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STABLE LIMITS OF MARTINGALE TRANSFORMS WITH APPLICATION

TO THE ESTIMATION OF GARCH PARAMETERS

THOMAS MIKOSCH AND DANIEL STRAUMANN

Abstract. In this paper we study the asymptotic behavior of the Gaussian quasi maximum like-
lihood estimator of a stationary GARCH process with heavy-tailed innovations. This means that
the innovations are regularly varying with index α ∈ (2, 4). Then, in particular, the marginal dis-
tribution of the GARCH process has infinite fourth moment and standard asymptotic theory with
normal limits and

√
n-rates breaks down. This was recently observed by Hall and Yao (2003). It is

the aim of this paper to indicate that the limit theory for the parameter estimators in the heavy-
tailed case nevertheless very much parallels the normal asymptotic theory. In the light-tailed case,
the limit theory is based on the CLT for stationary ergodic finite variance martingale difference
sequences. In the heavy-tailed case such a general result does not exist, but an analogous result
with infinite variance stable limits can be shown to hold under certain mixing conditions which are
satisfied for GARCH processes. It is the aim of the paper to give a general structural result for
infinite variance limits which can also be applied in situations more general than GARCH.

1. Introduction

The motivation for writing this paper comes from Gaussian quasi maximum likelihood estima-
tion (QMLE) for GARCH (generalized autoregressive conditionally heteroscedastic) processes with
regularly varying noise; we refer to Section 4 for a detailed description of the problem. Recall that
the process

(1.1) Xt = σt Zt , with σ2
t = α0 +

p∑

i=1

αiX
2
t−i +

q∑

j=1

βjσ
2
t−j , t ∈ Z ,

is said to be a GARCH(p, q) process (GARCH process of order (p, q)). Here (Zt) is an iid sequence
with EZ2

1 = 1 and EZ1 = 0, and αi, βj are non-negative constants. GARCH processes and their
parameter estimation have been intensively investigated over the last few years; see Mikosch [19]
for a general overview and Straumann and Mikosch [28] and the references therein for parameter
estimation in GARCH and related models. In the context of QMLE the asymptotic behavior of the
parameter estimator is essentially determined by the limiting behavior of the following quantity,
see (4.21),

L′
n(θ0) =

1

2

n∑

t=1

h′t(θ0)

σ2
t

(Z2
t − 1) ,

where L′
n is the derivative of the underlying log-likelihood, h′t is the derivative of σ2

t when considered
as a function of the parameter θ, and θ0 is the true parameter (consisting of the αi and βj values)
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2 T. MIKOSCH AND D. STRAUMANN

in a certain parameter space. In this context,

Gt =
h′t(θ0)

σ2
t

, t ∈ Z ,

is a stationary ergodic sequence of vector-valued random variables which is adapted to the filtration
Ft = σ(Yt−1, Yt−2, . . .), t ∈ Z, where Yt = Z2

t − 1 constitutes an iid sequence.
If Gt has a finite first moment the sequence (GtYt) is a transform of the martingale difference

sequence (Yt), hence a stationary ergodic martingale difference sequence with respect to (Ft). If
E|G1|2 < ∞ and EY 2

1 < ∞, an application of the central limit theorem (CLT) for finite variance
stationary ergodic martingale differences (see Billingsley [4], Theorem 23.1) yields

n−1/2
n∑

t=1

Gt Yt
d→ N(0,Σ) ,

where Σ is the covariance matrix of G1Y1. This result does not require any additional information
about the dependence structure of (GtYt). It implies the asymptotic normality of the parameter
estimator based on QMLE.

If EY 2
1 = ∞ a result as general as the CLT for stationary ergodic martingale differences is

not known. However, some limit results for stationary sequences with marginal distribution in
the domain of attraction of an infinite variance stable distribution exist. We recall two of them
in Section 2. Our interest in infinite variance stable limit distributions for

∑n
t=1 Gt Yt is again

closely related to parameter estimation for GARCH processes. Recently, Hall and Yao [15] gave
the asymptotic theory for QMLE in GARCH models when EZ4

1 = ∞. To be more specific, they
assume regular variation with index α ∈ (1, 2) for the distribution of Z2

1 . It is our aim to show that
their results can be obtained by a general limit result for the martingale transforms

∑n
t=1 Gt Yt

when the iid noise (Yt) is regularly varying with index α ∈ (1, 2). The key notions in this context
are regular variation of the finite-dimensional distributions of (GtYt) and strong mixing of this
sequence, see Section 2 for these notions.

Our objective is twofold. First, we want to show that the theories on parameter estimation
for GARCH processes with heavy- or light-tailed innovations (Zt) parallel each other. We use
the recent structural approach to GARCH estimation by Berkes et al. [3] in order to show that
such a unified approach is possible. Second, our approach to the asymptotic theory for parameter
estimators is not restricted to GARCH processes. In the light-tailed case, Straumann and Mikosch
[28] extended the approach by Berkes et al. [3], including among others AGARCH and EGARCH
processes. The main difficulty of our approach when infinite variance limits occur is the verification
of certain mixing conditions. In contrast to the case of asymptotic normality, such conditions
cannot be avoided. However, it is difficult to check for a given model that these conditions hold;
see Section 4.4 in order to get a flavor of the task to be solved.

GARCH processes and their parameter estimation give the motivation for this paper. The cor-
responding limit theory for the QMLE with heavy-tailed innovations can be found in Section 4.
Our main tool for achieving these limit results is based on asymptotic theory for martingale trans-
forms with infinite variance stable limits. This theory is formulated and proved in Section 3. It is
based on more general results for sums of stationary mixing vector sequences with regularly varying
finite-dimensional distributions. This theory is outlined in Section 2.

2. Preliminaries

In this section we collect some basic tools and notions to be used throughout this paper. First we
want to formulate a classical result on infinite variance stable limits for iid vector-valued summands
due to Rvačeva [26]. Before we formulate this result we recall the notions of stable random vector

and multivariate regular variation. The class of stable random vectors coincides with the class of
possible limit distributions for sums of iid random vectors, and multivariate regular variation is the
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domain of attraction condition for sums of iid random vectors. Then we continue with an analog
of Rvačeva’s result for stationary ergodic vector sequences. In this context, we also need to recall
some mixing conditions.

Stable random vectors. Recall that a vector X with values in R
d is said to be α-stable for some

α ∈ (0, 2) if its characteristic function is given by

Ee i(x,X) =

{
exp

{
−
∫

Sd−1 |(x,y)|α (1 − i sign((x,y)) tan(πα/2)) Γ(dy) + i (x,µ)
}

α 6= 1 ,

exp
{
−
∫

Sd−1 |(x,y)|
(
1 + i 2

π sign((x,y)) log |(x,y)|
)
Γ(dy) + i (x,µ)

}
α = 1 ,

see Samorodnitsky and Taqqu [27], Theorem 2.3.1. The index of stability α ∈ (0, 2), the spectral

measure Γ on the unit sphere S
d−1 and the location parameter µ uniquely determine the distribution

of an infinite variance α-stable random vector X.

Multivariate regular variation. If X is α-stable for some α ∈ (0, 2), it is regularly varying with
index α. This means the following. The random vector X with values in R

d is regularly varying

with index α ≥ 0 if there exists a random vector Θ with values in the unit sphere S
d−1 of R

d such
that for any t > 0, as x→ ∞,

P
(
|X| > tx , X̃ ∈ ·

)

P (|X| > x)
v→ t−α P (Θ ∈ ·) ,(2.1)

where for any vector x 6= 0,

x̃ = x/|x| ,

and
v→ denotes vague convergence in the Borel σ-field of S

d−1; see Resnick [23, 24] for its definition
and details. The distribution of Θ is called the spectral measure of X. Alternatively, (2.1) is
equivalent to

P (X ∈ x·)
P (|X| > x)

v→ µ ,

where
v→ denotes vague convergence in the Borel σ-field of R

d\{0} and µ is a measure on the same
σ-field satisfying the homogeneity assumption µ(tA) = t−αµ(A) for t > 0.

Stable limits for sums of iid random vectors. Now let (Yt) be an iid sequence of random vectors
with values in R

d. According to Rvačeva [26], there exist sequences of constants an > 0 and bn ∈ R
d

such that

a−1
n

n∑

t=1

Yt − bn
d→ Xα

for some α-stable random variable Xα with α ∈ (0, 2) if and only if Y1 is regularly varying with
index α, and the normalizing constants an can be chosen as

P (|Y1| > an) ∼ n−1 .(2.2)

For a stationary sequence (Yt) a similar result can be found in Davis and Mikosch [12] as a
multivariate extension of one-dimensional results in Davis and Hsing [11]. For its formulation one
needs regular variation of the summands and a particular mixing condition, called A(an) which
was introduced in Davis and Hsing [11].
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Mixing conditions. We say that the condition A(an) holds for the stationary sequence (Yt) of
random vectors with values in R

d if there exists a sequence of positive integers rn such that rn → ∞,
kn = [n/rn] → ∞ as n→ ∞ and

E exp

{
−

n∑

t=1

f(Yt/an)

}
−
(
E exp

{
−

rn∑

t=1

f(Yt/an)

})kn

→ 0 ,

(2.3)

n→ ∞ , ∀f ∈ Gs ,

where Gs is the collection of bounded non-negative step functions on R
d\{0}. The convergence in

(2.3) is not required to be uniform in f . This is indeed a very weak condition and is implied by
many known mixing conditions, in particular the strong mixing condition which is relevant in the
context of GARCH processes; see Section 4. We refer to Davis and Mikosch [12] for a comparison
of A(an) with other mixing conditions.

For later use we also recall the definition of a strongly mixing stationary sequence (Yt) of random
vectors with rate function (φk), see Rosenblatt [25], cf. Doukhan [13] or Ibragimov and Linnik [16]:

sup
A∈σ(Ys , s≤0) , B∈σ(Ys , s>k)

|P (A ∩B) − P (A)P (B)| =: φk → 0 as k → ∞.

If (φk) decays to zero at an exponential rate then (Yt) is said to be strongly mixing with geometric

rate.

Recall that absolute regularity (or β–mixing) is a mixing notion which is slightly more restrictive
than strong mixing:

(2.4) E

(
sup

B∈σ(Yt , t>k)
|P (B | σ(Ys , s ≤ 0)) − P (B)|

)
=: bk → 0, k → ∞.

Indeed, β-mixing implies strong mixing with the same rate function.

Stable limits for sums of stationary random variables. The following result is a combination of
Theorem 2.8 and Proposition 3.3 in [12]. It gives conditions under which an α-stable weak limit
occurs for the sum process of a stationary sequence. In what follows, we write

S0 = 0 and Sn = Y1 + · · · + Yn , n ≥ 1 ,

and for any Borel set B ⊂ R,

SnB = (S(h)
n (B))h=1,...,d ,

where

S(h)
n (B) =

n∑

t=1

Y
(h)
t IB(|Y (h)

t |/an) , n ≥ 1 .

Theorem 2.1. Let (Yt) be a strictly stationary sequence of random vectors with values in R
d and

the real sequence (an) be defined by (2.2). Assume that the following conditions are satisfied:

(a) The finite-dimensional distributions of (Yk) are regularly varying with index α > 0. To be

specific, let vec(θ
(k)
−k , . . . , θ

(k)
k ) be the (2k + 1)d-dimensional random row vector with values

in the unit sphere S
(2k+1)d−1 that appears in the definition (2.1) of regular variation of

vec(Y−k, . . . ,Yk), k ≥ 0, with respect to the max-norm | · | in R
(2k+1)d.

(b) The mixing condition A(an) holds for (Yt).
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(c)

lim
k→∞

lim sup
n→∞

P

(∨
k≤|t|≤rn

|Yt| > any

∣∣∣∣ |Y0| > any

)
= 0 , y > 0 ,(2.5)

where (rn) appears in the formulation of A(an).

Then the limit

γ = lim
k→∞

E
(
|θ(k)

0 |α −∨k
j=1 |θ

(k)
j |α

)
+

/
E|θ(k)

0 |α(2.6)

exists. If γ > 0, then the following results hold.

(i) If α ∈ (0, 1), then

a−1
n Sn

d→ Xα ,

for some α-stable random vector Xα.

(ii) If α ∈ [1, 2) and for all δ > 0,

lim
y→0

lim sup
n→∞

P (|Sn(0, y] − ESn(0, y]| > δ an) = 0 ,(2.7)

then

a−1
n (Sn − ESn(0, 1])

d→ Xα ,

for some α-stable random vector Xα.

The structure of the limiting vectors Xα is given by some functional of the points of a limiting
point process. The proof of this result makes heavily use of point process convergence results which
are appropriate tools in the context of regularly varying distributions when extremely large values
may occur in the sequence (Yt); see Davis and Mikosch [12] for details.

3. Stable limits for martingale transform

In this section we want to derive infinite variance stable limits for sums of strictly stationary
random vectors which have the particular form

Yt = Gt Yt ,

where (Yt) is an iid sequence and (Gt) is a strictly stationary sequence of random vectors with
values in R

d such that (Gt) is adapted to the filtration given by the σ-fields Ft = σ(Yt−1, Yt−2, . . .),
t ∈ Z. If EY1 = 0 and E|G1| < ∞, E(GtYt|Ft) = 0 a.s., and therefore (Gt Yt) is a martingale
difference sequence and

S0 = 0, Sn = Y1 + · · · + Yn, n ≥ 1,

is the martingale transform of the martingale (
∑n

t=1 Yt)n≥0 by the sequence (Gt). We keep this
name even if E|Y1| = ∞.

3.1. Basic assumptions. We impose the following assumptions on the sequences (Yt) and (Gt).

A.1 Y1 is regularly varying with index α ∈ (0, 2).
A.2 E|G1|α+ε <∞ for some ε > 0.
A.3 (GtYt) satisfies condition A(an), see (2.3), where P (|Y1| > an) ∼ n−1 and (rn), defined in

(2.3), is such that

n rn

(
arn

an

)α+ε

→ 0 ,(3.1)

where ε is the same as in A.2.
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Remark 3.1. Regular variation of Y1 with index α and the iid property of (Yt) imply that

P

(
a−1

n max
1≤t≤n

|Yt| ≤ x

)
→ Φα(x) = e−x−α

, x > 0 ,

for the Fréchet distribution Φα; see Embrechts et al. [14], Chapter 3.

In this setting, the heaviness of the tails of the distribution of G1Y1 is essentially determined by
the distribution of Y1; see Remark 3.3 below.

3.2. Main result. We are now ready to formulate our main result on the asymptotic behavior of
the sum process (Sn).

Theorem 3.2. Consider the martingale transform (
∑n

t=1 Yt)n≥0 = (
∑n

t=1 GtYt)n≥0 defined above.

Assume that the conditions A.1-A.3 are satisfied. Moreover, if α ∈ (1, 2) assume that EY1 = 0
and, if α = 1, that Y1 is symmetric. Then the finite-dimensional distributions of (Yt) are regularly

varying with index α and the limit γ in (2.6) exists. If γ > 0, then

a−1
n Sn

d→ Xα ,(3.2)

where the sequence (an) is given by

P (|Y1| > an) ∼ n−1 .

and Xα is an α-stable random vector.

Remark 3.3. It is not difficult to see that Yt is regularly varying with index α. For the proof we
need a result of Breiman [10]. It says that if one has two independent random variables ξ, η > 0
a.s., ξ is regularly varying with index α > 0 and Eην <∞ for some ν > α, then

P (ξ η > x) ∼ Eηα P (ξ > x) ,

i.e., ξη is regularly varying with the same index α. Now observe that for t, x > 0 and a Borel set
S ⊂ S

d−1, by multiple application of Breiman’s result,

P

(
|G1| |Y1| > tx ,

G1 Y1

|G1| |Y1|
∈ S

)

P (|G1| |Y1| > x)

=
P
(
|G1| |Y1| > tx , sign(Y1) G̃1 ∈ S

)

P (|G1| |Y1| > x)

=
P
(
|G1|Y1 > tx , G̃1 ∈ S

)

P (|G1| |Y1| > x)
+
P
(
|G1|Y1 < −tx ,−G̃1 ∈ S

)

P (|G1| |Y1| > x)

∼
E
(
|G1|α IS

(
G̃1

))
P (Y1 > tx)

E|G1|α P (|Y1| > x)
+
E
(
|G1|α IS

(
−G̃1

))
P (Y1 ≤ −tx)

E|G1|α P (|Y1| > x)
.

Writing for some p, q ≥ 0 with p+ q = 1 and a slowly varying function L(x),

P (Y1 > x) = pL(x)x−α and P (Y1 ≤ −x) = q L(x) |x|−α , x > 0 ,

we can read off the spectral measure of the vector Y1:

P (Θ ∈ S) = p
E
(
|G1|α IS

(
G̃1

))

E|G1|α
+ q

E
(
|G1|α IS

(
−G̃1

))

E|G1|α
.(3.3)
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By regular variation, an = n1/α`(n) for some slowly varying function `. By Breiman’s result and
since E|G1|α+ε <∞ for some ε > 0, it also follows that

P (|G1| |Y1| > x) ∼ E|G1|α P (|Y1| > x) ,

and therefore P (|Y1| > can) ∼ n−1 for some constant c > 0. Moreover, we have

nP (a−1
n Y1 ∈ ·) v→ µ1 ,(3.4)

for some measure µ1 on R
d\{0} which is determined by α and the spectral measure.

Remark 3.4. It follows from the proof below that

nP (a−1
n (Y1, . . . ,Yh) ∈ d(x1, . . . ,xh))(3.5)

v→ µ1(dx1) ε0(d(x2, . . . ,xh)) + · · · + µ1(dxh) ε0(d(x1, . . . ,xh−1))

=: µh(d(x1, . . . ,xh)) .

where µ1 is defined by (3.4), ε0 is Dirac measure at 0 and

(Y1, . . . ,Yh) := vec(Y1, . . . ,Yh) and (x1, . . . ,xh) := vec(x1, . . . ,xh) .(3.6)

This means in particular that the limiting measure in the definition of regular variation for
(Y1, . . . ,Yh) is the same as in the definition of regular variation for vec(Y′

1, . . . ,Y
′
h), where Y′

i are
iid copies of Y1. This part of the theorem is valid for any α > 0.

Proof. We verify the conditions of Theorem 2.1. Since A.3 implies A(an) and since we require
γ > 0, it remains to check (a) and (c) in Theorem 2.1.

(a) Regular variation of the finite-dimensional distributions. We show regular variation of the vector
(Y1, . . . ,Yh) defined in (3.6), i.e., we show that (3.5) holds.

We restrict ourselves to prove regular variation of the pairs (Y1,Y2) := vec(Y1,Y2); the case of
general finite-dimensional distributions is completely analogous. The regular variation of Y1 was
explained in Remark 3.3. Let now B1 and B2 be two Borel sets in [0,∞]d\{0}, bounded away from
zero. In particular, there exists M > 0 such that |x| > M for all x ∈ B1 and x ∈ B2. Then for any
ε > 0,

{
a−1

n Y1 ∈ B1 , a
−1
n Y2 ∈ B2

}

⊂ {|G1| |Y1| > M an , |G2| |Y2| > M an}

⊂ {ε |Y1| > M an , ε |Y2| > M an}

∪
{
|G1| I(ε,∞)(|G1|) |Y1| > M an , ε |Y2| > M an

}

∪
{
|G2| I(ε,∞)(|G2|) |Y2| > M an , ε |Y1| > M an

}

∪
{
|G1| I(ε,∞)(|G1|) |Y1| > M an , |G2| I(ε,∞)(|G2|) |Y2| > M an

}
=:

4⋃

i=1

Di .

By independence and an application of Breiman’s result, nP (D1) → 0 and nP (D2) → 0. Similarly,

nP (D3) ≤ nP
(
|G2| I(ε,∞)(|G2|) |Y2| > Man

)

∼ nP (|Y2| > M an)E
(
|G2|α I(ε,∞)(|G2|)

)
,

thus, by Lebesgue’s dominated convergence theorem,

lim
ε↑∞

lim sup
n→∞

nP (D3) = 0 ,
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and nP (D4) → 0 can be proved in the same way. We conclude that

nP
(
a−1

n (Y1,Y2) ∈ d(x1,x2)
) v→ µ1(dx1) ε0(dx1) + µ1(dx2) ε0(dx2) = µ2(d(x1,x2)) ,

see Resnick [24]. This proves the regular variation of the 2-dimensional finite-dimensional distribu-
tions. The higher-dimensional case is completely analogous.

(c) The condition (2.5). We have for any y > 0,

P

(
max

k≤t≤rn

|Gt| |Yt| > yan

∣∣∣∣ |G0| |Y0| > y an

)

≤ P

(
max

k≤t≤rn

|Gt| > y an/(sk arn
)

∣∣∣∣ |G0| |Y0| > y an

)
+ P

(
max

k≤t≤rn

|Yt| > sk arn

)

=: I1 + I2 ,

where (sk) is any sequence such that sk → ∞. In what follows, all calculations go through for any
y > 0; for ease of notation we set y = 1. Then, by Remark 3.1,

lim
k→∞

lim
n→∞

I2 = lim
k→∞

(1 − Φα(sk)) = 0 .

An application of Markov’s inequality yields for some constant c > 0 and ε > 0 as in A.2 (here and
in what follows, c denotes any positive constant whose value is not of interest),

I1 ≤
rn∑

t=k

P (|Gt| > an/(skarn
) | |G0| |Y0| > an)

≤
(
skarn

an

)α+ε rn∑

t=k

E[|Gt|α+εI{|G0| |Y0|>an/(skarn )}]

P (|G0| |Y0| > an)

≤ c n rn

(
skarn

an

)α+ε

E |G0|α+ε

→ 0 as n→ ∞.

Here we used Breiman’s result [10] to show that

P (|G0| |Y0| > an) ∼ E |G0|α P (|Y0| > an) ,

condition (3.1) and the fact that E|G1|α+ε <∞; see A.2.
Now we turn to

P

(
max

−rn≤t≤−k
|Gt| |Yt| > an

∣∣∣∣ |G0| |Y0| > an

)

≤ P

(
max

−rn≤t≤−k
|Gt| > an/(skarn

)

∣∣∣∣ |G0| |Y0| > an

)

+P

(
max

−rn≤t≤−k
|Yt| > skarn

∣∣∣∣ |G0| |Y0| > an

)

=: I3 + I4 .
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The quantity I3 can be treated in the same way as I1 to show that I3 → 0 a.s. as n→ ∞. We turn
to I4. Fix 0 < M <∞. Then

I4 ≤ P (max−rn≤t≤−k |Yt| > skarn
,M |Y0| > an)

P (|G0| |Y0| > an)

+
P
(
|G0| I(M,∞)(|G0|) |Y0| > an

)

P (|G0| |Y0| > an)

=: I41 + I42 .

By independence of the Yi’s, Breiman’s [10] result and since rn → ∞,

I41 ∼ P (max−rn≤t≤−k |Yt| > skarn
) Mα P (|Y0| > an)

E|G0|α P (|Y0| > an)

∼ c (1 − Φα(sk)) as n→ ∞

→ 0 as k → ∞.

By virtue of Breiman’s [10] result,

I42 ∼
E
(
|G0|α I(M,∞)(|G0|)

)
P (|Y0| > an)

E|G0|α P (|Y0| > an)
.

Since |G0| has finite moments of order greater than α, an application of the Lebesgue dominated
convergence theorem yields

lim
M→∞

lim
n→∞

I42 = 0 .

This proves (2.5). �

Thus the conditions (a)-(c) and γ > 0 of Theorem 2.1 are satisfied. In the case α < 1, Theorem 2.1
immediately yields (3.2). In the case α ∈ [1, 2) we have to check condition (2.7). It suffices to show

it for the components S
(i)
n (0, y], i = 1, . . . , d, of Sn(0, y]. Since the components can be handled in

the same way, we suppress the dependence on i and, for the ease of notation, write GtYt for the
summands of the ith component.

We start with the case α ∈ (1, 2). As before, write Ft = σ(Yt−1, Yt−2, . . .). Then, for z > 0, since
EY1 = 0,

E[Gt Yt I(0,z](|Gt Yt|/an) | Ft] = GtE[Yt I(0,z](|Gt Yt|/an) | Gt]

= −GtE[Yt I(z,∞)(|Gt Yt|/an) | Gt] .

Consider the decomposition

a−1
n

n∑

t=1

[
Gt Yt I(0,z](|Gt Yt|/an) − E[G1 Y1 I(0,z](|G1 Y1|/an)]

]

= a−1
n

n∑

t=1

[
Gt Yt I(0,z](|Gt Yt|/an) −GtE[Yt I(0,z](|Gt Yt|/an) | Gt]

]

−a−1
n

n∑

t=1

[
Gt E[Yt I(z,∞)(|Gt Yt|/an) | Gt] − E[G1 Y1I(z,∞)(|G1 Y1|/an)]

]
=: T1 + T2 .

For fixed n, T1 is a sum of stationary mean zero martingale differences. An application of Kara-
mata’s theorem to the regularly varying random variable G1Y1 with index α yields for some constant
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c > 0,

var(T1) = n a−2
n E

[
G1 Y1 I(0,z](|G1 Y1|/an) −G1E[Y1 I(0,z](|G1 Y1|/an) | G1]

]2

≤ c n a−2
n E

[
G1 Y1 I(0,z](|G1 Y1|/an)

]2

∼ c z2−α as n→ ∞

→ 0 as z ↓ 0.(3.7)

Next we treat T2. Fix 0 < δ < M <∞ to be chosen later. Notice that by Karamata’s theorem and
the uniform convergence theorem for regularly varying functions uniformly for c ∈ [δ,M ],

E[Y1 I(cx,∞)(|Y1|)]
cxP (|Y1| > cx)

→ C

for some constant C. Taking this into account, the strong law of large numbers yields, with
probability 1,

a−1
n

n∑

t=1

GtI[δ,M ](|Gt|)E[Yt I(z,∞)(|Gt Yt|/an) | Gt](3.8)

= a−1
n

n∑

t=1

GtI[δ,M ](|Gt|) [(zan/Gt)P (|Yt| > zan/|Gt| | Gt) (C + o(1))]

= (C + o(1)) z1−α n−1
n∑

t=1

|Gt|α I[δ,M ](|Gt|)

→ C z1−αE[|G1|αI[δ,M ](|G1|)] .
On the other hand, since G1I[δ,M ](|G1|)Y1 is regularly varying with index α ∈ (1, 2), by the same
argument and Breiman’s result,

n a−1
n E[G1I[δ,M ](|G1|)Y1 I(z,∞)(|G1 Y1|/an)](3.9)

= n a−1
n

[
(C + o(1)) (z an)P (G1I[δ,M ](|G1|) |Y1| > zan)

]

= (C + o(1)) z1−α E[|G1|αI[δ,M ](|G1|)] .
This shows that (3.8) and (3.9) cancel asymptotically as n→ ∞ for every fixed z.

A similar argument shows that, with probability 1,

a−1
n

∣∣∣∣∣

n∑

t=1

GtI[0,δ](|Gt|)E[Yt I(z,∞)(|Gt Yt|/an) | Gt]

∣∣∣∣∣(3.10)

≤ a−1
n

n∑

t=1

|Gt|I[0,δ](|Gt|)E[|Y1|I(z,∞)(δ |Y1|/an)]

→ c (z/δ)1−α E[|G1|I[0,δ](|G1|)] .
Moreover,

n a−1
n |E[G1I[0,δ](|G1|)Y1 I(z,∞)(|G1 Y1|/an)]|(3.11)

≤ n a−1
n E[|G1|I[0,δ](|G1|) |Y1| I(z,∞)(δ |Y1|/an)]

∼ c (z/δ)1−α E[|G1|I[0,δ](|G1|)] .
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Now choose δ = z2. Then, first letting n → ∞ and then z ↓ 0, both (3.10) and (3.11) vanish
asymptotically.

Finally, we consider

a−1
n E

∣∣∣∣∣

n∑

t=1

GtI(M,∞)(|Gt|)E[Yt I(z,∞)(|Gt Yt|/an) | Gt]

∣∣∣∣∣

≤ a−1
n nE[|G1|I(M,∞)(|G1|) |Y1| I(z,∞)(|G1 Y1|/an)] .

An application of Breiman’s result to the regularly varying random variable G1I[M,∞)(|G1|)Y1 gives
that the right-hand side is asymptotically equivalent as n→ ∞ to

c z1−αE[|G1|αI[M,∞)(|G1|)] .

Choosing M large enough, the right-hand side is smaller than z, say. The same argument can be
applied to

n a−1
n |E[G1I[M,∞)(|G1|)Y1 I(z,∞)(|G1 Y1|/an)]| .

Collecting the bounds above, we see that

lim
z↓0

lim sup
n→∞

P (|T2| > r) = 0 , r > 0 .

This together with (3.7) concludes the proof of (2.7) for α ∈ (1, 2).
For α = 1 we use the additional condition of symmetry of Yt. Then ESn(0, y] = 0 and the same

argument as for var(T1) above shows that (2.7) holds in this case as well. This concludes the proof
of (2.7).

Since the conditions of Theorem 2.1 are satisfied for α ∈ [1, 2) we conclude that

a−1
n (Sn − ESn(0, 1])

d→ Xα

for some α-stable random vector in R
d. For α = 1 we can drop ESn(0, y] because of the symmetry

of GtYt. For α ∈ (1, 2), GtYt is regularly varying with index α. Since E(GtYt) = 0, Karamata’s
theorem yields

a−1
n ESn(0, 1] → b

for some constant b which can be incorporated in the stable limit, and therefore centering in (3.2)
can be avoided. This concludes the proof of Theorem 3.2. �

Remark 3.5. If the roles of G1 and Y1 are interchanged in the sense that G1 is regularly varying
with index α and E|Y1|α+ε < ∞ for some ε > 0, Y1 is regularly varying with index α, as the

following calculations show. Observe that the random variables |G1|IS(G̃1) and |G1|IS(−G̃1) are
regularly varying for any Borel set S ⊂ S

d−1 for which S,−S are continuity sets with respect to
the spectral measure P (ΘG ∈ ·) of G1 and which satisfy P (ΘG ∈ ±S) > 0. For such a set S, any
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t, x > 0, by multiple application of Breiman’s result,

P

(
|G1| |Y1| > tx ,

G1 Y1

|G1| |Y1|
∈ S

)

P (|G1| |Y1| > x)

=
P
(
|G1| |Y1| > tx , sign(Y1) G̃1 ∈ S

)

P (|G1| |Y1| > x)

=
P
(
|G1|Y1 > tx , G̃1 ∈ S

)

P (|G1| |Y1| > x)
+
P
(
|G1|Y1 < −tx ,−G̃1 ∈ S

)

P (|G1| |Y1| > x)

∼
E[Y α

1 I(0,∞)(Y1)]P
(
|G1| > tx , G̃1 ∈ S

)

E|Y1|α P (|G1| > x)
+
E[|Y1|αI(−∞,0)(Y1)]P (

(
|G1| > tx , G̃1 ∈ −S

)

E|Y1|α P (|G1| > x)

x→ ∞ .

Letting x→ ∞, one can read off the spectral measure of Y1:

P (Θ ∈ S) =
E[Y α

1 I(0,∞)(Y1)]

E|Y1|α
P (ΘG ∈ S) +

E[|Y1|αI(−∞,0)(Y1)]

E|Y1|α
P (ΘG ∈ −S) .(3.12)

The spectral measure of Y1 under the A-conditions, see (3.3), is completely different from (3.12).
One might hope that a result similar to Theorem 3.2 can be derived simply under the conditions that
G1 is regularly varying with index α < 2 and E|Y1|α+ε <∞. However, it is not clear whether (Yt)
has regularly varying finite-dimensional distributions, and it is not clear how to verify condition
(2.5). Therefore one cannot expect to derive a result as general as Theorem 3.2 without additonal
conditions on the sequences (Gt) and (Yt). Examples of limit results when Yt is light tailed and
Gt has regularly varying tails are given by the sample autocovariances of GARCH processes; see
Basrak et al. [2].

4. Gaussian quasi maximum likelihood estimation for GARCH processes with

heavy–tailed innovations

In this section we apply Theorem 3.2 to Gaussian quasi maximum likelihood estimation (QMLE)
in GARCH processes. The limit properties of the QMLE were studied by Berkes et al. [3]. They
proved strong consistency of the QMLE under the moment condition E|Z1|2+δ <∞ for some δ > 0
and established asymptotic normality under EZ4

1 < ∞. Here (Zt) is an iid innovation sequence;
see Section 4.1 below for the definition of the GARCH model and the QMLE. Hall and Yao [15]
refined these results and also allowed for innovations sequences, where Z2

1 is regularly varying with
index α ∈ (1, 2). Then the speed of convergence is slower than the usual

√
n rate and the limiting

distribution of the QMLE is (multivariate) α–stable.
It is our objective to show that the asymptotic theories for the QMLE under light- and heavy-

tailed innovations parallel each other and that very similar techniques can be applied in both
cases. However, in the light-tailed case (see [3]) an application of the CLT for stationary ergodic
martingale differences is the basic tool which establishes the asymptotic normality of the QMLE. In
the heavy-tailed situation one depends on an analog of the CLT which is provided by Theorem 3.2.

As a matter of fact, the structure of the proofs shows that the asymptotic properties of the
QMLE are not dependent on the particular structure of the GARCH process if one can establish
the regular variation of the finite-dimensional distributions of the underlying process (Xt) and the
mixing condition A(an). Therefore the results of this section have the potential to be extended
to more general models, including, for example, the AGARCH or EGARCH models whose QMLE
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properties in the light-tailed case were treated in Straumann and Mikosch [28]. The most intricate
step in the proof is, however, the verification of this mixing condition for a given time series model.
We establish this condition for a GARCH process by an adaptation of Theorem 4.3 in Mokkadem
[22]; this yields strong mixing with geometric rate of the relevant sequence. We devote Section 4.4
to the solution of this problem.

Before we start, we introduce some notation. If K ⊂ R
d is a compact set, we write C(K,Rd′) for

the space of continuous R
d′–valued functions equipped with the sup–norm ‖v‖K = sups∈K |v(s)|.

The space C(K,Rd1×d2) consists of the continuous d1×d2–matrix valued functions on K; in R
d1×d2

we work with the operator norm induced by the Euclidean norm | · |, i.e.,

‖A‖ = sup
|x|=1

|Ax|, A ∈ R
d1×d2 .

4.1. Definition of the QMLE. Recall the definition of a GARCH(p, q) process (Xt) from (1.1).
As before, (Zt) is an iid innovation sequence with EZ2

1 = 1 and EZ1 = 0, and αi, βj are non-
negative constants. GARCH processes have been intensively investigated over the last few years.
Assumptions for strict stationarity are complicated: they are expressed in terms of Lyapunov
exponents of certain random matrices; see Bougerol and Picard [5] for details. A necessary condition
for stationarity is

β1 + · · · + βq < 1 .(4.1)

(Corollary 2.3. in [5]). We will make use of this condition later.
In what follows, we always assume strict stationarity of the GARCH processes. As a matter

of fact, the observation Xt is always a measurable function of the past and present innovations
(Zt, Zt−1, Zt−2, . . .); hence (Xt) is automatically ergodic.

In what follows, we review how an approximation to the conditional Gaussian likelihood of
a stationary GARCH(p, q) process is constructed, i.e., a conditional likelihood under the syn-

thetic assumption Zt iid ∼ N (0, 1). Given X0, . . . ,X−p+1 and σ2
0, . . . , σ

2
−q+1, the random variables

X1, . . . ,Xn are conditionally Gaussian with mean zero and variances ht(θ), t = 1, . . . , n, where
θ = (α0, α1, . . . , αp, β1, . . . , βq)

T denotes the presumed parameter and

ȟt(θ) =

{
σ2

t t ≤ 0,

α0 + α1X
2
t−1 + · · · + αpX

2
t−p + β1ȟt−1(θ) + · · · + βqȟt−q(θ) t > 0.

The conditional Gaussian log–likelihood has the form

log fθ(X1, . . . ,Xn | X0, . . . ,X−p+1, σ
2
0 , . . . , σ

2
−q+1)

= −n
2

log(2π) − 1

2

n∑

t=1

(
X2

t

ȟt(θ)
+ log ȟt(θ)

)
.(4.2)

Since X0, . . . ,X−p+1 are not available and the squared volatilities σ2
0, . . . , σ

2
−q+1 unobservable, the

conditional Gaussian log–likelihood (4.2) cannot be numerically evaluated without a certain initial-
ization for σ2

0 , . . . , σ
2
−p+1 and X0, . . . ,X−q+1. The initial values being asymptotically irrelevant, we

set the Xt’s equal to zero and ĥt(θ) = α0/(1 − β1 − · · · − βq) for t ≤ 0. We arrive at

(4.3) ĥt(θ) =





α0/(1 − β1 − · · · − βq) t ≤ 0,

α0 + α1X
2
t−1 + · · · + αmin(p,t−1)X

2
max(t−p,1)

+β1ĥt−1(θ) + · · · + βqĥt−q(θ) t > 0.

The function (ĥt(θ))1/2 can be understood as an estimate of the volatility at time t and under

parameter hypothesis θ. It can be established that |ĥt−ȟt| a.s.→ 0 with a geometric rate of convergence
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and uniformly on the compact set K defined in (4.4) below. This suggests that by replacing ȟt(θ)

by ĥt(θ) in (4.2) we obtain a good approximation to the conditional Gaussian log–likelihood. Since

the constant −n log(2π)/2 does not matter for the optimization, we define the QMLE θ̂n as a
maximizer of the function

L̂n(θ) =
n∑

t=1

ˆ̀
t(θ) = −1

2

n∑

t=1

(
X2

t

ĥt(θ)
+ log ĥt(θ)

)

with respect to θ ∈ K, and K being the compact set

(4.4) K =
{

θ ∈ R
p+q+1

∣∣m ≤ αi, βj ≤M, β1 + · · · + βq ≤ β̄
}
,

where 0 < m < M <∞ and 0 < β̄ < 1 are such that qm < β̄.

Remark 4.1. From a comparison with [3], one might think at first sight that our definition of the

QMLE is different from theirs. To see that ĥt coincides with w̃t in [3], introduce the polynomials

α(z) = α1z + · · · + αpz
p and β(z) = 1 − β1z − · · · − βqz

q

for every θ = (α0, α1, . . . , αp, β1, . . . , βq)
T ∈ K. Then one can show by induction on t that

(4.5) ĥt(θ) =
α0

β(1)
+

t−1∑

j=1

ψj(θ)X2
t−j ,

where the coefficients ψj(θ) are defined through

(4.6)
α(z)

β(z)
=

∞∑

j=1

ψj(θ)zj , |z| ≤ 1.

Note that the latter Taylor series representation is valid because βi ≥ 0 and β1 + · · · + βq ≤ β̄ < 1
imply β(z) 6= 0 on K for |z| ≤ 1 + ε and ε > 0 sufficiently small. We choose (4.3) rather than (4.5)
as a first definition for the squared volatility estimate under parameter hypothesis θ, because the
recursion (4.3) is natural and computationally attractive. In [3], starting point for the definition of
the QMLE is Theorem 2.2, which says that for all t ∈ Z one has ht(θ0) = σ2

t , where θ0 is the true
parameter and

(4.7) ht(θ) =
α0

β(1)
+

∞∑

j=1

ψj(θ)X2
t−j .

In [3] this leads to the definition of a squared volatiliy estimate at time t under parameter θ basedk
on (X1 . . . ,Xn), which is given by (4.5). Note also that (ht(θ)) obeys

(4.8) ht+1(θ) = α0 + α1X
2
t + · · ·αpX

2
t+1−p + β1ht(θ) + · · · + βqht+1−q(θ), θ ∈ K.

4.2. Limit distribution in the case EZ4
1 <∞. First we list the conditions employed by [3] for

establishing consistency and asymptotic normality of θ̂n. Write θ0 = (α◦
0, α

◦
1, . . . , α

◦
p, β

◦
1 , . . . , β

◦
q )T

for the true parameter.

C.1 There is δ > 0 such that E|Z1|2+δ <∞.

C.2 The distribution of |Z1| is not concentrated in one point.

C.3 There is µ > 0 such that P (|Z1| ≤ t) = o(tµ) as t ↓ 0.

C.4 The true parameter θ0 lies in the interior of K.
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C.5 The polynomials α◦(z) = α◦
1z + · · · + α◦

pz
p and β◦(z) = 1 − β◦1z − · · · − β◦q z

q do not have
any common roots.

Now we are ready to quote the main result of [3]. We cite it in order to be able to compare the
assumptions and assertions both in the light- and heavy-tailed cases; cf. Theorem 4.4 below.

Theorem 4.2 (Theorem 4.1 of Berkes et al. [3]). Let (Xt) be a stationary GARCH(p, q) process

with true parameter vector θ0. Suppose the conditions C.1 – C.5 hold. Then the QMLE θ̂n is

strongly consistent, i.e.,

θ̂n
a.s.→ θ0, n→ ∞.

If in addition EZ4
0 <∞, then θ̂n is also asymptotically normal, i.e.,

√
n (θ̂n − θ0)

d→ N (0,B−1
0 A0B

−1
0 ),

where the (p+ q + 1) × (p+ q + 1)–matrices A0 and B0 are given by

A0 =
E(Z4

0 − 1)

4
E

(
1

σ4
1

h′1(θ0)
Th′1(θ0)

)
,

B0 = −1

2
E

(
1

σ4
1

h′1(θ0)
Th′1(θ0)

)
.(4.9)

4.3. Limit distribution in the case EZ4
1 = ∞. First we identify the limit determining term for

the QMLE. To this end, we set analogously to [3],

Ln(θ) =
n∑

t=1

`t(θ) = −1

2

n∑

t=1

(
X2

t

ht(θ)
+ log ht(θ)

)

and define θ̃n as a maximizer of Ln with respect to θ ∈ K. It is a slightly simpler problem to
analyze θ̃n because (`t) is stationary ergodic, in contrast to (ˆ̀t)t∈N. As is shown in Proposition 4.3

below, θ̂n and θ̃n are asymptotically equivalent. It turns out that the asymptotic distribution of the
QMLE is essentially determined by the limit behavior of L′

n(θ0)/n, up to multiplication with the
matrix −B−1

0 . Actually, these results follow by a careful analysis of the proofs in Berkes et al. [3].
To give some guidance to the reader who wants to verify all details, we briefly repeat the necessary
steps and arguments. Compare also with the similar reference Straumann and Mikosch [28], where
the case of processes with a more general volatility structure than GARCH is treated.

Proposition 4.3. Let (Xt) be a stationary GARCH(p, q) process with true parameter vector θ0.

Suppose the conditions C.1 – C.5 apply. If there is a positive sequence (xn)n≥1 with xn = o(n) as

n→ ∞ and

(4.10) xn
L′

n(θ0)

n

d→ D, n→ ∞,

for an R
p+q+1–valued random variable D, then the QMLE θ̂n satisfies the limit relation

(4.11) xn(θ̂n − θ0)
d→ −B−1

0 D,

where B0 is given by (4.9).

Proof. We first demonstrate xn(θ̃n−θ0)
d→ −B−1

0 D. In a second step we establish xn(θ̃− θ̂n)
a.s.→ 0.

Finally, the assertion (4.11) is an immediate consequence of Slutsky’s lemma.
Step 1. Since for all θ ∈ K the polynomials β(z) have no root in the disc { |z| ≤ 1 + ε },

ε > 0 sufficiently small, the coefficients ψj(θ), see (4.6), and their first and second derivatives
decay exponentially fast, uniformly on K (Lemmas 3.2 and 3.3 in [3]). From this together with
the fact that E log+ |X0| < ∞ (Lemma 2.3 in [3]), one shows by means of Lemma 2.2 in [3] that
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the functions ht are twice continuously differentiable on K a.s. and that differentiation and infinite
sum in (4.6) may be interchanged. As a consequence, (h′t) and (h′′t ) are measurable functions of
(Xt−1,Xt−2, . . .). Since (Xt) is stationary ergodic, so are (h′t) and (h′′t ) (see e.g. Proposition 2.3 in
[28]). This means that Ln is twice continuously differentiable, i.e., L′′

n =
∑n

t=1 `
′′
t , where

(4.12) `′′t (θ) = −1

2

1

ht(θ)2

(
(h′t(θ))Th′t(θ)

(
2
X2

t

ht(θ)
− 1

)
+ h′′t (θ)(ht(θ) −X2

t )

)
, θ ∈ K.

An inspection of the proof of Theorem 4.1 in [3] reveals that θ̃n
a.s.→ θ0. Consequently, for large

enough n the following Taylor expansion is valid:

(4.13) L′
n(θ̃n) = L′

n(θ0) + L′′
n(ζn)(θ̃n − θ0),

where |ζn − θ0| < |θ̃n − θ0|. Since θ̃n is the maximizer of Ln and θ0 lies in the interior of K, one

has L′
n(θ̃n) = 0. Therefore (4.13) is equivalent to

(4.14) n−1L′′
n(ζn) (θ̃n − θ0) = −n−1L′

n(θ0).

Our aim is to apply a uniform strong law of large numbers for proving the uniform convergence
of n−1L′′

n = n−1
∑n

t=1 `
′′
t (see e.g. Theorem 2.5 in [28]). Since `′′t is a measurable function of

(Xt,Xt−1, . . .), it is stationary ergodic. If we can verify E‖`′′1‖K <∞, then in C(K,Rd×d),

(4.15) L′′
n/n

a.s.→ L′′, n→ ∞,

where L′′(θ) = E[ `′′1(θ) ], θ ∈ K. For showing E‖`′′1‖K < ∞, first note that E‖X2
1/h1‖1+s

K < ∞
if s < δ/2 (Lemma 5.1 of [3]) and that ‖h′1/h1‖K and ‖h′′1/h1‖K have finite moments of any
order (Lemma 5.2 of [3]). Then the desired relation is obtained from an application of the triangle
inequality to the norm of (4.12), followed by the use of Hölder’s inequality. Relation (4.15) together

with ζn
a.s.→ θ0 implies

L′′
n(ζn)/n

a.s.→ E[`′′1(θ0) ], n→ ∞.

Take into account that h1, h
′
1 and h′′1 are independent of Z1, h1(θ0) = σ2

1 a.s. and X1 = σ1Z1, in
order to conclude

E[`′′1(θ0) ] = −2−1E
(
(h′1(θ0))

Th′1(θ0)/σ
4
1

)
= B0.

It is shown in Lemma 5.7 of [3] that B0 is negative definite and hence invertible. Thus the matrix
L′′

n(ζn)/n has inverse B−1
0 (1 + oP (1)), n→ ∞. Therefore equation (4.14) is equivalent to

(4.16) (θ̃n − θ0) = −B−1
0 (1 + oP (1))L′

n(θ0)/n,

which shows that xn(θ̃n − θ0)
d→ −B−1

0 D.

Step 2. The relation xn(θ̃n − θ̂0)
a.s.→ 0 follows along the lines of proof of Theorem 4.4 in [3]

or Lemma 7.5 in [28]. With the help of the mean value theorem together with the facts that

‖ĥt − ht‖K
a.s.→ 0 and ‖ĥ′t − h′t‖K

a.s.→ 0 with exponential rate (Lemmas 5.8 and 5.9 in [3]), one can

bound ‖L̂′
n − L′

n‖K ≤∑∞
t=1 ‖ˆ̀′

t − `′t‖K to show supn∈N ‖L̂′
n − L′

n‖K < ∞ a.s. Consequently, since
xn = o(n),

(4.17)
xn

n
‖L̂′

n − L′
n‖K

a.s.→ 0, n→ ∞.

From Taylor’s theorem,

(4.18) L′
n(θ̃n) − L′

n(θ̂n) = L′′
n(ξn)(θ̃n − θ̂n),

where ξn lies on the line segment connecting θ̂n and θ̃n. This line segment is completely contained

in the interior of K provided n is large enough. Since L′
n(θ̃n) = L̂′

n(θ̂n) = 0, equation (4.18) is
equivalent to

(4.19)
xn

n
(L̂′

n(θ̂n) − L′
n(θ̂n)) =

L′′
n(ξn)

n
xn(θ̃n − θ̂n).
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By virtue of relation (4.17), both sides of (4.19) tend to 0 a.s. when n → ∞. From (4.15) and

ξn
a.s.→ θ0, we conclude L′′

n(ξn)/n
a.s.→ E[`′′1(θ0)] = B0. Since B0 is invertible, we can deduce

xn (θ̃n − θ̂n)
a.s.→ 0. This completes the proof of the proposition. �

Now we can state the main theorem of this section. We remind once again that Hall and Yao
[15] derived the identical result by means of different techniques.

Theorem 4.4. Let (Xt) be a stationary GARCH(p, q) process with true parameter vector θ0.

Suppose that Z2
1 is regularly varying with index α ∈ (1, 2) and that C.3 – C.5 hold true. Moreover,

assume that Z1 has a Lebesgue density f , where the closure of the interior of the support {f > 0}
contains the origin. Define (xn) = (na−1

n ), where

P (Z2
1 > an) ∼ n−1, n→ ∞.

Then the QMLE θ̂n is consistent and

(4.20) xn(θ̂n − θ0)
d→ Dα, n→ ∞,

for some non–degenerate α–stable vector Dα.

Before proving the theorem, we discuss its practical consequences for parameter inference:

• The rate of convergence xn has — roughly speaking — magnitude n1−1/α, which is less
than

√
n. The heavier the tails of the innovations, i.e., the smaller α, the slower is the

convergence of θ̂n towards the true parameter θ0.
• The limit distribution of the standardized differences (θ̂n − θ0) is α–stable and hence non–

Gaussian. The exact parameters of this α–stable limit are not explicitly known.
• Confidence bands based on the normal approximation of Theorem 4.2 are false if EZ4

1 = ∞.
• By the definition of a GARCH process, the distribution of the innovations Zt is unknown.

Therefore assumptions about the heaviness of the tails of its distribution are purely hypo-
thetical. As a matter of fact, the tails of the distribution of Xt can be regularly varying even
if Zt has light tails, such as for the normal distribution; see Basrak et al. [2]. Depending on
the assumptions on the distribution of Z1, one can develop different asymptotic theories for
QMLE of GARCH processes: asymptotic normality as provided by Theorem 4.2 or infinite
variance stable distributions as provided by Theorem 4.4.

Proof. The proof follows by combining Theorem 3.2 and Proposition 4.3. Indeed, setting

Gt = h′t(θ0)/σ
2
t , Yt = (Z2

t − 1)/2 and Yt = Gt Yt ,

one recognizes that

(4.21) L′
n(θ0) =

1

2

∞∑

t=1

h′t(θ0)

σ2
t

(Z2
t − 1) =

n∑

t=1

GtYt

is a martingale transform. Regular variation of Z2
1 with index α ∈ (1, 2) implies A.1, but also C.1

and C.2. Condition A.2 is fulfilled because ‖h′1/h1‖K has finite moments of any order (Lemma 5.2
of [3]), and so has ‖G1‖. The condition A.3 holds true if we can show that (Yt) is strongly mixing
with geometric rate, in which case we choose rn = nδ in A(an) for any small δ > 0 so that (3.1)
immediately follows. This choice of (rn) is justified by the arguments given in Basrak et al. [2]. The
strong mixing condition with geometric rate of (Yt) will be verified in Section 4.4. Finally, we have
to give an argument for γ > 0. The latter quantity has interpretation as the extremal index of the
sequence (|Yt|) (see Remark 2.3 in [12]; cf. Leadbetter et al. [18] for the definition and properties
of the extremal index). According to Theorem 3.7.2 in [18], if γ = 0, then if for some sequence (un)

the relation lim infn→∞ P (M̃n ≤ un) > 0 holds, one neccessarily has limn→∞ P (Mn ≤ un) = 1.

Here Mn = max(|Y1|, . . . , |Yn|) and (M̃n) is the corresponding sequence of partial maxima for an
iid sequence (Ri) where R1 has the same distribution as |Y1|. Assume γ = 0. The random variable
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|Y1| is regularly varying with index α since Y1 is regularly varying with index α. Hence (a−1
n M̃n)

has a Fréchet limit distribution Φα, but P (Mn ≤ xan) → 1 does not hold for all positive x. Indeed,
straightforward arguments exploiting

∞∑

j=1

∂ψj(θ)

∂αi
zj =

zi

β(z)
, |z| ≤ 1,

for all i = 1, . . . , p, show that

(4.22)
∂ht(θ)

∂αi
≥ 0 for all i = 0, . . . p,

and

(4.23)

p∑

i=0

αi
∂ht(θ)

∂αi
= ht(θ).

Since the Euclidean norm is equivalent to the 1–norm |x| =
∑p+q+1

i=1 |xi| and αi ≤ M on K, there
is c > 0 such that

|h′t(θ)|
ht(θ)

≥ c

ht(θ)

p∑

i=0

αi

∣∣∣∣
∂ht(θ)

∂αi

∣∣∣∣ =
c

ht(θ)

p∑

i=0

αi
∂ht(θ)

∂αi
= c.

Note that the last two equalities in the latter display are a consequence of (4.22) and (4.23). Hence
we have P (Mn ≤ x an) ≤ P (maxt≤n |Yt| ≤ c−1xan) , and the right–hand side converges to a Fréchet
limit and is never equal to 1 for all positive x. From this contradiction we may conclude that γ > 0.
All conditions of Theorem 3.2 have been verified so that

2a−1
n L′

n(θ0) = 2xn
L′

n(θ0)

n

d→ D̃α,

where D̃α is α–stable (notice that P ((Z2
0 − 1)/2 > an/2) ∼ P (Z2

0 > an) ∼ n−1). Since xn/n =
a−1

n → 0, Proposition 4.3 implies

xn(θ̂n − θ0)
d→ −2−1B−1

0 D̃α = Dα.

Recalling that a linear transform of an α–stable random vector is again α–stable concludes the
proof of the theorem. �

4.4. Verification of strong mixing with geometric rate of (Yt). To begin with, we quote a
powerful result due to Mokkadem [22], which allows one to establish strong mixing in stationary
solutions of so–called polynomial linear stochastic recurrence equations (SRE’s). A sequence (Yt)
of random vectors in R

d obeys a linear SRE if

(4.24) Yt = PtYt−1 + Qt

where ((Pt,Qt)) constitutes an iid sequence with values in R
d×d × R

d. A linear SRE is called

polynomial if there exists an iid sequence (et) in R
d′ such that Pt = P(et) and Qt = Q(et), where

P(x) and Q(x) have entries and coordinates, respectively, which are polynomial functions of the
coordinates of x. The existence and uniqueness of a stationarity solution to (4.24) has been studied
by Brandt [9], Bougerol and Picard [6] and Babillot et al. [1] and others. The following set of
conditions is sufficient: E log+ ‖P1‖ < ∞, E log+ |Q1| < ∞, and the top Lyapunov coefficient
associated with the operator sequence (Pt) is strictly negative, i.e.,

(4.25) ρ = inf{ t−1E log ‖Pt · · ·P1‖ | t ≥ 1} < 0.

Here ‖·‖ is the operator norm corresponding to an arbitrary fixed norm | · | in R
d, e.g. the Euclidean

norm. The following result is a slight generalization of Theorem 4.3 in [22]; see the beginning of
the proof below for a comparison.
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Theorem 4.5. Let (et) be an iid sequence of random vectors in R
d′. Then consider the polynomial

linear SRE

(4.26) Yt = P(et)Yt−1 + Q(et),

where P(et) is a random d× d matrix and Q(et) a random R
d–valued vector. Suppose:

1. P(0) has spectral radius strictly smaller than 1 and the top Lyapunov coefficient ρ corre-

sponding to (P(et)) is strictly negative.

2. There is s > 0 such that

E‖P(e1)‖s <∞ and E|Q(e1)|s <∞.

3. There is a smooth algebraic variety V ⊂ R
d′ such that e1 has a density f with respect to

Lebesgue measure on V . Assume that 0 is contained in the closure of the interior of the

support {f > 0}.
Then the polynomial linear SRE (4.26) has a unique stationary ergodic solution (Yt), which is

absolutely regular with geometric rate and consequently strongly mixing with geometric rate.

Remark 4.6. As regards the definition of a smooth algebraic variety, we first introduce the notion
of an algebraic subset. An algebraic subset of R

d′ is a set of form

V = {x ∈ R
d′ |F1(x) = · · · = Fr(x) = 0},

where F1, . . . , Fr are real multivariate polynomials. An algebraic variety is an algebraic subset which
is not the union of two proper algebraic subsets. An algebraic variety is smooth if the Jacobian of
F = (F1, . . . , Fr)

T has identical rank everywhere on V . Examples of smooth algebraic varieties in

R
d′ are the hyperplanes of R

d′ or V = R
d′ . Recall also the definition of absolute regularity (2.4).

Proof. There is nothing to prove if E‖P(e1)‖s̃ < 1 for some s̃ > 0 as this special case is the
content of Theorem 4.3 in [22]. For the general case it suffices to prove the absolute regularity with
geometric rate for some subsequence (Ytm)t∈Z, where m ≥ 1 is fixed. Indeed, the mixing coefficient
bk is nonincreasing and since (Yt) is a Markov process, the simpler representation

bk = E

(
sup

B∈σ(Yk+1)
|P (B | σ(Y0)) − P (B)|

)

is also valid, see e.g. Bradley [8]. Since ρ < 0, there ism ≥ 1 with E log ‖P(em) · · ·P(e1)‖ < 0. From
the fact that the map u 7→ E‖P(em) · · ·P(e1)‖u has first derivative equal to E log ‖P(em) · · ·P(e1)‖
at u = 0, we deduce that there is 0 < s̃ ≤ s with E‖P(em) · · ·P(e1)‖s̃ < 1. Then note that

(Ỹt) = (Ytm) obeys a linear SRE:

Ỹt = P̃(ẽt)Ỹt−1 + Q̃(ẽt),

where ẽt =




etm
...

e(t−1)m+1




and

P̃(ẽt) = P(etm) · · ·P(e(t−1)m+1),

Q̃(ẽt) = Q(etm) +
m−1∑

j=1

(
j∏

i=1

P(etm+1−i)

)
Q(etm−j).

Since both the matrix P̃(ẽt) and the vector Q̃(ẽt) are polynomial functions of the coordinates of

ẽt and the sequence (ẽt) is iid, (Ỹt) obeys a polynomial linear SRE. Observe that P̃(0) = (P(0))m

has spectral radius strictly smaller than 1, that E‖P̃(ẽ1)‖s̃ < 1 and E‖Q̃(ẽ1)‖s̃ < ∞ and that ẽ1
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has a density with respect to Lebesgue measure on V m, where V m is a smooth algebraic variety
(see A.14 in [22]). Thus an application of Theorem 4.3 in [22] yields that (Ỹt) is absolutely regular
with geometric rate. This proves the assertion. �

The following two facts will also be needed.

Lemma 4.7. Let (Pt) be an iid sequence of k × k–matrices with E‖P1‖s < ∞ for some s > 0.
Then the associated top Lyapunov coefficient ρ < 0 if and only if there exist c > 0, s̃ > 0 and λ < 1
so that

(4.27) E‖Pt · · ·P1‖s̃ ≤ cλt, t ≥ 1.

Proof. For the proof of necessity, observe that there exists n ≥ 1 such that E log ‖Pn · · ·P1‖ < 0.
From the fact that the map u 7→ E‖Pn · · ·P1‖u has first derivative equal to E log ‖Pn · · ·P1‖ at

u = 0, we deduce that there is s̃ > 0 with E‖Pn · · ·P1‖s̃ = λ̃ < 1. Since the operator norm ‖ · ‖ is
submultiplicative and the factors in Pt · · ·P1 are iid,

E‖Pt · · ·P1‖s̃ ≤ λ̃t/n−1

(
max

`=1,...,n−1
E‖P` · · ·P1‖s̃

)
≤ cλt, t ≥ 1,

for c = λ̃−1
(
max`=1,...,n−1E‖P` · · ·P1‖s̃

)
and λ = λ̃1/n. Regarding the proof of sufficiency, use

Jensen’s inequality and limt→∞ t−1E log ‖Pt · · ·P1‖ = ρ to conclude

ρ = lim
t→∞

1

ts̃
E log ‖Pt · · ·P1‖s̃ ≤ lim sup

t→∞

1

ts̃
logE‖Pt · · ·P1‖s̃

≤ lim sup
t→∞

1

ts̃
(log c+ t log λ) =

log λ

s̃
< 0.

This completes the proof of the lemma. �

Lemma 4.8. Suppose that

(4.28) Pt =

(
At 0r×(k−r)

Bt Ct

)
, t ∈ Z,

forms an iid sequence of k×k–matrices with E‖P1‖s <∞, s > 0, where At ∈ R
r×r, Bt ∈ R

(k−r)×r

and Ct ∈ R
(k−r)×(k−r). Then its associated top Lyapunov coefficient ρP < 0 if and only if the

sequences (At) and (Ct) have top Lyapunov coefficients ρA < 0 and ρC < 0.

Proof. For the proof of sufficiency of ρA < 0 and ρC < 0 for ρP < 0, it is by Lemma 4.7 enough to
derive a moment inequality of form (4.27) for (Pt). By induction we obtain

Pt · · ·P1 =

(
At · · ·A1 0r×(k−r)

Qt Ct · · ·C1

)
,

where

Qt = BtAt−1 · · ·A1 + CtBt−1At−2 · · ·A1 + CtCt−1Bt−2At−3 · · ·A1

+ · · · + Ct · · ·C3B2A1 + Ct · · ·C2B1 .

Observe that

max(‖At · · ·A1‖ , ‖Ct · · ·C1‖) ≤ ‖Pt · · ·P1‖ ≤ ‖At · · ·A1‖ + ‖Ct · · ·C1‖ + ‖Qt‖ .(4.29)

It is sufficient to show (4.27) for each block in the matrix Pt · · ·P1. Because of ρA < 0, ρC < 0
and E‖A1‖s, E‖C1‖s ≤ E‖P1‖s < ∞, Lemma 4.7 already implies moment bounds of form (4.27)
for (At) and (Ct). Thus we are left to bound ‖Qt‖. Without loss of generality we may assume
that the constants λ < 1 and s̃, c > 0 in the inequality (4.27) are equal for (At) and (Ct) and that
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s̃ ≤ s ≤ 1. From an application of the Minkowski inequality and exploiting the independence of
the factors in each summand of Qt, we receive the desired relation

E‖Qt‖s̃ ≤ c2t E‖B1‖s̃λt−1 ≤ c̃ λ̃t ,

some λ̃ ∈ (λ, 1), c̃ > 0. For the proof of necessity, assume ρP < 0. Then the left-hand estimates in
(4.29) and Lemma 4.7 imply that ρA < 0 and ρC < 0. �

We now exploit Theorem 4.5 in order to establish strong mixing with geometric rate of the
sequence (Yt) = (GtYt), where Gt = h′t(θ0)/σ

2
t and Yt = (Z2

t − 1)/2.

Proposition 4.9. Let (Xt) be a stationary GARCH(p, q) process with true parameter vector θ0.

Moreover, assume that Z1 has a Lebesgue density f , where the closure of the interior of the support

{f > 0} contains the origin. Then (Yt) is absolutely regular with geometric rate.

Proof. For the proof of this result we first embed (Yt) in a polynomial linear SRE. Without loss of
generality assume p, q ≥ 3. Write

Ỹt =
(
σ2

t+1, . . . , σ
2
t−q+2,X

2
t , . . . ,X

2
t−p+2,

∂ht+1(θ0)

∂α0
, . . . ,

∂ht−q+2(θ0)

∂α0
, . . . ,

∂ht+1(θ0)

∂αp
, . . . ,

∂ht−q+2(θ0)

∂αp
,

∂ht+1(θ0)

∂β1
, . . . ,

∂ht−q+2(θ0)

∂β1
, . . . ,

∂ht+1(θ0)

∂βq
, . . . ,

∂ht−q+2(θ0)

∂βq

)T
.

Since Z2
t = X2

t /σ
2
t , we have

σ(Yt, t > k) ⊂ σ(Ỹt, t > k) and σ(Yt, t ≤ 0) ⊂ σ(Ỹt, t ≤ 0).

Consequently, it is enough to demonstrate abolute regularity with geometric rate of the sequence
(Ỹt). We introduce various matrices. Write 0d1×d2

for the d1 × d2 matrix with all entries equal to
zero and let Id denote the identity matrix of dimension d. Then set

M1(Zt) =




τ t β◦q α◦ α◦
p

Iq−1 0(q−1)×1 0(q−1)×(p−2) 0(q−1)×1

ξt 01×1 01×(p−2) 01×1

0(p−2)×(q−1) 0(p−2)×1 0(p−2)×(p−2) 0(p−2)×1



,

where

τ t = (β◦1 + α◦
1Z

2
t , β

◦
2 , . . . , β

◦
q−1) ∈ R

q−1,

ξt = (Z2
t , 0, . . . , 0) ∈ R

q−1,

α◦ = (α◦
2, . . . , α

◦
p−1) ∈ R

p−2.

Moreover, define

M2(Zt) =




0q×(p+q−1)

U1
...

Up


 and M4 =




V1
...

Vq


 ,
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where Ui ∈ R
q×(p+q−1) and Vj ∈ R

q×(p+q−1) are given by

[U1]k,` = δk`,11 Z
2
t ,

[Ui]k,` = δk`,1(q+i−1), i ≥ 2,

[Vj]k,` = δk`,1j .

Here, δ· denotes the Kronecker symbol. Also introduce the q × q matrix

C =



β◦1 · · · β◦q

Iq−1 0(q−1)×1


 ,

and let

M3 = diag(C, p+ 1), M5 = diag(C, q)

be the block diagonal matrices consisting of p+ 1 (or q) copies of the block C. Finally, we define

P(Zt) =




M1(Zt) 0(p+q−1)×(p+1)q 0(p+q−1)×q2

M2(Zt) M3 0(p+1)q×q2

M4 0q2×(p+1)q M5




and Q ∈ R
p+q−1+q(p+q+1) by [Q]k = α0δk,1 + δk,p+q. Differentiating both sides of (4.8) at the true

parameter θ = θ0, we recognize that

h′t+1(θ0) = (1,X2
t , . . . ,X

2
t+1−p, σ

2
t , . . . , σ

2
t+1−q)

T + β◦1h
′
t(θ0) + · · · + β◦qh

′
t+1−q(θ0).

From this recursive relationship together with σ2
t+1 = α◦

0 + α◦
1X

2
t + · · · + α◦

pX
2
t+1−p + β◦1σ

2
t + · · · +

β◦qσ
2
t+1−q we derive a polynomial linear SRE for (Ỹt):

(4.30) Ỹt = P(Zt)Ỹt−1 + Q.

The proof of Proposition 4.9 follows from the following lemma. �

Lemma 4.10. Under the assumptions of Proposition 4.9, the polynomial linear SRE (4.30) has a

strictly stationary solution (Ỹt) which is absolutely regular with geometric rate.

Proof. The aim is to show that (4.30) obeys the conditions of Theorem 4.5. Since EZ2
1 = 1 it is

immediate that E‖P(Z1)‖ <∞ since this statement is true for the Frobenius norm, and all matrix
norms are equivalent. Treat the blocks M1(Zt), M3 and M4 separately. Observe that the matrix
M1(Zt) appears in the linear SRE for the vector St = (σ2

t+1, . . . , σ
2
t−q+2,X

2
t , . . . X

2
t−p+2)

T , namely

St = M1(Zt)St−1 + (α◦
0, 0, . . . , 0)

T .

Theorem 1.3 of [5] says that (1.1) admits a unique stationary solution if and only if (M1(Zt)) has
strictly negative top Lyapunov coefficient; consequently ρM1

< 0. Moreover, arguing by recursion
on p and expanding the determinant with respect to the last column, it is easily verified that M1(0)
has characteristic polynomial

det(λIp+q−1 − M1(0)) = λp+q−1

(
1 −

q∑

i=1

β◦i λ
−i

)
.

Since (4.1) holds for a stationary GARCH(p, q) process, by the triangle inequality
∣∣∣∣∣1 −

q∑

i=1

β◦i λ
−i

∣∣∣∣∣ ≥ 1 −
q∑

i=1

β◦i λ
−i ≥ 1 −

q∑

i=1

β◦i > 0
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if |λ| ≥ 1, and hence M1(0) has spectral radius < 1. Observe that the building block C has
characteristic polynomial

det(λIq − C) = λq

(
1 −

q∑

i=1

β◦i λ
−i

)
,

showing that its spectral radius is strictly smaller than 1 (use the same argument as before). Thus
the deterministic matrices M3 and M5 have spectral radius < 1, which also implies that their
associated top Lyapunov coefficients are stricly negative. Combining these results, we deduce that
P(0) has spectral radius < 1 and conclude by twice applying Lemma 4.8 that (P(Zt)) has strictly

negative top Lyapunov coefficient. Hence by Theorem 4.5 the stationary sequence (Ỹt) is absolutely
regular with geometric rate. �

Remark 4.11. Since (X2
t , σ

2
t ) is a subvector of Ỹt, stationary GARCH(p, q) processes are abso-

lutely regular with geometric rate; this result has previously been established by Boussama [7].
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to conduct this research. In particular, he is grateful to Paul Embrechts and Alexander McNeil for
stimulating discussions.

References

[1] Babillot, M. and Bougerol, P. and Elie, L. (1997) The random difference equation Xn = AnXn−1 + Bn

in the critical case. Ann. Probab. 25, 478–493.

[2] Basrak, B., Davis, R.A. and Mikosch. T. (2002) Regular variation of GARCH processes. Stoch. Proc. Appl.,

99, 95–115.
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Paris.

[8] Bradley, R.C. (1986) Basic properties of strong mixing conditions. In: E. Eberlein and M. Taqqu (Eds.):

Dependence in Probability and Statistics Birkhäuser, Boston.
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