + |S| < ε. For the same ε, since the
measure µ3 is regular, we also have a compact K ⊂ S, such that µ3(S \ K) < ε.
In addition, since K ⊂ S, and S has Lebesgue measure zero, K also has Lebesgue
measure zero.

The above reverse Hölder inequality gives∫ d

c

∣∣(ψ̃a ∗ µ3)(x)
∣∣p dx =

∫
O

∣∣(ψ̃a ∗ µ3)(x)
∣∣p dx+

∫
(c,d)\O

∣∣(ψ̃a ∗ µ3)(x)
∣∣p dx

≤ |O|1−pµ3((c, d))
p‖ψ‖p1

+ |d− c|1−p
(∫

(c,d)\O

∣∣(ψ̃a ∗ µ3)(x)
∣∣ dx)p

≤ Cε1−p + |d− c|1−p
(∫

(c,d)\O

∣∣(ψ̃a ∗ µ3)(x)
∣∣ dx)p.

Now consider a bounded continuous function h which is 1 on (c, d) \O, and 0 on K.
Then using Assumption 2.1, that |ψ(x)| ≤ C〈x〉−δ, and setting φ(x) = 〈x〉−δ,∫

(c,d)\O

∣∣(ψ̃a ∗ µ3)(x)
∣∣ dx ≤ ∫

(c,d)\O

1

a

∫
R

∣∣ψa(x− y)
∣∣ dµ3(y) dx

≤ C

∫
(c,d)\O

1

a

∫
R

〈
(x− y)/a

〉−δ
dµ3(y) dx

≤ C

∫
(c,d)\O

h(x)
(
φ̃a ∗ µ3

)
(x) dx.

The function φ satisfies Assumption 2.1, so the Theorem 2.2(1) is applicable with ψ
replaced by φ there. Therefore the last term, which has positive integrand, converges
to

∫
(c,d)\O h(x) dµ(x) as a goes to zero, which is bounded by

∫
(c,d)\K dµ(x),∫

(c,d)\O
h(x) dµ(x) ≤ µ

(
(c, d) \K

)
≤ µ

(
(c, d) \ S

)
+ µ

(
S \K

)
< ε,

using the facts that µ((c, d) \ S) = 0 and µ(S \K) < ε.
Using the inequality (a + b + c)p ≤ ap + bp + cp for 0 < p < 1 and non-negative

numbers a, b, c, we have∫ d

c

∣∣(ψ̃a ∗ µ)(x)− Aψg(x)
∣∣p dx ≤ ∫ d

c

∣∣(ψ̃a ∗ µ1)(x)
∣∣p dx

+

∫ d

c

∣∣(ψ̃a ∗ µ2)(x)− Aψg(x)
∣∣p dx

+

∫ d

c

∣∣(ψ̃a ∗ µ3)(x)
∣∣p dx
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Putting the above estimates together and using that ε is arbitrary, one gets

lim
a→0

∫ d

c

|(ψ̃a ∗ µ)(x)− Aψg(x)|p dx = 0.

Now the spaces Lp((c, d)), 0 < p < 1, are metric spaces with the metric d(f, g) =
‖f − g‖pp. It then follows from the triangle inequality for this metric that

lim
a→0

∫ d

c

∣∣(ψ̃a ∗ µ)(x)
∣∣p dx = |Aψ|p

∫ d

c

∣∣g(x)∣∣p dx.
Since g = dµac

dx
, the result follows.

Proof of Theorem 2.6: Let 0 < ε < M < ∞. It follows from (2.12) that we
have ∫ M

ε

Wh(µ)(b, a)
da

a
=

(
ψ̃ε ∗ µ

)
(b)−

(
ψ̃M ∗ µ

)
(b).

The results now follow from Theorem 2.2.

Proof of Theorem 2.8: The proof is entirely analogous to the proof of Theo-
rem 2.4, replacing ψ by h and adjusting the powers of a.

Proof of Theorem 2.9: Consider the case when Dα
µ(x) is finite for some x and

for some fixed α. Then for any 0 < y < 1, µ(x − y, x + y) ≤ C|y|α for some finite
constant C. So, using the last line in equation 3.1 and estimating the right hand
side there, one has, by assumption 2.1,∣∣∣ 1

aα
(
ψa ∗ µ

)
(x)

∣∣∣ ≤ C

∫ ∞

0

∣∣ψ′(y)∣∣(2y)α dy ≤ C

∫ ∞

0

〈y〉−δ|y|−1+α dy <∞.

Now taking the lim sup of the left hand side the finiteness of Cα
µ,ψ follows.

On the other hand, since ψ is positive continuous with ψ(0) = 1, there is a β > 0
such that ψ(y) > 1/2, − β < y < β. Using this and the evenness of ψ,

1

aα
(
ψa ∗ µ

)
(x) =

1

aα

∫
ψa(x− y) dµ(y) =

∫
ψ(y/a) dµ(y + x)

≥ 1

aα

∫ βa

−βa

1
2
dµ(y + x)

≥ 1

2aα
[
µ(x+ aβ)− µ(x− aβ)

]
,

where ψ ≥ 0 is used to get the first inequality above. The above inequalities imme-
diately imply, since β is fixed, that Dα

µ(x) = ∞ implies the same for Cα
µ,ψ(x).

Proof of Theorem 2.11: Parts (1) and (2) are a direct application of Theorem
2.2(2) and (3) respectively. Parts (3) and (4) are a direct application of Corollary
2.5 (1) and (2) respectively.
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