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1 Introduction

Beginning with the seminal article [25] by W.T. Tutte the combinatorics of
planar maps have been a subject of continuing development, gaining further
impetus in recent years after the realization of its importance in quantum field
theory [10] and in string theory and two-dimensional quantum gravity [2, 13,
20]. In the latter case planar maps play the role of two-dimensional discretized
(Euclidean) space-time manifolds, whose topology equals that of a sphere with
a number of holes, see e.g. [3] for an overview. We shall frequently use the term
planar surface instead of planar map.

Of primary interest up to now have been properties depending on the volume,
i.e. the number of vertices, or the number and length of the boundary compo-
nents, or local properties such as the distribution of vertex degrees, whereas
quantities depending on the internal (graph) metric structure have received less
attention, despite their obvious relevance in e.g. quantum gravity [4]. A rele-
vant quantity to consider in this connection is the so-called statistical Hausdorff
dimension of an ensemble of random planar maps. In this article we use the
following definition of this quantity. Denoting by Br(M) the ball of radius
r around a marked point in the surface M, and by |Br(M)| its volume, i.e.
the number of vertices in Br(M), the statistical Hausdorff dimension DH is
determined by

〈|Br|〉 = Θ(rDH ) , (1)

assuming such a relation exists. Here 〈·〉 is the expectation value with respect
to the probability measure defining the ensemble, and we use the standard no-
tation Θ(φ(r)) for a generic function bounded from above and below by positive
constant multiple of φ(r) for r large enough. It is implicit in the definition that
the ensemble consists of surfaces of infinite extent. We shall define such an
ensemble as a limit of uniformly distributed ensembles of surfaces of fixed finite
volume.

It is also possible, and more common, to define DH directly in terms of an
ensemble of finite surfaces. For instance, one can introduce the so-called two-
point correlation function G(r) defined as a certain integral over finite planar
surfaces with two marked points a fixed (graph) distance r apart, whose expo-
nential decay rate as a function of r can be shown to determine DH , see [3]. This
method was applied to triangulated planar surfaces (or pure two-dimensional
quantum gravity) in [5], where it was argued that DH = 4 (see also [9]).

A different method was recently applied in [11] to quadrangulated planar
maps, making it possible to exploit a clever bijective correspondence between
such maps and so-called well labelled trees. The main result of this work is
to establish the existence of the limit in law of the random variables n− 1

4 rn
as n → ∞, where rn is the radius of a random quadrangulation with n faces,
identifying the limit as the width of the so-called one-dimensional Integrated
SuperBrownian Excursion (or ISE) up to a constant multiple. In view of the
information carried by this result about the radius of a generic surface of given
volume, it seems reasonable to make the identification DH = 4.
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Yet another approach was recently proposed in [6, 7]. In [6] a uniform
probability measure is first constructed on infinite planar triangulations as a limit
of uniform measures on finite planar triangulations. In [7] it is then proven that
the ball of radius r around a marked triangle in a sample triangulation contains
of order r4 triangles up to logaritmic corrections, which can be seen as yet
another manifestation of the Hausdorff dimension being equal to 4.

In this article we adapt the technique of [6] to the case of well labelled trees
and thereby construct by simple combinatorial arguments a uniform probability
measure µ on infinite well labelled trees. We show how to identify well labelled
trees in the support of this measure with infinite quadrangulated planar surfaces
through a mapping that shares the basic properties of the mapping used in
[11] for finite trees and quadrangulations. In particular, there is a one-to-one
correspondence between vertices in a tree and the vertices in the corresponding
surface, except for a certain marked vertex in the surface, and the label r ∈ N of
a vertex in a tree equals the (graph) distance between the corresponding vertex
in the surface and the marked vertex.

Viewing, via this identification, µ as a measure on quadrangulated planar
surfaces, we prove the relation (1) with DH = 4.

The article is organized as follows. In Section 2, we define the space of
rooted (labelled) trees, it is endowed with a topology, and its topological and
combinatorial properties are studied. In Section 3 we construct a so-called
uniform measure on the set of infinite rooted trees, whose vertices are labelled
by positive integers, such that the labels of neighbouring vertices deviate by at
most 1, and such that the root has a fixed label. In case the root has label
1 such trees are called well labelled in [11]. In Section 4 we show that almost
surely the trees have exactly one infinite branch, allowing a definition of the
spine of a sample well labelled tree as the unique infinite non-self-intersecting
path starting at the root. A sample tree can be obtained by attaching (finite)
branches along the spine, independently distributed according to a common
measure ρ̂. In particular, we show in Section 4.2, that the labels along the
spine are described by a certain birth & death process, and that the labels in
the branches are described in terms of a multitype Galton-Watson process. In
Section 5 these two processes are investigated in more detail. In particular, the
birth & death process is shown to be transient, and we determine, as a main
result, the asymptotic behaviour of the average number 〈Nr〉 of vertices with a
fixed label r to be

〈Nr〉 = Θ(r3) (2)

for r large. In Section 6 we show how to extend the mapping of well labelled
trees onto planar quadrangulations to infinite ones. In combination with (2)
this yields (1) and the value 4 for the statistical Hausdorff dimension of planar
quadrangulated surfaces.
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2 Labelled trees

2.1 Definitions and notations

By T we shall denote the set of rooted planar trees, where rooted means that
one oriented edge (i0, i1) is distinguished, called the root, and i0 and i1 are
called the first and second root-vertex, respectively. Here, trees are allowed to
be infinite, but vertices are of finite degree. The adjective planar means that
trees are assumed embedded into the plane R

2 such that no two edges intersect
except at common vertices, and we identify trees that can be mapped onto each
other by an orientation preserving homeomorphism of the plane, that maps root
onto root. In addition, certain regularity requirements on the embeddings are
needed, the discussion of which we postpone until Section 6. A more precise
combinatorial definition is as follows. Once a fixed orientation of R

2 is chosen,
the set of vertices at distance r from the first root-vertex in a given rooted
planar tree τ has a natural ordering. This can be obtained e.g. by choosing a
righthanded coordinate system for R

2 and mapping the tree into R
2 such that

the vertices at distance r from the root i0 are mapped into the the vertical
line through (r, 0) and then ordering according to their second coordinate, in
such a way that, for r = 1, the second root i1 is smallest. We call this or-
dered set ∆r = (ir1, . . . , irnr). The edges in the tree are specified by mappings
φr : ∆r → ∆r−1, r ≥ 1, preserving the ordering, i.e. the edges in τ are given
by (irk, ir−1φr(k)), 1 ≤ k ≤ nr. It is clear that any (finite or infinite) sequence
(∆0,∆1,∆2, . . . ) of finite pairwise disjoint ordered sets, where ∆0 = i0 is a
one-point set, together with orientation preserving maps (φ1, φ2, . . . ) as above,
uniquely specifies a rooted planar tree τ , in which case we write τ = (∆r, φr)r∈N.
We then have (∆r, φr)r∈N = (∆′

r , φ
′
r)r∈N if and only if there exist order preserv-

ing bijective maps ψr : ∆r → ∆′
r such that φ′r = ψr−1 ◦ φr ◦ ψ−1

r for all r.
We have

T =

( ∞
⋃

N=1

TN

)

∪ T∞ ,

where TN consists of trees with maximal vertex distance from the first root
equal to N , i.e. ∆r = ∅ for r > N but ∆N 6= ∅, and T∞ consists of infinite
trees. We say that τ ∈ TN has height (or radius) ρ(τ) = N . The set

⋃∞
N=1 TN

of finite trees will be denoted by T and the size (or volume) |τ | of a finite tree
is defined to be the number of edges in τ . For τ ∈ T∞ we set ρ(τ) = |τ | = ∞.

By a labelled tree we mean a pair (τ, `), where ` : i→ `i is a mapping from
the vertices of τ into the integers Z, such that

|`i − `j| ≤ 1 if (i, j) is an edge in τ .

If, furthermore,

`i0 = k and `i ≥ 1 for all vertices i in τ ,

we say that (τ, `) is a k-labelled tree. A 1-labelled tree is also called a well

labelled tree [11, 12]. We call the set of k-labelled trees W(k)
and, for k = 1,
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we set W(1)
= W. The corresponding sets of finite labelled trees are denoted

similarly without overlining. Obviously, W(k)
and W inherit from T the natural

decompositions

W(k)
= W(k) ∪W(k)

∞ =

( ∞
⋃

N=1

W(k)
N

)

∪W(k)
∞ ,

W = W ∪W∞ =

( ∞
⋃

N=1

WN

)

∪W∞ ,

into finite and infinite k-labelled trees. If ω = (τ, `) is a labelled tree we set |ω| =
|τ | and ρ(ω) = ρ(τ). Moreover, if τ = (∆r, φr)r∈N and ∆r = (ir1, . . . , irnr), we
set

Ξr = ((ir1, `ir1), . . . , (irnr , `irnr
)) ,

in which case we have

|`rk − `r−1φi(k)| ≤ 1 for all r ≥ 1, 1 ≤ k ≤ nr . (3)

Clearly, any sequence (Ξr , φr), r ∈ N, obtained from a tree τ = (∆r, φr)r∈N by
adding labels as above to the vertices of each ∆r fulfilling (3) defines a unique
labelled tree ω, in which case we write ω = (Ξr , φr)r∈N. Furthermore, we have
(Ξr, φr)r∈N = (Ξ′

r , φ
′
r)r∈N if and only if there exist maps ψr identifying the

underlying unlabelled trees and such that the labels of a vertex i and its image
ψr(i) are identical.

2.2 Topology on labelled trees

For r ∈ N0 and ω ∈ W(k) with distance classes Ξs(ω), s ∈ N0, we define
the ball Br(ω) of radius r in ω to be the labelled subtree of ω generated by
Ξ0(τ), . . . ,Ξr(τ), if r < ρ(ω), and equal to ω otherwise. In other words,

Br(ω) = ((Ξ1, φ1), ..., (Ξr, φr)) if ω = ((Ξ1, φ1), (Ξ2, φ2), . . . ) .

Next we define, for ω, ω′ ∈ W(k)
and k fixed,

d(ω, ω′) = inf

{

1

r + 1

∣

∣

∣

∣

Br(ω) = Br(ω
′) , r ∈ N0

}

.

It is trivially verified that d defines a metric on W(k)
. The corresponding open

balls in W(k)
are given by

Bs(ω0) = {ω ∈ W(k) | d(ω, ω0) < s} , for s > 0.

Remark 2.1. The following facts are easy to verify:

• The set W(k) of finite k-labelled trees is a countable dense subset of W(k)
,

and its boundary ∂W(k) in W(k)
equals W(k)

∞ .
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• For s > 0 and ω ∈ W(k)
the ball Bs(ω) is both open and closed and

{ω ∈ Bs(ω0)} ⇔ {Bs(ω) = Bs(ω0)} .

As a consequence, either two balls are disjoint or one is contained in the
other.

• W(k)
is not compact: Let ωn be the (unique) k-labelled tree of height 1

with n + 1 vertices and all labels equal to k. Then d(ωn, ωm) = 1 for
n 6= m and hence ωn, n ∈ N, has no convergent subsequence.

As a substitute for compactness we shall make use of the following result:

Proposition 2.2. Let Kr, r ∈ N, be a sequence of positive numbers. Then the
subset

C =

∞
⋂

r=1

{ω ∈ W(k) | |Br(ω)| ≤ Kr}

of W(k)
is compact.

Proof. Let ωn, n ∈ N, be any sequence in C. For each r ∈ N the set

{

ω ∈ W(k)
r

∣

∣

∣ |ω| ≤ Kr

}

is finite. Hence there exists a subsequence ωni , i ∈ N, such that Br(ωni) is
constant as a function of i. Applying a diagonal argument we may choose this
subsequence such that Bi(ωnj ) = Bi(ωni) for all i ≤ j. It follows that this
subsequence determines a unique tree ω ∈ C such that Bi(ω) = Bi(ωni) for all
i ∈ N. In particular, ωni → ω as i→ ∞, which completes the proof.

2.3 Combinatorics of finite labelled trees

In Section 3 we shall consider the sequence µN , N ∈ N, of measures on W ,
where µN is defined as the uniform probability measure concentrated on

W ′
N = {ω ∈ W | |ω| = N} , N ∈ N0 ,

that is
µN (ω) = D−1

N for ω ∈ W ′
N , µN (W \W ′

N) = 0 ,

where DN = ]W ′
N is the number of well labelled trees of size N .

In order to establish weak convergence of µN , N ∈ N, we need some basic
facts about the sequence DN , N ∈ N, and, more generally, about the sequence

D
(k)
N , N ∈ N, where D

(k)
N is the number of k-labelled trees of size N .

As shown in [11, 12], DN equals the number of quadrangulated planar maps
with N faces, see also Section 6 below. The corresponding generating function
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W (x) has been computed in [25] and is given by

W (x) =

∞
∑

N=0

DNx
N

= 1 + 2x+ 9x2 + . . .

=
18x− 1 + (1 − 12x)

3
2

54x2
, for x ≤ 1

12 , (4)

yielding

DN = 2 · 3N (2N)!

N !(N + 2)!
. (5)

Note that we have included in W (x) the contribution D0 = 1 from the tree with
only one vertex. As consequences of (5) we have

DN ' 2√
π
N− 5

2 12N (6)

and, for each k ∈ N,

D
(k)
N = Θ(N− 5

2 12N). (7)

We shall give a more precise estimate for D
(k)
N below.

By decomposing a tree into trees with first root i0 of degree 1 as in Figure
1 we obtain

W (k)(x) =
1

1 − Z(k)(x)
, (8)

where

Z(k)(x) =

∞
∑

N=1

E
(k)
N xN

is the generating function for the number E
(k)
N of k-labelled trees with N edges

and first root i0 of degree 1. In the following we shall only need the values

zk = Z(k)

(

1

12

)

and wk = W (k)

(

1

12

)

.

Proposition 2.3. For k ∈ N we have

zk =
1

2
− 1

k(k + 3)
(9)

and

wk = 2
k(k + 3)

(k + 1)(k + 2)
. (10)

7



+ ...+k+k kk=

Figure 1: W (k) = 1
1−Z(k) .

Proof. By (8) it suffices to prove (9). For this purpose we note the relations

Z(1)(x) =
x

1 − Z(1)(x)
+

x

1 − Z(2)(x)
(11)

Z(k)(x) =
x

1 − Z(k−1)(x)
+

x

1 − Z(k)(x)
+

x

1 − Z(k+1)(x)
, k ≥ 2 , (12)

which are obtained by decomposing the sum over trees defining Z(k) according
to the degree and the label of their second root i1.

Clearly, these relations determine Z(k) in terms of Z(1). Inserting x = 1
12

and the value z1 = 1
4 obtained from (4), one finds that (9) solves (11) and

(12).

A precise estimate for D
(k)
N is established in the subsequent lemma. Set

dk,N =
D

(k)
N

DN
. (13)

Lemma 2.4. For each k ∈ N, the sequence dk,N , N ∈ N, converges to a limit

dk =
3

280

k(k + 3)

(k + 1)(k + 2)

(

5k4 + 30k3 + 59k2 + 42k + 4
)

. (14)

This limit fulfills

d1 = 1 (15)

d1 + d2 = 12d1(w1)
−2 (16)

dk−1 + dk + dk+1 = 12dk(wk)−2 , k ≥ 2 . (17)

Corollary 2.5.

D
(k)
N ' 2 dk√

π
N− 5

2 12N .

Proof. By decomposing a tree ω ∈ W(k)
N into the two branches attached to the

two root vertices, and the root, we obtain

D
(k)
N =

∑

N1+N2=N−1

D
(k)
N1

(D
(k−1)
N2

+D
(k)
N2

+D
(k+1)
N2

) , (18)
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where by convention D
(0)
N = 0. Thus dk,N is a sum of terms of the form

D−1
N

∑

N1+N2=N−1

D
(k)
N1
D

(k′)
N2

. (19)

The contribution fk,k′,N from 0 ≤ N1 ≤ N/2 to this sum can be written as

fk,k′,N = D−1
N

∑

0≤N1≤N/2

D
(k)
N1
D

(k′)
N−N1−1

= (D−1
N 121−NN−5/2)

∑

0≤N1≤N/2

(D
(k)
N1

12−N1)(D
(k′)
N−N1−112N−N1−1N−5/2) .

Considering the factors in parentheses we see that the first one tends to 12
√

π
2 by

(6), the sum
∑∞

N1=0D
(k)
N1

12−N1 is convergent with sum wk, and the last factor

is bounded and converges to dk′
2√
π

as N → ∞ for each N1, provided the limit

dk′ exists. It follows that

lim
N→∞

fk,k′,N = 12wkdk′

if the limit dk′ exists.
Similarly, the contribution fromN/2 < N1 ≤ N−1 to the sum (19) converges

to 12dkwk′ provided the limit dk exists. Together with (18), (8) and (12) this
yields

dk = 12dk(wk−1 + wk + wk+1) + 12wk(dk−1 + dk + dk+1) (20)

= dkzk + 12wk(dk−1 + dk + dk+1) (21)

provided the limits dk, dk±1 exist, and d0 = w0 = 0 by convention. Using (8)

once more one obtains (16) and (17). But since DN = D
(1)
N , the limit d1 trivially

exists and equals 1. Using (18) recursively we obtain the existence of the limit
dk for all k ∈ N. Finally, it turns out (tediously checking identities between
polynomials of order 8) that the expression given in (14) satisfies (15), (16) and
(17). Clearly, this last set of equations determines dk uniquely.

Another proof of Lemma 2.4, perhaps less transparent, could be obtained as
follows. First, rewrite relations (8), (11) and (12) in the form

W (k+1)(x) =
1

x

(

1 − 1

W (k)(x)

)

−W (k−1)(x) −W (k)(x) , k ≥ 2 , (22)

and note that an expansion of the form

W (k)(x) = wk + ak(1 − 12x) + bk(1 − 12x)3/2 + o
(

(1 − 12x)3/2
)

,

which holds for k = 1 due to (4), also holds for general k as a consequence of
(22). Under suitable analyticity conditions around 1/12, transfer theorems (cf.
[16] or [17, Ch. 5.4]) imply that

D
(k)
N ' 3 bk

4
√
π
N−5/212N .
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It follows that dk exists and

dk =
bk
b1

=
3bk
8
.

Relations (16) and (17) are then immediate consequences of (22).

Remark 2.6. In [9] the solution of equations (11) and (12) with Z(1)(x) given
by (4) and (8) is obtained for all x ≤ 1

12 , and a closed form for dk (formula

(4.19)) is then deduced from the closed form for W (k)(x).

3 Uniform measure on infinite labelled trees

We are now ready to prove one of the main results of this paper.

Theorem 3.1. The sequence µN , N ∈ N, converges weakly to a Borel probabil-
ity measure, µ, concentrated on W∞. We call µ the uniform probability measure
on W∞.

Proof. By Remark 2.1 the denumerable family of balls

V = {B 1
r
(ω) | r ∈ N, |ω| < +∞}

consists of open and closed sets and

i) any finite non empty intersection of sets in V belongs to V ,

ii) any open set in W can be written as a union of sets in V .

By Theorems 2.1, 2.2 and 6.1 in [8] it will suffice to prove that the sequence
µN , N ∈ N, is tight, and that µN (A) converges as N → ∞ for all A ∈ V .

We first prove tightness by showing that for any given ε > 0 and r ∈ N there
exists Kr > 0 such that

µN ({ω ∈ W | |Br(ω)| > Kr}) < ε (23)

for all N . Replacing ε by ε/2r in (23) and choosing Kr correspondingly,
Proposition 2.2 gives the desired compact set C fulfilling µN (C) > 1 − ε for all
N .

We proceed to show (23) by induction on r.
If r = 1, then |Br(ω)| equals the degree of the root-vertex i0(ω). By the

argument leading to (8) there is a one-to-one correspondence between trees ω in
WN with i0(ω) of degree K and K-tuples (ω1, . . . , ωK) of trees, such that the
first root-vertex of each ωa has degree 1 and

|ω1| + · · · + |ωK | = N .

This gives

µN ({ω ∈ W | |B1(ω)| = K}) = D−1
N

∑

N1+···+NK=N

K
∏

a=1

E
(1)
Na

.
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In this sum Na ≥ N/K for at least one value of a = 1, . . . ,K. Combining this
with (7) and

E
(k)
N ≤ D

(k)
N

we obtain

µN ({ω ∈ W | |B1(ω)| = K})

≤ K
∑

N1+···+NK=N

N1≥N/K

c′ ·K 5
2

K
∏

a=2

E
(1)
Na

· 12−Na

≤ c′ ·K 7
2 zK−1

1 = c′K
7
2 41−K ,

where c′ > 0 is a constant independent of N . This proves (23) for r = 1 and for
sufficiently large K1.

Now assume (23) holds for a given r ≥ 1. For any K > 0, we then have

µN ({ω ∈ W | |Br+1(ω)| > K})
≤ ε+ µN ({ω ∈ W | |Br+1(ω)| > K, |Br(ω)| ≤ Kr}) .

Since there are only finitely many different balls Br(ω) with |Br(ω)| ≤ Kr, it
suffices to show that

µN ({ω ∈ W | |Br+1(ω)| > K, Br(ω) = ω̂}) → 0 (24)

as K → ∞, uniformly in N for any fixed ω̂ ∈ Wr. This is obtained in a similar
fashion as for r = 1:

Set Ξr(ω̂) = ((j1, k1), . . . , (jR, kR)) and K ′ = K − |ω̂|. For ω ∈ W with
Br(ω) = ω̂ and |Br+1(ω)| = K let (ω1, · · · , ωK′) be the ordered set of branches
with roots of degree 1 attached to the vertices of Ξr(ω̂), such that the first
L1 ≥ 0 are attached to j1, the next L2 ≥ 0 are attached to j2, . . . , and the last
LR are attached to jR. Then

L1 + · · · + LR = K ′ , (25)

and the labels `1, . . . , `K′ of the first root vertices of ω1, . . . , ωK′ are determined
by k1, . . . , kR. Hence, the subset of trees ω with fixed values of L1, . . . , LR ≥ 0
fulfilling (25) has µN -measure given by

D−1
N

∑

N1+···+NK′=N−|ω̂|

K′
∏

s=1

E
(`s)
Ns

≤ D−1
N

K′
∑

t=1

∑

N1+···+N
K′=N−|ω̂|

Nt≥(N−|ω̂|)/K′

K′
∏

s=1

E
(`s)
Ns

≤ c′′
K′
∑

t=1

K ′ 5
2

K′
∏

s=1
s 6=t

z`s

≤ c′′K
7
2 2|ω̂|+1−K ,
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where the first two inequalities follow by the same arguments as for r = 1, and
where c′′ is a constant depending only on ω̂. Since there are

(

K ′ +R− 1

R− 1

)

≤ KR−1

(R − 1)!

different ways of choosing L1, . . . , LR ≥ 0 fulfilling (25) we have

µN ({ω ∈ W | |Br+1(ω)| = K , Br(ω) = ω̂}) ≤ c′′′KR+ 5
2 2−K ,

for some positive constant c′′′ depending only on ω̂. Clearly, this proves (24) for
r + 1, if Kr+1 is chosen large enough. This completes the proof of tightness of
the sequence µN , N ∈ N.

It remains to establish convergence of µN (B 1
r
(ω̂)) as N → ∞ for all r ∈ N

and finite ω̂ ∈ W . When ρ(ω̂) ≤ r − 1, we have B 1
r
(ω̂) = {ω̂}, and

lim
N
µN (B 1

r
(ω̂)) = 0.

Since B 1
r
(ω̂) = B 1

r
(Br(ω̂)), we assume from now on that ω̂ ∈ Wr, and we set

N̂ = |ω̂|. Then
B 1

r
(ω̂) = {ω ∈ W | Br(ω) = ω̂} .

With the notation ∆r(ω̂) = (j1, . . . , jR), any ω ∈ B 1
r
(ω̂) is obtained by grafting

a sequence (ω1, . . . , ωR) of R trees in W on ω̂ such that the root-vertex i0(ωs)
is identified with js and has same label ks as that of js in ω̂. This gives

µN

(

B 1
r
(ω̂)
)

= D−1
N

∑

N1+···+NR=N−N̂

R
∏

s=1

D
(ks)
Ns

, (26)

where Ns = |ωs|. For a given t = 1, . . . , R, let Ns, s 6= t, be fixed, while Nt is
determined as a function of N by N1+ · · ·+NR = N−N̂ . For the corresponding
term in the sum we obtain from Corollary 2.5 as N → ∞

D−1
N

R
∏

s=1

D
(ks)
Ns

= 12−N̂
D

(kt)
Nt

DNt

12−NtDNt

12−NDN

∏

s6=t

D
(ks)
Ns

12−Ns

→ 12−N̂dkt

∏

s6=t

D
(ks)
Ns

12−Ns .

From this we conclude, for any fixed A > 0, that

lim
N

µN

(

{ω ∈ B 1
r
(ω̂) | Ns ≤ A for all s but one}

)

= 12−N̂
R
∑

t=1

dkt

∏

s6=t

A
∑

Ns=0

D
(ks)
Ns

12−Ns . (27)

12



On the other hand, for fixed 1 ≤ t, u ≤ R, t 6= u we have

D−1
N

∑

N1+···+NR=N−N̂

Nt≥(N−N̂)/R, Nu≥A

R
∏

s=1

D
(ks)
Ns

≤ cst ·
∑

Ns, s 6=t,u
Nu≥A

12−N̂

(

NR

N − N̂

)5/2

N−5/2
u

∏

s6=t,u

D
(ks)
Ns

12−Ns

≤ cst · A−3/2
∏

s6=t,u

wks

= cst · A−3/2 , (28)

where the constants depend on ω̂ only, and we have used (7). This shows that

µN

(

{ω ∈ B 1
r
(ω̂) | ∃u 6= t s.t. Nu ≥ A,Nt ≥ A}

)

≤ cst · A−3/2 , (29)

where the constant depends on ω̂ only. Letting A→ ∞ we finally conclude from
(26), (27) and (29) that

µN (B 1
r
(ω̂))

N→∞−→ 12−|ω̂|
R
∑

t=1

dkt

∏

s6=t

wks . (30)

This concludes the proof of Theorem 3.1, since it is clear from the definition
that the (countable) set of finite well labelled trees has vanishing µ-measure.

For later use we note that the proof extends immediately to the correspond-

ing situation for k-labelled trees. Defining µ
(k)
N as the uniform probability mea-

sure concentrated on the set W ′(k)
N of k-labelled trees of size n, that is

µ
(k)
N (ω) = (D

(k)
N )−1 for ω ∈ W ′(k)

N , µ
(k)
N

(

W(k) \W ′(k)
N

)

= 0 ,

we thus have the following corollary of the preceding proof.

Corollary 3.2. The sequence µ
(k)
N , N ∈ N, converges to a Borel probability

measure, µ(k), concentrated on W(k)
∞ . We call µ(k) the uniform probability mea-

sure on W(k)
∞ .

Having proven the existence of the measure µ we obtain by a slight modifi-
cation of the last part of the proof of Theorem 3.1 the following result on the
measure dµ(ω1, . . . , ωR | A(ω̂)) obtained by conditioning µ on the event

A(ω̂) = B 1
r
(ω̂) = {ω ∈ W | Br(ω) = ω̂} ,

where ω̂ ∈ Wr is a finite tree of height r and with R vertices at maximal
distance r from the first root i0, and we identify A(ω̂) (homeomorphically) with

W(k1) × · · · × W(kR)
as previously, where k1, . . . , kR are the labels of those R

vertices.

13



Corollary 3.3. For ω̂ ∈ Wr we have

µ(A(ω̂)) = 12−|ω̂|
R
∑

t=1

dkt

∏

s6=t

wks

and

dµ(ω1, . . . , ωR | A(ω̂)) = µ(A(ω̂))−1
R
∑

t=1

dµ(kt)(ωt)12−|ω̂|
∏

s6=t

dρ(ks)(ωs) , (31)

where the measure ρ(k) is the supported on W(k) and defined by

ρ(k)(ω) = 12−|ω| for ω ∈ W(k).

Remark 3.4. For ω̂ ∈ W(k)
r and

A(ω̂) = {ω ∈ W(k) | Br(ω) = ω̂} ,

we have similarly with same notation that

µ(k)(A(ω̂)) = 12−|ω̂|
R
∑

t=1

dkt

dk

∏

s6=t

wks

and

dµ(k)(ω1, . . . , ωR | A(ω̂)) = µ(k)(A(ω̂))−1
R
∑

t=1

dµ(kt)(ωt)12−|ω̂|
∏

s6=t

dρ(ks)(ωs) .

Remark 3.5. It is worth noting that the proof of the existence of the limit (30)
and of the factorized form (31) of the conditional probability measure depends
crucially on the fact that the exponent − 5

2 of the asymptotic power dependence

of D
(k)
N on N has value less than −1. For unlabelled planar trees this exponent

is − 3
2 such that similar, but simpler, arguments apply, see [14, 15].

4 Description of the uniform probability mea-

sure on W∞

4.1 More on the topology on labelled trees

Consider a labelled tree ω ∈ W(k) with a marked leaf λ. Let h(λ) denote the
height of λ, i.e, the graph distance in ω of λ from the first root, and let `(λ) be
the label of λ. Let gr(ω, λ, ω′) denote the labelled tree formed, starting from ω,

by grafting a labelled tree ω′ ∈ W(`(λ))
at the leaf λ of ω (see Figure 2). Set

Gr(ω, λ) =
{

gr(ω, λ, ω′) | ω′ ∈ W(`(λ))
}

.

14



λ
ω

ω’

Figure 2: Grafting a tree: gr(ω, λ, ω′).

Proposition 4.1. i) Each set Gr(ω, λ) is both open and closed and can be
written as a union of sets in V.

ii)
µ (Gr(ω, λ)) = 12−|ω|d`(λ),

iii) If ω̂ is finite with radius r, then B1/r(ω̂) = A(ω̂) can be written, up to a
set of µ–measure 0, as a union of sets Gr(ω, λ), all satisfying h(λ) = r.

Proof. i) Setting

a = ρ(ω) − h(λ) + 1 and k = `(λ) ,

we have

Gr(ω, λ) =
⋃

ω′∈W(k)

ρ(ω′)≤a

B 1
ρ(ω)+1

(gr(ω, λ, ω′)) .

Since the family of all open balls with a given radius form a partition of W ,
both Gr(ω, λ) and its complement are open, being unions of open balls with
radius 1

ρ(ω)+1 .

ii) By i) we have

lim
N
µN (Gr(ω, λ)) = µ (Gr(ω, λ)) .

Here

µN (Gr(ω, λ)) =
D

(k)
N−|ω|
DN

=
D

(k)
N−|ω|

D
(k)
N

D
(k)
N

DN
,

for N > |ω|, and ii) follows from Corollary 2.5.
iii) Given a tree ω̂, the grafting operation can be generalized in an obvious

way to a finite sequence of leaves, λ = (λ1, . . . , λR), in ω̂ and a finite sequence
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of trees, ω = (ω1, . . . , ωR) with ωi ∈ W(`(λi))
. We denote the resulting tree by

gr (ω̂, λ, ω) .
Assume that the tree ω̂ has height r, and, as in Section 3, let Ξr(ω̂) =

((j1, k1), . . . , (jR, kR)). Furthermore, let Λt be the sequence obtained by erasing
jt from (j1, . . . , jR). Setting

Ωt =
∏

s6=t

W(ks)
, Ωt =

∏

s6=t

W(ks),

we then have

A(ω̂) =
R
⋃

t=1

⋃

ω∈Ωt

Gr (gr(ω̂,Λt, ω), jt)

⊃
R
⋃

t=1

⋃

ω∈Ωt

Gr (gr(ω̂,Λt, ω), jt)
.
= A′(ω̂).

Thus, the set A′(ω̂) consists of the trees in A(ω̂) such that only one among the
R grafted trees is infinite, the others being finite. From ii) and Corollary 3.3 we
conclude that

µ(A′(ω̂)) =

R
∑

t=1

∑

(ω1,··· ,ωR−1)∈Ωt

dkt12−|ω̂|−|ω1|−···−|ωR−1|

= µ(A(ω̂)).

Remark 4.2. Note that statement ii) in Proposition 4.1 has a straightforward
generalization to a family of leaves, possibly at different heights.

4.2 The spine

We define a spine of a labelled tree ω to be any infinite sequence of labelled
vertices (λr) starting at the first root–vertex of ω, and such that λr is a son of
λr−1. Equivalently, a spine of ω is an infinite labelled linear subtree with the
same first root–vertex as ω. Similarly, for r ∈ N an r-spine of ω is a labelled
linear subtree of height r with same first root–vertex as ω.

The following result will be important for the subsequent developments.

Theorem 4.3. With µ–probability 1, a tree contains exactly one spine.

In other words, the probability measure µ is supported on the set S of trees
with exactly one spine. This is not unexpected, since the limit law in the simpler
case of unlabelled trees has a similar description [1, 14, 15, 18, 22]. Note that
trees in S are obtained by grafting, at each vertex of its spine, a pair of finite
well labelled trees, one on the right and one on the left.

Note that by convention we draw the root at the bottom of the tree so the
right of the spine means the right, when looking at the spine from the root.
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Proof. Set

Sr =
⋃

ω∈W
h(λ)=r

Gr (ω, λ) and S =
⋂

r≥1

Sr ,

and assume that η belongs to S. Then η has infinite size, for it contains a
vertex at each height r. Being an element in Sr ∩ W∞ it follows that η has a
unique decomposition of the form gr(ωr, λr, ω

′
r), where ωr ∈ W and h(λr) = r.

Necessarily, in such a decomposition, ω′
r belongs to W(`(λr))

∞ . Hence, for each
r, there is a unique pair (ωr, λr) such that η ∈ Gr (ωr, λr). It follows that all
spines in η, if any, coincide up to height r, and λr+1 is necessarily the son of λr.
This shows that (λr)r≥0 is the unique spine of η.

Finally, due to Proposition 4.1 iii), µ(Sr) = 1, and thus µ (S) = 1.

For a random µ–distributed element ω of S ⊂ W∞ we introduce the following
notation. By en we denote the vertex at height n on its spine, and the label of
en is denoted by Xn(ω). Furthermore, we let Ln(ω) (resp. Rn(ω)) be the finite
subtree of ω attached to en on the left (resp. on the right) of its spine. Finally,
we let ρ̂(k) denote the measure obtained by normalizing ρ(k), that is

ρ̂(k)(ω)
.
=

12−|ω|

wk
for ω ∈ W(k) .

Theorem 4.4. The measure µ has the following probabilistic description.

i) X = (Xn)n≥0 is a Markov chain with values in N, starting at X0 = 1 and
with transition probabilities

P (Xn+1 = ` | Xn = k) =
(wk)2

12 dk
d` (32)

for |k − `| ≤ 1, k, ` ≥ 1, and zero otherwise. In other words, X is a
discrete birth & death process with parameters

qk
.
=

(wk)2

12 dk
dk−1, rk

.
=

(wk)2

12
, pk

.
=

(wk)2

12 dk
dk+1,

for k ∈ N, where by convention d0 = 0.

ii) Conditionally, given that X = (sn)n≥0, the Ln’s and Rn’s are indepen-
dent, and distributed according to the measure ρ̂(sn) on W(sn).

Proof. Given r ∈ N0 and (s0, s1, . . . , sr) ∈ N
r fulfilling

s0 = 1 and |sn − sn−1| ≤ 1 for n = 1, . . . , r ,

we observe that the set

{ω ∈ S | (Ln, Rn) = (ω′
n, ω

′′
n), 0 ≤ k ≤ r − 1, and Xn = sn, 0 ≤ n ≤ r }
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equals Gr (ω, λ) ∩ S, where ω is formed by grafting the pairs (ω′
n, ω

′′
n) of finite

well labelled trees in W(sn) on both sides of the r-spine ((e0, s0), (e1, s1), . . . ,
(er, sr)), and where λ = (er, sr).

Thus, by Proposition 4.1 ii), the ”finite–dimensional distributions” are given
by

µ ({(Ln, Rk, Xn) = (ω′
n, ω

′′
n, sn), 0 ≤ k ≤ r − 1, and Xr = sr})

= dsr12−|ω|

=

r−1
∏

i=0

1

12

dsi+1

dsi

(wsi)
2

r−1
∏

i=0

12−|ω′
i|

wsi

12−|ω′′
i |

wsi

.

Upon realizing that relations (15)-(17) imply pk + qk + rk = 1, the statements
in the theorem can be read off from this formula.

Remark 4.5. By a slight extension of the argument, it follows that, upon
conditioning on a fixed r-spine, all 2r + 1 branches, including the infinite one
attached to the end of the r-spine, are independently distributed, and the latter
is distributed according to the measure µsr , where sr is the end-label (cf. also
Corollary 3.3).

4.3 The branches

The following theorem describes in more detail the probabilistic structure of
finite subtrees grafted on the left and on the right of the spine: the labels of
the nodes can be seen as types of multitype Galton–Watson processes. In this
setting we have

Theorem 4.6. Conditionally, given that Xn = k, Rn and Ln are independent
multitype Galton-Watson trees, in which the ancestor has type k, and a (type
`)-individual can only have progeny of type `+ε, ε ∈ {0,±1}. In such multitype
Galton-Watson trees, the progeny of a (type `)-individual is determined by a
sequence of independent trials with 4 possible outcomes, ` + 1, ` − 1, ` and e
(for ”extinction”), with respective probabilities w`+1/12, w`−1/12, w`/12 and
1

w`
(that add up to 1), sequence stopped just before the first occurence of e. So

a (type `)-individual has as many children of type `+ 1, `− 1 or ` as there are
occurences of `+ 1, `− 1, ` in the sequence, before the first occurence of e.

Proof. Note that, owing to (22),

(w`+1 + w`−1 + w`)
1

12
+

1

w`
= 1. (33)

With respect to ρ̂(k), the probability that the ancestor hasm sons with respective
labels (k1, · · · , km) and with associated subtrees (ω1, · · · , ωm) is

12−m−
∑

|ωi|

wk
,
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provided that |k − ki| ≤ 1 and ωi ∈ Wki . This probability can be written:

1

wk

m
∏

i=1

wki

12

m
∏

i=1

ρ̂(ki)(ωi).

The theorem follows by induction.

Remark 4.7. Thus, for the special case of multitype Galton Watson trees we
consider here, the picture is quite alike the picture given in [1, 14, 15, 18, 22],
for monotype Galton Watson trees. However, there are some differences: the
spine is not pasted uniformly on the available leaves but with a bias introduced
by the different types, and the finite branching trees are multitype GW tree,
critical in the sense that the average progeny of a (type `)-individual,

w` − 1 = 1 − 4

(k + 1)(k + 2)
,

has supremum in ` equal to 1, but, as we see from the expansion of W (k)(x) at
1/12, with finite expected size. As an additional feature, the succession of types
on the spine is a birth & death process.

5 Label occurrences in a uniform labelled tree

As will be seen in Section 6, the volume of the ball with radius k in a random
uniform quadrangulation with N faces has the same distribution as the number
of nodes with label smaller than k + 1 in a well labelled tree with N edges. In
this section we study the number of nodes with label exactly k in the uniform
infinite well labelled tree, i.e. the number Nk of occurrences of label k in a well
labelled tree with respect to the measure µ. In particular, we determine the
asymptotic behavior of the average value 〈Nk〉µ = Eµ [Nk]. For this purpose
we need to investigate, in subsections 5.1 and 5.2, two types of random walks
associated to µ.

5.1 The random walk along the spine

We wish to determine the asymptotic behaviour of the number Sk of occurrences
of label k along the spine of the uniform infinite well labelled tree. This be-
haviour eventually depends on the asymptotic behaviour of qk, rk, pk as k → ∞.
We shall prove

Proposition 5.1.

lim
k→∞

〈Sk〉µ
k

= lim
k→∞

E1 [Sk]

k
=

3

7
.

In probabilistic terms, Sk can be seen as the sojourn time of the process X
at level k, i.e.

Sk(ω) = ]{n ∈ N | Xn(ω) = k} .
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Proposition 5.1 will be obtained as a consequence of a more general property of
sojourn times Sk of general birth & death processes, stated in the next lemma.

Lemma 5.2. Assume

i) all qk and pk are positive with the exception of q1 = 0,

ii) there exist constants a > 1 and c such that, for all k,

k2

∣

∣

∣

∣

qk
pk

− 1 +
a

k

∣

∣

∣

∣

≤ c

iii) the sequence rk, k ∈ N, has a limit b < 1.

Then

lim
k

Ei [Sk]

k
=

2

(1 − b)(a− 1)

Remark 5.3. In ii), the assumption a > 1 ensures that X is transient, and
that a.s. limXn = +∞.

Remark 5.4. As is usual for Markov chains, the index i in Ei [Sk] stresses the
assumption P (X0 = i) = 1. For instance, in the case of the random uniform
infinite labelled tree, Ei [Sk] = 〈Sk〉µ(i) . Due to transience, Ei [Sk] does not
depend on i if i ≤ k.

Proof. Set

mi,k =
qiqi+1 . . . qi+k−1

pipi+1 . . . pi+k−1
,

which is positive for i ≥ 2 by assumption. By definition, set mi,0 = 1, and let
Ti denote the first hitting time of level i. As is well known [19, Chapter 3], X
is transient if and only if m1,k is the general term of a converging series. Also

Pi+k (Ti = +∞) =

∑k−1
j=0 mi+1,j

∑

j≥0mi+1,j
,

with the special case

Pi+1 (Ti = +∞) =
1

∑

j≥0mi+1,j

.
= ρi.

Let Dk denote the number of downcrossings k + 1 ↓ k and let Y` be the
sojourn time of X at level k after the `-th and before the `+ 1-th (if it occurs)
downcrossing. Also, let Y0 be the sojourn time of X at level k before the first
(if any) downcrossing. Then, for i ≤ k and n ≥ 0,

Pi (Dk ≥ n) = (1 − ρk)n.

Furthermore, conditionally, given that Dk = n, (Y0, Y1, . . . , Yn) is a sequence of
i.i.d. random variables satisfying, for m ≥ 1,

Pi (Yj ≥ m) = (1 − pk)m−1.
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As a consequence, by Wald’s identity,

Ei [Sk] = Ei [1 +Dk] Ei [Y0] =
1

ρkpk
. (34)

To determine the asymptotics of ρk we use that, due to assumption ii), the
expression

k2

(

qk(k + 1)a

pk ka
− 1

)

is bounded as a function of k. Thus

lim
k

sup
`≥0

∣

∣

∣

∣

mk,`

(

k + `

k

)a

− 1

∣

∣

∣

∣

= 0 ,

and, as a consequence,

lim
k

1

k

∑

`≥0

mk,` = lim
k

1

k

∑

`≥0

1
(

1 + `
k

)a =

∫ +∞

1

dx

xa
=

1

a− 1
.

Combining this with the definition of ρk and

lim
k
pk =

1 − b

2
,

the claimed limit follows from (34).

In the next lemma we collect the large-k behaviours of qk, rk, pk that follow
immediately from (10), (14) and (32).

Lemma 5.5.

qk =
1

3
− 4

3k
+ O

(

k−2
)

,

rk =
1

3

(

1 − 4

k2

)

+ O
(

k−3
)

,

pk =
1

3
+

4

3k
+ O

(

k−2
)

.

Proposition 5.1 now follows from Lemma 5.2 and Lemma 5.5, with a = 8
and b = 1/3.

Remark 5.6. By discretisation of the d-dimensional Bessel process, one obtains
a birth & death process that satisfies the assumptions of Lemma 5.2 for (a, b) =
(d − 1, 0). So the birth & death process we meet here is, in a sense, close to a
9-dimensional Bessel process. Similar birth & death processes also appear, in
connection with random non-labelled trees, in the study of the 3-dimensional
Bessel process, and lead to an elegant proof of the decomposition theorem of
Williams [21].
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Proposition 5.1 ensures that Sk is finite almost surely, in other words that
each label k occurs almost surely only finitely many times on the spine. It will
turn out essential for the interpretation of well labelled trees as quadrangulated
surfaces in the next section that the same result holds for the total number
Nk of occurences of a label k on the whole tree, i.e. that Nk is finite almost
surely for each k ∈ N. We shall do this by proving that 〈Nk〉µ is finite, and also
determine its asymptotic behaviour as k → ∞ in subsection 5.3 below. For this
purpose a study of the average value of Nk in a generic branch attached to the
spine is first needed.

5.2 A random walk associated to branches

Consider a branch ωn, left or right, grafted at the n-th site en of the spine
of a well labelled tree ω ∈ S. According to Theorem 4.4, conditionally, given
that k is the label of en, ωn is is distributed according to ρ̂(k). Letting Nj(ωn)
denote the number of occurrences of the label j in ωn we denote by G(k, j) the
(normalized) average value of Nj, i.e.

G(k, j) = Eρ̂(k) [Nj ]

=
1

wk

∑

ω∈W(k)

Nj(ω)12−|ω| .

Consider the set W(k)
? of marked finite trees in W(k), i.e. couples (ω, e) with

ω ∈ W(k) and e a marked vertex of ω, endowed with the measure 12−|ω|

wk
for each

element (ω, e) of W(k)
? . Then G(k, j) can be seen as the measure of the set of

marked trees whose marked vertex has label j.

Given an element (ω, e) of W(k)
? , it has a distinguished (finite) spine

((f0, θ0), (f1, θ1), . . . , (fL, θL)) ,

namely the path connecting the root i0(ω) = f0 to the marked vertex e = fL.
We let

(ω′
1, . . . , ω

′
L−1) and (ω′′

1 , . . . , ω
′′
L−1) ,

respectively, with ω′
t and ω′′

t in W(θt), denote the sequences of subtrees (branches)
in ω grafted on this spine on the left and right, and by ωL ∈ W(j) the subtree
attached to the marked vertex. Since this correspondence between marked trees
on one side and spines together with branches on the other is bijective we obtain,
by summing over branches first, the representation

G(k, j) =
∑

θ:k→j

12−|θ|
|θ|−1
∏

t=0

wθtwθt+1 , (35)

where we have set
θ = (θ0, θ1, . . . , θL) and |θ| = L ,
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and the sum is over spine-label sequences θ with initial label k and final label j.
Evidently, θ can also be viewed as a walk in N from k to j whose steps θt+1 − θt

belong to {0,±1} and have ”probability”

wθtwθt+1

12
.

Alternatively, by Theorem 4.6, the average number of children of an individ-
ual of type k is wk − 1, and due to Wald’s identity, for ε ∈ {0,±1}, the average
number pk,k+ε of children of type k + ε of an individual of type k is given by

pk,k+ε = (wk − 1)
wk+ε

wk−1 + wk + wk+1

=
wkwk+ε

12
,

the second equality owing to (33). Let Σθ(ωn) denote the number of spines of
ωn whose spine-label sequence is θ. Let us consider θ as a word in

N
? = {∅} ∪





⋃

k≥1

N
k



 .

Then, for any a in N, conditionally given Σθ = k, Σθa is distributed as

k
∑

i=1

Yi,

in which Yi stands for the number of children of type a of the last vertex of the
i–th spine with spine-label sequence θ. Thus the Yi’s are i.i.d. with expectation
pθL,a, and, according to Wald’s identity,

E [Σθa] = E [Σθ] E [Y1] = E [Σθ] pθL,a.

By induction, the average number of paths θ in a tree distributed according to
ρ̂(k) is given by

L−1
∏

t=0

pθt,θt+1 = 12−L
L−1
∏

t=0

wθtwθt+1 .

Summing over all spines with initial label k and final label j, we obtain again
the formula for G(k, j).

Theorem 5.7. The function G has the following properties.

i) G(k, j) = G(j, k) for k, j ∈ N

ii) φ′+(k)φ′−(j) ≤ G(k, j) ≤ φ+(k)φ−(j) for j > k ≥ 1

iii) G(k, k) = d · k +O(1)

where

φ′+(k) = Θ(k4) , φ+(k) = Θ(k4) , (36)

φ′−(k)) = Θ(k−3) , φ−(k)) = Θ(k−3) . (37)
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Proof. The symmetry property i) follows immediately from (35). From (35) we
also deduce the difference equation

G(k, j) = δkj +
1

12
wj

∑

ε=0,±1

wj+εG(k, j + ε)

where we use the convention w0 = 0. Setting

H(k, j) =
1

12
wkG(k, j)wj , (38)

this equation can be rewritten as

∆jH(k, j) = 3
(

4(wj)
−2 − 1

)

H(k, j) − δkj ,

where ∆j is the discrete Laplace operator with respect to j, whose action on
functions φ : N → R is given by

∆jφ(j) = φ(j + 1) + φ(j − 1) − 2φ(j) ,

where φ(0) = 0 by convention.
We now proceed to establish the upper bound in ii). Since wk → 2 as

k → ∞ we may replace G by H . For any positive sequence uk, k ∈ N, let us
define Hu(k, j) in analogy with H by replacing w by u in formulas (35) and
(38), such that H = Hw. Using

3
(

4w−2
k − 1

)

≥ 12

k(k + 3)

and defining uk ∈ R by

3
(

4u−2
k − 1

)

=
12

k(k + 3)

we have
wk < uk < 2 . (39)

It follows that
H(k, j) ≤ Hu(k, j)

and Hu fulfills

∆jH
u(k, j) =

12

j(j + 3)
Hu(k, j) − δkj . (40)

Two linearly independent solutions to

∆jφ(j) =
12

j(j + 3)
φ(j) , j ≥ 2 ,

are
φ+(j) = Θ(j4) and φ−(j) = Θ(j−3) . (41)
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These can, in fact, be found explicitly: one first verifies that

φ+(j) = (j + 3)(j + 2)(j + 1)j

is a solution. Applying the method of reduction of order, one then finds

φ−(j) = (j + 3)(j + 2)(j + 1)j

∞
∑

k=j

1

k(k + 1)2(k + 2)2(k + 3)2(k + 4)
,

leading to (41).
We conclude that

Hu(k, j) = ckφ−(j) + c+k φ+(j) for j > k ≥ 1 ,

where ck and c+k are constants depending only on k. Here c+k = 0, because,
according to (39), Hu(k, j) is bounded above by the function H2(k, j), defined
analogously to Hu(k, j) by replacing uk by 2. This case corresponds to the
simple random walk where qk = rk = pk = 1

3 for k ≥ 2 with reflecting boundary
condition at k = 1, and the function H2 fulfills

∆jH
2(k, j) = 0 ,

i.e. it is a linear function of j. But, since φ+(j) = Θ(j4), it follows that c+k = 0
and so

Hu(k, j) = ckφ−(j) for j > k ≥ 1 .

Using the symmetry of Hu(k, j), we get that ck is a linear combination of φ+(k)
and φ−(k) for k ≥ 2, say

ck = c · φ−(k) + d · φ+(k) .

Since Hu > 0 we obviously have d ≥ 0. We claim that d > 0. Otherwise, we
would have

Hu(k, j) = c · φ−(k)φ−(j) for k, j ≥ 2 , k 6= j ,

and, in particular, Hu(k, k± 1) → 0 as k → ∞. Using this in (40) for k = j, i.e.

(

2 +
12

k(k + 3)

)

Hu(k, k) = 1 +Hu(k, k − 1) +Hu(k, k + 1) ,

we conclude that Hu(k, k) → 1
2 as k → ∞. But this contradicts the inequality

Hu(k, k + 1) ≥ (uk+1)
2Hu(k, k)/12

which is an easy consequence of the definition of Hu. Hence we must have d > 0
and (41) implies

Hu(k, k) = d · k +O(1) . (42)
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Redefining φ+(k) to be equal to ck for k ∈ N, we have established the upper
bound in ii).

Similarly, we obtain a lower bound Hv(k, j) for H(k, j) of the same type by
using

3
(

4(wj)
−2 − 1

)

≤ 12

(k − 1)(k + 2)
, k ≥ 2 ,

and defining vk ≤ wk by

vk =

{

w1 for k = 1

uk−1 for k ≥ 2 .

This finishes the proof of ii).
Finally, iii) follows from (42) and the corresponding relation for Hv.

5.3 Label occurences.

We are now ready to calculate the asymptotic behaviour of the average number
〈Nj〉µ = Eµ [Nj] of occurences of the label j in the full uniformly distributed
well labelled tree.

Theorem 5.8.

Eµ [Nj] = Θ(j3) .

Proof. For a random uniform well labelled infinite tree ω ∈ S, we have

Nj(ω) =
∞
∑

n=0

(Nj(Rn) +Nj(Ln)) − Sj .

By Corollary 3.3 or Theorem 4.4 ii) we have

∞
∑

n=0

Eµ [Nj(Rn) +Nj(Ln)] = 2E1

[ ∞
∑

n=0

G(Xn, j)

]

= 2E1

[ ∞
∑

k=1

Sk G(k, j)

]

so that

Eµ [Nj ] = 2

∞
∑

k=1

E1 [Sk]G(k, j) − E1 [Sj ]

≤ 2

j−1
∑

k=1

E1 [Sk]φ+(k)φ−(j)

+ 2
∞
∑

k=j+1

E1 [Sk]φ−(k)φ+(j)

+ E1 [Sj ] (2G(j, j) − 1) .
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Inserting the asymptotic behaviours of φ± and E1 [Sk] from (36), (37), and
Proposition 5.1 one finds that the first two terms in the last expression equal
Θ(j3) while the last term equals Θ(j2). Similarly one obtains a lower bound of
the same type and the theorem is proven.

Corollary 5.9. For each j ∈ N the number of vertices with label j is µ−almost
surely finite.

6 The uniform infinite random quadrangulation

In this Section, we show how to draw an infinite planar map, starting from an
infinite labelled tree in the set

C = {ω ∈ S | ∀j ≥ 1, Nj(ω) < +∞} ,

which, as we saw in the previous section, has µ-measure 1. The result will be
an infinite rooted quadrangulation of a domain in the plane, a notion defined
more precisely below. Our construction follows the same steps as the finite
analog given in [11, Section 3.4]. In particular, the vertices of the tree can
be identified with the vertices of the corresponding quadrangulation, with the
exception of a distinguished root-vertex in the latter. We stress, however, that
we do not establish a one-to-one correspondence between infinite well labelled
trees and infinite quadrangulations in general, since it appears that the reverse
construction of a finite well labelled tree from a finite quadrangulation does
not apply in the infinite case. What is important for our purposes, is that the
constructed mapping Q allows us to transport the measure µ on C to the image
set Q(C) of quadrangulations, and, furthermore, that Q possesses the property
that the label of a vertex of a tree ω ∈ C equals the distance to the root of the
corresponding vertex in the quadrangulation Q(ω) (see Property 6.3 below).

6.1 Regular infinite planar maps

By an infinite planar map we mean an embedding M = E(G) of an infinite
graph G, which we assume is connected and all of whose vertices are of finite
degree, into the 2-sphere S2, such that the edges are represented by smooth
curve-segments that do not intersect each other except at common vertices. In
order to be a useful concept, some regularity properties of the embedding are
necessary, in addition. For instance, it is evidently possible to embed the infinite
linear tree into S2, thought of as the plane R

2 with the point ∞ added, such
that it is mapped onto a circle, which we shall not accept as a valid embedding.
To avoid this we make the following assumption (see also [6]):

α) If pi, i ∈ N, is a sequence of points in a planar map M, considered as the
union of its edges in S2, such that, for i 6= j, pi and pj are contained in
different edges, then the sequence has no condensation point in M.
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Consider now a closed continuous curve C in an infinite planar map M
composed of a sequence of edges. By asumption α), the set of different edges
must be finite and so the complement of C in R

2 decomposes into a finite
number of connected components. If one of the components contains only a
finite number of vertices of M then the part of M inside or on the boundary
of this component is a finite planar map. The faces of this finite planar map
inside the connected component are then also called faces of M. Thus the faces
of M are those obtained in this way for some closed curve C. In particular,
each face is bounded by a polygonal loop composed of a finite number of edges.
This leads us to make another assumption:

β) either an edge of a planar map M is shared by exactly two faces, or it
occurs twice in the boundary of one face of M.

For instance, such a regularity assumption does not hold for infinite trees, that
have only one ”face” with infinite degree. Let D(M) denote the union of the
closed faces of M: due to β), D(M) is an open connected subset of S2. We
identify embeddings M and M′ that are related by an orientation preserving
homeomorphism between D(M) and D(M′).

The planar map is called a quadrangulation if all of its faces are quadranngles,
i.e. bounded by polygons with four edges. By a rooted planar map we mean a
(finite or infinite) planar map with a distinguished oriented edge (i0, i1), called
the root of the planar map. As in the case of trees, we call i0 the first root-vertex.

6.2 The mapping Q
In order to define Q, we need regularity and uniqueness conditions on the em-
bedding of labelled trees in S2: for instance, even with restriction α), the linear
tree can be embedded in many non-homeomorphic ways into S2. However, re-
quiring the embedding to be such that sequences of type α) have exactly one
and the same condensation point in S2, then the embedding is unique up to
homeomorphisms of S2. More generally, this also holds for arbitrary infinite
trees:

The combinatorial definition of a tree given at the beginning of Section 2
determines a unique embedding of the corresponding graph into S2, up to homeo-
morphisms, such that all sequences as in α) have exactly one and the same
condensation point.

Indeed, such an embedding has already been indicated in Section 2, where
vertices at distance r from the first root-vertex are mapped into vertical lines
through (r, 0), the only possible condensation point in question being ∞. We
leave it to the reader to verify uniqueness. Below, we shall consider rooted trees
(finite or infinite) as planar maps via this correspondence.

We are now ready to describe the mapping Q, following closely [11, Section
3.4]. Let ω be a tree in C, considered as a planar map with condensation point
for sequences as in α) equal to c, which we assume is in R

2 (as also indicated
in the figures of this section). By F0 we denote the complement of ω in R

2.
A corner of F0 is a sector between two consecutive edges around a vertex. A
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1

11

1

!!

Figure 3: Contour traversal a) of the left side, b) of the right side of the spine.
The last occurence of label 1 is signaled by an exclamation mark.

vertex of degree k defines k corners. The label of a corner is by definition the
label of the corresponding vertex. A labelled tree ω ∈ C has a finite number
Ck(ω) ≥ Nk(ω) of corners with label k.

The image Q(ω) is defined in three steps.

(1) A vertex v0 with label 0 is placed in F0\{c} and one edge is added between
this vertex and each of the C1(ω) < +∞ corners with label 1. Notice that
this is possible because ω has only one spine. The new root is taken to be
the edge arriving from v0 at the corner before the root of ω.

After Step (1) a uniquely defined rooted planar map M0 with C1(ω) − 1 faces
has been obtained (see Figure 4, with C1(ω) = 7). It is natural to consider the
complement of M0 and its faces as an additional face, which we shall call the
infinite face: as C1(ω) < +∞, there is a last occurence of the label 1 when one
does a contour traversal, as indicated on Figure 3, of the left (resp. right) side
of the spine, and this corresponds to some corner c` (resp. cr) with label 1.
The infinite face is the one with corner c`–v0–cr. The other faces are bounded
by edges joining v0 to two corners on the same side of the spine, and are thus
finite.

The next steps take place independently in each of those faces and will be
described for a generic1 face F of M0. Let k be the degree of F (k can be infinite,
and by construction k ≥ 3). Among the corners of F only one belongs to v0 and
has label 0. If F is finite, let the corners be numbered from 0 to k−1 in clockwise
order along the border, starting with v0. Otherwise, F contains infinitely many
corners both on the left and right side of the spine. Let the corners on the right

1The infinite face does not require special treatment.
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1

v0

11

1

F0

F4

F5

F3

F2

F1

F∞∞∞∞

Figure 4: Step (1), leading to finite faces
Fi, 0 ≤ i ≤ 5, and the infinite face F∞.

of the spine be numbered by nonnegative integers, in clockwise order, starting
with v0, and let the corners on the left of the spine be numbered by negative
integers, in counterclockwise order, starting right after v0. Let moreover `(i) be
the label of corner i (so that `(0) = 0 and in the finite case `(1) = `(k− 1) = 1,
while in the infinite case `(1) = `(−1) = 1). In Figure 5 the corners are explicitly
represented with their numbering for the infinite face.

(2) In each face, the function successor s is defined for all corners, but the
corner at v0, by

s(i) = min{j . i | `(j) = `(i) − 1},

in which j.i has the same meaning as j > i for couples of positive integers,
and also for couples of negative integers, but we assume that a negative
integer is larger than a positive integer. More precisely, if j ≤ 0 and i > 0,
then j . i.

(3) For each corner i ≥ 2 such that s(i) 6= i + 1, a chord (i, s(i)) is added
inside the face. This can be done in such a way that the various chords
do not intersect (Property 6.1 below).

Once this construction has been carried out in each face, a planar map M′ is
obtained.

(4) All edges of M′ with the same label at both ends are deleted. The resulting
map is a quadrangulation M = Q(ω) satisfying β) (Property 6.2 below).

Note that a chord (i, s(i)) of the infinite face can very well join both sides of
the spine (is(i) < 0) if, in the contour traversal of the the right side of the spine,
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Figure 5: Numbering the corners of the infinite face.
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1

!
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2

v0

1

F∞

Figure 6: Inside F∞, a chord joining two sides of the spine,
with `(2) = 2, `(−1) = 1, and s(2) = −1 . 2
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e+2

j
e

e+1

i2

Figure 7: Two possible sizes for f : triangular or quadrangular.

the corner i appears after the last occurence of label `(i)− 1 (see Figure 6). Let
us first prove the two properties that validate the preceding construction.

Property 6.1. The chords (i, s(i)) do not intersect.

Proof. Suppose that two chords (i, s(i)) and (j, s(j)) cross each other. Perhaps
upon exchanging i and j, one has i / j / s(i) / s(j). The first two inequalities
imply, together with the definition of s, that `(j) > `(s(i)), while the two last
inequalities imply `(s(i)) ≥ `(j). This is a contradiction.

Property 6.2. The faces of M′ are of one of the two types in Figure 7: either
triangular with labels e, e+1, e+1, or quadrangular with labels e, e+1, e+2, e+1.

Proof. Let f be a face of M′. Then f is included in a face F of M0 so that its
corners inherit the numbering and labelling of those of F . Let j be the corner
with largest number (w.r.t. /) in f , let e = `(j) and let i1 / i2 / j be the two
neighbours of j in f (cf. Figure 7). The two latter corners both have label e+1,
because the edge (i1, j) has to be a chord so that j = s(i1), and, as i1 / i2 / j,
this implies `(i2) ≥ `(i1) and hence `(i1) = `(i2) = `(j) + 1.

By construction, no other chord leaves i1 so that the face is bordered by the
edge (i1, i1 + 1) of F . Two cases may occur:

• Either i1 + 1 = i2, and the face is triangular,

• Or the face is quadrangular: indeed the corner i1 + 1 has label e + 2
(otherwise chord (i1 + 1, j) would exclude i2 from the face) and the chord
leaving i1 + 1 goes to i2 (otherwise s(i1 + 1) 6= i2, so that `(s(i1 + 1)) =
`(i1 + 1) − 1 = `(i2) and chord (s(i1 + 1), j) would exclude i2).

Observe finally that the deletion of edges with same labels at both ends will
join triangular faces pairwise to form quadrangular faces.

Property 6.3. The labels of the vertices in the tree ω are the distances to the
root of the corresponding vertices in M = Q(ω).
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Proof. By construction, the variation along the edges of the quadrangulation
Q(ω) is 0 or ±1, thus any path from a vertex v with label k to v0 has length
at least k. Choose a face F of M0, such that v is a corner of F and let s
be the successor function associated with F . Then v, s(v), s2(v), . . . , sk(v) is a
length–k–path in Q(ω), that ends at v0.

6.3 Properties of Q(ω)

In this Section, for sake of brevity, D(ω) will denote D (Q(ω)). As remarked
earlier, since, by construction, Q(ω) satisfies β), D(ω) is an open connected
subset of S2. It should be noted that D(ω) depends on the way the chords and
edges in ω are drawn in the plane. However, it is easy to see that, as a planar
map, Q(ω) is unique by construction, and that Q is an injective mapping. In
particular, D(ω) is unique up to homeomorphisms for any given ω ∈ C.

Let now µ̄ be the measure on Q(C) obtained by transporting µ from C, that
is

µ̄(A) = µ(Q−1(A))

for subsets A ⊆ Q(C), such that Q−1(A) is µ-measurable in C. Also, let Br(M)
denote the ball of radius r in a quadrangulation M, that is the finite planar map
whose vertices are those of M with (graph) distance from the first root-vertex
less than or equal to r, together with the edges connecting them (see Section
1). By Property 6.2 we can then reformulate Theorem 5.8 as follows.

Theorem 6.4. Let |Br(M)| denote the number of vertices in Br(M). Then

Eµ̄ [|Br|] = Θ(r4) .

Our final results concern the shape of the domain D(ω), which should be
compared with Theorem 1.10 in [6].

Theorem 6.5. For any well labelled tree ω ∈ C, the complement of D(ω) in
S2 is connected. As such, the domain D(ω) is homeomorphic to a disc,and, in
particular, it has exactly one boundary component.

Proof. According to [23], or [24, Chap. 13], only the first assertion of the Theo-
rem needs a proof: assume on the contrary that the complement of D(ω) is not
connected, such that we can write

S2 \ D(ω) = K1 ∪K2 ,

whereK1 andK2 are non-empty compact subsets of S2 contained in two disjoint
open sets O1 and O2, respectively. From property α) it follows that there is only
a finite number of edges in Q(ω) that are not contained in O1 ∪O2, and clearly
each of the sets O1 and O2 contains an infinite number of edges. Let now
R0 > 0 be large enough such that BR0(Q(ω)) contains all edges that are not
contained in O1 ∪ O2. It follows that if we remove from D(ω) any finite set of
faces containing all vertices in BR0(ω), then the remaining part of D(ω) is not
connected. We shall now obtain a contradiction with this statement.
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Figure 8: The closed curve C, for R = 2.

Let R ≥ 2 be a fixed integer. Let i1 be the vertex with the last occurrence
of label R by (clockwise) contour traversal on the right hand side of ω and,
similarly, let j1 be the vertex with last occurrence of label R − 1 by (counter-
clockwise) contour traversal on the left hand side of ω. Furthermore, let i0 (resp.
j0) be the vertex on the spine of ω at which the branch containing i1 (resp. j1)
is attached. We then obtain a closed curve C in M′ made up of the shortest
paths connecting j1 to j0, j0 to i0 and i0 to i1 together with the chord from i1
to j1 (see Figure 8). By construction all vertices enclosed by this curve have
labels larger than or equal to R− 1 and only finitely many vertices are outside
C. Obviously, the faces of M′ enclosed by C form a connected set. By adding
to this the triangles corresponding to cutting edges in C with equal labels, we
obtain a connected set of faces in M = Q(ω) all of whose vertices have labels
larger than or equal to R− 2 and such that only finitely many vertices in Q(ω)
are not in this set. Since this holds for arbitrary R ≥ 2 we have established the
claimed contradiction, thus finishing the proof.
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