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1 Introduction

Mesoscopic systems have been extensively studied in the last two decades, both
from theoretical and experimental point of view. Much effort has been devoted to
the understanding of transport phenomena through quantum rings, wires or dots
(see the monographs [11] and [14]). These nanodevices display several non-trivial
effects like Aharonov-Bohm conductance oscillations, quantum Hall effect, single
charge tunneling. Consequently, various theories have been developed in order to
explain them. Among such theories, the scattering approach to the transport prob-
lem initiated by Landauer [19] and accomplished by Büttiker [8] is perhaps the
most frequently utilized in the physical literature. The basic idea of the nowadays
called Landauer-Büttiker (LB) formalism is that the charge transport through a fi-
nite system connected to several (usually semi-infinite) leads is a scattering process:
the incident electrons are either transmitted between leads or reflected in the same
lead. By a counting argument, the conductance of a two-lead system G is related to
its transmittance T (which still remains to be computed from the S matrix of the
problem) by the Landauer formula at zero temperature:

G =
e2

h
T . (1.1)

As shown by Büttiker, this formula admits a generalization to a multi-lead ge-
ometry and also to the case when a magnetic field is present. In particular a four-
terminal setup is the natural way to put into evidence the quantization of the Hall
resistance in strong magnetic fields.

Alternatively, the conductance G can be found from the linear-response theory.
Therefore it is a natural question whether the Landauer formula can be derived
directly from the Kubo formalism. This problem was addressed in a series of papers
in the 80’s ([13],[16],[20],[18]). All those papers used the Kubo formula as given for
macroscopic samples. Later on, Baranger and Stone [6] argued for a Kubo formula
adapted to mesoscopic systems with leads. They also presented a formal justification
of the equivalence between the linear response theory and the LB approach.

The main aim of our work is to provide a rigorous derivation of this equivalence,
following their ideas. Secondly, we use the LB formalism to describe the resonant
transport through a mesoscopic sample weakly coupled to leads, the so-called quan-
tum dot (see [17] for a review). These steps are behind the formulae used in [21] for
studying specific properties of such systems.

Now let us describe the strategy followed to achieve the results. First, we estab-
lish a Kubo formula for the conductance, and then we perform the thermodynamic
and adiabatic limits. Second, we compute the transmission between different leads
from scattering theory. A comparison of the two results lead us to the Landauer-
Büttiker formula.

We stress that in the present approach we use a tight-binding representation
(i.e. a discrete model) for Hamiltonians. This makes some of the delicate technical
points easier to work with. For instance, due to the particular form of the current
operator (which has finite rank), the trace implied by the Kubo formula is reduced
to a simple product of matrix elements of an effective resolvent Reff that comes from
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the Feshbach formula. Its associated Hamiltonian acts only in the Hilbert space of
the finite system and is non-hermitian, due to a supplementary term that embodies
the effect of the leads. This term is well known in the physical literature as the
’self-energy’ of the leads (see [11]). Roughly speaking, it controls the imaginary part
of the effective Hamiltonian coming from the Feshbach formula and is proportional
to the square of the hopping integral between the leads and the sample. As a
consequence, a weak coupling generates resonances located near the real axis and
a peak in the conductance as given by the LB formula, each time the energy of
the incident electron equals an eigenvalue of the isolated dot. These peaks are
nothing else but the so-called Coulomb oscillations in quantum dots (see [17] for an
introduction to the subject). In fact, our approach shows that actually the peaks
are not of Coulomb origin but a purely resonant effect (as shown numerically in [21]
they are very sensitive to the lead-dot coupling, the interaction adding quantitative
differences only).

Other interesting geometric, topological and adiabatic aspects of transport prob-
lems through mesoscopic samples were given by Avron et al in [2],. . . , [5]. Note that
the authors work with adiabatic pumps, i.e. the perturbation occurs on the sample
and not on the leads (the analog of LB formula in that case is the so called BPT
formula [9]). They also give a very nice “pedestrian” argument of why the BPT
formula should hold.

In [1], roughly the same authors rigorously prove the BPT formula. They chose
to work from the beginning with infinite leads. A difficulty which appears there is
that the one particle fermionic density matrix is no longer trace class, and one has
to be careful when defining the currents. In our paper we manage to bypass this
difficulty, by starting with the grand canonical density matrix in the associated Fock
space for finite leads. Due to the absence of self interactions, we manage to define
one particle currents in a natural way. Then we let the leads’ length go to infinity,
and finally we perform the adiabatic limit.

The content of the paper is organised as follows: Section 2 sets notation and
gives the main result, Section 3 presents some relevant spectral properties of our
system, while Section 4 contains the proof of our main theorem. Section 5 is devoted
to a simple application of the formalism to the resonant transport through non-
interacting quantum dots. Several technical tools are left to appendices.

2 Preliminaries and results

2.1 The model

We use the tight-binding approximation and thus a discrete model throughout the
paper. The system through which the current will run is modelled by Γ, chosen
to be a finite subset of Z2 (we can also identify it with a finite subset of N). We
couple Γ to several “one-dimensional” leads. The sites of each lead are modelled
by N ⊆ N; when N = N the lead is semi-infinite. In the sequel the finite system
described by Γ will be named ’sample’ while the name “system” will be given to the
whole structure “sample+leads”.

The total one-particle Hilbert space is a direct sum between the space modelling
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the sample, and M spaces corresponding to our leads:

H = l2(Γ)⊕ l2(N )⊕ · · · ⊕ l2(N ). (2.1)

Let us describe the one-particle Hamiltonian. In the sample we may have any
selfadjoint bounded operator HS. For example, we can choose HS to be the restric-
tion of a Harper-type operator to l2(Γ) with Dirichlet boundary conditions:

HS =
∑

(m,n)∈Z2

(
E0|m,n〉〈m,n|+ t1(e

−i Bm
2 |m,n〉〈m,n+ 1|+ h.c.)

+ t2(e
−i Bn

2 |m,n〉〈m+ 1, n|+ h.c.)
)
. (2.2)

Here h.c. means hermitian conjugate, E0 is the reference energy, B is a magnetic
field from which the magnetic phases appear (the symmetric gauge was used), while
t1 and t2 are hopping integrals between nearest neighbor sites.

As for the leads, the dynamics in each of them is governed by the one-dimensional
discrete Laplacian with Dirichlet boundary conditions on l2(N ) (see Appendix 1).
The Hamiltonian on the leads will be (tL > 0 is the hopping integral on leads)

HL =
M∑

α=1

HL
α , HL

α =
∑
nα∈Z

tL · (|nα〉〈nα + 1|+ h.c.) . (2.3)

The “coupling” between the sample and leads is described by the tunneling
Hamiltonian

HT = τ

M∑
α=1

|0α〉〈αS|+ τ

M∑
α=1

|αS〉〈0α| =: HLS +HSL. (2.4)

Here τ > 0 is the hopping integral between each lead and the sample, and simulates
a quantum point constriction or a tunneling barrier. Moreover, |0α〉 is the first site
on the lead α, and |αS〉 is the site from the sample through which the coupling with
the lead α is realized.

Then the total one-particle Hamiltonian is the sum HS +HL +HT . In the case
when the leads are semi-infinite, we introduce a special notation for it:

K := HS +
M∑

α=1

HL
α +HT = HS +HL +HLS +HSL. (2.5)

2.2 Adiabatic currents and conductivity

Here we deal with electronic transport through the system. We first take the leads
to be finite (i.e. each lead consists of N < ∞ sites), although their length can be
arbitrarily large. However, the thermodynamic limit N → ∞ is to be taken at a
certain point in our argument.

We will only work in the grand canonical ensemble. This means that our system is
in contact with a reservoir of energy and particles. Having this in mind, we will study
the linear response of a system of non-interacting fermions at temperature T and
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chemical potential µ subjected to a perturbation, which is switched on adiabatically
(to insure that the system is at equilibrium at all times).

Let χη, η > 0, be a smooth switching function 0 ≤ χη(t) ≤ 2:

χη(t) =

{
eηt if t ≤ 0
1 if t > 1

. (2.6)

Then the perturbation is given by (iα denotes the i-th site from the lead α)

V (N, t) := χη(t)
M∑

α=1

Vα

N∑
iα=0

|iα〉〈iα|. (2.7)

Notice that V (N, t) models the adiabatic application of a constant voltage Vα on
the lead α. This will generate a charge transfer between the leads via the sample.

The relevant one-particle Hamiltonians then are:

H0(N) := HS +HL(N) +HT (2.8)

H(N, t) := H0(N) + V (N, t).

Here HL(N) is the Hamiltonian acting on the finite leads, while H0(N) is the same
thing as in (2.5) but the different notation indicates that it describes the initial
equilibrium state for finite leads.

Now we are interested in deriving the current response of the system due to the
perturbation. Since we work in the grand-canonical ensemble, we have to consider
all our operators in the second quantization; see Appendix 2 for further notation
and properties.

At t = −∞ our system is characterized by the Gibbs equilibrium state, and
its corresponding statistical operator (density matrix) is the well-known one (see
(6.6)). The statistical operator describing the equilibrium state at time t for the
sample coupled with the finite leads is denoted by ρ̂(N)(t) and is defined as the
(trace-class) solution of the quantum Liouville equation

i
∂ρ̂(N)(t)

∂t
= [dΓ(H(N, t)), ρ̂(N)(t)], (2.9)

which satisfies the initial condition limt→−∞ ρ̂
(N)(t) = ρ̂

(N)
0 , where ρ̂

(N)
0 is as in (6.6),

but with H0(N) instead of H. We stress here the fact that if the leads are infinite,
these operators are no longer trace-class.

Let us now write the perturbation in the “interaction picture”:

Ṽ (N, s) := eisH0(N)V (N, s)e−isH0(N). (2.10)

To describe the solution of the Liouville equation we consider the following equation:

dW

ds
(s) = iW (s)dΓ(Ṽ (N, s)), W (−∞) = Id,

where the unitaryW (s) is given by the usual Dyson series with respect to dΓ(Ṽ (N, s)).
By direct computation and using (6.9) for Ṽ (N, s) one can verify that

ρ̂(N)(t) = e−itdΓ(H0(N))W ∗(t)ρ̂
(N)
0 W (t)eitdΓ(H0(N)) (2.11)
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is the unique solution to the Liouville equation, providing us with a positive and
trace-class operator. Expanding the Dyson series up to the first order, and using
(6.8) and (6.9), a straightforward computation gives

ρ̂(N)(t) = ρ̂
(N)
0 − i

∫ t

−∞
[dΓ(ei(s−t)H0(N)V (N, s)e−i(s−t)H0(N)), ρ̂

(N)
0 ]ds+O(V 2). (2.12)

Let us introduce the one-particle charge operator in a given lead α (which is
nothing but minus the projector corresponding to the lead, the sign taking into
account the fact that we deal with electrons):

Q(N)
α = −

N∑
i=0

|iα〉〈iα|. (2.13)

Denote by Qα
(N) = dΓ(Q

(N)
α ) its second quantization. Since we work in the grand-

canonical ensemble, the average charge in the lead α is given by

Qα(t) := TrFa

(
ρ̂(N)(t)Qα

)
. (2.14)

Then the average charge is smooth in t, and we can define the current in the lead α
as the charge transfer in the unit of time, namely

Iα(t) :=
d

dt
Qα(t). (2.15)

We will see that at t = 0, this current can be written as

Iα(0) =
∑

β

gαβ(T, µ, η,N)Vβ +O(V 2) (2.16)

where gαβ(T, µ, η,N) are the so-called conductance coefficients [11], and at this stage
they depend on the temperature, chemical potential, the adiabatic coefficient, and
the length of the leads. What we do in the rest of the paper is to study the connection
of gαβ with the transmittance of the problem, defined just below.

2.3 The transmittance

Now we briefly switch to an apparently unrelated scattering problem, associated to
the pair of Hamiltonians (H0, K) where H0 = HL and K = H0+W = H0+H

S+HT .
Thus the “free” system consists here of the semi-infinite leads, while the complete
evolution is that of the coupled system (leads and sample). The wave operators are
defined as

Ω± = s− lim
t→∓∞

eitKe−itH0Pac(H0), (2.17)

where Pac(H0) projects onto the leads’ subspace
⊕M

α=1 l
2(N). Since K − H0 =

HT +HS is trace class, the wave operators Ω± exist and are complete by the Kato-
Rosenblum theorem (see ([25])).
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The generalized eigenfunctions of HL on the semi-infinite leads are (here k ∈
(0, π), λ = 2tL cos(k) and 1 ≤ α ≤M):

Ψα(λ) =
∑
m≥0

Ψ(λ;m)|m〉, Ψ(λ;m) =
sin(k(m+ 1))√

πtL sin(k)
.

The generalized Fourier transform associated to these eigenvectors is defined as

F : ⊕M
α=1l

2(N) 7→ ⊕M
α=1L

2([−2tL, 2tL]), (2.18)

[F (Φ)]α(λ) = 〈Ψα(λ),Φα〉l2(N) =
∑
m≥0

Ψ(λ;m)Φα(m).

Its adjoint is given by

F ∗ : ⊕M
α=1L

2([−2tL, 2tL]) 7→ ⊕M
α=1l

2(N), (2.19)

[F ∗(Ξ)]α(m) =

∫ 2tL

−2tL

Ξα(λ)Ψ(λ;m)dλ.

We see that F is a unitary operator, and that FHLF ∗ is just the multiplication with
λ:

FHLF ∗ = 2tL cos(k) Id. (2.20)

Then the S-matrix is unitary and given by S = Ω∗
−Ω+, and the T -matrix is

defined by T := S − Id. In the spectral representation of H0, the T -operator is just
a λ-dependent M ×M matrix. Spelled out (see (4.4)) this means∑

β

tαβ(λ)Ξβ(λ) = [F (S − Id)F ∗Ξ]α(λ). (2.21)

The transmittance between the leads α and β at energy λ is finally defined as

Tαβ(λ) := |tαβ(λ)|2. (2.22)

2.4 The Landauer-Büttiker formula and the main theorem

We can finally give the main result of our paper.

Theorem 2.1. Consider the conductance gαβ(T, µ, η,N) between the leads α and
β (α 6= β), at temperature T > 0, chemical potential µ ∈ (−2tL, 2tL), adiabatic
switch-on coefficient η > 0 and length of the leads N < ∞. Assume that the point
spectrum of K (the one from (2.5), with N = ∞) is disjoint from the thresholds
−2tL and 2tL. Then if we first take the limit N → ∞, and after that η ↘ 0, we
have:

gαβ(T, µ) := lim
η↘0

[ lim
N→∞

gαβ(T, µ, η,N)] = − 1

2π

∫ 2tL

−2tL

dE
∂fF−D(E)

∂E
Tαβ(E), (2.23)

where Tαβ(·) is real analytic on (−2tL, 2tL) and equal to zero outside this interval.
The function fF−D is the usual Fermi-Dirac function (see (6.7)). If the temperature
also tends to zero, (2.23) yields the Landauer formula

gαβ(0+, µ) =
1

2π
Tαβ(µ). (2.24)
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3 The Feshbach formula and spectral analysis for

the system with semi-infinite leads

We assume throughout this section that the leads are semi-infinite, thus by RL(z)
we denote the resolvent of the leads as a block diagonal matrix in

⊕M
α=1 l

2(N). Some
of its properties are given in Appendix 1.

We use the Feshbach formula [15, 22] in order to express the full resolvent in
terms of an effective Hamiltonian which describes the mesoscopic system in the
presence of the leads. More explicitely, the resolvent reads (see also (2.5)):

R(z) = (K − z)−1 = RL(z) + (1−RL(z)HLS)(Heff(z)− z)−1(1−HSLRL(z)) (3.1)

where the effective Hamiltonian is defined as

Heff(z) := HS −HSLRL(z)HLS, z ∈ C \ R. (3.2)

The spectral problem for K is thus reduced to the spectral problem for HL and
Heff . Remark that Heff(z) is not hermitian. If ΠS denotes the projection onto the
subspace corresponding to the “system” l2(Γ), then we have

(Heff(z)− z)−1 = ΠS(K − z)−1ΠS, =(z) 6= 0. (3.3)

Using (2.4), the explicit expression for the matrix elements of RL(z) that we
gave in (6.1), and Proposition 6.1 iii, we can write

Heff(z) = HS − τ 2

M∑
α=1

|αS〉〈0α|RL(z)|0α〉〈αS|

= HS − τ 2

tL
ζ1(z)

M∑
α=1

|αS〉〈αS| . (3.4)

We need some more notation. For ε > 0, define the strip

Ωε := {x+ iy ∈ C : −2tL + ε < x < 2tL − ε, |y| < 1/ε}. (3.5)

Finally, introduce the orthogonal projection

ΠT :=
M∑

α=1

|αS〉〈αS|. (3.6)

We can write:

Heff(z) = HS − τ 2

tL
ζ1(z)Π

T .

Then the main result of this section is the following:
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Proposition 3.1. Let |βS〉 and |γS〉 be the coupling points between the sample and
leads β and γ. Define

uβγ(z) = 〈βS,
[
HS − z − (τ 2/tL)ζ1(z)Π

T
]−1

γS〉, =(z) > 0. (3.7)

Then for all positive τ and ε, the function uβγ admits a meromorphic extension
u+

βγ to C+ ∪ Ωε, and all its poles have negative imaginary part. In particular, the

restriction of u+
αβ to the interval (−2tL, 2tL) is real analytic.

Proof. Before anything else, notice that u+
βγ is the key term appearing in the

transmittance formula (see (4.6)). Now introduce the notation (see (6.4)):

H+(z) := HS − τ 2

tL
ζ+(z)ΠT . (3.8)

Then u+
βγ(z) = 〈βS, [H+(z) − z]−1γS〉 is the meromorphic extension we are looking

for. Since l2(Γ) is finite dimensional, the set of poles is included in the set of solutions
of det(H+(z) − z) = 0. Clearly, because of (3.3), the poles cannot be in the upper
complex half-plane.

Now let us prove that the poles are neither on the real axis. If there are no
solutions for det(H+(z)− z) = 0 in (−2tL, 2tL) then we are done. Now assume that
there exists λ ∈ (−2tL, 2tL), such that H+(λ)−λ is not invertible. Then H+(λ)−λ is
not injective; denote by pλ the orthogonal projection corresponding to the null-space
of H+(λ)− λ. For every φλ ∈ Ran(pλ) we have

(HS − λ)φλ −
τ 2

tL
ζ+(λ)ΠTφλ = 0.

Taking the scalar product with φλ and estimating the imaginary part we have (use
(6.4))

〈φλ,Π
Tφλ〉 = ||ΠTφλ||2 = 0.

This implies that ΠTφλ = 0 and thus φλ must also be an eigenfunction for HS,
corresponding to the eigenvalue λ. Notice that this does not say that all eigenvectors
of HS corresponding to λ are in the range of pλ.

Because pλΠ
T = 0, and because Ran(pλ) is spanned by eigenvectors of HS, it

means that pλ commutes with H+(z) and we can write (here qλ = Id− pλ)

H+(z)−z = pλ(H+(z)−z)pλ+qλ(H+(z)−z)qλ = (λ−z)pλ+qλ(H+(z)−z)qλ. (3.9)

The range of qλ is generated by eigenvectors of HS, which either correspond to
other eigenvalues than λ, or correspond to λ but are orthogonal to Ran(pλ). Now
qλ(H+(λ)− λ)qλ is one to one on Ran(qλ) thus invertible, and so is qλ(H+(z)− z)qλ
for z close to λ (by simple perturbation theory and the Neumann series). Moreover,
its inverse is holomorphic near λ. Therefore,

(H+(z)− z)−1 − (λ− z)−1pλ (3.10)

is holomorphic around λ. In conclusion, since pλγS = 0,

u+
βγ(z) = 〈βS, [H+(z)− z]−1γS − (λ− z)−1pλγS〉 (3.11)
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is also holomorphic near λ and we are done. A similar reasoning gives a meromorphic
extension to C− ∪ Ωε which we denote by u−βγ. It is also easy to see (use (3.3) and
(3.7) that

u+
βγ(z) = u−γβ(z). (3.12)

Remark. The above proposition does not rule out real poles for the effective Hamil-
tonian. It only says that its eventual real poles are not singularities for functions
like uβγ. Notice that we allowed τ to be arbitrarily large.

4 Proof of the main theorem

As we have already announced in the introduction, the strategy of the proof consists
in computing the conductance and transmittance separately, and then showing that
they are related as in (2.23). Since the transmittance involves less work, we start
with it.

4.1 A formula for the transmittance

We will use the notation introduced in paragraph 2.3. The S-matrix S : HL → HL

can be written as (see [23], Chapter 4, p.176):

S = Ω∗
−Ω+ (4.1)

= Id +
2i

π

∫ 2tL

−2tL

=[(HL − x+ i0)−1]T (x+ i0)=[(HL − x+ i0)−1]dx,

where we used the fact that HL has purely absolutely continuous spectrum, and
T (z) = W −W (K− z)−1W . In fact, since HS lives in a subspace orthogonal to HL,
we can take T (z) = HT −HT (K − z)−1HT . Moreover, using the Feshbach formula
we get

S = Id− 2iτ 2

π

M∑
α,β=1

∫ 2tL

−2tL

(
=[(HL − x+ i0)−1]|0α〉

)
× 〈αS, Reff(x+ i0)βS〉
×

(
〈0β|=[(HL − x+ i0)−1]

)
dx. (4.2)

Take Ξ ∈
⊕M

α=1C
∞
0 ((−2tL, 2tL)). Using the formulae (2.20), (2.18), (2.19), and

(3.7), we have

[F (S − Id)F ∗Ξ]α(λ) = −2iτ 2

π

M∑
β=1

∫ 2tL

−2tL

dx
(
=[(λ− x+ i0)−1]Ψ(λ; 0)

)
× u+

αβ(x) (4.3)

×
(∫ 2tL

−2tL

=[(λ′ − x+ i0)−1]Ψ(λ′; 0)Ξβ(λ′)dλ′
)
.
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Using twice Sohotsky’s formula 1/(t+ i0) = P.V.(1/t)− iπδ we get

[F (S − Id)F ∗Ξ]α(λ) = 2πτ 2i

M∑
β=1

|Ψ(λ; 0)|2u+
αβ(λ)Ξβ(λ). (4.4)

Therefore, the T -operator is a matrix in the spectral representation of HL with
elements

tαβ(λ) =
2τ 2

tL
i sin(k)u+

αβ(λ). (4.5)

Then the transmittance between the leads α and β at energy µ =: 2tL cos(kµ) is
(see (2.22)):

Tαβ(µ) =
4τ 4

t2L
sin2(kµ)|u+

αβ(µ)|2. (4.6)

4.2 Conductivities via the linear response theory

We now concentrate on the left hand side of (2.23). Our main goal here is obtaining a
more detailed version of formula (2.16), and to put into evidence the conductivities
gαβ between different leads. Then we perform the thermodynamic and adiabatic
limits.

4.2.1 Deriving the linear response: a Kubo formula

Differentiating in (2.15), using the Liouville equation (2.9), trace properties (i.e.
Tr ([A,B]C) = −Tr (B[A,C])), and (6.8) we have

Iα(t) = TrFa

(
dρ̂(N)(t)

dt
Q(N)

α

)
= iTrFa

(
ρ̂(N)(t)[H(N, t),Q(N)

α ]
)

= iTrFa

(
ρ̂(N)(t)dΓ([H(N, t), Q(N)

α ])
)

= TrFa

(
ρ̂(N)(t)dΓ(jα(t))

)
(4.7)

where the one-particle current operator is

jα(t) := i[H(N, t), Q(N)
α ] (4.8)

and has a simple explicit form, independent of time (because Q
(N)
α and V (N, t)

commute):

jα = iτ(|0α〉〈αS| − |αS〉〈0α|). (4.9)

We remark that jα is a finite rank operator. Notice also that even if the leads
are semiinfinite, jα is the same, this fact justifying the absence of N in its notation.

Now we continue to compute the current, using the decomposition (2.12). Intro-
duce the notation (see also (2.8) and (6.7), and put t = 0)

I(0)(0) := TrH (fF−D(H0(N))jα) , (4.10)

I(1)(0) := i

∫ 0

−∞
TrFa

(
ρ̂

(N)
0 [dΓ(Ṽ (N, s)), dΓ(jα)]

)
ds.

12



Inserting (2.12) in (4.7), and using (6.10) for the first term and trace commutation
properties for the second one, we obtain:

Iα(0) = I(0)(0) + I(1)(0) +O(V 2). (4.11)

Introduce the notation:

Q
(N)
β (−s) := e−isH0(N)Q

(N)
β e+isH0(N). (4.12)

We continue rewriting I(1)(0) employing (6.8), (6.9), (6.10), which leads to

I(1)(0) = i

∫ 0

−∞
TrFa

(
ρ̂

(N)
0 [dΓ(eisH0(N)V (N, s)e−isH0(N)), dΓ(jα)]

)
ds

= −i
∑

β

∫ ∞

0

χη(−s)TrFa

(
ρ̂

(N)
0 [dΓ(Qβ(−s), dΓ(jα)]

)
Vβds

= −i
∑

β

∫ ∞

0

dsχη(−s)TrFa

(
ρ̂

(N)
0 dΓ[Qβ(−s), jα]

)
Vβ

= −i
∑

β

∫ ∞

0

dsχη(−s)TrH (fF−D(H0(N))[Qβ(−s), jα])Vβ.

Notice that the minus appears because the charge is negative, and we replaced the
projector on each lead with the corresponding charge operator. The average current
at time t = 0 then becomes

Iα(0) = I(0)(0) + I(1)(0) +O(V 2) = TrH (fF−D(H0(N))jα) (4.13)

− i
∑

β

∫ ∞

0

dse−ηsTrH

(
fF−D(H0(N))[Q

(N)
β (−s), jα]

)
Vβ

+ O(V 2).

If we compare this expression with the one announced in (2.16) we see that we
are almost in place with the exception of the term I(0)(0). This term represents
the current in the equilibrium state when all Vα’s are zero. Let us now prove that
this term is always zero. Indeed, up to the use of Stone’s formula (or other type of
functional calculus with the resolvent), it is enough to prove the following lemma:

Lemma 4.1. Let z ∈ C \ R. Then

TrH
(
(H0(N)− z)−1jα

)
= 0. (4.14)

In particular, I(0)(0) = 0.

Proof. Using (4.9), the left hand side of (4.14) reads as

iτ
{
〈αS, (H0(N)− z)−10α〉 − 〈0α, (H0(N)− z)−1αS〉

}
. (4.15)

We now make use of formula (3.1) where we replace HL with HL(N) (see below
(2.8) for the definition of HL(N)). We introduce the obvious notation RL(N, z)
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and Heff(N, z) which indicate that the leads have finite length. Since (see (2.4)) the
only contribution from HLS which survives is |0α〉〈αS| (and a similar term for HSL),
formula (3.1) leads to:

〈αS, (H0(N)− z)−10α〉 = −〈αS, (Heff(N, z)− z)−1αS〉〈0α, R
L(N, z)0α〉

= 〈0α, (H0(N)− z)−1αS〉, (4.16)

and the proof is finished.

Therefore, we have finally obtained an expression for the total current as it was
announced in (2.16), where the conductivities are given by

gαβ(T, µ, η,N) := −i
∫ ∞

0

dse−ηsTrH

(
fF−D(H0(N))[Q

(N)
β (−s), jα]

)
. (4.17)

What we do in the next paragraphs is to perform the various limits required by
Theorem 2.23.

4.2.2 Making the leads semi-infinite: N →∞

Define the quantity which is the natural candidate for the limit N →∞:

gαβ(T, µ, η,∞) := −i
∫ ∞

0

dse−ηsTrH

(
fF−D(K)[Q

(∞)
β (−s), jα]

)
. (4.18)

Notice that when N = ∞, we have H0(∞) = K (see (2.8) and (2.5)). Neither

fF−D(K) nor Q
(∞)
β (−s) are trace class anymore, but since jα is the same as in (4.9)

(thus of rank two), the total operator is trace class whose trace is uniformly bounded
with respect to s.

The main result of this paragraph is contained in the following lemma, which
states that the speed of convergence when N grows to infinity is faster than any
polynomial:

Lemma 4.2. For every J > 0, there exists C > 0 which may depend on all other
parameters but N , so that

|gαβ(T, µ, η,N)− gαβ(T, µ, η,∞)| ≤ C/NJ . (4.19)

Proof. We first reduce (4.17) to a form which is easier to work with. Replacing the

expression for Q
(N)
β (−s) (see (4.12) and (2.13)) we have (using trace commutation

properties):

gαβ(T, µ, η,N) = (4.20)

− i

∫ ∞

0

dse−ηs
{

Tr
(
fF−D(H0(N))e−isH0(N)Q

(N)
β eisH0(N)jα

)
− Tr

(
fF−D(H0(N))eisH0(N)jαe

−isH0(N)Q
(N)
β

)}
.

It is clear that it is enough to prove an estimate as in (4.19) for just one of the terms
in (4.20). Define

Aαβ(N) :=

∫ ∞

0

e−ηsTr
(
fF−D(H0(N))e−isH0(N)Q

(N)
β eisH0(N)jα

)
ds. (4.21)
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Since ||H0(N)|| ≤ const uniformly in N , it means that we can find an interval
[a, b] independent of N so that the spectrum of H0(N) is included in it. Define the
function φ0 ∈ C∞

0 (R), 0 ≤ φ0 ≤ 1, supp(φ0) ⊂ (−1 + a, b+ 1) and

φ0(x) =
1

eβ(x−µ) + 1
, x ∈ (a, b). (4.22)

Also define for every s > 0 the function

φs(x) := φ0(x)e
−isx. (4.23)

Clearly, fF−D(H0(N))e−isH0(N) = φs(H0(N)). Assume that φ̃0 is an almost analytic
extension of φ0, supported in the strip

supp(φ̃0) ⊂ (−1 + a, b+ 1)× (−η/2, η/2) ⊂ C, (4.24)

and such that

sup
−1+a≤x≤b+1

|∂φ̃0(x+ iy)| ≤ const · |y|P , |y| ≤ η/2, (4.25)

where P is any previously given positive integer. Because e−isz is entire as function
of z, an almost analytic extension for φs is simply φ̃s(z) := φ̃0(z)e

−isz. The Helffer-
Sjöstrand formula reads as (see for example [12])

φs(H0(N)) =
1

π

∫
supp(φ̃0)

(∂φ̃0(x+ iy))e−isx+sy(H0(N)− x− iy)−1dx dy.

We will use the following technical result:

Proposition 4.3. Let F : C → C \ R be smooth. Assume that for x + iy in the
support of φ̃0, we can find two positive integers k1 and k2 ≤ P , such that we have
the estimate

|F (x+ iy)| ≤ const · 1

Nk1|y|k2
, x+ iy ∈ supp(φ̃0), y 6= 0. (4.26)

Then ∫
supp(φ̃0)

|∂φ̃0(z)| · |F (z)|dxdy ≤ const · 1

Nk1
. (4.27)

Clearly, the proposition is immediately implied by (4.25) and (4.26) and it does
not require further details.

We can introduce the expression of φs(H0(N)) in (4.21)and perform the integral
with respect to s; the interchange of integrals is permitted because on the support
of φ̃0 we have |y| < η. In order to simplify the writing, we denote x + iy = z and
dx dy by d2z. Then forgetting about irrelevant constants, we have that Aαβ(N) is
proportional to:∫

supp(φ̃0)

∂φ̃0(z) Tr
(
(H0(N)− z)−1Q

(N)
β (H0(N)− z + iη)−1jα

)
d2z. (4.28)
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Next we want to simplify the above trace, by expressing Qβ with the help of the
current operator jβ. Denote by z′ = z − iη. We have (see (4.8) and (4.9))

jβ = −i[Q(N)
β , H0(N)]

= −i
(
Q

(N)
β (H0(N)− z′)− (H0(N)− z)Q

(N)
β

)
− i(z′ − z)Q

(N)
β ,

then using obvious notation for the resolvents:

R0(N, z)Q
(N)
β R0(N, z

′) =
1

z′ − z
{iR0(N, z)jβR0(N, z

′)

+ Q
(N)
β R0(N, z

′)−R0(N, z)Q
(N)
β }. (4.29)

Inserting this back into (4.28) we have a number of terms which have to be treated
separately. We only deal with one of them, namely the term proportional up to
irrelevant constants with∫

supp(φ̃0)

∂φ̃0(z) Tr
(
R0(N, z)Q

(N)
β jα

)
d2z. (4.30)

Since Q
(N)
β jα = −iτδαβ|0α〉〈αS|, introducing it back again and performing the trace,

we obtain up to some constants (see (4.16))

δαβ

∫
supp(φ̃0)

∂φ̃0(z) 〈αS, (Heff(N, z)− z)−1αS〉〈0α, R
L(N, z)0α〉d2z. (4.31)

The next step is to replace the quantities involving finite leads with the ones corre-
sponding to semi-infinite leads. Let J be an arbitrarily large integer. We see that
one term we have to look at in connection with (4.31) is

F1(z) := 〈αS, (Heff(N, z)− z)−1αS〉 · (〈0α, R
L(N, z)0α〉 − 〈0α, R

L(z)0α〉).

An application of (6.15) and (6.18) yields the estimate∣∣〈0α, R
L(N, z)0α〉 − 〈0α, R

L(z)0α〉
∣∣ ≤ const · 1

|=(z)|2
e−2cN |=(z)|, (4.32)

uniformly in z on the support of φ̃0, with =(z) 6= 0. Notice that (3.3) is also true
at finite N , and this gives an upper bound of order 1/|=(z)| on the first factor in
F1(z). We finally obtain:

|F1(z)| ≤ const · 1

|=(z)|3
e−2cN |=(z)|, (4.33)

uniformly in z on the support of φ̃0, with =(z) 6= 0. But this implies

|F1(z)| ≤ const · 1

|=(z)|3+J
N−J . (4.34)

Now choose φ̃0 to have a decay in y near the real axis with an exponent P larger
than J + 3 (see (4.25)). Then (4.27) implies that the integral of F1 times ∂φ̃0 will
decay at least like N−J .
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Another type of term one needs to estimate can be put into the form

F2(z) := 〈0α, R
L(z)0α〉 (4.35)

·
[
〈αS (Heff(N, z)− z)−1 αS〉 − 〈αS (Heff(z)− z)−1 αS〉

]
.

Using the identity A−1 −B−1 = A−1(B −A)B−1, and the expression (3.2) which is
valid for both effective Hamiltonians, we reduce the problem to the estimate from
(4.32), but in addition we have some other terms which are each bounded from
above by 1/|=(z)|. We eventually get the estimate

|F2(z)| ≤ const · 1

|=(z)|5
e−2cN |=(z)|, (4.36)

and then we reason as before.

Concluding, we proved that the difference between a term as in (4.31) at finite
N , and a similar term “with infinite leads”, decays faster than any integer power of
N . We consider that (4.19), thus the lemma, to be proven.

4.2.3 Taking the adiabatic limit: η ↘ 0

The next limit to be performed is the adiabatic limit. Thus we define

gαβ(T, µ) := lim
η↘0

gαβ(T, µ, η,∞) (4.37)

where gαβ(T, µ, η,∞) is given by (4.18). The idea is again to use the resolvent
properties as we did in the previous section, one important difference now being that
we have to use the Stone formula instead of Helffer-Sjöstrand’s. The computations
will also be more involved in this case. From (4.18) we have

gαβ(T, µ, η,∞) = −i
∫ ∞

0

dse−ηsTrH
(
fF−D(K)e−isKQβe

isKjα

− jαe
−isKQβe

isKfF−D(H)
)

We note that in the above formula appears again fF−D(K)e−isK and its adjoint.
We will express them using the Stone formula. Recall now that K can have point
spectrum outside the interval [−2tL, 2tL]; we also assumed that ±2tL are not eigen-
values. We will see in the next section that K might have embedded eigenvalues in
(−2tL, 2tL) (see Proposition 5.4).

Consider without loss of generality that there is only one eigenvalue E1 outside
[−2tL, 2tL], P1 being the corresponding projector. Then from the Stone formula one
has

fF−D(K)e−isK = lim
ε→0

∫ 2tL

−2tL

dEfF−D(E)e−isE 1

π
=R(E + iε)

+ fF−D(E1)e
−isE1P1 (4.38)
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Now we follow the same steps as in Section 4.2.2, namely we perform the integrals
over s and we get

gαβ(T, µ, η,∞) =
i

2π
lim
ε→0

∫ 2tL

−2tL

dEfF−D(E)TrH (Mαβ(E, η, ε))

+ fF−D(E1)TrH(P1QβR(E1 − iη)jα + jαR(E1 + iη)QβP1)

(4.39)

where we denoted

Mαβ(E, η, ε) := (R(E + iε)−R(E − iε))QβR(E − iη)jα

+ jαR(E + iη)Qβ(R(E + iε)−R(E − iε)) (4.40)

We start with the terms arising from the eigenvalue E1, and show that in the
limit η ↘ 0 they give no contribution. First we use again a trick to introduce current
operators instead of charge operators, namely we write

P1jβR(E1 − iη) = iP1[K − (E1 − iη), Qβ]R(E1 − iη)

= −ηP1QβR(E1 − iη)− iP1Qβ (4.41)

from where we get

P1QβR(E1 − iη) = −1

η
P1jβR(E1 − iη)− i

η
P1Qβ (4.42)

Then replacing P1QβR(E1 − iη) and its adjoint in the second term from (4.39)
we obtain

−TrH(P1QβR(E1 − iη)jα + jαR(E1 + iη)QβP1)

=
1

η
TrH(jαR(E1 + iη)jβP1 + jαP1jβR(E1 − iη) + i(P1Qβjα − jαQβP1))

and we can see right away that the last two terms dissapear when α 6= β.
The singularities appearing in resolvents can be isolated by writing

R(E1 ± iη) = ±iP1

η
+

1

2πi

∫
|z−E1|=ε

1

z − (E1 ± iη)
(K − z)−1dz with ε > η. (4.43)

We also write P1 as a Riesz integral

P1 =
i

2π

∫
|z′−E1|=ε′

R(z′)dz′ with ε′ < ε. (4.44)

By looking at (4.43) we see that the singular term equal to

1

η2
TrH {jαP1jβP1}

is in fact identically zero, due to

P1jαP1 = iP1[K,Qα]P1 = iP1[K − E1, Qα]P1 = 0. (4.45)
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Thus we are only left wih the regular part from (4.43). Replace it in (4.43), together
with P1 expressed as in (4.44). We have

1

η
TrH {jαR(E1 + iη)jβP1 + jαP1jβR(E1 − iη)}

=
1

4π2η

∫
|z−E1|=ε

dz

∫
|z′−E1|=ε′

dz′Fαβ(z, z′, η), (4.46)

where we used the notation

Fαβ(z, z′, η) :=
1

z − (E1 + iη)
TrH (jαR(z)jβR(z′))

+
1

z − (E1 − iη)
TrH (jαR(z′)jβR(z)) . (4.47)

To go further with the computations we need a technical lemma that gives a
general expression for TrH (jαR(z)jβR(z′)).

Lemma 4.4. Let uαβ(z) be the function introduced in Prop. 3.1. Then the following
identity holds (α 6= β):

TrH(jαR(z)jβR(z′)) =
τ 4

t2L
(ζ1(z)− ζ1(z

′))
2
uαβ(z)uβα(z′). (4.48)

Proof. Taking into account the explicit form of jα and jβ

TrH ((jαR(z)jβR(z′))

= −τ 2{〈α,R(z)0β〉〈β,R(z′)0α〉 − 〈α,R(z)β〉〈0β, R(z′)0α〉
− 〈0α, R(z)0β〉〈β,R(z′)α〉+ 〈0α, R(z)β〉〈0β, R(z′)α〉}.

Each term is computed then using the Feshbach formula for R(z)

〈α,R(z)0β〉〈β,R(z′)0α〉 = τ 2〈α,Reff(z)β〉〈0β, R
L(z)0β〉

· 〈β,Reff(z′)α〉〈0α, R
L(z′)0α〉

〈α,R(z)β〉〈0β, R(z′)0α〉 = τ 2〈α,Reff(z)β〉〈0β, R
L(z′)0β〉

· 〈β,Reff(z′)α〉〈0α, R
L(z′)0α〉

〈0α, R(z)0β〉〈β,R(z′)α〉 = τ 2〈0α, R
L(z)0α〉〈α,Reff(z)β〉

· 〈0β, R
L(z)0β〉〈β,Reff(z′)α〉

〈0α, R(z)β〉〈0β, R(z′)α〉 = τ 2〈0α, R
L(z)0α〉〈α,Reff(z)β〉

· 〈0β, R
L(z′)0β〉〈β,Reff(z′)α〉.

Moreover, we can also use the expression for the matrix elements of the resolvent
RL, which proves the lemma.

Now turning back to (4.47) and using the lemma we arrive at

t2L
τ 4
Fαβ(z, z′, η) =

1

z − (E1 + iη)
(ζ1(z)− ζ1(z

′))
2
uαβ(z)uβα(z′)

+
1

z − (E1 − iη)
(ζ1(z)− ζ1(z

′))
2
uαβ(z′)uβα(z).
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Now we have to handle the contour integrals in (4.46). Notice that uαβ(z) is
singular around E1. However, due to the equivalence (3.3) and relation (4.43) we
have (with ε1 > ε):

uαβ(z) = 〈αS, P1βS〉
1

E1 − z
+

1

2πi

∫
|z1−E1|=ε1

dz1
1

z1 − z
〈αS, R(z1)βS〉. (4.49)

Remember that we have ε1 > ε > ε′. Replacing the u’s in (4.47) we obtain a
lot of terms. The most singular one is of the form (we omit the contours and other
constants for simplicity)

A1 :=
1

η

∫
dz

∫
dz′
(

1

z − (E1 + iη)
+

1

z − (E1 − iη)

)
(ζ1(z)− ζ1(z

′))2

(E1 − z) · (E1 − z′)
. (4.50)

By the residue theorem :

A1 =
(2π)2i

η2

(
(ζ1(E1 − iη)− ζ1(E1))

2 − (ζ1(E1 + iη)− ζ1(E1))
2) .

Writing the Taylor series for ζ1(E1 ± iη), one is left inside the paranthesis with an
expression of order η3, and A1 vanishes in the limit η → 0.

Next, take one of the terms involving the singular part of uαβ(z) and the regular
part of uαβ(z′) (we omit for the moment the constants tL,τ as well as the matrix
elements of P1)

A2 =
1

η

∫
dz

∫
dz′

(ζ1(z)− ζ1(z
′))2

z − (E1 + iη)
· 1

E1 − z

∫
dz1

z1 − z′
uαβ(z1). (4.51)

We see that the integral with respect to z′ only involves analytic functions in the
disk |E1 − z′| < ε′, therefore the integral vanishes.

Another term coming from the singular part of uαβ(z′) and the regular part of
uαβ(z) is the following:

A3 :=
1

η

∫
dz

∫
dz′

(ζ1(z)− ζ1(z
′))2

z − (E1 + iη)
· 1

E1 − z′

∫
dz1

z1 − z
uαβ(z1)

= −2πi

η

∫
dz

(ζ1(z)− ζ1(E1))
2

z − (E1 + iη)

∫
dz1

z1 − z
uαβ(z1), (4.52)

where in the second line we performed the integral with respect to z′. We can also
perform the integral with respect to z and get something proportional with

1

η
(ζ1(E1 + iη)− ζ1(E1))

2

∫
dz1

z1 − E1

uαβ(z1).

Using again the Taylor series we see that A3 ∼ η, thus it will dissapear as well. The
same thing happens with all the other terms.

Looking back at (4.39), we continue with the contribution of Mαβ. Let us first
bring Mαβ(E, η, ε) to a suitable form. Using (4.29) it turns out that

Mαβ(E, η, ε) = M
(1)
αβ (E, η, ε) +M

(2)
αβ (E, η, ε) (4.53)
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where

M
(1)
αβ (E, η, ε) (4.54)

:=
1

η − ε
(jαR(E − iε)jβR(E − iη)− jαR(E + iη)jβR(E + iε))

− 1

η + ε
(jαR(E + iε)jβR(E − iη)− jαR(E + iη)jβR(E − iε)),

while M
(2)
αβ includes all terms with only one resolvent. Since α 6= β, and using the

trace cyclicity, the trace of M
(2)
αβ is zero and we are only left with M

(1)
αβ :

gαβ(T, µ) = lim
η↘0

lim
ε↘0

i

2π

∫ 2tL

−2tL

dEfF−D(E)TrH

(
M

(1)
αβ (E, η, ε)

)
. (4.55)

Now we apply again the identity (4.48) and we use the meromorphic extensions
of uαβ(z) (see Prop 3.1) and the properties of ζ1(z). The result is

gαβ(T, µ) = lim
η↘0

lim
ε↘0

τ 4

t2L

i

2π

∫ 2tL

−2tL

dEfF−D(E)

(
Cαβ(E, η, ε)

η − ε
− Dαβ(E, η, ε)

η + ε

)
.

(4.56)
with the following notations (see also (3.7) and (3.12)):

Cαβ(E, η, ε) := (ζ−(E − iε)− ζ−(E − iη))2 u−αβ(E − iε)u−βα(E − iη)

− (ζ+(E + iη)− ζ+(E + iε))2 u+
αβ(E + iη)u+

βα(E + iε)

(4.57)

Dαβ(E, η, ε) := (ζ+(E + iε)− ζ−(E − iη))2 u+
αβ(E + iε)u−βα(E − iη)

− (ζ+(E + iη)− ζ−(E − iε))2 u+
αβ(E + iη)u−βα(E − iε)

(4.58)

Since u±(z) are smooth near the real axis and ζ± have good behavior one can
take at once the limit ε↘ 0 in (4.57) and (4.58). In the following we show that Cαβ

vanishes in the limit η ↘ 0. To see this we write for example

ζ+(E + iη)− ζ+(E) = −i
∫ η

0

(∂yζ+(E + iy))dy (4.59)

and use the explicit form of ζ+ to obtain the estimate

|∂yζ+(E + iy)| ≤ const · 1√
4t2L − E2

(4.60)

which shows that 1
η
Cαβ ∼ η from where the result follows.

The last step is to deal with

gαβ(T, µ) = − lim
η↘0

τ 4

t2L

i

2π

∫ 2tL

−2tL

fF−D(E)
Dαβ(E, η, 0+)

η
dE. (4.61)
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One remarks that with the notation

F (E, η) := (ζ+(E + iη)− ζ−(E))2u+
αβ(E + iη)u−βα(E)

we have Dαβ(E, η, 0+) = −2i=F (E, η) and

gαβ(T, µ) = − lim
η↘0

τ 4

t2L

1

π

∫ 2tL

−2tL

fF−D(E)
=F (E, η)

η
dE. (4.62)

Using (3.12) and (6.4) we see that =F (E, i0+) = 0 and

<F (E, 0+) = −4[=ζ+(E)]2 · |u+
αβ(E)|2.

Taking the limit η ↘ 0, we obtain in the integral the term (∂η=F )(E, 0+). Using
the Cauchy-Riemann equations for u+ and ζ+, we get after some work that we can
replace (∂η=F )(E, 0+) by (1/2) × ∂E<F (E, 0+). This also shows that F is not
analytic.

Integrating by parts and noticing that ζ+(±2tL)− ζ−(±2tL) = 0 we proved the
following lemma:

Lemma 4.5. The conductance coefficients gαβ(T, µ) defined in (4.37) are given by
the relation

gαβ(T, µ) = −4τ 4

t2L

1

2π

∫ 2tL

−2tL

dE
∂fF−D(E)

∂E
(=ζ+(E))2 |u+

αβ(E)|2. (4.63)

4.3 Ending the proof of the main theorem

Before giving the final step for the proof of the Landauer- Büttiker formula let us
briefly review what we have done in this section. We started with the scattering
problem associated to the semi-infinite leads case, the transmission between two
leads being found in Eq.(4.6). The rest of the work has been done to obtain explicit
expressions for the conductance coefficients given by the Kubo-type formula (4.17)
when the thermodynamic and adiabatic limits are taken.

To finish the proof of Theorem 2.1 there is not much to be done. First, use the
explicit expressions for ζ±(·), together with the definition of the Fermi ’momentum’,
E = 2tL cos(kE) in (4.63). The result is

gαβ(T, µ) = −4τ 4

t2L

1

2π

∫ 2tL

−2tL

dE
∂fF−D(E)

∂E
sin2(kE)|u+

αβ(E)|2. (4.64)

Now comparing (4.64) and (4.6) one obtains (2.23) and we are done. Notice that
when T → 0 we have −∂EfF−D → δ(E − µ) and (2.24) follows.

The presence of 1
2π

in those equations is not an accident. It makes more sense
if one carefully includes in computations the physical constants e and ~ (we have
been working until now with the convention e = ~ = 1). Without giving details, we
assure the reader that in the end the equality in (2.24) becomes

gαβ(0+, µ) =
e2

2π~
Tαβ(µ) =

e2

h
Tαβ(µ), (4.65)
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which is nothing else but the well-known Landauer formula at zero temperature.
Remark that when the total particle density is fixed, then µ represents the Fermi
energy of our system. When the leads become infinite, the sample does not con-
tribute to the thermodynamic limit thus the Fermi energy is fixed by the leads. The
proof of Theorem 2.1 is complete.

5 Resonant transport in a quantum dot

Up to now we allowed τ to be arbitrarily large, together with the assumption that
the Hamilton operator for the system with semi-infinite leads K had no eigenvalues
at ±2tL. In this section we are interested in small coupling, that is when τ → 0.

Assume that the Hamiltonian describing the sample HS has J ≥ 1 (possibly
degenerate) eigenvalues {E1, . . . , EJ} so that

σ(HS) ∩ [−2tL, 2tL] = {E1, . . . , EJ} ⊂ (−2tL, 2tL). (5.1)

We are not interested in possible eigenvalues outside [−2tL, 2tL] since for small
τ they will still remain discrete eigenvalues for K and we saw that they do not
contribute to transport. Now we focus on the influence of {E1, . . . , EJ} on the
transport properties when τ is small.

Let us give the main result of this section. We consider the transmittance (see
(4.6)) between the leads β and γ. Assume that all eigenvalues {E1, . . . , EJ} ⊂
(−2tL, 2tL) of HS are nondegenerate. The normalized eigenvector corresponding to
Ej is denoted by φj.

Proposition 5.1. (i). For every λ ∈ (−2tL, 2tL) \ {E1, . . . , EJ} we have

lim
τ↘0

Tβγ(λ, τ) = 0. (5.2)

(ii). Fix λ = Ej. If either 〈βS, φj〉 or 〈γS, φj〉 is zero, then

lim
τ↘0

Tβγ(Ej, τ) = 0. (5.3)

(iii). Fix λ = Ej. If both 〈βS, φj〉 and 〈γS, φj〉 are different from zero, then there
exists a positive constant Cj(Ej) such that

lim
τ↘0

Tβγ(Ej, τ) = Cj

∣∣∣∣∣〈βS, φj〉 · 〈γS, φj〉∑M
α=1 |〈αS, φj〉|2

∣∣∣∣∣
2

. (5.4)

Remark. The physical significance of this proposition is quite transparent. It states
that at small coupling, the following things happen: 1. If the energy of the incident
electron is not close to the eigenvalues of HS, it will not contribute to the current. 2.
If the incident energy is close to some eigenvalue Ej, but the eigenfunction φj is not
localized around both coupling points γS and βS, then again there is no current. 3.
In order to have a peak in the current, it is necessary for HS to have extended edge
states, which couple several leads. A numerical analysis of the Harper operator on
large domains with Dirichlet boundary conditions puts into evidence such extended
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edge states as well as the existence of bulk states concentrated in the middle of the
dot (see [21] and [27]).

Proof. We split the proof into several technical results. We will not assume that
Ej’s are nondegenerate unless stated otherwise.

Lemma 5.2. Consider uβγ given in (3.7), and u+
βγ its meromorphic extension. Then

lim
τ↘0

(
τ 2 sup

λ∈(−2tL,2tL)

|u+
βγ(λ, τ)|

)
<∞.

Proof. Notice that the lemma roughly says that u+
βγ(λ) cannot blow up worse than

1/τ 2 when τ is small. In other words, its eventual poles have an imaginary part of
order τ 2 when τ is small.

Clearly, if τ is smaller than some τ0 > 0, then by usual perturbation theory we
get that for all λ located outside some small discs (with radii determined by τ0)
centered at {Ej}J

j=1 (the eigenvalues of HS), we have

||(H+(λ)− λ)−1|| ≤ C max
j∈{1,...,J}

|Ej − λ|−1,

thus we only need to look at what happens in each interval of the form (Ej−ε, Ej+ε).
Assume that Ej is n-fold degenerate. Denote by Πj the n-dimensional projector

corresponding to Ej. The operator ΠjΠ
T Πj has a (possibly trivial) null space in

Ran(Πj), and denote by pj the projector corresponding to it. Denote by p̃j = Πj−pj

the projection corresponding to the orthogonal complement of Ran(pj) in Ran(Πj).
It is easy to see that there exists a positive constant Cj such that

p̃jΠ
T p̃j ≥ Cj p̃

2
j . (5.5)

Indeed, this is implied by the fact that the operator is non-negative and with trivial
null space.

Denote by qj = Id− pj. Since ΠTpj = 0, and reasoning as in (3.9) we have

(H+(λ)− λ)−1 − (Ej − λ)−1pj = qj[qj(H+(λ)− λ)qj]
−1qj.

Only the right hand side will contribute to u+
βγ since pjγS = 0. The proposition

would be proven if we can show the estimate (on Ran(qj))

||[qj(H+(λ)− λ)qj]
−1|| ≤ C/τ 2 (5.6)

for λ near Ej.
Notice that qj = p̃j + (Id−Πj), i.e. it is the orthogonal sum of some part of Πj

and the projectors corresponding to all other eigenvalues of HS different from Ej.
Denote by Aj := qj(H+(λ)− λ)qj.

Remark that (Id−Πj)Aj(Id−Πj) is well-behaved when λ is close to Ej because
it essentially equals (Id − Πj)(H

S − λ)(Id − Πj) plus a perturbation of order τ 2.
Applying the Neumann series again, we get that on Ran(Id− Πj):

||[(Id− Πj)Aj(Id− Πj)]
−1|| ≤ const (5.7)
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for λ close to Ej and τ small enough. Hence if p̃j = 0, this estimate implies

||[qj(H+(λ)− λ)qj]
−1|| ≤ const (5.8)

which implies (5.6) and we are done.
If p̃j 6= 0, we again apply the Feshbach lemma for the operator Aj, intending to

reduce the problem to the subspace Ran(p̃j). Then Aj is invertible in Ran(qj) iff
the operator

Xj := p̃jAj p̃j − p̃jAj(Id− Πj)[(Id− Πj)Aj(Id− Πj)]
−1(Id− Πj)Aj p̃j (5.9)

is invertible in Ran(p̃j), and their inverses will have the same estimate on their norm
when τ is small. It is not difficult to see that the second term in (5.9) is of order τ 4

when λ is near Ej. We can then write

Xj = p̃jAj p̃j +O(τ 4). (5.10)

But the operator
p̃jAj p̃j = Ej − λ− (τ 2/tL)ζ+(λ)p̃jΠ

T p̃j (5.11)

is one to one (thus invertible) because for every f ∈ Ran(p̃j) with norm one we have
(see also (6.4))

||p̃jAj p̃j f || ≥ |〈f, Ajf〉| ≥ |=(〈f, Ajf〉)| = (τ 2/tL)
√

1− λ2/(4t2L)〈f,ΠTf〉,

and using (5.5) we get

||p̃jAj p̃j f || ≥ (τ 2/tL)
√

1− λ2/(4t2L)Cj,

which leads to
||[p̃jAj p̃j]

−1|| ≤ const · 1/τ 2.

Using this in (5.10) by employing again the Neumann series, we get that for τ small
and λ near Ej we have

||X−1
j || ≤ const · 1/τ 2,

thus (5.6) is proven, and so is the lemma.
Remark. We see that if pj 6= 0, its range is spanned by eigenvectors of K corre-
sponding to Ej. But they do not contribute in any way to u+

βγ.

Corollary 5.3. We use the notation introduced in the previous lemma. Assume
that Ej is n-fold degenerate.
(i). For every λ ∈ (−2tL, 2tL) with λ 6∈ {E1, . . . , EJ} we have

lim
τ↘0

τ 2|u+
βγ(λ, τ)| = 0. (5.12)

(ii). Fix λ = Ej. Assume p̃j = 0. Then

lim
τ↘0

τ 2|u+
βγ(Ej, τ)| = 0. (5.13)

(iii). Fix λ = Ej. Assume that p̃j 6= 0. Then p̃jΠ
T p̃j is positive on Ran(p̃j) and

lim
τ↘0

τ 2|u+
βγ(Ej, τ)| = tL|〈βS, p̃j[p̃jΠ

T p̃j]
−1p̃jγS〉|. (5.14)
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Proof. (i). By regular perturbation theory, we see that |u+
βγ(λ, τ)| remains bounded

when τ tends to zero, while λ is fixed and away from the eigenvalues of HS. Hence
(5.12) is straightforward.

(ii). If p̃j = 0 and λ = Ej, the estimate (5.8) implies again that |u+
βγ(Ej, τ)|

remains bounded when τ tends to zero, thus (5.13) follows.
(iii). If p̃j 6= 0 and λ = Ej, we rely on the properties of the inverse on Ran(p̃j) of

the operator p̃jAj p̃j introduced in (5.11). A consequence of the arguments presented
in the previous proposition is that for λ close to Ej we have

u+
βγ(λ)− 〈βS, p̃j[p̃jAj p̃j]

−1p̃jγS〉 = Oτ (1). (5.15)

Then using (5.11) with λ = Ej, and the fact that |ζ+(λ)| = 1, the result follows
easily. The corollary is proven.

Ending the proof of Proposition 5.1. The proof is easily obtained by replacing
(5.12), (5.13) and (5.14) in (4.6), in the nondegenerate case. We do not give more
details.

We see that in the degenerate case it is not that simple to give clear criteria for
which the current is zero or not in the small coupling regime. Assume that Ej is

n-fold degenerate. Denote by {φ(s)
j }n

s=1 the normalized eigenvectors of HS spanning
the range of Πj. A sufficient condition for the right hand side of (5.14) to be zero

for every β and γ, is Πj to be orthogonal to ΠT . In other words, 〈αS, φ
(r)
j 〉 = 0 for

every 1 ≤ α ≤ M and 1 ≤ r ≤ n. Physically, this means no contact at all between
the leads and the mode Ej. A necessary but not sufficient condition for the right
hand side of (5.14) to be different from zero is to have p̃j 6= 0. The proposition is
proven.

We continue this section with a result giving more information about the poles
in the case when τ is small and we are near a nondegenerate eigenvalue of HS.

Assume that the eigenvalue E1 ∈ (−2tL, 2tL) of HS is nondegenerate. We denote
the corresponding normalized eigenvector with φ1, i.e. HSφ1 = E1φ1. It is clear that
one of the following two alternatives is true:

• A1: there exists α1 ∈ {1, . . . ,M} such that 〈φ1, α
1
S〉 6= 0,

• A2: for every α ∈ {1, . . . ,M} we have 〈φ1, αS〉 = 0.

If A1 holds, then φ1 is “coupled” with at least one lead; if A2 holds, then the coupling
is absent.

Define the projection ΠL =
∑M

α=1 |0α〉〈0α|. By direct computation we have (see
(3.7) and (3.1))

ΠL(K − z)−1ΠL =
ζ1(z)

tL

M∑
α=1

|0α〉〈0α|+
ζ2
1 (z)

t2L

M∑
α,β=1

|0α〉uαβ(z)〈0β|. (5.16)

Then the weighted resolvent ΠL(K − z)−1ΠL admits a meromorphic extension to
any domain of the form C+ ∪ Ωε (see (3.5)).
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Proposition 5.4. i. For small enough τ , the weighted resolvent ΠL(K − z)−1ΠL

has a simple pole near E1 (denoted by Ẽ1(τ)).
ii. If A1 holds true, then for τ > 0 small enough the pole Ẽj(τ) is a resonance for
K with

lim
τ↘0

(<(Ẽ1(τ))− E1)/τ
2 = − E1

2t2L

M∑
α=1

|〈φ1, αS〉|2,

and

lim
τ↘0

=(Ẽ1(τ))/τ
2 = −

√
4t2L − E2

1

2t2L

M∑
α=1

|〈φ1, αS〉|2.

iii. If A2 holds for φ1 then Ẽ1(τ) = E1 and φ1 remains an eigenvector for K, i.e.
Kφ1 = Ẽ1φ1.

Proof. Let us focus on what happens near E1 in case when A1 holds. Denote with
P1 the spectral projection of HS corresponding to φ1, and with Q1 = Id − P1 its
orthogonal. Feshbach lemma gives:

(H+(z)− z)−1 = (Q1H+Q1 − z)−1 + (1− (Q1H+Q1 − z)−1Q1H+P1)

· (H̃+(z)− z)−1 · (1− P1H+Q1(Q1H+Q1 − z)−1) (5.17)

where the new effective Hamiltonian H̃+(z) is defined by

H̃+(z) := P1H+(z)P1 − P1H+Q1(Q1H+Q1 − z)−1Q1H+P1, (5.18)

and lives in a one dimensional space. With the notation

f1(z, τ) :=
M∑

α,β=1

∑
i,i′ 6=1

τ 4

t2L
ζ2
+(z)〈φ1|αS〉〈αS|φi〉

· 〈φi|(Q1H+Q1 − z)−1|φ′i〉〈φ′i|βS〉〈βS|φ1〉

we have that for small enough τ , H+(z)− z is invertible iff the function

F1(z, τ) := E1 − z − τ 2

tL
ζ+(z)

M∑
α=1

|〈φj, αS〉|2 − f1(z, τ)

is different from zero. Notice that for τ small enough and z near E1 we have
f1(z, τ) = O(τ 4).

For small τ and with z near E1, the implicit function theorem provides us with
a unique solution Ẽ1(τ) to the equation F1(z, τ) = 0.

If we define

T1(z, τ) := −(Q1H+Q1 − z)−1Q1H+P1

− P1H+Q1(Q1H+Q1 − z)−1

+ (Q1H+Q1 − z)−1Q1H+P1H+Q1(Q1H+Q1 − z)−1,

then we can write

(H+ − z)−1 =
1

F1(z, τ)
[P1 + T1] + (Q1H+Q1 − z)−1. (5.19)
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It is easy to see that T1 is analytic in z near E1 and of order O(τ 2). Now we have
to take the matrix elements 〈αS|(H+(z)− z)−1|βS〉 to obtain uαβ(z) in Eq.(5.16). It
turns out that

ΠL(K − z)−1ΠL = bounded & analytic

+
ζ2
+(z)

t2L

M∑
α,β=1

{
〈αS|ψ1〉〈ψ1|βS〉+ 〈αS|T1|βS〉

F1(z, τ)

}
|0α〉〈0β|

Moreover, since we can show that

F1(z, τ)/(E1(τ)− z) = 1 +O(τ 2)

for z in a small neighborhood of E1, we conclude that

ΠL(K − z)−1ΠL = bounded & analytic

+ (1 +O(τ 2))
ζ2
+(z)

t2L

M∑
α,β=1

〈α|ψ1〉〈ψ1|β〉+O(τ 2)

Ẽ1(τ)− z
|0α〉〈0β|.

Therefore the second statement of the proposition is now proved up to a straight-
forward application of the implicit function theorem for the claimed properties of
Ẽ1(τ). The third statement is also straightforward.

6 Appendices

6.1 Appendix 1: The discrete Laplacian on the half-line

Denote by {|n〉}n≥0 the standard basis in l2(N). For tL > 0, consider the operator
HL

α which acts on ψ ∈ l2(N) as follows:

(HL
αψ)(j) = tLψ(j + 1) + tLψ(j − 1), j ≥ 0, ψ(−1) := 0.

It is well-known that the spectrum of HL
α is absolutely continuous and moreover

σ(HL
α ) = [−2t, 2t]. We are interested in the matrix elements for the resolvent of HL

α ;
if =(z) > 0 one can easily compute

〈m,RL
α(z)n〉 =

1

tL(ζ2 − ζ1)

(
ζ1(z)

|m−n| − ζ1(z)
m+n+2

)
(6.1)

where ζ1,2 are solutions of the equation

tLζ
2 − zζ + t = 0 (6.2)

and ζ1 is chosen such that |ζ1| ∼ 1/|z| at infinity (notice that ζ1ζ2 = 1).
Let us be more precise and give several explicit representations for ζ1. By ln(x) =

ln(|x|)+i arg(x) we understand the principal branch of the natural logarithm defined
on C \ (−∞, 0], and arg(x) ∈ (−π, π). Accordingly, we put

√
x := e(1/2) ln(x) =√

|x|e(i/2) arg(x).
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Proposition 6.1. We have the following properties:
i. Assume that z 6∈ [−2tL, 2tL]. Then

ζ1(z) =
z

2tL

(
1−

√
1− 4t2L/z

2

)
. (6.3)

ii. Consider the holomorphic functions

ζ±(z) =
z

2tL
∓ i
√

1− z2/(4t2L), z 6∈ ((−∞,−2tL] ∪ [2tL,∞)). (6.4)

Then ζ1(z) = ζ+(z) if =(z) > 0, and ζ1(z) = ζ−(z) if =(z) < 0.
iii. We have ζ2(z) = 1/ζ1(z).

Proof. We see that ζ1 in (6.3) solves the equation and behaves like 1/z for large
|z|. Second, since ζ1 and ζ̃± are holomorphic, it is enough to verify their equality at
points of the form ±iα with α > 0 which is trivial.

6.2 Appendix 2: The second quantization of an ideal Fermi
gas

Although these things are very well known (see for example [7]), we briefly present
them here mostly for fixing notation.

Given a separable Hilbert space H we define an associated antisymmetric Fock
space as

Fa(H) =
∞⊕

n=0

H⊗an, H⊗a0 := C.

Here the subscript a indicates the total antisymmetrization of the tensor prod-
ucts. Let B = {ek}k≥1 be an orthonormal basis in H. Then we can construct the
“occupation number” basis in Fa(H) associated to B; we denote a generic vector in
it as ΨN1,N2,..., where the Nk’s are numbers (either 0 or 1) showing how many times
ek appears in the tensor products defining Ψ. For example, Ψ0,0,... = 1 ∈ C is the
vacuum.

The annihilation operators associated to this particular basis are defined as

aαΨN1,N2,...,Nα=0,... = 0, aαΨN1,N2,...,Nα=1,... = (−1)
∑

β<α NβΨN1,N2,...,Nα=0,...,

while their adjoints (the creation operators) are

a+
α ΨN1,N2,...,Nα=1,... = 0, a+

α ΨN1,N2,...,Nα=0,... = (−1)
∑

β<α NβΨN1,N2,...,Nα=1,....

If A is a bounded linear operator in H, we define its second quantization A =
dΓ(A) as the operator on Fa whose restriction to H⊗an is

A⊗ Id⊗ . . . Id + · · ·+ Id⊗ . . . Id⊗ A,

where the above sum has n terms. Using the particular basis B we have

A = dΓ(A) =
∑
k,j≥1

〈ek, Aej〉a+
k aj. (6.5)
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For example, the total Hamiltonian is H = dΓ(H), and the number operator is
N = dΓ(Id).

Now assume that H has finite but arbitrarily large dimension; define the grand-
canonical partition function Ξ and the density matrix operator in the grand-canoni-
cal ensemble ρ̂0 as

Ξ := TrFae
−β(H−µN), ρ̂0 :=

1

Ξ
e−β(H−µN). (6.6)

Finally, define

fF−D(x) =
1

eβ(x−µ) + 1
, ρ0 := fF−D(H). (6.7)

The following proposition will be extensively used in Section 3:

Proposition 6.2. Let A and B be bounded operators in H. Denote by [A,B] =
AB −BA their commutator. Then

dΓ([A,B]) = [A,B], (6.8)

eABe−A = dΓ(eABe−A). (6.9)

and
TrFa (ρ̂0A) = TrH (ρ0A) . (6.10)

Proof. The first identity is easily proven using the anticommutation relations

[A,B] =
∑

k,j,m,n

〈ek, Aej〉〈em, Ben〉[a+
k aja

+
man − a+

mana
+
k aj]

=
∑

k,j,m,n

〈ek, Aej〉〈em, Ben〉[a+
k anδjm − a+

manδkn]

=
∑
k,j

〈ek, (AB −BA)ej〉 = dΓ([A,B]),

while the second one is implied by the first equality, the Baker-Haussdorf formula

eABe−A = B + [A,B] +
1

2
[B, [B,A]] + . . . ,

and the linearity of dΓ(·).
We give more details for the third identity (see also Proposition 5.2.23 in [7]).

Since the trace is invariant with respect to the basis we use, we may assume that
the basis B = {ek} is the set of eigenvectors of H, and we consider the occupation
number basis derived from B. Also denote the eigenvalues of H with {λk}.

We know then that
Ξ = Πk(1 + e−β(λk−µ)) <∞ (6.11)

and we write

TrFa (ρ̂0A) =
∑

N1,N2,···∈{0,1}

〈ΨN1,N2,..., ρ̂0AΨN1,N2,...〉.
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Since

ρ̂0ΨN1,N2,... =
1

Ξ
e−β

∑
j Nj(λj−µ)ΨN1,N2,... =

1

Ξ
Πje

−βNj(λj−µ)ΨN1,N2,...,

and

〈ΨN1,N2,...,AΨN1,N2,...〉 =
∑
k,m

〈ek, Aem〉δNk,1δNm,1δk,m,

we have

TrFa (ρ̂0A) =
∑

k

〈ek, Aek〉
1

Ξ

∑
N1,N2,···∈{0,1}

Πje
−βNj(λj−µ)δNk,1.

Notice that ∑
N1,N2,···∈{0,1}

Πje
−βNj(λj−µ)δNk,1 = (1 + e−β(λ1−µ))

· (1 + e−β(λ2−µ)) . . . e−β(λk−µ) . . . (1 + e−β(λj−µ)) . . . , (6.12)

hence

1

Ξ

∑
N1,N2,···∈{0,1}

Πje
−βNj(λj−µ)δNk,1 = fF−D(λk)

and therefore

TrFa (ρ̂0A) =
∑

k

〈ek, Aek〉fF−D(λk) = TrH(ρ0A).

6.3 Appendix 3: A discrete Krein formula and exponential
decay

We now give a formula relating the resolvent of the discrete Laplacian defined on
l2(N ), N := {0, 1, . . . , N}, with the resolvent of the Laplacian defined on l2(N);
both operators are with Dirichlet boundary conditions. We denote with rL(N, z)
the resolvent on the finite segment, and with rL(z) the resolvent on the semi-infinite
lead; we use small letters for emphasising that we model only one lead. The operator
itself is denoted by hL(N) when restricted to a segment, and by hL on l2(N).

We need some more notation. By δm we understand the vector in l2(N ) having
1 on the m-th position and 0 elsewhere. Define for every z ∈ C \ R the “integral
kernels”:

gm,n(N, z) = 〈δm, rL(N, z)δn〉, gm,n(z) = 〈δm, rL(z)δn〉. (6.13)

The Dirichlet boundary condition means:

g−1,n(N, z) = gN+1,n(N, z) = g−1,n(z) = 0, (6.14)

and similar equalities for the second argument due to the symmetry property

gm,n(N, z) = gn,m(N, z).
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Proposition 6.3. For every 0 ≤ m,n ≤ N we have the following Krein formula:

gm,n(N, z)− gm,n(z) = tLgm,N(N, z)gN+1,n(z). (6.15)

Proof. We only sketch the proof, and do not give all technical details. For every
fixed n, the vectors g·,n(N, z) and g·,n(z) are in l2(N ) and l2(N) respectively. Then[

(hL(N)− z)g·,n(N, z)
]
(m) = δm,n,[

(hL − z)g·,n(z)
]
(m) = δm,n. (6.16)

Then we have after “summation by parts” the identity (the scalar products are on
l2(N )) 〈[

(hL(N)− z)g·,m(N, z)
]
, g·,n(z)

〉
=

〈
g·,m(N, z), (hL − z)g·,n(z)

〉
− tLgm,N(N, z)gN+1,n(z) (6.17)

where we employed various symmetry properties of the kernels, together with (6.14).
The use of (6.16) finishes the proof.

Finally, we need an exponential decay estimate for the resolvents, given next:

Proposition 6.4. There exist two positive constants c and C (the first one small
enough, the second one large enough) such that uniformly on N and z with 0 <
|=(z)| < 1 we have

|gm,n(N, z)| ≤ C

|=(z)|
exp (−c|=(z)| |m− n|), ∀m,n ∈ N . (6.18)

The same remains true when N = ∞.

Proof. This proposition is nothing but a discrete (and simpler) version of the
usual Combes-Thomas argument (see [10]) which leads to boundedness for resolvents
between spaces with exponential weights. Define the discrete dilation for α > 0

(Wαψ)(n) = eαnψ(n) (6.19)

Then by direct computation the dilated Hamiltonian H(α) = WαHW−α acts like

(H(α)ψ)(n) = e−αψ(n+ 1) + eαψ(n− 1)

= (Hψ)(n) + (e−α − 1)ψ(n+ 1) + (eα − 1)ψ(n− 1)

= ((H + V (α))ψ)(n)

where the ’perturbation’ V (α) := (e−α − 1)T1 + (eα − 1)T−1, T±1 being the shift
operators. Noticing that V (α) is roughly of O(α), and if α ≤ c|=(z)| where c is a
small enough positive constant, we can write

(H(α)− z)−1 = (H − z)−1
(
1 + V (α)(H − z)−1

)−1
(6.20)

where the second part is invertible and its norm is less than a chosen constant (2
say). Hence,

‖(H(α)− z)−1‖ ≤ ‖(H − z)−1‖ · ‖
(
1 + V (α)(H − z)−1

)−1 ‖ ≤ 2

|=(z)|
. (6.21)
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Define the following vectors in l2(N ) (the exponential is on the m-th position):

Ψmn = (0, 0, . . . , eiarg(gmn(N,z)), . . . , 0, 0), m ≥ n. (6.22)

Then

〈Ψmn,Wα(H − z)−1W−αδn〉 = eα(m−n)|gmn(N, z)|

= 〈Ψmn, (H(α)− z)−1δn〉 ≤
C

|=(z)|
,

from where the claimed estimate follows.
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