DEFORMATION QUANTIZATION AND GEOMETRIC
QUANTIZATION OF ABELIAN MODULI SPACES.

JORGEN ELLEGAARD ANDERSEN

ABSTRACT. The Berezin-Toeplitz deformation quantization of an abelian vari-
ety is explicitly computed by the use of Theta-functions. An explicit SL(2n,Z)-
equivariant complex structure dependent equivalence E between the constant
Moyal-Weyl product and this family of deformations is given. This equiva-
lence is seen to be convergent on the dense subspace spanned by the pure
phase functions. The Toeplitz operators associated to the equivalence E ap-
plied to a pure phase function produces a covariant constant section of the
endomorphism bundle of the vector bundle of Theta-functions (for each level)
over the moduli space of abelian varieties.

Applying this to any holonomy function on the symplectic torus one obtains
as the moduli space of U(1)-connections on a surface, we provide an explicit
geometric construction of the abelian TQFT-operator associated to a simple
closed curve on the surface. Using these TQFT-operators we prove an analog
of asymptotic faithfulness in this abelian case. Namely that the intersection
of the kernels for the quantum representations is the Toreilli subgroup in this
abelian case.

Furthermore, we relate this construction to the deformation quantization
of the moduli spaces of flat connections constructed in [AMRI1] and [AMR2].
In particular we prove that this topologically defined x-product in this abelian
case is the Moyal-Weyl product. Finally we combine all of this to give a
geometric construction of the abelian TQFT operator associated to any link in
the cylinder over the surface and we show the glueing axiom for these operators.

1. INTRODUCTION

A very concrete link between geometric quantization and deformation quanti-
zation is provided by the Berezin-Toeplitz deformation quantization of a compact
Kahler manifold. We are here in particular referring to the constructions of Bor-
deman, Meinrenken and Schlichenmaier [BMS] and Schlichenmaier [Sch]. Let us
describe the basics of their constructions.

Let (M,w) be a prequantizable compact symplectic manifold, i.e. there exist a
Hermitian line bundle L with a connection whose curvature is the symplectic form.
Suppose further that we have a complex structure I on M, which is compatible
with w, such that My = (M, I,w) is a Kahler manifold.

The Berezin-Toeplitz deformation quantization is then obtained as follows. For
any positive integer k consider the finite dimensional subspace H®(Mj, L*) of holo-
morphic sections of L* inside the Hilbert space of all Lo-sections. The Toeplitz
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operator T;k) of a smooth function f € C*(M) is the operator on H®(M;, LF)
defined as the composite of the multiplication with f and then the orthogonal pro-
jection onto H°(Mj, L¥). For a pair of smooth functions f, f» € C°°(M), one
considers the asymptotic expansion in 1/k of the product T}lk)T]Ef) in terms of
Toeplitz operators, and one finds that

o
T~ ST
=0
where ¢;(f1, f2) € C°(M) are uniquely determined (see Theorem 2 due to Schlichen-
maier for the precise meaning of ~) and gives the Berezin-Toeplitz deformation
quantization
o>
frr9=>Y_(-D'a(f, g,
=0
of M[.

In this paper we study the case where M is any principal polarized abelian
variety. So let M = V/A, where V is a real vector space with a symplectic form
w, and A is a discrete lattice in V' of maximal rank such that w is integral and
unimodular when restricted to A. Let now C be the space of complex structures on
V, which are compatible with w. Then for any I € C, My = (M, I,w) is an abelian
variety.

We compute in this paper (see section 4) the Berezin-Toeplitz *-product explic-
itly:

On M = V/A we have the complex structure independent Moyal-Weyl *-product
* (as discussed in section 2). Now consider the formal transform

Er = e 251 : C®(M) - C®(M)
where Aj is the Laplace operator on Mj. We then have that
E;Y(Ei(f) *1 Er(g)) = f * g.

We prove this relation as follows: For any element in A € A, we get a pure phase

function Fy € C°(M) and we consider the Toeplitz operators Tgi). By an explicit
computation, we get a formula for the matrix coefficients of T;?Ii) with respect to

the Theta-function basis of H°(My, L*) (see formula (1)). Using this expression we
can explicitly compute products of these Toeplitz operators and verify the above
relation between the two products.

In fact, the vector spaces H(Mj, L*) form a vector bundle, say H*), over C,
and there is a natural flat connection in this vector bundle. It is characterized by
the fact that the Theta-function basis is covariant constant with respect to this
connection. By the above mentioned computation one observes that the Toeplitz

operators Tl(mﬁ) are not covariant constant sections of End(H*)). However, we

observe that Er(Fy) € C*°(M)[[h]] is convergent for h = 1/k and that Tg?(FA)(l/k)
is covariant constant (see Remark 1). Let us now discuss how we apply this to
Abelian gauge theory.

Let X be a closed oriented surface of genus g. Let M be the moduli space of flat

U(1)-connections on X.. Then
M = Hom(m (%),U(1)) = H'(Z,R)/H' (%, 7).
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There is the usual symplectic structure w on H'(X, R) which is of course integral
and unimodular over the lattice H'(X,Z). The mapping class group I' of ¥ acts
on M via the induced homomorphims

p:T = Aut(HY(3,Z),w).

In [AMRI1] and [AMR2] we constructed in collaboration with Mattes and Reshetik-
hin a *-product on the moduli space M of flat G-connections on the surface
¥ =¥ — {pt}, where G is either GL(m,C) or SL(m,C). This *-product is con-
structed using a universal Vassiliev invariant for links in ¥’ x [0, 1] and the product
on links in this manifold.

Notice that we in the abelian case G = GL(1,C) = C* have M C M“. We argue
in section 5 that this s-product on MC for G = C* restricts to a *-product on M,
and we will show that the resulting *-product is the Moyal-Weyl product.

In 2 + 1-dimensional Chern-Simons theory, the 2-dimensional part of the theory
is a modular functor, which is a functor from the category of compact smooth
oriented surfaces to the category of finite dimensional complex vector spaces, which
satisfies certain properties. In the gauge-theoretic construction of this functor one
first fixes a compact Lie group K and an invariant non-degenerate inner product on
its Lie algebra. The functor then associates to a closed oriented surface the finite
dimensional vector space one obtains by applying geometric quantization to the
moduli space of flat K-connections on the surface (See e.g. [W1] and [Atl]). - In
the abelian case K = U(1) at hand this means concretely the following. By applying
the geometric quantization dicussed above to the abelian moduli space M, we get
the vector bundle H*) over the space of complex structures C on H*(X,R). This
bundle has a flat connection, and an action of Aut(H'(3,Z),w), which preserves
the flat connection. In this case the modular functor is defined by associating to
¥, the vector space Z(X) consisting of covariant constant sections of H*) over C.
So through the representation p, we get a representation p; of the mapping class
group I" of ¥ on Z;(X). In the non-abelian case the situation was actually developed
generalizing from this abelian case, and one gets a (projective) flat vector bundle
over Teichmiiller space of ¥ (see [ADW] and [H] and [vGdJ]). By restricting to the
embedded copy of Teichmiiller space of X in C, we also get exactly this situation
in the abelian case. However, there seems at present no analog in the non-abelian
case of a construction of a (projective) flat vector bundle over C.

In 24 1-dimensional Chern-Simons theory one also has the following TQFT setup.
Suppose Y is a compact oriented 3-manifold such that dY = (—%;) U Xy, where
Y1 and ¥5 are closed oriented surfaces and —¥; means ¥; with the orientation
reversed. Assume further L is a link inside Y\ Y. Then the TQFT-axioms states
that there should be a linear morphism Z (Y, L) : Z;(31) — Zr(X2), which satisfies
that glueing along boundary components goes to the corresponding composition of
linear maps.

In section 6 we give a geometric construction of these operators in the case where
Y =X x [0,1]. For a simple closed curve -y on ¥, this operator

Zk(7) = Z(X x [0,1],7) € Hom(Z, (%))

is constructed as follows. We consider the holonomy function F, € C°°(M). This
is a pure phase function, hence the series Er(F,) € C*°(M)[[h]] is convergent for

h=1/k for all I € C. According to above discussion Tg?( F)(1/k) gives a covariant
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constant section of End(H®)) as I sweeps through C. We define Z;(v) to be this
section.

In section 6, we use these operators to give a TQFT proof of the following well
known classical result from the theory of Theta-functions

o

ﬂ ker pr, = ker p,

k=1
i.e. the action of the symplectomorphism group of the lattice is asymptotic faithful
on Theta-functions of all levels. In [Al] we have extended this result to the non-
abelian case, where one gets the much stronger result that the action of the mapping
class group is asymptotic faithful (see Theorem 1 in [A1] for the precise statement).

Finally, we combine all of the above to give a geometric construction of

Zi(E % [0,1], L) € Hom(Z, (X))

for any link L as follows. We apply the universal Vassiliev invariant constructed
in [AMR2] to the link L. The result in this abelian case is an infinite series in
h with coefficients in H'(X,Z). By taking the associated holonomy functions, we
get Fr, € C®(M)[[h]]- One sees that Er(Fr) € C®°(M)[[h]] is convergent for
h = 1/k and we define Z (X x [0,1], L) € Hom(Z (X)) to be the covariant constant
se;:ti9n Tg?( FL)(1/k)" Combining all of the above relations, we get the needed glueing
relation

Z1(E % [0,1], L1.Ls) = Zi(E x [0,1], L1) 0 Zi(E x [0, 1], Lo).

We consider it a rather interesting problem to generalize all the constructions
presented in this paper to the non-abelian case. In [A1] we have taken a number of
steps in this direction.

We would like to take this opportunity to thank Stavros Garoufalidis and Bert
v. Geemen for very helpful discussions on this project.

2. DEFORMATION QUANTIZATION

In this section we will very briefly review the basic setup in deformation quan-
tization of Poisson manifolds. We refer the read to [daSW] and the references in
there for a more detailed discussion.

Let (M, {-,-}) be a Poisson manifold. That is we have a bilinear anti-symmetric
pairing {-,-} : C®(M)®@C> (M) — C°° (M), which satisfies the Leibniz rule in each
variable. Let Cp°(M) = C*°(M)[[h]] and C;, = C[[A]]. The notion of a deformation
quantization of a Poisson manifold was introduced in [BFFLS].

Definition 1. A (formal) deformation quantization of (or x-product on) (M, {-,-})
is an associative Cp,-algebra structure * on C5°(M) such that

f*9=fg modh
fxg—gxf=n{f g} modh’
for all f,g € C°(M).

We will further only study *-products such that 1 € C*°(M) is also a *-unit.
Any deformation quantization induces bilinear maps

Cr:C®(M)QC™®(M) = C>®(M),
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which determines the product completely
Fxg=) Culfs9)h", f,g € C™(M).

We say that * is differentiable if C, are bidifferential operators.
Example. Consider R?” with the standard symplectic structure given in the stan-
dard coordinates (z;,y;) by

w= dei A dy;.

Consider the operator P : C*(R2" x R?") — C(R2" x R2") given in coordinates
(=}, yl, z, y!') on R*™ x R*™ by
- o 0 6 0
P ( A ) .
; oz 0y!! Oy Oz
If we now denote the restriction map to the diagonal by D : C®°(R*" x R*") —

C>(R2™) and the canonical map from C*(R2") @ C*°(R2") to C*®(R?*" x R?") by
t, then

{f.g}=DoPou(f®y).

Extend ¢, D and P to Cr° by requiring Cy-linearity. Now define the Moyal-Weyl
product on R2” by

b
f*g:DoeXp(EP)OL(f(X)g).

It is clear that this product induces a deformation quantization of the Poisson
bracket of the standard structure on R2".

We now consider the action of a maximal rank lattice A in R?® on C°°(R*")
induced by R?" acting symplectically on it self by translations. We observe that
D, P and ¢ are equivariant with respect to the action of A. Hence the Moyal-Weyl
product on R2" induces a deformation quantization of the torus M = R*"/A. We
also denote this product on Cp° (M) by *.

For pure phases, we can explicitly compute this x-product. We may without loss
of generality assume that A = Z2" C R2". For each A\ € A consider the functions
Fy € C*®(M) given by

Fy(v) = exp(2mi) - v)
where v € R2” and - denote the usual euclidian inner product.
Lemma 1. For all \, X' € A we have that
FA * F)\l = exp(wihw()\, )\I))F)\J’_}\/ .
Proof. Using the standard symplectic coordinates (x,y) on R2" and induced coor-
dinates (z',y',2",9") on R?" x R?", we have that
(B @ B) (', ay") = expl(2mi(a- ' + by +coa +d-y"),
where A = (a,b) and X = (¢,d). But then we see that
P((F\ ® Fy)) = 2mi(a-d—b-c)u(F\ ® Fy)

and

A

eXp(gP)(L(FA ® Fy)) = exp(mih(a-d—b-c))u(Fy ® Fy).
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By restriction to the diagonal we get the stated formula.

3. BEREZIN-TOEPLITZ DEFORMATION QUANTIZATION.

Let (M,w) be a compact symplectic manifold. Assume that (M,w) is prequan-
tizable, so that we can fix a Hermitian line bundle with a compatible connection
(L, (-,-), V) such that the curvature of V satisfies

i
FV = 27rw.
Such a bundle is called a prequantum line bundle.
For each k € Z we can consider the pre-Hilbert space

HE) = 0= (M, LF)

consisting of smooth sections of L¥. Integrating the inner product of two sections
against the volume form associated to the symplectic form gives the pre-Hilbert
space structure

1
(s1,82) = H/M(sl,sz)w".

For each f € C°° (M) we consider the prequantum operator, namely the differential
operator P;k) : C®(M, LF) — C*®(M, L*) given by

1
Tk
where X is the Hamiltonian vector field associated to f.

Now assume that we have a complex structure I on M, which is compatible
with w. We can then consider the subspace H}k) of H®) consisting of holomorphic
sections of L¥:

P ==V +if

HP = BO(M;, LY).

By standard elliptic theory this is a finite dimensional subspace of H*) and we
have the orthogonal projection 7(*) : H(*) — H}k). From this projection we can
construct the Toeplitz operator associated to any smooth function f € C°°(M),

T H1® — HF | defined by
T{(s) = (f5)

for any element s in H(¥). We recall by Tuynman’s theorem (see [Tuyn]) that if we
compose the prequantum operator associated to f by the orthogonal projection,
then it can be rewritten as a Toeplitz operator:

Theorem 1 (Tuynman). For any f € C°(M) we have that

(k) o ptk) — ;p(k)
m" o Py _le—ﬁAf

as operators from H®) to H}k), where A is the Laplacian on (M,w,I).
We shall interpret this theorem in the light of deformation quantization of a
torus in remark 2 in section 4.

Let us now recall how one constructs a particular deformation quantization on
a compact Kéahler manifold following Schlichenmaier [Sch].
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Theorem 2 (Schlichenmaier). For any pair of smooth functions fi, fo € C*°(M),
we have an asymptotic expansion
oo
(k) (k) (k) -1
Tf1 sz NZTCl(fl,fz)k ’
1=0
where ¢;(f1, f2) € C®(M) are uniquely determined since ~ means the following:
For all L € Z 4 we have that

T(k)T(k) ZTc(zk()ﬁ ) —l” _ O(k_(L'H))-

Moreover, co(f1, f2) = fifo-

This theorem is proved in [Sch], where it is also proved that the formal generating
series for the c;(f1, f2)’s gives a formal deformation quantization! of the Poisson
structure on M induced from w.

Definition 2. The Berezin-Toeplitz deformation quantization x; of the compact
Kahler manifold (M,w,I) is
f*f 9= Z(_l)lcl(fa g)hla
=0
where f,g € C°(M) and ¢;(f,g) are determined by Theorem 2.

n [KS], this Berezin-Toeplitz deformation quantization is identified in terms
of Karabegov’s classification of *-products with separation of variables on Kahler
manifolds. Let %} be the unique *-product with separation of variables whose
Karabegov form is

. 1

O=—rw +p
where p is the Ricci form, which is the curvature form of the Chern connection in
the canonical bundle (see [K]). Let By : Cp°(M) — C;°(M) be the formal Berezin

Transform for %} (see section 2 in [KS]).

Theorem 3 (Karabegov & Schlichenmaier). The Berezin-Toeplitz *-product *r is
related to *; via the formal Berezin-transform:

f*r 9= Br*(Bi(f) *; Bi(g))-

We will also need the following theorem due to Bordemann, Meinrenken and
Schlichenmaier (see [BMS]).

Theorem 4 (Bordemann, Meinrenken and Schlichenmaier). For any f € C*(M)
we have that

lim |73 = sup |£()]-
— 00 zEM

Since the association of the sequence of Toeplitz operators T]’f, k € Z is linear
in f, we see from this theorem, that this association is faithful.

1We have the opposite sign-convention on the curvature, which means our ¢; are (—1)l¢; in

[Sch].
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4. BEREZIN-TOEPLITZ DEFORMATION QUANTIZATION OF ABELIAN VARIETIES

Let us now consider the case where M, the symplectic manifold, is a torus, i.e.
M =V/A,

where V is a real vector space equipped with a symplectic structure w, and A is a
discrete lattice in V of maximal rank such that w is integral and unimodular when
restricted to A. Then there exists a symplectic basis (A1, ... , A2,) over the integers
for A (see e.g. [GH] p. 304). Let (z1,...,%n,Y1,--- ,Yn) be the dual coordinates
on V. Then

n
w= Z dz; A dy;.
i=1
Let A be the automorphism group of (A,w). Then A injects into the symplec-
tomorphisms of (M,w). Using the basis (A1,...,A2,), we get an identification
A2 Sp(2n,Z).

Let now C be the space of complex structures on V', which are compatible with
w, i.e. C consists of the symplectomorphisms I : V' — V such that the symmetric
form w(-,I-) is a positive definite inner product on V. For an I € C the triple
My = (M,w,I) is a principal polarized abelian variety. Notice that A acts on C.

Using the basis, we can identify C with the Siegel generalized upper half space

H={Z e M,,(C)|Z=2'Im(Z) > 0}.

For any I € C, we have that (A1,...,A,) is basis over C for V with respect to
I. Let (z1,...,2n) be the dual complex coordinates on V relative to the basis
(M,---,An)- The complex structure I determines and is determined by a unique
Z € H such that

z=x+2Zy.

Since any Z € H gives a positive complex structure, say I(Z), compatible with the
symplectic form, we have a bijective map I : H — C, given by sending Z € H to
I(Z). For a Z € H, we use the notation X = Re(Z) and Y =Im(2).

Let us now for each I € C explicitly construct a holomorphic prequantum line
bundle £; over M, by providing a lift of the A action on V to the trivial line
bundle £ = V x C, such that the quotient is £;.

To this end we need a system of multipliers ey € C*°(V'), which are non-where
vanishing, holomorphic with respect to I and satisfying the following compatibility
relations

ex (v + Nex(v) =ex(wex(v+ ) = exyx (v)
for all A\, ' € A. The action of A on £ is then given by
Av,2) = (v+ A ex(v)z),

for all A € A and (v,2) € L.

If we fix the multipliers for the basis (A1,. .. , Aan), then the compatibility equa-
tions uniquely determine the multipliers for all A € A. We fix the multipliers for
I(Z) as follows:

ex(2)=1, _ i=1,...,n,
e (z) = e 2mizi—miZii - j=n 41 ..., 2n.
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Let us now introduce a Hermitian structure in £;. First we introduce the following
function:

h(z) = e 2mvYy

where as above z = 2 + Zy. On L we consider the Hermitian structure h(-, Ve
where (-,-)c is the standard inner product on C. Since

h(z + \) = mh(z),

we see that this Hermitian structure is A-invariant and induces a Hermitian struc-
ture {-,-) on Ly. By general theory, see e.g. section 2.6 in [GH], we have that the
Chern connection of (L, {-,-)) has curvature %w.

The space of holomorphic sections of £%, H?(Mp, £%), has dimension k", and
they give a vector bundle H*) over C, by letting H}k) = HO(Mp, Ck).

The L%-inner product on H°(My, £%) is given by

(51,82)=/ 51(2)s2(2)e 2™V Y Vdudy
M

for 81,82 € HO(MI,[}IC)
We can give an explicit basis for this space in terms of the classical Theta-
functions of level k:

0, k(Za Z) — Z e7rik(l+a)-Z(l+a) e27rz'k(l+a)-z)
lezn
where a € Z"/Z™.
These Theta-functions satisfy the following heat equation
Oak _ 1 3Oy
8Zi' n Amik 62;’625 )
The geometric significance of this equation is as follows. Let us define a connec-

tion D in the trivial C*°(C")-bundle over H, by the following assignment

5, o0 1 &
BZL;]‘ N 8Zij 4drik 62’,'82’]' '

Using the coordinates z = x+ Zy over the point Z € H to identify HO(MI(Z), k)
with a subspace of C®°(C"), we get an embedding of the bundle H*) as a sub-
bundle, say H®) of this trivial C°°(C")-bundle, which is preserved by D. Hence
we get an induced connection I in H®). The covariant constant sections of H ()
with respect to D are identified with the Theta-functions under this embedding.
From this it follows that this connection is flat. This connection can according to
[Ram] and [Wel] be identified with the flat Lo-induced connection in H(*). Parallel
transport in H*) with respect to the connection I provides a canonical identifi-
cation of the geometric quantization of M; for varying I, since D is flat and H is
contractible. - Since the Theta-functions are covariant constant, they explicitly re-
alize this identification. The usual action of Sp(2n,Z) on Theta-functions induces
an action of A on the bundle H*) which covers the A-action on C = H.

We can explicitly compute the inner products (Oq,x, ©p,k), by first interchanging
the sum and integral by absolute convergence of the sum, then doing the z-integral
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and finally evaluating the remaining sum of y-integrals as one Gaussian integral
over R"*:

0 a#[ modZ"
(©ak, Opk) ={ (27k"[Y|)~1/2  otherwise
where |Y] = det(Y).

Let us therefore introduce the norm (-,-)y = (2"k"|Y|)'/2(.,-), with respect to
which ©4,x(Z) give an ortho-normal basis of H°(M(z), E'}(Z)). This gives H*) a
Hermitian structure compatible with D.

Let (r,s) € Z™ x Z™ and consider the function F,, € C®(M) given in the
coordinates (z,y) by

E. 5(37; y) — 627ri(r-1+s-y)‘

We shall now study the Toeplitz operators Tg:)s associated to the function F; 5. In

fact we will compute the matrix by which T}’j)s acts on H°(Mp, £¥) relative to the
Theta-function basis ©, ;. Hence we just need to compute (Fy 5041, Opa,k). This is
done similarly to the computation above. Using absolute convergence, the sum and
the integration is interchanged. Then the z-integral gives zero unless a — 3 = —[7],
where [7] means the residue class of 7 mod Z". The remaining single sum of y-
integrals rewrites to a single Gaussian integral over R” just as above, and we get
the result that

(1) (Fr,s®a,k7 (')ﬁ,k)Y — (5(1_&_[%]6—"T"r-ire—%ris-ae—ﬂQ(5—77')-(27rkY)_1(5—77')‘

Hence in the basis O 1 (Z) the matrix coefficients (T},’:)s )a,p are given by (Fr.,s0ak; Op.k)y -
A simple rewriting gives

(k) -
(Tf(r,s,Z)(k)Fr,s)aaﬁ - 504—@—[%]6

i .
—tr.s —2mis-«
k e ,

where

flr,s,Z)(k) = B (s X1)Y T (54 X7) g For VT

Remark 1. The Toeplitz operators T}’j)s are sections of End(H®)) over C. The
flat connection D induces a flat connections D¢ in the bundle End(H (k)), with re-
spect to which we see that Tlg:)s is not covariant constant. However the operators

Tf(l(? 5,2)(k)Fy., OT€ covariant constant.

Proposition 1. Let Apz) be the Laplace operator with respect to the metric
91(2) ('a ) = 47rw(-, I(Z))
on M. Then

e~ HADE, = f(r,s,Z)(k)Fy,.

Proof. We recall that
1 0 0 ., 0 0 0 0
Az __E{(a_y+X%).Y (6—y+X%)+—-Y—}.
We compute that
0 0 0

(8_y + Xa—) -Y’l(a—y +X%)Fm(m,y) = 47?2 ((s+Xr) Y s+ Xr)) Frs(z,y)
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and that
0 0
— . Y_—F
o o r,s(xay)

Hence we obtain the desired formula.

= 472 (r-Yr)F, 4(z,y).

By substituting h for k~! we obtain the formal transform
Ep = e 321 : C° (M) — C°(M).
We observe that Ey, I € C is A-equivariant, since for all a € A, we have that
a* o Ep = E(qry)a”.

Theorem 5. Let xy, be the x-product obtained by applying Berezin-Toeplitz defor-
mation quantization to My. Then for f,g € C°(M), we have that

Er ' (Br(f) 1 Er(g)) = f x g,
where x is the Moyal- Weyl product.

Proof. Define T =T1®), : HO(M;, £k) — HO(M;, £%). Then

— A
e 2k IFT’S

s, —2mis-«

(T3 )arp = Oap,—rz1e” * "%

rs

We then compute that
(T(k) (k) )a,

Tips —Zity —2Tiy.p —2mi(st+u)a
p €
t,u

a— B [r+t]e_ k [ k e

é
— ——(ru ts)(T(k)

7‘+t s+u)
Hence we see that
T(k)l T(k)l =i (pu—t- s)T(k)
e 22 F,, ¢ 2%IF,, o~ 3k APy s+u

SO
EI(FT',S) *r EI(Ft,u) = ewz'h(r-u_t-s)EI(Fr+t,s+u)-

By Lemma 1, the result now follows.

Corollary 1. We have the following relation between Toeplitz operators

(k) (k) (k)
(2) T /w0 TEaE /0 = T a8 (18
Remark 2. Comparing E; with Tuynman’s result, Theorem 1, we see that to first
order E; transforms the Toeplitz operators to the classical geometric quantization
operators.

Remark 3. Combining the result of Karabegov and Schlichenmaier stated in The-
orem 3 with the above, we see that Ej o By provides an equivalence between the
x-product with separation of variables x; on Mj, whose Karabegov form is —%w
and the Moyal- Weyl x-product.



12 JORGEN ELLEGAARD ANDERSEN

5. THE TOPOLOGICAL DEFORMATION QUANTIZATION OF THE ABELIAN MODULI
SPACE

Let ¥ be a closed oriented surface of genus g. Let M be the moduli space of flat
U(1)-connections on ¥. Then

M = Hom(m(%),U(1)) = HY(Z,R)/H (, 7).

There is a symplectic structure w on H'(X,R) given by the cup product, followed
by evaluation on the fundamental class of ¥.. By Poincare duality, we have that w
is integral and unimodular over the lattice H'(X,Z). The mapping class group T
of ¥ acts on M via the induced homomorphism

p:T = Aut(HY(Z,Z),w).

The homomorphism p is surjective and has the Toreilli subgroup of I" as its kernel.
Let p be a point on ¥ and let £’ = ¥ — {p}. Since U(1) is abelian we have that

M = Hom(7 (X'),U(1)).

In [AMR]1] and [AMR2] we constructed in collaboration with Mattes and Reshetikhin
a *-product on the Poisson manifolds

MY = Hom(m (¥'),G)/G

where G is either GL(m, C) or SL(m, C) and the Poisson structure is determined by
the choice of an invariant symmetric bilinear form on the Lie algebra of G. Notice
that we in the abelian case G = GL(1,C) = C* have M C M¢.

We will in this section argue that this x-product on M for G = C* restricts to
a sx-product on M, and we will show that the resulting *-product is the Moyal-Weyl
product. Let us review the constructions in [AMR1] and [AMR2].

First we recall the description of the Poisson structure on M€ in terms of chord
diagrams on the surface given in [AMRI].

Definition 3. A chord diagram is a graph consisting of disjoint oriented circles
Si,i € {1,...,n} and disjoint arcs Cj,j € {1,...,m} such that:

1. the endpoints of the arcs are distinct

2. U;0C; = (U;Si) N (UjCj)

The arcs are called chords, the circles S; are called the core components of the
diagram.

Definition 4. A geometrical chord diagram on ¥’ is a smooth map from a chord
diagram D to X', mapping the chords to points. A chord diagram on X' is a class
of geometric chord diagrams modulo homotopy.

Definition 5. By a generic chord diagram (on X') we will mean a geometrical
chord diagram on X' such that all circles are immersed, and with all double points
transverse.

Clearly every chord diagram on ¥’ contains generic chord diagrams.
Consider the complex vector space Vs with the basis given by the set of chord
diagrams on X' and the subspace Wy generated by the 4T-relations (see [AMRI]).

Definition 6. The algebra ch (¥') := Vs /Wy is called the algebra of chord dia-
grams on X'.
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It has a natural ring structure with multiplication given by union of chord dia-
grams, with unit the empty diagram.
These rings are graded by the number of chords

ch (2') = €P ch™ ()
n>0
and we have an associated filtered space with filtered components ch,, (£') :=
@D,,>,, ch™ (£') and completion ch (') = [],,, ch™ (Z').
Recall from [AMRI1] that ch (¥') has a natural Poisson structure given as follows:
Assume D1 U Ds is a generic chord diagram. For p € D; N Dy we define the oriented

intersection number by
1>< 2
+1 for /p

€12(p) :== 9 1
—1 for >p<

where 1 and 2 indicate components of the corresponding diagrams.

For each p € D1 N Dy we define D1 U, Dy to be the chord diagram on ¥’ given
by joining Dy ' (p) and Dy ' (p) by a chord. Under the above assumptions we define
their Poisson bracket to be

3) {[D1],[D2]} == >~ e1a(p)[D1 Uy Do
peED1ND2
It is closely related to the Poisson structure on the moduli space of flat G-
connections on X', where G is a complex Lie group with an invariant bilinear
pairing on its Lie algebra. The following is one of the main results of [AMR1]:

Theorem 6. Given a finite dimensional representation of G, there is a Poisson al-
gebra homomorphism F (given by formula (2) in [AMRI1]) from ch (') to the Pois-
son algebra O(M%) of algebraic functions on the moduli space of flat G-connections
on Y!'. This homomorphism is in many interesting cases surjective, including the
case of G being GL(m,C) or SL(m,C) and the representation being the defining
representation.

A connected geometric chord diagram D with zero chords is just a closed curve
on ¥', and the function Fp associated to this diagram is simply just the holonomy
function of the curve D. For non-connected diagrams with zero chords, the function
is simply just the product of the holonomy functions for each component. Since we
have the following local relation (see [AMR2]) for G = GL(m, C)

Wl

we see that this determines the homomorphism F' completely in this case. In the
very special case of G = GL(1,C), which interest us here the relation, which we
get from the Cayley-Hamilton theorem, is the following very simple relation (see
[AMR2])

> X |

This tells us that for a chord diagram D on ¥', the function Fp only depends on
the integer homology classes of [D] € H!(X,Z), that is the sum in integer homology
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of the images of the core components. For v € H'(X,Z) we simply use the notation
F, for Fp for any chord diagram D such that [D] = .
Further, if we combine the two relations we get of course

X

which we will see gives an enormous simplification, when we compute the *-product.

Let us now recall from [AMR2], how we quantize the Poisson algebra of chord
diagrams and how this induces a *-product on M.

Denote by L(X') the C-vector space spanned by (framed) links in ¥’ x [0, 1] (by
a link we mean an isotopy class of smooth imbeddings (S1)” — X' x [0, 1]) We have
a multiplication on L(X') defined by the following rule: Let L; and Lo be links in
¥’ x [0,1]. Isotope L; such that it is contained in ¥’ x [0, 3] and Lo such that it is
contained in ¥’ x [%,1]. Then define

Li.Ly =L ULy

where Li U Ly C (%' x [0,1/2]) Usyxq1 /2y (2 % [1/2,1]) = ' x [0,1] .

This multiplication determines on L(X') the structure of an associative (in gen-
eral noncommutative) ring with the empty link being the unit element.

Let us now recall the Vassiliev filtration on L(X'). Let L C ¥’ x [0, 1] be a link
and Dy, C ¥’ some link diagram of L, so that Dy, is (an isotopy class of) a regular
projection of L to ¥'. As usual we distinguish vertices of two types: For each vertex
v € Dy, we introduce an oriented crossing number e(v) such that a positive crossing
gives +1 and a negative gives —1.

If the diagram Dy, has vertices vy, ...,v, with corresponding oriented crossing
numbers €1, ..., €, we also denote it by D" " when we wish to emphasize the

types of the crossings. We may regard L as an equivalence class [Dp] of diagrams
that are related by Reidemeister moves.

Introduce the following operation V: Choose a set of crossings v;,,...,v;,, of
Dy, and set
Vvil,---,’l)im Dy = Z €y ---€ipy [Dzl,...,e"]

€ig yuees€ipy =E1

This maps the link diagram Dy, to a linear combination of links whose regular
projections are obtained from D by switching crossings.

Now let L, (X') C L(X') be the span of all elements of the form V
where Dy, runs over all possible link diagrams.

The filtration L(X') D L1 (X") D Lo(¥') ... is compatible with the algebra struc-
ture. We get a Poisson structure on

L6r(8") = @ Ln(S)/ Lnia (),
n>0

Dy

’Uil geeasVipy

since if z € L,, and z' € L,, then z.x' — 2'.x € L, 1,41 and we define
{lz],[2']} = [z.2" — 2".2] € Linyni1(2')/Lingn2(E).
Set Loo (X') := Nyen Ln (¥') and L' (¥') := L (¥') /Lo (X).
To any element D € ch(™ (X') we can associate an element A (D) € L (%) /L1 (2')
by setting

A(D):=V Dy, mod Ly 1 (2)

Viq sy Vip
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for any link L that projects to the diagram D, where {v;,,...,v;, } is the set of
chords of D. This defines a graded linear map X : ch(¥') — Lg.(X'), which
according to Proposition 9 in [AMR2] is a graded Poisson homomorphism and in
fact an isomorphism, since there exists a universal Vassiliev invariant for ¥':

A universal Vassiliev invariant is a filtration preserving linear map V : L(¥') —

ch(X') such that
V(A(D)) = D mod chyy1(X'),

for all D € ch®)('). By Theorem 12 in [AMR2] we have that such an invariant
exists.

The #-product on chord diagrams is now induced via a universal Vassiliev in-
variant from the product on L(X') as follows:

The extension V : L/(Z) — ch(X') is by Theorem 22 in [AMR2] an isomorphism
and according to Theorem 24 and formula (7) in [AMR2] we define the *-product
on ch(X)[[h]] to be

Dyx Dy = b esPP) 3 7 (VH(D).V (D) O
i=1

where V(L) = 352, V(L)@ and V(L) € ch®d ().
The * product on O(M%)[[R]] is defined as follows. Let D; and D3 be two chord
diagrams on X'. Then Fp,, Fp, € O(M%) and we define

FD1 *Top _FD2 = FDl*DZ‘

By theorem 29 in [AMRZ2] this is well-defined and by theorem 10 in [AMR1], this
determines the x-product on M® uniquely. For G = C* we have the following
result.

Theorem 7. For any two elements A and X' in H{(X,Z), we have that
F)\ *Top F)\I = exp(m’hw()\, )\I))FA_H\/,
hence * Top restricts to the Moyal-Weyl x-product on M C M%, G = C*.

Proof. We refer the reader to section 3.3 in [AMR2] for the construction of the
universal Vassiliev invariant for ¥'. The important point is however now that the
relation (6) means that a chord only contributes a factor h. This has the effect,
that the associator is mapped to the identity morphism. This is easily seen from
the formula for the associator in [LM]. Furthermore the +-crossing morphisms are
simply just mapped to exp(:l:%) times the identity morphism.

Suppose now that D and D’ are geometric chord diagrams in generic position
on the surface X' which represents v and «' respectively. When we compute
V(V D).V (D)@ we can ignore the associators. The only contribution we
are left with is therefore a factor of exp(+2%) times y + ' for each intersection p
between D and D', the sign being equal to the sign of the intersection at p between
D and D'. The theorem follows directly from this.
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6. RELATIONS TO ABELIAN CHERN-SIMONS THEORY

In 2 + 1-dimensional Chern-Simons theory, the 2-dimensional part of the theory
is a modular functor, which is a functor from the category of compact smooth
oriented surfaces to the category of finite dimensional complex vector spaces, which
satisfies certain properties. In the gauge-theoretic construction of this functor one
first fixes a compact Lie group K and an invariant non-degenerate inner product
on its Lie algebra. The functor then associates to a closed oriented surface the
finite dimensional vector space one obtains by applying geometric quantization to
the moduli space of flat K-connections on the surface (See e.g. [W1] and [Atl1]). -
In the abelian case K = U(1) at hand this means concretely the following. For a
closed oriented surface ¥ we recall from the previous section that

M =HYS,R)/H (3,7)

and the symplectic structure on M is introduced from that on H'(XZ,R), which
is integral on H'(¥,Z) and unimodular. Hence we can apply the discussion in
section 4 to our abelian moduli space M. Thus we have the Hermitian vector
bundle H®) over the space of complex structures C on H'(X,R). This bundle has
a flat connection, and an action of Aut(H'(¥,Z),w), which preserves the Hermitian
structure and the flat connection. In this case the modular functor is defined by
associating to X, the vector space Z;(X) consisting of covariant constant sections
of H®) over C. So through the representation p, we get a representation py of the
mapping class group T of T on Z; (T).

In 2+41-dimensional Chern-Simons theory one also has the following TQFT setup.
Suppose Y is a compact oriented 3-manifold such that Y = (—%1) U Xo, where
¥; and X5 are closed oriented surfaces and —¥; means ¥; with the orientation
reversed. Assume further L is a link inside Y\ Y. Then the TQFT-axioms states
that there should be a linear morphism Z; (Y, L) : Z;(31) — Z(X2), which satisfies
that glueing along boundary components goes to the corresponding composition of
linear maps. We will give a geometric construction of these operators in the case
where Y = ¥ x [0,1].

Let us first provide a geometric construction of the morphisms

Zk(7) = Z1(2 x [0,1],7) € Hom(Z,(X)),

for any simple closed curve v on the surface ¥ x {1/2} = X.

To a simple closed curve v on X, we consider the holonomy function F, €
C*(M). This is a pure phase function, hence the series E;(F,) € Cp°(M) is
convergent for h = 1/k for all I € C. According to Remark 1 and Proposition 1,

the section of End(H®*)) given by Tg?( F)(1/k) B I € C is covariant constant. We

define Zg(7y) to be this section.
Let us now use these operators to give a TQFT proof of the following well known
classical result from the theory of Theta-functions.

Theorem 8. We have that
o0
m ker pr, = ker p
k=1

is the Toreilli subgroup of T'.
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Proof. Suppose we have a ¢ € T'. Then ¢ induces the sympletomorphism p(¢) of
M. For any simple closed curve on %, we get the following commutative diagram

Zu(®) 29 Z,(5)

(
am| Zu(o() |

Zi(®) 2% 7).
Suppose now ¢ € (=, ker p, then Zy(y) = Zx(¢(7)). But this means that

(k) _ k)
Te/mpyarm = TeiF,q)a/m)

for all k£ and all I € C. Hence we get that
(k) _
IT® p, l=0.

By Bordemann, Meinrenken and Schlichenmaier’s theorem 4, we must have that
F, = Fy,). But then since Fy,) = F, o p(¢), we see that p(¢) acts trivial on
C>(M). Then we must have that ¢ € ker p.

lim
k— oo

O

Remark 4. In [A1] we have generalized a part of the constructions presented here
to the non-abelian case of K = SU(n) and proved an analog of theorem 8, which in
that case yields the much stronger asymptotic faithfulness result, that the intersec-
tion of the kernels is trivial. See Theorem 1 in [A1] for the precise statement.

Let us now return to the TQFT constructions and give a geometric construction
of

Z (2 x [0,1], L) € Hom(Z; (X))

for any link L as follows. Consider V(L) as an element in H!(X,Z)[[h]]. By the
arguments in the proof of Theorem 7, we see that we only get contributions from
the crossings, and since these contribute with convergent power series in h, we see
that Fy, := Fy gy € C°°(M)[[R]], is actually convergent for any h. But then we can
simply define Z, (X x [0,1], L) € Hom(Z;(X)) to be the covariant constant section
TI(*JI?( Fr)(1/k) of End(H(®)) over C. Now all of the above results combine to give the
following Theorem

Theorem 9. We have that the operators Zy(X x [0,1],L) € Hom(Z(X)) satisfy
the glueing law

Zy (X x [0,1], L1.L2) = Z(X x [0,1], L1) o Z(X x [0,1], La).

for any two link Ly and Ly in ¥ x [0,1].
Proof. By the very definition of the *-product *Top ON the moduli space M, we
have for any two links L; and Lo, that

FL].LQ = .F'L1 *Top FLQ.
But then by Theorem 7 and Corollary 1 we get that

1) — 7 o Tk
E(Fr,.0,)(1/k) Er(Fr,)(1/k) Er(Fry)(1/k)’

for all I € C. The glueing law follows from this.
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