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Abstract

In this paper we prove the free analog of the Lévy-It6 decomposition for Lévy processes.
A significant part of the proof consists of introducing free Poisson random measures, proving
their existence and developing a theory of integration w.r.t. such measures. The existence of
free Poisson random measures also yields, via the free Lévy-It6 decomposition, an alternative
proof of the general existence of free Lévy processes (in law).

1 Introduction.

One of the most fundamental results in the theory of infinitely divisible probability mea-
sures (in classical probability) is the Lévy-Khintchine representation, which asserts that
a (Borel) probability measure on R is infinitely divisible, if and only if its cumulant
transform has a certain integral representation (cf. Subsection 2.1 below for the precise
statement). Historically, though, the Lévy-Khintchine representation was preceded by
its counterpart for stochastic processes. Indeed, Paul Lévy established, in the course of
proving the Lévy-Khintchine representation, a decomposition of any Lévy process into
the sum of two independent processes; a Brownian motion and a process of pure jump
type. This decomposition was later proved in full rigour by K. It6 and is now known as
the Lévy-Ito decomposition. The Lévy-Itdo decomposition is, from the probabilistic point
of view, even more fundamental than the Lévy-Khintchine representation.

In our previous paper, [BT], we initiated a study of Lévy processes (in law) in the context
of free probability. Our approach was based on the striking correspondence between in-
finitely divisible probability measures in classical and free probability, respectively, which
is known as the Bercovici-Pata bijection. This bijection yields, in particular, a one to
one correspondence between classical and free Lévy processes (in law), which makes it
possible to export several techniques and results for classical Lévy processes to the free
setting. In the present paper, we explore further this technique in establishing the free

*Department of Mathematical Sciences, University of Aarhus, Denmark.

tMaPhySto - The Danish National Research Foundation Network in Mathematical Physics and
Stochastics.

IDepartment of Mathematics and Computer Science, University of Southern Denmark.

$Supported by the Danish Natural Science Research Council.



version of the Lévy-Ité6 decomposition for free Lévy processes (in law). Whereas the clas-
sical Lévy-Ito decomposition is in the “almost sure sense”, we concentrate, in the present
note, exclusively on establishing an “in law” version of the free Lévy-It6 decomposition.
This is partly due to the techniques we presently have at hand, but it also reflects that a
possible analog of the almost sure result is not crucial in the free setting, as long as there
is no obvious notion of sample paths for free Lévy processes.

In order to give precise meaning to the pure jump part of the classical Lévy-It6 decompo-
sition of a Lévy process, one needs to introduce the concept of Poisson random measures
and to develop integration w.r.t. such measures. The first step towards establishing the
free Lévy-Ito decomposition is, similarly, to introduce a notion of free Poisson random
measures and to verify their existence. This is done in Section 3 below. In Section 4
we develop the integration theory for free Poisson random measures, which is needed for
establishing the free Lévy-It6 decomposition. The integrals (w.r.t. free Poisson random
measures) appearing in the free Lévy-It6 decomposition are generally obtained as the
limit, in probability (see Subsection 2.3 below), of integrals of simple functions. As a
consequence, we need some auxiliary results about the interplay between convergence in
probability and free independence. These results are established in Section 5. In Section 6
we prove, after some final preparations, the free version of the Lévy-Ito decomposition.
We end the paper by mentioning how the proof of the free Lévy-It6 decomposition to-
gether with the existence of free Poisson random measures yields, as in the classical case,
the general existence of free Lévy processes (in law), which has previously been noted by
Biane (cf. [Bi]) and Voiculescu (cf. [Vo3]). In Section 2, we provide background material
on free probability, unbounded operators and the classical Lévy-Ito decomposition.

2 Preliminaries.

In this section we review briefly, for the readers convenience, background material on free
probability, unbounded operators and the classical Lévy-1t6 decomposition. For a more

detailed introduction to free probability and unbounded operators, we refer to Section 2
of [BT].

2.1 Free Probability.

With the work of Schiirmann, Speicher, Ben Ghorbal and Muraki, it has quite recently
become clear that there are only five “natural” notions of “independence” among (gener-
alised) random variables in quantum probability (see e.g. [Sc],[Sp],[BGS], [Mu]). Among
these, the most important and well-studied is, of course, the classical notion of inde-
pendence (corresponding to tensor products of probability spaces). Since Voiculescu’s
founding work in the early 1980’s, free independence, a second of the five types of in-
dependences, has been extensively studied; largely due to its applications in operator
algebra theory, but also with the purpose of developing a new kind of probability theory
parallel to the classical one. Free independence is a purely non-commutative concept,



in the sense that it only occurs, except for trivial cases, among non-commuting random
variables. These are generally modelled by (selfadjoint) operators on a Hilbert space, be-
longing to some “non-commutative probability space”. Throughout this paper, we shall,
partly for the sake of convenience, only deal with the two nicest types of non-commutative
probability spaces:

2.1 Definition. (i) A C*-probability space is a pair (A, ¢), where A is a unital C*-
algebra and ¢ is a state on A.

(ii) A W*-probability space is a pair (A, 7), where A is a von Neumann algebra (acting
on some Hilbert space ) and 7 is a faithful, normal tracial state on A.

The definition of free independence may then be formulated as follows

2.2 Definition. Let (A, ¢) be a C*-probability space.

(i) If a1, ay, ..., a, are operators in A, we say that they are freely independent w.r.t. ¢,
if

¢{[f1(ai) — d(filai)][folai,) — &(fa(ai))] -+~ [fy(ai,) — d(fp(ai,))]} =0,

for any p in N, any polynomials fi, fo,..., f, in C[X] and any indices iy, i, ..., 1,
in {1, 2, e ,T‘} satisfying that il 75 ig, ig 75 i3, e ,ip_l ?é ip.

(ii) More generally, a family A;, A,, ..., A, of unital subalgebras of A is called freely
independent w.r.t. ¢, if, for any indices #1,4s,...,4, in {1,2,...,7} such that i; #
12,92 # 13, ...,1p—1 # Ip, and any operators a; € A;,, a2 € A;,,...,a, € A;, we have
that

¢{[a1 — d(ar)Lallaz — d(az)1a] -+ [ap — 6(ap)1al} = 0.

(iii) A family S;,Ss,...,S, of subsets of A is called freely independent, if the unital
subalgebras Aq, As, ..., A, of A, generated by Si, Ss,...,S,, respectively, are freely

independent.
Regarding part (i) of the above definition, we may, if a1, as, . . . , a, are selfadjoint, consider
general continuous functions f, fo, ..., fr: R — R, instead of polynomials, without chang-

ing the definition. (If (A, ¢) is a W*-probability space, we may even consider bounded
Borel functions instead). The operators f;(a;;) are then defined in terms of the functional
calculus for selfadjoint operators in a C*-algebra. If a is a selfadjoint operator in a C*-
probability space (A, @), then the functional calculus also gives rise to a distribution of a
w.r.t. the state ¢. Indeed, there exists a unique probability measure 1, on R, satisfying
that

/R £(2) paldt) = 6(F(a),

for any bounded Borel function f: R — R. This measure is termed the (spectral) dis-
tribution of a w.r.t. 7, and we denote it also by L{a}. The measure L{a} is always
concentrated on the spectrum sp(a) and hence, in particular, compactly supported.
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If ay,a9,...,a, are freely independent, selfadjoint operators in a C*-probability space
(A, @), then an inductive argument shows that all mixed moments

¢(ai1ai2 . -aip), (p € N, 11,09, ... ,ip € {1, 2,.. .,T}),

are uniquely determined by the “marginals” L{a}, L{as},..., L{a,}. In particular, the
moments (and hence the spectral distribution) of the sum a1 +as is uniquely determined by
L{a,} and L{as}. This observation leads to the definition of free (additive) convolution:

2.3 Definition. Let p; and us be compactly supported Borel probability measures on R,
and let a;, ay be freely independent selfadjoint operators in a C*-probability space (A, ¢),
such that L{a;} = p;, i = 1,2. Then the free additive convolution of p; and pus is the
probability measure p; B ps on R) given by: uq B ps = L{a; + ao}.

The realization of freely independent, selfadjoint operators a; and ay with prescribed
distributions p; and py follows from a free product construction (see [VDN]). To extend
the operation H to all non compactly supported distributions on R, one needs to take
unbounded operators into account (see Subsection 2.3 below).

2.2 Free infinite divisibility and the Bercovici-Pata bijection.

Having introduced free (additive) convolution, we can define the corresponding notion of
infinite divisibility in complete analogy with the classical case:

2.4 Definition. A probability measure p on R is called H-infinitely divisible, if there
exists, for each n in N, a probability measure yu, on R, such that

,u:ynEEﬂnEE"'EE,U@'
n terms

We denote by ID(E) the class of E-infinitely divisible probability measures on R.

In analogy with the definition above, we denote by ID(x) the class of infinitely divisi-
ble distributions w.r.t. classical convolution. As in classical probability, the H-infinitely
divisible probability measures are characterised as those distributions for which the free
cumulant transform has a Lévy-Khintchine type representation. Recall that a distribution
p is in ID(x) if and only if its (classical) cumulant transform C), (i.e., the logarithm of
the characteristic function) has the Lévy-Khintchine representation:

Cyu(u) = inu — sau® +/ (e —1 —iutl_1y(t)) p(dt), (u€R),
R

where n € R, a > 0 and p is a Lévy measure on R, i.e.,

p({0}) =0 and /]R min{1, 2%} p(dz) < co.

The triplet (a, p,n) is uniquely determined, and it is called the generating triplet for p.
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In striking analogy, a probability measure y on R belongs to ID(H) if and only if its free
cumulant transform C, has a representation in the form:

Cu(z) = nz+az2+/R(

In that case, the triplet (a,p,n) is, again, uniquely determined and is called the free
generating triplet for p.

—— —1—tz1 (1) pld), (z€C Im(z) <0).

The free cumulant transform €, appearing above is a slight modification of the so-called
R-transform, which was originally introduced by Voiculescu in [Vol]. Its key property
(proved, in the general case, in [BV]) is that it linearises free convolution, i.e., we have

Crmp (2) = €, (2) + Cp, (2),
for any probability measures p, o on R.

With the Lévy-Khintchine representations (classical and free) established, it it clear that
there is a bijection between JD(x) and JD(H). This bijection was first introduced and
studied by Bercovici and Pata in [BP].

2.5 Definition. The Bercovici-Pata bijection is the mapping A: ID(x) — ID(H) defined
in the following way: Suppose p is in JD(x) and has generating triplet (a, p,7). Then
A(p) is the measure in ID(H) with free generating triplet (a, p, 7).

At a first glance, the Bercovici-Pata bijection might seem as a very formal correspondence,
but it was proved in [BP] that it maps the class of stable probability measures onto the
class of freely stable probability measures. The following result further supports the
significance of A:

2.6 Theorem. ([BT]) The Bercovici-Pata bijection A: ID(x) — ID(H), satisfies:

(i) If py, po € ID(x), then A(py * o) = A(pr) B A(ps).
(ii) If p € ID(x) and ¢ € R, then A(D.p) = D A(p).
(iii) For any c in R, A(6.) = d., where 6. denotes the Dirac measure at c.

(iv) A is a homeomorphism w.r.t. weak convergence.

The operation D,, appearing in (ii) of the above theorem, is dilation by the constant c.
More precisely, if 4 = L{X}, for some random variable X, then D.u = L{cX}. For
proofs of the statements (i)-(iv) above, we refer to [BT].

2.7 Example. (a) Let u be the standard Gaussian distribution, i.e.,

p(dz) = exp(—32?) dz.

1
V2
Then A(p) is the semi-circle distribution, i.e.,

A(p)(dz) = 2i\/4 T (o) do.
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(b) Let u be the classical Poisson distribution Poiss*(\) with mean A > 0, i.e.,

p({nh) =P (e o).

Then A(y) is the free Poisson distribution Poiss™(\) with mean ), i.e.,

(1= X)6o + 50=+/(x — a)(b — 2) - Ljyy(z) dz, fO< AL,
L /(x —a)(b—z) 1z (z)dz, it A>1,

2rx

A(p)(dz) =

where a = (1 —vA)? and b = (1 4+ V)2

2.3 Unbounded operators.

As mentioned above, the (spectral) distribution of a selfadjoint operator in a C*-probability
space is a compactly supported probability measure. In order to realize a non compactly
supported probability measure as the distribution of a selfadjoint operator, one needs,
consequently, to take unbounded (i.e., non-continuous) operators into account.

Throughout this subsection, we consider a W*-probability space (A, ), with A acting
on the Hilbert space H. Let a: D(a) — H be a (possibly unbounded) selfadjoint linear
operator defined on a dense subspace D(a) of H (the “domain” of a). We say then that
a is affiliated with A, if f(a) € A for any bounded Borel function f: R — R (here f(a)
is, again, defined in terms of functional calculus). In that case there exists, as in the
bounded case, a unique probability measure p, on (R B), such that

(4ﬂﬂmwﬂ=ﬂﬂ®%

for any bounded Borel function f: R — R. We refer to u, as the spectral distribution of
a w.r.t. 7, and denote it also by L{a}. Given any probability measure yx on R, it is not
hard to see that i can be realized as the spectral distribution of a selfadjoint operator
affiliated with the von Neumann algebra L*°(R, 1), namely the multiplication operator
corresponding to the function id(t) =t, t € R.

In general, a linear operator a: D(a) — H, defined on a subspace D(a) of H, is said to
be affiliated with A, if au = ua for any unitary v in the commutant A’ of A. We say,
furthermore, that a is preclosed, if the closure of its graph G(a) = {(&,a€) | £ € D(a)} is,
again, the graph of an operator @. The operator @ is then termed the closure of a. We
say that a is closed, if G(a) is closed.

By A we denote the set of closed, densely defined operators, which are affiliated with
A. If a and b are unbounded operators defined on subspaces D(a) and D(b) of H, one
needs, generally, to be cautious when performing operations like a + b and ab, because
one needs to keep track of the domains. If, however, a and b are both elements of A, then
it can be shown (cf. e.g. [Ne]) that a + b and ab are always densely defined, preclosed and

with closures belonging to A. A similar statement holds for the adjoint operation. The
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closures of a + b and ab are called, respectively, the strong sum and strong product of a
and b. It can be shown, furthermore, that equipped with the strong sum, strong product
and the adjoint operation, A is a x-algebra (cf. [Se] or [Ne]). This fact allows us to work
quite relaxed with the algebraic operations on unbounded operators in A, and we shall
do so in the sequel.

2.8 Definition. Let (A, 7) be a W*-probability space, with A acting on a Hilbert space
H.

(i) If ay, as, ..., a, are selfadjoint operators affiliated with A, we say that they are freely
independent w.r.t. 7, if

m{[fi(ai,) — T(fila)lf2(ai,) — 7(fo(ain))] - -~ [fo(ai,) — 7(fo(as,))]} =0,
for any p in N, any bounded Borel functions fi, fs,..., f,: R — R and any indices
Q1,09 .- .,0p in {1,2,...,r} satisfying that iy # s, 990 # i3, .., ip—1 F 0.

(ii) More generally, a family S, Ss, ..., S, of sets of selfadjoint operators affiliated with
A is called freely independent w.r.t. 7, if the following subsets of A:

{f(a) |a€S;, f: R— R, bounded Borel function}, (j=1,2,...,71),

are freely independent in the sense of Definition 2.2.

Finally, we need to introduce the notion of convergence in probability for operators in A.

2.9 Definition. Let (A, 7) be a W*-probability space. A sequence (a,) of operators in
A is said to converge in probability to a selfadjoint operator a in A, if

Ve > 0: 7{1jcoo(lan —a])} — 0, asn — oc.

. P
In that case, we write a,, — a, as n — oc.

Tt is not hard to see that a, — a, if and only if the spectral distributions L{|a, — a|}
converge weakly to dp (the Dirac measure at 0). If a, and a are selfadjoint, this is
again equivalent to asking that L{a, — a} — &, where — denotes weak convergence of
probability measures.

2.10 Remark. The topology on A corresponding to convergence in probability is the
so-called measure topology. We note that all the algebraic operations in A (i.e., scalar
multiplication, strong sums and products and the adjoint operation) are continuous w.r.t.
the measure topology (cf. [Se| or [Ne]). Furthermore, as we shall use repeatedly in the
subsequent sections of this paper, the measure topology is a complete Hausdorff topology
on A (cf. [Ne]). In particular, if (a,) is a sequence of selfadjoint operators affiliated with
A, such that
L{a, — apm} — 0y, as n,m — oo,

then there exists a unique selfadjoint operator a affiliated with A, such that a, 2 a, as
n — oo. We mention, finally, that convergence in the measure topology implies weak
convergence of the corresponding (spectral) distributions (cf. [BT, Proposition 2.20]).



2.4 Lévy processes in free probability.

2.11 Definition. Let (A, 7) be a W*-probability space. A free Lévy process (in law),
affiliated with (A, 7), is a family (Z;)i>o of selfadjoint operators affiliated with A, such
that the following conditions are satisfied:

(i) whenever n € Nand 0 <t?y <t; <---<tp,, the increments
Lty Zty — Zrgs Lty — Ztyy v oy Ztyy — Lty 1
are freely independent selfadjoint operators affiliated with A.
(i) Zo = 0.
(iii) for any s,t in [0, o], the (spectral) distribution of Z;,; — Z; does not depend on s.

(iv) for any sin [0, 0], Zs4¢+ — Zs in probability, as ¢t — 0, i.e. the (spectral) distributions
L{Z,.1 — Z} converge weakly to &y, as t — 0.

The general existence of free Lévy processes (in law) has been noted in [Bi] and [Vo3] (cf.
also Remark 6.7 below).

Recall that a classical Lévy process in law is a family (X;):>¢ of classical random variables,
defined on the same probability space (2, F, P), and satisfying conditions (i)-(iv) above,
but with free independence replaced by classical independence in (i). If, in addition, the
sample paths of (X;) are cadlag with probability one, (X}) is called a (genuine) Lévy
process. Using the algebraic as well as the topological properties of A, it is not hard to
derive the following one to one correspondence between classical and free Lévy processes
(in law).

2.12 Proposition. ([BT]) Let (Z;)i>o be a free Lévy process (in law) affiliated with a
W*-probability space (A, T). Then there exists a (classical) Lévy process (X;)i>o, defined
on some probability space (Q,F, P), such that L{X;} = A=Y (L{Z,;}) for all t.

Conversely, for any (classical) Lévy process (X;), defined on a probability space (Q, F, P),
there exists a free Lévy process (in law), affiliated with some W*-probability space (A, T),
such that L{Z,;} = A(L{X,}) for all t.

2.13 Example. The free Brownian motion is the free Lévy process (in law), (W;)i>o,
which corresponds to the classical Brownian motion, (B;);>o, via the correspondence
described in Proposition 2.12. In particular (cf. Example 2.7),

1
L{W;}(ds) = Syl At — 8% - 1z g (8) ds, (t > 0).



2.5 The classical Lévy-It6 decomposition.

As mentioned in the introduction, the Lévy-Ito decomposition represents a (classical)
Lévy process (X;) as the sum of two independent Lévy processes, the first of which is
continuous (and hence a Brownian motion) and the second of which is, loosely speaking,
the sum of the jumps of (X;). In order to rigorously describe the sum of jumps part, one
needs to introduce the notion of Poisson random measures. Before doing so, recall first
that for any A in [0, co], we denote by Poiss™(A) the (classical) Poisson distribution with
mean A. In particular, Poiss*(0) = ¢y and Poiss*(00) = deo-

2.14 Definition. Let (O, &, v) be a o-finite measure space and let (2, F, P) be a proba-
bility space. A Poisson random measure on (0, €, v) and defined on (2, F, P) is a mapping
N: & x Q — [0, 00], satisfying the following conditions:

(i) For each F in €, N(E) = N(E,-) is a random variable on (92, F, P).
(ii) For each E in €, L{N(E)} = Poiss"(v(E)).

(iii) If E,..., E, are disjoint sets from &, then N(E,),..., N(E,) are independent ran-
dom variables.

(iv) For each fixed w in €, the mapping F — N(F,w) is a (positive) measure on €.

In the setting of Definition 2.14, the measure v is called the intensity measure for the
Poisson random measure N. Let (©,€&,v) be a o-finite measure space, and let N be a
Poisson random measure on it (defined on some probability space (2, F, P)). Then for
any E-measurable function f: © — [0, 00|, we may, for almost all w in 2, consider the
integral [ f(#) N(df,w). We obtain, thus, an almost everywhere defined mapping on Q,
given by: w — [y f(#) N(df,w). This observation is the starting point for the theory of
integration w.r.t. Poisson random measures, from which we shall need the following basic
properties:

2.15 Proposition. Let N be a Poisson random measure on the o-finite measure space
(0, &, v), defined on the probability space (2, F, P).

(i) For any positive E-measurable function f: © — [0,00], [y f(0) N(d#) is an F-
measurable positive function, and

]E{/@f(@)N(dH)}:/efdu.

(ii) If f is a real-valued function in £L'(©, €&, v), then f € L'(©, €&, N(-,w)) for almost
allw in Q, [y f(0) N(dF) € L'(2, F, P) and

]E{/@f(@)N(dG)}:/@fdy.



The proof of the above proposition follows the usual pattern, proving it first for simple
(positive) E-measurable functions and then, via an approximation argument, obtaining
the results in general. We shall adapt the same method in developing integration theory
w.r.t. free Poisson random measures in Section 4 below.

We are now in a position to state the Lévy-It6 decomposition for classical Lévy processes.
We denote the Lebesgue measure on R by Leb.

2.16 Theorem. (Lévy-It6) Let (X;) be a classical (genuine) Lévy process and let v be
the Lévy measure appearing in the generating triplet for L{X;}.

(i) Assume that ﬁ1 |z| v(dz) < co. Then (X;) has a representation in the form:

X, 2yt +aB; + / x N(ds,dz), (2.1)

10,¢] xR

where y € R, a > 0, (B;) is a Brownian motion and N is a Poisson random measure
on (]0,00[xR, Leb @ v). Furthermore, the last two terms on the right hand side of
(2.1) are independent Lévy processes.

(ii) If f}l |z| v(dx) = oo, then we still have a decomposition like (2.1), but the integral
f]o Axr T N(ds,dz) no longer makes sense and has to be replaced by the limit:

Y;:Iim[/ a:N(du,dx)—/ zLeb®v(du,dz)|, (t>0).
N0 L 10,1)x (R\[—e.e]) 10,81 ([=1,1]\[—e€5e])

The process (Y;) is, again, a Lévy process, which is independent of (By).

The symbol = in (2.1) means that the two random variables are equal with probability 1
(a.s. stands for “almost surely”). The Poisson random measure N appearing in the right

hand side of (2.1) is, specifically, given by
N(E,w) = #{s €]0,00[| (5, AX,(w)) € E},

for any Borel subset E of |0,00[x(R \ {0}), and where AX, = X, — lim,, », X,,. Conse-
quently, the integral in the right hand side of (2.1) is, indeed, the sum of the jumps of X}
until time ¢ [, g2 N(ds,dz) = 3., AX,. The condition fjl |z| v(dz) < oo ensures
that this sum converges. Without that condition, one has to consider the “compensated
sums of jumps” given by the process (Y;). For a proof of Theorem 2.16 we refer to [Sa).

3 Free Poisson random measures and their existence.

In this section, we introduce free Poisson random measures and prove their existence. Re-
call, that for any number \ in [0, oo[, we denote by Poiss®()\) the free Poisson distribution
with mean A (cf. Example 2.7).

10



3.1 Definition. Let (O, &, v) be a measure space, and put
Eo={F e |v(F) < x}.

Let further (A,7) be a W*-probability space, and let A, denote the cone of positive
operators in A. Then a free Poisson random measure on (0, €,v) with values in (A, 7),
is a mapping M : €y — A, with the following properties:

(i) For any set E in &, L{M(FE)} = Poiss®(v(F)).

(ii) If r € Nand Ej, ..., E, are disjoint sets from &,, then M(E}),..., M(E,) are freely
independent operators.

(ili) If r € N and Ey,..., E, are disjoint sets from &, then M(U}_, E;) = > 7% | M(Ej).

In the setting of Definition 3.1, the measure v is called the intensity measure for the
free Poisson random measure M. Note, in particular, that M(FE) is a bounded positive
operator for all £ in £y. The definition above might seem a little “poor” compared to
that of a classical Poisson random measure. The following remark might offer a bit of
consolation.

3.2 Remark. Suppose M is a free Poisson random measure on the measure space (0, £, v)
with values in the W*-probability space (A, 7). Let further (E,) be a sequence of disjoint
sets from &,. If we assume, in addition, that U;enE; € &, then we also have that

m(UE) =S mE)

where the right hand side should be understood as the limit in probability (cf. Subsec-
tion 2.3) of 3% | M(E;) as n — oo.

Indeed, put £ = UjenEj, and assume that E € €y. Then for any n in N,
M(E) = M(E;) = M(E) — M(U}_, E;) = M(UZ,,., E)),
j=1

so that
L{M(E) -3 M(Ej)} = Poiss® (v(U2,, Ey)) = Poiss® (X0, v(E;)) = b,

o0

as n — oo, since Y22, v(E;) — 0 as n — oo, because ) 7, v(E;) = v(E) < cc.

The main purpose of the section is to prove the general existence of free Poisson random
measures.

3.3 Theorem. Let (O,&,v) be a measure space. Then there exists a W*-probability
space (A, T) and a free Poisson random measure M on (O, €, v) with values in (A, 7).
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The proof of Theorem 3.3 is given in a series of lemmas. First of all, though, we introduce
some notation:

If p1, po, ..., 4 are probability measures on R, we put:
T
hE:BIHh:MIEM2E"'EMr-

In the remaining part of this section, we consider the measure space (0, £,v) appearing
in Theorem 3.3. Consider then the set

I=|J{(B,...,Ex) | By,..., Ep € &\ {0} and Ey,. .., E; are disjoint},
keN

where we think of (F1,..., Ex) merely as a collection of sets from &y. In particular, we
identify (FEy,..., Ey) with (Erq),..., Exg)) for any permutation 7 of {1,2,...,k}. We
introduce, furthermore, a partial order < on J by the convention:

(Ey,...,Ey) < (F1,...,F)) < each E;is a union of some of the F}’s.

3.4 Lemma. Given a tuple S = (FE4,..., Ey) from J, there exists a W*-probability space
(As, Ts), which is generated by freely independent positive operators Mg(E), . .., Ms(E})
from Ag, satisfying that

L{Ms(E;)} = Poiss® (v(E;)), (i=1,...,k).
Proof. This is an immediate consequence of Voiculescu’s theory of (reduced) free products
of von Neumann algebras (cf. [VDN]). Indeed, we may take (Ag, 75) to be the (reduced)

von Neumann algebra free product of the Abelian W*-probability spaces (L*°(R, ;),E,,),
i=1,...,k, where y; = Poiss®(v(E;)) and E,, denotes expectation w.r.t. u;. [

3.5 Lemma. Consider two elements S = (F1,...,E) and T = (Fi,...,F) of 3, and
suppose that S <T. Consider the W*-probability spaces (Ag, 7s) and (Ar, Tr) given by
Lemma 3.4. Then there exists an injective, unital, normal *-homomorphism tsr: Ag —
Ar, such that ¢ = Tr o 1g7.

Proof. We adapt the notation from Lemma 3.4. For any fixed ¢ in {1,...,k}, we have

that E; = Fji;1) U --- U Fjgy,, for suitable (distinct) j(4,1),...,7(¢,{;) from {1,2,...,1}.
Note then that

L

L{Mz(Fyn) + -+ + Mr(Fyap)} = B Poiss™ (v(Fiin))
= Poiss® (V(Fj(i71)) +-- V(Fj(i,li)))
= Poiss™ (v(Fj) U+ U Fjg))
= Poiss® (v(E;)) = L{Ms(FE;)}.

In addition, Mg(E}),..., Ms(Ey) are freely independent selfadjoint operators, and, simi-
larly, the operators Zﬁle My (Fjipy), i =1,...,k are freely independent and selfadjoint.
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Combining these observations with [Vo2, Remark 1.8], it follows that there exists an
injective, unital, normal *-homomorphism tsr: As — Ar, such that

LS,T(MS(Ei)) = MT(F}(Z,I)) + -+ MT(Fj(i,li))a (7’ = 1a 27 cee 7T)7 (31)
and such that 7¢ = 7r o 1g 7. |

3.6 Lemma. Adapting the notation from Lemmas 3.4-3.5, the system
(‘ASaTS)SEJ’ {LS,T | SaT € ja S S T}> (32)

is a directed system of W*-algebras and injective, unital, normal x-homomorphisms (cf.
[KR, Section 11.4]).

Proof. Suppose that R = (Ds,...,Dy), S = (E1,...,Ey) and T = (Fy,..., F)) are
elements of J, such that R < S < T. We have to show that tpr = ts7 0 trs. We may
write (unambiguously),

Dh:Ei(h,l)U"'UEi(h,kh)a (h: 1,...,m),
Ei:Fj(i,l)U"'UEj(i,li)a (121,,k),

for suitable i(h, 1),...,i(h,ky) in {1,2,...,k} and j(i,1),...,5(¢, ;) in {1,2,...,1}. Then
for any h in {1,...,m}, we have

Lith,1) Lith,kp)

D, = Ei(h,l) U--- hkh = ( U 4(i(h,1) r)) ( U Fj(i(hzkh)57)>
r=1

so that, by definition of tg 1, tgs and gz (cf. (3.1)),

Licn,1) Lich, k)

trr(Dn) = Z My (Fjgith)m -+ Z Fitithkn)r

= 150 [Ms(Esnn)] + - + tsr [Ms(Eih )]
=157 [Ms(Ein1)) + - - + Ms(Eihky))]
= 15,7 [tr,s(Dn)]-

Since Ap, is generated, as a von Neumann algebra, by the operators Mg(Dy), ..., Mr(D,,),
and since (g7 and tgrotg g are both normal *-homomorphisms, it follows by Kaplansky’s
density theorem (cf. [KR, Theorem 5.3.5]) and the calculation above that tpr = tgr0tR s,
as desired. [ |

3.7 Lemma. Let A° denote the C*-inductive limit of the directed system (3.2) and let

ts: Ag — AY denote the canonical embedding of As into A° (cf. [KR, Proposition 11.4.1]).
Then there is a unique tracial state 7° on A°, satisfying that

rs =715,  forallSin?. (3-3)
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Proof. Recall that the canonical embeddings t5: Ag — A° (S € J) satisfy the condition:
LR =lS O LR,S, whenever R,S € Jand R < S.

We note first that (3.3) gives rise to a well-defined mapping 7° on the set A% = Ugeqig(As)-
Indeed, suppose that t5(a’) = ir(a”) for some S, T in J and o’ € Ag, a” € Ar. We need
to show that 75(a’) = 7r(a”). Let SV T denote the tuple in J consisting of all non-
empty sets of the form E N F, where £ € S and F' € T. Note that ST < SV T.
Since tg = tgyr © ts,gyr and i = tgyr © tr,syr, it follows, by injectivity of ¢gyr, that
ts,svr(a’) = trsyr(a”). Hence, by Lemma 3.5,

TS(CL') = TsvT © Ls,svT(a') = TsvT © LT,SVT(G") = TT(CL"),

as desired. Now, given a, b in A% we can find S from J, such that a, b are both in 1g(Ag),
and hence it follows immediately that 7° is a linear tracial functional on the vector space
A% Furthermore, if a = 15(a’) for some a' in Ag, then

[7(a)| = I7s(a’)] < [la']] = [les(@)]| = llall,

so that 70 is norm decreasing. Since A% is norm dense in A° (cf. [KR, Proposition 11.4.1]),
if follows then that 7° has a unique extension to a mapping 7°: A° — C, which is au-
tomatically linear, tracial and norm-decreasing. In addition, 7°(140) = 1 = [|7°]], so,
altogether, it follows that 7° is a tracial state on A°, satisfying (3.3). n

3.8 Lemma. Let (A° 7°) be as in Lemma 3.7. There exists a mapping M°: &, — AY,
which satisfies conditions (i)-(iii) of Definition 3.1.

Proof. We define M° by the equation:
M°(E) = ypy(Mgy(E)),  (E € &).

Then MP(E) is positive for each E in &, since (g} is a *-homomorphism. Note also that
if £ € £ and S € J such that £ € S, then {E} < S and

MO(E) = L{E}(M{E}(E)) =15 O L{E}’S(M{E}(E)) = LS(MS(E)) (34)

We now have
(i) For each E in &p, we have that 7ypy = 7° 0 1y}, and hence, since ipy is a -
homomorphism, Mgy (E) and M°(E) have the same moments w.r.t. 7yg and 7°,

respectively. Since both operators are bounded, this implies that L{M°(E)} =
L{M}(E)} = Poiss™ (v(E)).

(ii) Let Ey,..., Ex be disjoint sets from €q and consider the tuple S = (Ey, ..., Ey) € J.
Then, since 7 = 7° 0 15 and g is a x-homomorphism, we find, using (3.4),

70 (M°(Eiy )M (Eyy) - MO (E;,)) = 75 (Ms(Ei, ) Ms (E;,) - - Ms(Ey, ),

for any iy,...,4,in {1,2,...,k}. Since Ms(E,), ..., Ms(Ey) are freely independent,
this implies that so are M°(E}),..., M°(E}).
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(iii) Let F,..., E;y be disjoint sets from &;, put E = U*_, E; and consider the tuple
S = (Ei, ..., Ey) €J. Then, by definition of ¢{z g, we have

MO(E) = L{E}(M{E}(E)) =150 L{E}ys(M{E}(E)) = LS(MS(El) + e+ MS(Ek))
= 15(Mg(Ey)) + -+ + 15(Mg(Ey)) = M°(Ey) + - -+ M°(E}).

This concludes the proof. [ ]

3.9 Lemma. Let (A° 7°) be as in Lemma 3.7, let ®°: A° — B(H") denote the GNS-
representation' of A° associated to 7°, and let A be the closure of ®°(A°) in B(HP)
w.r.t. the weak operator topology. Let, further, £° denote the unit vector in H°, which
corresponds to the unit 1,40 via the GNS-construction, and let T denote the vector state
on A given by £°. Then (A, ) is a W*-probability space, and 7° = 7 0 ®°.

Proof. 1t follows immediately from the GNS-construction that
0 =708 (3.5)

so we only have to prove that 7 is a faithful trace on A. To see that 7 is a trace, note
that since 70 is a trace, it follows from (3.5) that 7 is a trace on the weakly dense C*-
subalgebra ®°(A°%) of A. Since the multiplication of operators is continuous w.r.t. the
weak operator topology on bounded subsets of B(H") and since T is a vector state, it
follows thus, by an application of Kaplansky’s density theorem, that 7 is a trace on all
of A. This means, furthermore, that £° is a generating trace vector for A, and hence, by
[KR, Lemma 7.2.14], it is also a generating trace vector for the commutant A’ C B(H?).
This implies, in particular, that £° is separating for A (cf. [KR, Corollary 5.5.12]), which,
in turn, implies that 7 is faithful on A. ]

Proof of Theorem 3.3. Let ® and (A, 7) be as in Lemma 3.9. We then define the mapping
M: &y — A, by setting

M(E) = 3 (M°(E)), (E€&).

Now, ®Y is a *-homomorphism and 70 = 7 0 ®°, so ®° preserves all (mixed) moments of
the elements M°(E), E € &,. Since M? satisfies conditions (i)-(iii) of Definition 3.1, it
follows thus, using the same line of argumentation as in the proof of Lemma 3.8, that M
satisfies conditions (i)-(iii) too. Consequently, M is a free Poisson random measure on
(0, &, v) with values in (A, 7). [

4 Integration with respect to free Poisson random
measures.

Throughout this section, we consider a free Poisson random measure M on the o-finite
measure space (0, €, v) and with values in the W*-probability space (A, 7). We consider

!GNS stands for Gelfand-Naimark-Segal; see [KR, Theorem 4.5.2].
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also a classical Poisson random measure N on (O, €, v) defined on a classical probability
space (Q,F, P). The aim of this section is to establish a theory of integration w.r.t. M,
making sense, thus, to the integral f® fdM for any function f in £'(6,€&,v). As in most
theories of integration, we start by defining integration for simple v-integrable functions.

4.1 Definition. Let s be a simple real-valued function in £'(©,&,v), i.e., s can be
written, unambiguously, in the form

r
S = E CleEj,
j=1

where 7 € N, ay,...,a, are distinct numbers in R\ {0} and Fy,..., E, are disjoint sets
from &, (since s is v-integrable). We then define the integral [, sdM of s w.r.t. M as
follows:

/ SdM = ZajM(Ej) € .A
(C] j=1

4.2 Remark. (a) Since M(E) € A, for any E in &, it follows immediately from
Definition 4.1 that f@ sdM is a selfadjoint operator in A for any simple real-valued
function s in £'(O, &, u).

(b) Suppose s is a simple real-valued function in £!(©, &, v) written in the form: s =
Z;Zl ajlg;, where we assume that 7 € N, a;,...,a, € R and Fy,..., E, € &, but
no longer that aq,...,a, are distinct or non-zero, nor that F,..., E, are disjoint.
Then, using standard arguments, it is not hard to see that we still have

(S} j=1

(c) Suppose s and t are simple real-valued functions in £!(©, &,v) and that ¢ € R.
Then s+t and c- s are clearly simple functions too, and, using (b) above, it is easily
seen that

/(s+t)dM=/de—|—/th, and /c-dezc sdM.
@ o ) @ ©

(d) Consider now, in addition, the classical Poisson random measure N on (O, &, v),
defined on (2, F, P). Let, further, s be a simple real-valued function in £'(0, &, v).
Then L{ [, sdN} € ID(x), L{ [, sdM} € ID(B), and

A(L{/@st}) :L{/@de},

where A is the Bercovici-Pata bijection. Indeed, we may write s in the form s =
Z;Zl a;lp,, where r €N, ay, ..., a, are distinct numbers in R\ {0} and Ej, ..., E,
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are disjoint sets from £,. Then, using the properties of A, we find that
L{ / de} - L{ ZajM(Ej)} = @ D,,Poiss® (v(E;))
e = j=1

- j@l Da, A [Poiss™ (v(E;))] = A[ 5 Dy, Poiss*(y(Ej))}

:A[L{gajN(Ej>}} = a[e{ [san}]

By £1(©,&,v),, we denote the set of positive functions from L(©, &, v).

4.3 Proposition. Let f be a real-valued function in £1(©, &,v), and choose a sequence
(sn) of simple real-valued €-measurable functions, satisfying the conditions:

dh € L1(®, E,v), VO € ©Vn € N: [s,(0)] < h(h), (4.1)
and
lim 5,(6) = 1(6), (0 €O). (4.2)

Then s, € L'(©,¢&,v) for all n, and the integrals fe s, dM converge in probability to a
selfadjoint (possibly unbounded) operator I(f) affiliated with A.

Furthermore, the limit I(f) is independent of the choice of approximating sequence (s;,)
of simple functions (subject to conditions (4.1) and (4.2)).

In condition (4.1), we might have taken h = |f|, but it is convenient to allow for more
general dominators.

Proof of Proposition 4.3. Let f, (s,) and h be as set out in the proposition. Then, for any
ninN, [g|sa|dv < [y hdv < oo, so that s, € L'(0,€,v) and [, s, dM is well-defined.
Note further that for any n,m in N, s, — s,, is again a simple function in £(0, &, v),
and, using Remark 4.2(c),(d), it follows that

L{/@s”dM—/esmdM}:L{/@(sn—sm)dM}
:A[L{/@(sn—sm) an}],

with N the classical Poisson random measure introduced before. Since h € L'(©, &,v),
it follows from Proposition 2.15 that h € L'(©, &, M (-,w)) for almost all w in 2. Hence,
by Lebesgue’s theorem on dominated convergence, we have that

(4.3)

/@ 52(0) N(d6, w) —> /@ £(0) N(d0,w), as n — oo,
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for almost all w in Q. In other words, [ s, dN — [, fdN, almost surely, as n — co. In
particular [y s, dN — [ fdN, in probability as n — oo, so the sequence ([g 5 dN)pen
is a Cauchy sequence w.r.t. convergence in probability, i.e.,

L{/@(sn—sm)d]\f}l)éo, as n, m — oo.

Combining this with (4.3) and the continuity of A (cf. Theorem 2.6), it follows that
( f® $pdM),en is also a Cauchy sequence w.r.t. convergence in probability, i.e., with re-

spect to the measure topology. Since A is complete w.r.t. the measure topology (cf.
Remark 2.10), there exists, thus, an operator I(f) in A, such that Jo 5ndM — I(f), in
probability as n — oo. Since f@ s, dM is selfadjoint for each n, and since the adjoint
operation is continuous w.r.t. the measure topology, I(f) is a selfadjoint operator in A.

Suppose, finally, that (¢,) is another sequence of simple real-valued £-measurable functions
satisfying conditions (4.1) and (4.2) (with s, replaced by t,). Then, by the argument given
above, [gt,dM — I'(f), in probability as n — oo, for some selfadjoint operator I'(f) in
A. Consider now the mixed sequence (u,) of simple real-valued €&-measurable functions
given by:
U1 = S1, U2 :tl,U,3 = S9, U4 :tg,...,

and note that this sequence satisfies (4.1) and (4.2) too, so that [, u,dM — I"(f), in
probability as n — oo, for some selfadjoint operator I”(f) in A. Now the subsequence
(u2n_1) converges in probability to both I"(f) and I(f) as n — oo, and the subsequence
(ugn) converges in probability to both I"(f) and I'(f) as n — oo. Since the measure
topology is a Hausdorff topology, we may conclude, thus, that I(f) = I"(f) = I'(f). This
completes the proof. |

4.4 Definition. Let f be a real-valued function in LY(©,&,v), and let I(f) be the self-
adjoint operator in A described in Proposition 4.3. We call I(f) the integral of f w.r.t.
M and denote it by [g fdM.

4.5 Corollary. Let M and N be the free and classical Poisson random measures on
(©, &, v) introduced above. Then for any f in £'(©, €,v), we have L{ [, f AN} € ID(x),

L{J, fdM} € ID(B) and
/ de / fdM

Proof. Choose a sequence (s,) of simple real-valued €-measurable functions satisfying
conditions (4.1) and (4.2) of Proposition 4.3. Then, by Remark 4.2, L{ [, s, AN} € ID(x),
L{[g sndM} € ID(B) and A(L{ [y sn AN}) = L{ [, s, dM} for all » in N. Furthermore,

/sndNﬂ/de and /sndML/fdM, as n — oo.
(C] (S} S} (S}

In particular (cf. Remark 2.10),

L{/@sndN /de and L{/@sndM}l)L{/@fdM}, as n — oo.
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Since JD(x) and JD(EB) are both closed w.r.t. weak convergence (see [Pa]), this implies
that L{f, fdN} € ID(x) and L{[, fdM} € ID(H). Furthermore, by continuity of A,

A(L{f@ fdN}) = L{f@ fdM}. u

4.6 Proposition. For any real-valued functions f,g in £'(©, &, v) and any real number
c, we have that

/(a(f+g)dM:/(afdM+/(ang and /@c-fszc/@fdM.

Proof. 1If f and g are simple functions, this was noted in Remark 4.2. The general case
follows by approximating f and g by simple functions as in Proposition 4.3 and using that
addition and scalar-multiplication are continuous operations w.r.t. the measure topology
(cf. Remark 2.10). [

5 Free independence and convergence in probability.

In this section, we study the relationship between convergence in probability and free
independence. The results will be used in the proof of the free Lévy-Ito decomposition in
Section 6 below.

5.1 Lemma. Let (b,) be a sequence of (not necessarily selfadjoint) operators in a W*-
probability space (A,T), and assume that ||b,|| < 1 for all n. Assume, further, that
b, — b in probability as n — oo for some operator b in A, such that ||b|| < 1. Then also
7(bn) — 7(b), as n — oo.

Proof. For each n in N, put b, = £(b+b*) and b)) = 2 (b, — b;), and define &', b” similarly

from b. Then 0/, b, 0',0" are all selfadjoint operato;“s in A of norm less than or equal
to 1. Since addition, scalar-multiplication and the adjoint operation are all continuous
operations w.r.t. the measure topology, it follows, furthermore, that o/, — ¢’ and 0! — V"
in probability as n — oco. This implies that b}, — b/, and 0! — b" in distribution as

n — 0o, i.e., that L{b } = L{b'} and L{b"} < L{b"} as n — oo (cf. Remark 2.10).

Now, choose a continuous bounded function f: R — R, such that f(z) = z for all z in
[—1,1]. Then, since sp(b/,), sp(b’) are contained in [—1, 1], we find that

7(bn) = 7(f(05)) Z/Rf(fr) L{b, }(dz) Q@/Rf(x) L{b'}(dz) = 7(f (V) = 7(¥).

Similarly, 7(b) — 7(b") as n — oo, and hence also 7(b,) = 7(b,+ib!}) — 7(V'+ib") = 7(b),
as n — 0o. [

5.2 Lemma. Let r be a positive integer, and let (b1 ,)nen,---, (brn)nen be sequences
of bounded (not necessarily selfadjoint) operators in the W*-probability space (A,T).
Assume, for each j, that ||b;,|| <1 for all n and that b,,, — b; in probability as n — oo,
for some operator b; in A, such that ||b;|| < 1. If by, bop, ..., by, are freely independent
for each n, then the operators by, by, ..., b, are also freely independent.
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Proof. Assume that by, bo,. .., b, are freely independent for all n, and let 41,4, ...,1%,

in {1,2,...,7} be given. Then there is a universal polynomial P;, _; in rp complex
variables, depending only on iy, ..., 1,, such that for all n in N,
T(bil,nbi2,n e bip,n) = I)h ..... ip [{T(bf,n)}lgggpa RN {T(bf,n)}lsesp] : (51)

Now, since operator multiplication is a continuous operation w.r.t. the measure topology,
biy nbiy,n - - - Uiy — biybi, - - - b;, in probability as n — oo. Furthermore, ||b;, iy - - - bi,n || <
1 for all n and ||b; bi, -+ - b, || < 1, so by Lemma 5.1 we have

T(bil,nbiz,n e bz'p,n) — ’7'((),‘161'2 s bz'p) .

n—0o0

Similarly,
T(0%,) — T(b;), for any j in {1,2,...,7} and £ in N.

n
b n—oo

Combining these observations with (5.1), we conclude that also

7(biybiy - -+ bi,) = P,y [{T(bf)}gegp’ e {T(bﬁ)hgegp]’

and since this holds for arbitrary 4;,...,4, in {1,2,...,r}, it follows that by, ..., b, are
freely independent, as desired. [ ]

For a selfadjoint operator a affiliated with a W*-probability space (A, ), we denote by
k(a) the Cayley transform of a, i.e.,

k(a) = (a —ilg)(a+ily) ™"

Recall that even though a may be an unbounded operator, k(a) is a unitary operator in
A.

5.3 Lemma. Let ai,as,...,a, be selfadjoint operators affiliated with the W*-probability
space (A, 7). Then ay,as, ..., a, are freely independent if and only if k(ay), k(as), - - ., k(a,)
are freely independent.

Proof. For each j in {1,2,...,7}, let W*{a,} denote the von Neumann subalgebra of A
generated by a;, i.e.,

W*{a;} ={f(a;) | f: R— Cis a bounded Borel function}.

Similarly, let W*{k(a;)} denote the von Neumann subalgebra of A generated by the
unitary (a;). Now, ai,...,a, are freely independent if and only if the subalgebras
W+*{a,},...,W*{a,} are freely independent, and, similarly, x(ai),...,k(a,) are freely
independent if and only if the subalgebras W*{k(a,)},..., W*{k(a,)} are freely indepen-
dent. The lemma follows then by recalling that W*{a,;} = W*{k(a;)} for all j (cf. [Pe,
Lemma 5.2.8]). [
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5.4 Proposition. Suppose r € N and that (a1)nens - - -, (@rn)nen are sequences of self-
adjoint operators affiliated with the W*-probability space (A, 7). Assume, further, that
foreach j in {1,2,...,7}, aj, — a; in probability asn — oo, for some selfadjoint operator
a; affiliated with (A, 7). If a1, a2, ..., a., are freely independent for each n, then the
operators ai, as, . . ., a, are also freely independent.

Proof. Assume that a; ,, asp, - .., a,p are freely independent for all n. Then, by Lemma 5.3,
the unitaries (a1 ), ..., k(a,,) are freely independent for each n in N. Moreover, since
the Cayley transform is continuous w.r.t. the measure topology (cf. [St, Lemma 5.3]), we
have

k(ajn) — k(aj), in probability,
n—o0
for each j. Hence, by Lemma 5.2, the unitaries k(a1),. .., x(a,) are freely independent,
and, appealing once more to Lemma 5.3, this means that ay, ..., a, themselves are freely

independent. |

5.5 Corollary. Let M be a free Poisson random measure on the o-finite measure space
(0, €, v) with values in the W*-probability space (A, 7). Let, further, fi, fo, ..., f; be real-
valued functions in £'(©, &,v) and let ©1,0,, ..., 0, be disjoint &-measurable subsets of
©. Then the integrals

fidM, fodM, ..., frdM,
(OF1 [SD O,
are freely independent selfadjoint operators affiliated with (A, T).

Proof. For each j in {1,2,...,7}, let (s;n)nen be a sequence of real valued simple -
measurable functions, such that

sin (@) < f50), (0 €O, neN),

and
lim 5,,(6) = £,(6). (6 €O).
Then, for each j in {1,2,...,7} and each n in N, we may write s;, - lg, in the form:
kjon
Sim* Loy = D all, 5,m)1aq,jn),

I

l

where a(1, j,n),...,a(k;j,, j,n) € R\ {0} and A(1,5,n),..., A(kjn,j,n) are disjoint sets
from &y, such that A(l, j,n) C ©, for all [. Now,

1

kjn

/ Sin-lo, dM = a(ljm)M((A(Ljn),  (G=1,2,...,n, n€N),
€]

=1

so by the properties of free Poisson random measures, the integrals

/Sl,n'1®1dM7---7/Sr,n']-@TdMa
© ©
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are freely independent for each n in N. Finally, for each j in {1,2,...,7} we have (cf.
Proposition 4.3)

/ fJ dM = / f] . ]_@j dM = lim Sjmn - 1@]. dM,
Q; (S}

n—00 <)

where the limit is taken in probability. Taking now Proposition 5.4 into account, we
obtain the desired conclusion. |

5.6 Remark. Let B and € be two freely independent von Neumann subalgebras of a
W*-probability space (A, 7). Let, further, (b,) and (c,) be two sequences of selfadjoint
operators, which are affiliated with B and €, respectively, in the sense that f(b,) € B and
g(c,) € € for any n in N and any bounded Borel functions f,g: R — R. Assume that
b, — b and ¢, — c in probability as n — oo. Then b and c are also freely independent.
This follows, of course, from Proposition 5.4, but it is also an immediate consequence of
the fact that the set B of closed, densely defined operators, affiliated with B, is complete
(and hence closed) w.r.t. the measure topology. Indeed, the restriction to B of the measure
topology on A is the measure topology on B (induced by 7). Thus, b is affiliated with B
and similarly c is affiliated with €, so that, in particular, b and ¢ are freely independent.

6 The Free Lévy-I1to Decomposition.

Throughout this section we put
H =10, c0[xR C R?,

and we denote by B(H) the set of all Borel subsets of H. Furthermore, for any €,t in
10, oo, we put

D(e,00) ={s€R|e< |s| <oo} =R\ [—¢¢],
D(e,t) ={seR |e< |s| <t} =[—t,t]\ [~ €]

We shall need the following well-known result about classical Poisson random measures.

6.1 Lemma. Let v be a Lévy measure on R and consider the o-finite measure Leb ® v
on H. Consider further a (classical) Poisson random measure N on (H,B(H),Leb ® v),
defined on some probability space (Q2,F, P).

Then there is a subset Qg of Q, such that Qy € F, P() = 1 and such that the following
holds for any w in §: For any €,t in |0,00][, the restriction [N(:,w)]jo,qxD(e,00) Of the
measure N (-,w) to the set ]0,t] X D(e,00) is supported on a finite number of points, each
of which has mass 1.

Proof. See [Sa, Lemma 20.1] n
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6.2 Lemma. Let v and N be as in Lemma 6.1, and consider a positive Borel function
v: R —[0,00].

(i) For almost all w in Q, the following holds:

Ve>0V0<s<t: / ¢(z) N(du,dz,w) < oo.

]s,t]xX D(e,00)

(ii) If f[_l y (@) v(dz) < oo, then for almost all w in §, the following holds:

VO <s<t: / ¢(z) N(du,dz,w) < occ.
]s,t] xR

Proof. Since ¢ is positive, it suffices to consider the case s = 0 in (i) and (ii). Moreover,
since ¢ only takes finite values, statement (i) follows immediately from Lemma 6.1.

To prove (ii), assume that f[_l 1 o(x)v(dz) < oco. By virtue of (i), it suffices then to
prove, for instance, that for almost all w in €2, the following holds:

Vit > 0: / o(z) N(du, dz,w) < oco. (6.1)
]O,t]X[—l,l]
Since the integrals in (6.1) increase with ¢, it suffices to prove that for any fixed ¢ in |0, oo,
/ o(z) N(du,dz,w) < oo, for almost all w.
10,¢]x[—1,1]

This, in turn, follows immediately from the following calculation:

IE{ / o(x) N(du, d:c)} = / ¢(x) Leb @ v(du, dx)
10,¢] x [—1,1] 10,¢]x[—1,1]

= t/[_l,l] o(z)v(dx) < oo,

where we have used Proposition 2.15. [ |

6.3 Lemma. Letv be a Lévy measure on R, and let M be a Free Poisson random measure
on (H,B(H), Leb®v) with values in the W*-probability space (A, 7). Let, further, N be a
(classical) Poisson random measure on (H, B(H), Leb®v), defined on a classical probability
space (2, F, P).

(i) For any €,s,t in |0, 00[, such that s < t, the integrals

/ x M(du,dz), (n €N),
1s,t]x D(e,yn)

converge in probability, as n — oo, to some (possibly unbounded) selfadjoint op-

erator affiliated with A, which we denote by f}s xD(e00) T M (du,dz). Furthermore
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(cf. Lemma 6.2), [, z M(du,dz) € ID(H)

and

y & N(du, dz) € ID(x), I

$,t]xX D(e,00 Is,t]x D(€,00)

L{ /]:S,t]xD(QOO) @ Midu, dx)} - A(L{ /]s,t]xD(

(ii) II"f[_1 1 |z| v(dz) < oo, then for any s,t in |0,00], such that s < t, the integrals

:EN(ds,dx)}). (6.2)

€,00)

/ x M (du,dz), (n € N),
Is,t]x[—n,n]

converge in probability, as n — oo, to some (possibly unbounded) selfadjoint op-
erator affiliated with A, which we denote by f]s gxr & M(du,dz). Furthermore (cf.

Lemma 6.2), f]s t]xRxN(du,dx) € ID(%), [, qxr ® M(du,dz) € ID(H) and

Is,t]

L{ /]syt]XRa:M(du,dx)} :A(L{/],t]XRxN(ds,dx)})

S

Proof. (i) Note first that for any n in N and any ¢, s, ¢ in ]0, 00|, such that s < ¢, we have
that

/ 12| Leb ® v(du, dz) = (¢ — s)/ 2| v(dz) < oo,
]s,t]x D(e,n)

D(e,n)
since v is a Lévy measure. Hence, by Proposition 4.3, the integral f]s Axn(en) T M (du, dz)
is well-defined and furthermore, by Corollary 4.5,
L{ / = M(du, dac)} - A(L{ / z N(du, dx)}). (6.3)
ls,t]x D(e;n) ls;t]x D(e;n)

Note now that by Lemma 6.2(i) there is a subset Qg of €2, such that Qy € F, P() =1
and

/ |z| N(du,dz,w) < oo, for all w in €.
]s,t]x D(e,00)

Then f]s Hx D(eso0) & N(du,dz,w) is well-defined for all w in Qg and by Lebesgue’s theorem
on dominated convergence,

/ z N(du,dz,w) — z N(du, dz, w),
Is;t]xD(e,n)

"0 J1s,t]x D(e,00)

for all w in €y, i.e., almost surely. In particular

/ z N(du,dz) — x N(du,dz), in probability,
Is;t]x D(e,n)

=00 J1s,8]x D(e,00)

and hence ( f]s AxD(em) TV (du, dz))nen is a Cauchy sequence w.r.t. convergence in prob-

ability. Now, for any n,m in N, such that n < m, we have, by Proposition 4.6 and
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Corollary 4.5,

L{/ x M (du, dz) —/ xM(du,dx)}
Js,t]x D(e;m) Js,t]x D(e,n)
= L{ /]s,t]XD(n,m) x M (du, dx)}
=a(1f /]S’t]XD(n’m) © N(du,dz) })

:A(L{/]St]XD(em)xN(du,dx)—/]St]XD(m)xN(du,dx)D.

By continuity of A, this shows that (f]s HxD(en

w.r.t. convergence in probability, and hence, by completeness of A w.r.t. the measure
topology,

)xM(du, dz))nen is a Cauchy sequence

/ x M(du,dz) := lim x M(du,dz),
]s,t]x D(€,00) =00 J1s,t]x D(e,n)
exists in A as the limit in probability.

Finally, since ID(x) and JD(H) are closed w.r.t. weak convergence, we have that
/ x N(du,dz) € ID(x) and / z M(du,dz) € ID(H).
Js,t]x D(e;00) J,t]x D(e,00)

Moreover, since convergence in probability implies convergence in distribution (cf. [BT,
Proposition 2.20]), it follows from (6.3) and continuity of A that (6.2) holds.

(ii) Suppose f[—1 N |z| v(dz) < co. Then for any n in N and any s,¢ in |0, o[, such that
s < t, we have that

/ |z| Leb ® v(du, dx) = (t — s)/ |z| v(dx)
Is,t]x[—n,n] [—n,n]

- (t_s)(/[_m] \x|y(dx)+/D(lm |:E|V(da:)) < o,

since v is a Lévy measure. Hence, by Proposition 4.3, the integral f]s Ax[onm T M (du, dz)

is well-defined and, by Corollary 4.5,

L{ A,t]x[_nm]xM(du, dac)} :A(L{ Ayt]x[

From this point on, the proof is exactly the same as that of (i) given above; the only
difference being that the application of Lemma 6.2(i) above must be replaced by an
application of Lemma 6.2(ii). ]

—n,n

xN(du,dx)}).

_nan]

We are now ready to give a proof of the Lévy-Itdé decomposition for free Lévy processes
(in law). As is customary in the classical case (cf. [Sa]), we divide the general formulation
into two parts.
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6.4 Theorem. (Free Lévy-1t6 I) Let (Z;) be a free Lévy process (in law) affiliated with
a W*-probability space (A, ), let v be the Lévy measure appearing in the free generating
triplet for L{Z,} and assume that LI1 |z| v(dz) < co. Then (Z;) has a representation in
the form:

Zy L ytl 40 + /aW, + / x M(du,dz), (t>0), (6.4)

10,t] xR

where y € R, a > 0, (W) is a free Brownian motion in some W*-probability space (A°, 7°)
and M is a free Poisson random measure on (H,B(H), Leb ® v) with values in (A°, 7).
Furthermore, the process

U, ::/ ¢ M(du,dz), (£ >0),
JORARIIN

is a free Lévy process (in law), which is freely independent of (W,), and the right hand
side of (6.4), as a whole, is a free Lévy process (in law).

The symbol < appearing in (6.4) just means that the two operators have the same (spec-
tral) distribution. For that reason also, it does not follow directly from (6.4) that the
right hand side is a free Lévy process (in law) (contrary to the situation in the classical
Lévy-1t6 decomposition).

Proof of Theorem 6.4. By Proposition 2.12, we may choose a classical Lévy process (X;),
defined on some probability space (2,F, P), such that A(L{X;}) = L{Z;} for all ¢ in
[0,00[. Then v is the Lévy measure for L{X;}, so by the classical Lévy-1té6 Theorem (cf.
Theorem 2.16), (X;) has a representation in the form:

X, =yt ++/aB; + / zN(du,dz), (t = 0),

10,t] xR

where (B;) is a (classical) Brownian motion on (€2, F, P), N is a (classical) Poisson random
measure on (H, B(H), Leb®v), defined on (2, F, P) and (B;) and N are independent. Put

Ytzz/ z N(du,dz), (t > 0).
10, xR

Now choose a free Brownian motion (W;) in some W*-probability space (A', 7!), and recall
that L{W;} = A(L{B;}) for all t. Choose, further, a free Poisson random measure M on
(H,B(H), Leb ® v) with values in some W*-probability space (A?,7%). Next, let (A°, 7°)
be the (reduced) free product of the two W*-probability spaces (A',7') and (A%, 72) (cf.
[VDN, Definition 1.6.1]). We may then consider A" and A? as two freely independent
unital W*-subalgebras of A, such that 7'&1 = 7! and T&z = 72. In particular, (W;) and
M are freely independent in (A%, 70).

Since f[—1,1] |z| v(dz) < oo, it follows from Lemma 6.3(ii) that for any ¢ in |0, oo[, the
integral U, = .ﬁo,t}xRx M (du,dx) is well-defined, and L{U;} = A(L{Y;}). Furthermore, it
follows immediately from Definition 4.1, Proposition 4.3 and Lemma 6.3 that for any ¢
in [0,#[, Uy = [y 3. * M(du,dz) is in the closure of A? w.r.t. the measure topology. As
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noted in Remark 5.6, the set A2 of closed, densely defined operators affiliated with A2
is complete (and hence closed) w.r.t. the measure topology, and therefore U, is affiliated
with A? for all . This implies, in particular, that the two processes (W;) and (U;) are
freely independent.

Now, for any ¢ in ]0, oo, we have
L{vtlp0 + VaW, + U} = 6, B D zL{W,;} B L{U;}
= A(6,:) B D A (L{B,}) BA(L{Y;})
= A6y % D gL{B:} * L{Y;})
= A(L{vt + VaB; + Y;})
= AL{X:})
= L{Zt}a

and this proves (6.4). We prove next that the process (U;) is a free Lévy process (in
law). For this, recall that (Y;) is a (classical) Lévy process defined on (2, F, P) (cf. [Sa,
Theorem 19.3]), and such that L{U;} = A(L{Y;}) for all ¢. Since (Y;) has stationary
increments, we find for any s,t in [0, o[, such that s < ¢, that

x M (du, dac)} = A(L{/]

$,5+t] xR

L{Usyy — U} = L{ LSH]XR z N(du, dx)})
= AL{Y 1t = Y }) = A(L{Y3}) = L{U,},

where we have used Lemma 6.3(ii). Thus, (U;) has stationary increments too. Further-
more, by continuity of A,

L{U,} = A(L{Yt}) 5 A(8g) = by, ast\,0,

so that (Uy) is stochastically continuous. Finally, to prove that (U;) has freely independent
increments, consider 7 in N and tg,%1,...,%, in [0,00[, such that 0 =5 < t; < --- < t,.
Then for any j in {1,2,...,7} we have (cf. Lemma 6.3) that

Uy — Uy, = / x M(du,dz) = lim x M (du,dz),
Jtj—1,t;]xR

nreo Itj—1,t]x[—n,n]

where the limit is taken in probability. Since f]tj,l N |z| Leb ® v(du,dz) < oo for

any n in N and any j in {1,2,...,7}, it follows from Corollary 5.5 that for any n in N,
the integrals

/ x M (du,dz), j=1,2,...,r1,
Jtj—15t51x[—n,m]
are freely independent operators. Hence, by Proposition 5.4, the increments

Ut1: Ut2 - Utl, ey Utr - Utr—l
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are also freely independent.

It remains to note that the right hand side of (6.4) is a free Lévy process (in law).
This follows immediately from the fact that the sum of two freely independent free Lévy
processes (in law) is again a free Lévy process (in law). Indeed, the stochastic continuity
condition follows from the fact that addition is a continuous operation w.r.t. the measure
topology, and the remaining conditions are immediate consequences of basic properties of
free independence. This concludes the proof. [ |

6.5 Theorem. (Free Lévy-1t6 II) Let (Z;) be a free Lévy process (in law) affiliated
with a W*-probability space (A, T) and let v be the Lévy measure appearing in the free
generating triplet for L{Z,}. Then (Z;) has a representation in the form:

Z, Sl +aW, + Vi, (t>0), (6.5)

where

e n€R, a>0 and (W,) is a free Brownian in a W*-probability space (A°, 7°).

e (V}) is a free Lévy process (in law) given by

Vi := lim [/ x M(du,da:)—(/ z Leb®v(du, dx)) le], (t>0),
eNO L J10,41x D(e,00) 10,£]x D(e,1)

where M is a free Poisson random measure on (H,B(H),Leb ® v) with values in
(A° 7%, and the limit is taken in probability.

e (W,) and (V;) are freely independent processes.

Furthermore, the right hand side of (6.5), as a whole, is a free Lévy process (in law).

Proof. The proof proceeds along the same lines as that of Theorem 6.4, and we shall not
repeat all the arguments. Let (X;) be a classical Lévy process defined on a probability
space (2, F, P) such that L{Z;} = A(L{X;}) for all t£. In particular, the Lévy measure
for L{X;} is v. Hence, by Theorem 2.16(ii), (X;) has a representation in the form

Xt ag. nt—i_\/aBt'i_Y;a (tZO):

where

e n€R, a>0and (B) is a (classical) Brownian motion on (2, F, P).

e (Y;) is a classical Lévy process given by

Y, :=lim [/ xz N(du,dz) — / z Leb ® v(du,dz)|, (t>0),
O L J10,)x D(e,00) 10,t] x D(e,1)

where N is a (classical) Poisson random measure on (H, B(H), Leb ® v), defined on
(Q,F, P), and the limit is almost surely.
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e (B;) and (Y;) are independent processes.
For all €, in |0, oo[, we put:

Yeir = / z N(du,dz) — / z Leb ® v(du, dx),
10,t]x D(e,00)

10,t]xD(e,1)

so that Y; = lim\ o Y; . almost surely, for each ¢.

As in the proof of Theorem 6.4 above, we choose, next, a WW*-probability space (A°, %),
which contains a free Brownian motion (I#;) and a free Poisson random measure M on
(H,B(H), Leb®v), which generate freely independent W*-subalgebras. For any € in |0, oo,
we put (cf. Lemma 6.3(i)),

Vet = / x M(du,dx) — (/ z Leb ® v(du, dx))le.
10,t]x D(e,00) 10,t]x D(e,1)

Then for any ¢ in ]0, 00| and any €1, €2 in |0, 1], such that €; > €5, we have that

Vgt = Vet = / x M(du,dz) — (/ zLeb® l/(du,dx))lﬂo.
10,t]x D(e2,€1) 10,t]X D(e2,€1)

Making the same calculation for Y, ,—Y,, ; and taking Corollary 4.5 into account, it follows
that L{V,, ;—Ve, 1} = A(L{Y,+—Y.,+})- Hence, by continuity of A and completeness of the
measure topology, we may conclude that the limit V; := lim. o V¢, exists in probability,
and that L{V;} = A(L{Y;}). Moreover, as in the proof of Theorem 6.4, it follows that
(W) and (V;) are freely independent processes.

Now for any ¢ in |0, o[, we have:
L{ntl g0 +aW, + V;} = 6, B D zL{W;} B L{V;}
= A(6y * D g L{B;} * L{Y;}) = A(L{X,}) = L{Z,}.

It remains to prove that (V;) is a free Lévy process (in law). For this, note first that if
0 < s < t, we have (cf. Lemma 6.3(i)),

V;H—t - ‘/s = 11\1‘% (‘/;,s+t - ‘/;,s)

= lim [/ x M(du,dz) — </ z Leb ® v(du, dl’))l‘AO].
O L s 441 D(e,00) 15,5-+t] x D(e,1)

Making the same calculation for Y ; — Y, and taking Lemma 6.3(i) as well as the conti-
nuity of A into account, it follows that

L{Ves = Vi} = ALY 12 = Y5}) = A(L{Y}}) = L{V;},

so that (V}) has stationary increments. The stochastic continuity of (V;) follows exactly as
in the proof of Theorem 6.4. To see, finally, that (V;) has freely independent increments,
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assume that 0 =ty < t; < to < --- < t,, and consider € in |0,00[. Then for any j in
{1,2,...,1},

Ver, = Ver,_, = lim [/ x M(du,dz)— (/ z Leb®v(du, dx))l‘AO] .
7700 L]t 1,t5]x D(en) Jtj—1,tj]x D(e;1)

Hence, by Corollary 5.5 and Proposition 5.4, the increments Ve, — Ve, 7=1,2,...,7
are freely independent, for any fixed positive €. Yet another application of Proposition 5.4
then yields that the increments

‘/:‘,j - ‘/;fj_l = 1% (‘/E,tj - ‘/E,tj_l)7 (.7 = 1727 .- .,T),

are freely independent too. [ ]

6.6 Remark. Let (Z;) be a free Lévy process in law, such that L{Z; } has Lévy measure
v. If f[—1,1] |z| v(dz) < oo, then Theorems 6.4 and 6.5 provide two different “Lévy-It6
decompositions” of (Z;). The relationship between the two representations, however, is
simply that

n:7+/ zv(dz) and Vt=Ut—t</ xu(dx))le, (t>0).
[~1,1] [~1,1]

6.7 Remark. The proof of the general free Lévy-I1t6 decomposition, Theorem 6.5, also
provides a proof of the general existence of free Lévy processes (in law). Indeed, the
conclusion of the proof of Theorem 6.5 might also be formulated in the following way: For
any classical Lévy process (X;), there exists a W*-probability space (A° 7°) containing a
free Brownian motion (1) and a free Poisson random measure M on (H, B(H), Leb ® v),
which are freely independent, and such that

AL{X:}) =

ntl g0 4+ VaW,+

lim [/ x M(du,dx) — (/ x Leb ® v(du, dx))lﬂo}, (t >0),
O L J10,41x D(e,00) 10,]x D(e,1)

for suitable constants 7 in R and a in ]0, 0o[. In addition, the right hand side of (6.6) is
a free Lévy process (in law) affiliated with (A°, 7°).

(6.6)

Assume now that (v;)¢>¢ is a family of distributions in ID(H), satisfying the two conditions
v =v,Buy g, (0<s<t),

and
vy = 8, as t \,0.

Then put pu; = A1 () for all £, and note that the family (u;) satisfies the corresponding
conditions:

pe = s * s,  (0< s <),
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and
et X} 505 as it \l Oa

by the properties of A~!. Hence, by the well-known existence result for classical Lévy
processes, there exists a classical Lévy process (X;), such that L{X;} = p; and hence
A(L{X;}) = v, for all t. Therefore, the right hand side of (6.6) is a free Lévy process (in
law), (Z;), such that L{Z;} = v, for all ¢.

The above argument for the existence of free Lévy processes (in law) is, of course, based
on the existence of free Poisson random measures proved in Theorem 3.3. The existence
of free Lévy processes (in law) can also, as noted in [Bi] and [Vo3], be proved directly by
a construction similar to that given in the proof of Theorem 3.3. The latter approach,
however, is somewhat more complicated than the construction given in the proof of Theo-
rem 3.3, since, in the general case, one has to deal with unbounded operators throughout
the construction, whereas free Poisson random measures only involve bounded operators.
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