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1 Introduction

The MaPhySto{workshop \Stochastic Partial Di�erential Equations { Statistical Issues
and Applications" was held 4 { 6 January 2001 at the Department of Statistics and
Operations Research, University of Copenhagen.

The aim of the workshop was to identify promising research directions concerning
statistical issues, including ill-posed problems, and to discuss where stochastic partial
di�erential equations can fruitfully be applied. The focus was on applications in �nance
and hydrology.

This booklet contains extended abstracts of the talks given at the workshop followed
by the list of participants.
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Bernstein - von Mises Theorem and Bayes
Estimation for Parabolic SPDEs

Jaya P. N. Bishwal
Princeton University

Recently, in�nite dimensional stochastic di�erential equations (SDEs), like the
stochastic partial di�erential equations (SPDEs), are being paid a lot of attention
in view of their modeling applications in neurophysiology, turbulence, oceonography
and �nance, see Itô (1984), Walsh (1986) and Kallianpur and Xiong (1995), Holden et
al. (1996) and Carmona and Rozovskii (1999). In view of this it becomes necessary to
estimate the unknown parameters in SPDEs.

Various methods of estimation in �nite dimensional SDEs has been extensively
studied during the last three decades as the observation time tends to in�nity (see,
Liptser and Shiryayev (1978), Basawa and Prakasa Rao (1980), Kuchler and S�rensen
(1997), Prakasa Rao (1999) and Kutoyants (1999)) or as the intensity of noise tends to
zero (see, Ibragimov and Has'minskii (1981), Kutoyants (1984, 1994)). On the other
hand, this problem for in�nite dimensional SDEs is young.

Consider an SPDE:

du(t; x) = �Au(t; x)dt+ dW (t; x); 0 � t � T; x 2 G
where G is a suitable Euclidean domain, A is a partial di�erential operator, W is a
cylindrical Brownian motion and � is an unknown parameter to be estimated on the
basis of observations of the di�usion �eld u.

Loges (1984) initiated the study of parameter estimation in such models. When
the length of the observation time becomes large (T ! 1), he obtained consistency
and asymptotic normality of the maximum likelihood estimator (MLE) of a real valued
drift parameter in a Hilbert space valued SDE. Koski and Loges (1986) extended the
work of Loges (1984) to minimum contrast estimators. Koski and Loges (1985) applied
the work to a stochastic heat ow problem. Kim (1996) also studied the properties
of MLE in a similar set up. Mohapl (1992) studied the asymptotics of MLE in a in a
nuclear space valued SDE. For partially observed SPDE systems of both parabolic and
hyperbolic type, parameter estimation is studied by Aihara (1992, 1994, 1995), Aihara
and Bagchi (1988, 1989, 1991), Bagchi and Borkar (1984). Nonparametric estimation
where � is an in�nite dimensional parameter was studied by Ibragimov and Khasminskii
(1998, 1999).

Huebner, Khasminskii and Rozovskii (1992) introduced spectral method and ob-
tained consistency, asymptotic normality and asymptotic eÆciency of MLE of a pa-
rameter in the drift coeÆcient of an SPDE. Spectral approach allows one to obtain
asymptotics of estimators under conditions which guarantee the singularity of the mea-
sures generated by the corresponding di�usion �eld for di�erent parameters. Unlike in
the �nite dimensional cases, where the total observation time was assumed to be long
or intensity of the noise was assumed to be small (� ! 0), here both are kept �xed.
Here the asymptotics are obtained when the number of Fourier coeÆcients (n) of the
solution of SPDE becomes large.
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Huebner, Khasminskii and Rozovskii (1992) gave two contrast examples in one of
which they obtained consistency, asymptotic normality and asymptotic eÆciency of
the MLE as noise intensity decreases to zero under the condition of absolute continuity
of measures generated by the process for di�erent parameter values (the situation is
similar to the classical case) and in the other they obtained these properties as the
�nite dimensional projection becomes large under the condition of singularity of the
measures generated by the process. The study of small noise asymptotics of the MLE
for more general parabolic SPDEs in the absolutely continuous case was studied by
Huebner (1999).

The spectral asymptotics for MLE was extended by Huebner and Rozovskii (1995)
to more general parabolic SPDEs where the partial di�erential operators commute and
satisfy some order conditions. Piterberg and Rozovskii (1995) studied the properties
MLE of a parameter in SPDE which are used to model the upper ocean variability in
physical oceanography. Piterbarg and Rozovskii (1996) studied the properties of MLE
based on discrete observations of the corresponding di�usion �eld. Huebner (1997)
extended the problem to the ML estimation of multidimensional parameter. Lototsky
and Rozovskii (1999) studied the same problem without the commutativity condition.

The Bernstein-von Mises theorem, concerning the convergence of suitably nor-
malised and centered posterior distribution to normal distribution, was �rst proved
by Bernstein (1917) and von Mises (1931) in speci�c i.i.d. cases. It plays a fundamen-
tal role in asymptotic Bayesian inference, see Le Cam and Yang (1990). A complete
proof in the i.i.d. caes was �rst given by Le Cam (1953). Since then the theorem has
been extended to many dependent cases. Borwanker et al. (1972) obtained the theorem
for discrete time Markov processes. For the linear homogeneous di�usion processes, the
Bernstein - von Mises theorem was proved by Prakasa Rao (1980). Prakasa Rao (1981)
extended the theorem to a two parameter di�usion �eld. Bose (1983) extended the
theorem to the homogeneous nonlinear di�usions and Mishra (1989) to the nonhomo-
geneous di�usions. As a further re�nement in Bernstein-von Mises theorem, Bishwal
(2000a) obtained sharp rates of convergence to normality of the posterior distribution
and the Bayes estimators in the Ornstein-Uhlenbeck process.

All these above work on Bernstein-von Mises theorem are concerned with �nite
dimensional SDEs. Recently Bishwal (1999) proved the Bernstein-von Mises theorem
and obtained asymptotic properties of regular Bayes estimator of the drift parameter
in a Hilbert space valued SDE when the corresponding di�usion process is observed
continuously over a time interval [0; T ]. The asymptotics are studied as T !1 under
the condition of absolute continuity of measures generated by the process. Results
are illustrated for the example of an SPDE. The situation is analogous to the �nite
dimensional SDEs, where the measures are absolutely continuous.

Here we prove the Bernstein-von Mises theorem for a certain class of linearly
parametrized parabolic SPDEs when the corresponding random �eld is observed con-
tinuously in time. We will consider two types of asymptotics: 1) spectral asymptotics
when the measures generated by the corresponding di�usion �eld for di�erent parame-
ter values are singular and 2) small noise asymptotics when the above measures are ab-
solutely continuous with respect to each other. As a consequence of the above theorem,
it will be shown that regular Bayes estimators, for smooth priors and loss functions,
are asymptotically equivalent to the maximum likelihood estimators, strongly consis-
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tent, asymptotically normally distributed and asymptotically eÆcient in the Hajek-Le
Cam sense. An example of heat equation is given where the assumptions made are
veri�ed. First part is from Bishwal (1998) and the second part from (2000b). As fur-
ther re�nement of these results, rates of normal approximation of the posteriors and
Bayes estimators are shown. The rate is interesting which di�ers from the classical
i.i.d. case. For the heat equation, it is of the order n�3=2 where n is the number of
observable Fourier coeÆcients. This part is from Bishwal (2001). Similar rate was
shown by Bishwal, Markussen and S�rensen (2000) for the MLE.

Sequential estimators are known to have better properties than the MLE in �nite
dimensional SDEs (see K�uchler and S�rensen (1997)). Sequential estimation in SPDEs
is studied in Bishwal and S�rensen (2000).
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Stochastic PDEs, in�nite dimensional di�usions
and interest rate dynamics

Rama Cont1

Ecole Polytechnique, Palaiseau, France

Interest rates admit a natural description in terms of a random �eld indexed by
time and maturity: for example, one may represent the structure of interest rates at
date t by the forward rate f(t; T ) for the maturity T = t + x, x units of time ahead
from the current date. Here x is the time to maturity of the corresponding forward
contract. Forward rates are linked to bond prices by

B(t; T ) = exp�
Z T

t

f(t; u)du

The forward rates f(t; T ) are modeled in the Heath Jarrow Morton (HJM) framework
as a family of di�usion processes indexed by the maturity date T : for each T � t,
f(t; T ) is the solution of

df(t; T ) = �(t; T )dt+ �(t; T ):dWt (1)

whereW is a �nite dimensionalWiener process on a �ltered probability space (
;Ft;P).
Driving a in�nite (continuum) of di�usion processes with the same �nite dimensional
noise sources creates considerable amount of correlations among di�erent forward rates,
leading to risk-free arbitrage strategies in the model, which is undesirable from a �nan-
cial point of view. A suÆcient condition for avoiding such arbitrage opportunities is the
existence of an equivalent martingale measure Q � P such that for each maturity T ,
the bond price B(t; T ) is a Q-martingale. In the di�usion context, one can parametrize
Q by its Girsanov kernel with respect to P. As shown by Heath, Jarrow &Morton [9]
this leads to a restriction on the form of the drift in Eq.1:

�(t; T ) = �(t; T )

Z T

t

�(t; u)du+ �(t; T )(t) (2)

where (t) is a Ft predictable process, depending only on t and not on T and verifying
a Novikov condition allowing to link P to Q via a Girsanov transformation:

E exp[�
Z T

0

(t)dW i
t �

Z T

0

(t)2dt] < +1 (3)

However absence of arbitrage gives no more restrictions on the process , leaving a large
degree of freedom for the modeling of interest rate dynamics. Most of the literature on
this topic [1, 9, 8, 10] deals with the case  = 0 which is the case when P = Q describing
the "risk-neutral" dynamics of interest rates. This corresponds to the dynamics one

1The author thanks Marianne Huebner and Michael S�rensen for the invitation to the MaPhySto

workshop and Rene Carmona, Robert Dalang, Nicole El Karoui, Rokhsaneh Ghandi, Boris Rozovskii

and Jerzy Zabczyk for many helpful remarks and encouragement.
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would use in a Monte Carlo simulation for pricing interest rate option. In this case,
if one denotes by r(t; x) = f(t; t + x) the forward rate curve as a function of time to
maturity, then r(t; :) is a function de�ned on [0;1[, solution of a stochastic evolution
equation the random �eld r(t; x) is the solution to a hyperbolic �rst-order stochastic
PDE with �nite dimensional Wiener process as noise source [10]:

@r(t; x)

@t
=
@r

@x
+ �(t; x)

Z x

0

�(t; u)du+ �(t; x):�(t; x) (4)

where � is a white noise in t, eventually correlated in x.
However, statistical analysis of observations reveals interesting properties of this

random �eld which seem to be at odds with such a speci�cation [4, 3, 5]: the mean-
reverting character of interest rates, the inuence of the curvature of the yield curve
on the dynamics and the increasingly oscillating behavior of higher order principal
components of forward rates as well as their as the quick decay of their eigenvalues
are empirical facts which have no generic theoretical counterparts in HJM models,
which have to be �ne tuned to obtain these e�ects. This often leads to postulating
complicated time dependent volatility structures to reproduces empirical stylized facts.
Also, the fact that Eq. 4 is a �rst order SPDE means that there is no smoothing e�ect:
an anomaly / non-smoothness in the initial condition will not be "arbitraged out" as
in real markets by the evolution described in Eq.4. As illustrated in [5], these empirical
facts can be easily accomodated by introducing a curvature dependent (second order
derivative) term in Eq.4, leading to a parabolic SPDE for r.

Considering the forward rate curve rt = r(t; :) as the state variable, Eq. 4 can
also be regarded as an in�nite dimensional di�usion taking values in some functional
(Hilbert) space H to be speci�ed [10]:

drt = A:rtdt+ �:dBt (5)

A:r =
@r

@x
+ �(t; :)

Z :

0

�(t; u)du (6)

where the operator A is now considered as an operator in H and Bt is an in�nite
dimensional cylindrical Brownian motion onH. � is a densely de�ned linear operator in
H which, in the case of a �nite factor model, reduces to an operator of �nite rank. The
Hilbert space H should contain all possible forward rate curves; the choice of the space
is discussed in detail in [8], see also [1]. However from a statistical perspective many
joint speci�cations of (�; H) lead to the same (weak) solution of the SDE; reciprocally,
given certain statistical properties of the yield curve, the choice of H inuences that of
� [5]. The main point here is that it is the nature of A which determines the properties
of the evolution semigroup of the forward rates, and the HJM operator in Eq.5 does
not generically possess the properties pointed out above.

The statistical properties described above {mean reversion, structure of principal
components, fast decay of PC variances, inreasingly oscillating PCs{ can be easily
reproduced by choosing A as a Sturm Liouville operator:

drt = A:rtdt+ �:dBt (7)

A:f =
1

s(x)

@

@x
[a(x)

@f

@x
]: (8)
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This means that r(t; x) is now the solution of a parabolic stochastic PDE. We study
in [5] a simple example of this model where

A =
@

@x
+ �

@2

@x2
(9)

and show how all the statistical properties observed in empirical data can be recovered
with a single additional parameter �, without introducing a complex time dependent
volatility structure.

Considered as a di�usion in Hilbert space, the model has even a simpler structure:
it is a Hilbert space valued Ornstein Uhlenbeck, the in�nite dimensional analog of
the Vasicek model, in which the short rate is an Ornstein Uhlenbeck process. In
fact, the projections of rt onto the eigenvectors of A are scalar Ornstein Uhlenbeck
processes, independent if the process is covariance stationary [5]. This model can then
also be considered as an in�nite factor model with factors which are Ornstein Uhlenbeck
processes.

The remaining question is whether the parabolic SPDE model is compatible with
the HJM arbitrage condition (2). This is where the in�nite dimensional nature of the
driving noise plays a role. The in�nite dimensional nature of the noise is shown to guar-
antee the absence of arbitrage in this framework: the non-degeneracy of the volatility
operator � allows a parabolic SPDE of the type (7) to be expressed in the form 5;
see [6]. Thus in�nite factor HJM models appear not simply as technical generalization
of �nite factor models but as an elegant way to conciliate arbitrage restrictions and
econometric observations.
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Tracking Volatility

Jak�sa Cvitani�c, Robert Liptser, and Boris Rozovskii

Abstract: This paper is concerned with nonlinear �ltering of the volatility coeÆcient
in a Black-Scholes type model that allows stochastic volatility. More speci�cally we
assume that the asset price process S = (St)t�0 is given by

dSt = rStdt+
p
vtStdBt;

where B = (Bt)t�0 is a Brownian motion and vt is the (stochastic) volatility process.
Moreover, it is assumed that vt = v(�t) where v is a nonnegative function and � =
(�t)t�0 is a homogeneous Markov jump process, taking values in the �nite alphabet
fa1; : : : ; aMg, with the intensity matrix � = jj�ijjj and the initial distribution pq =
P (�0 = aq); q = 1; : : : ;M .

The random process � is unobservable. Following to Frey and Runggaldier [4],
we assume also that the asset price St is measured only at random times 0 < �1 <
�2 < : : : ;. This assumption is designed to reect the discrete nature of high frequency
�nancial data (e.g. tick-by-tick stock prices). The random time moments �k \represent
instances at which a large trade occurs or at which a market maker updates his quotes
in reaction to new de�nition."

In the above setting the problem of volatility estimation is reduced naturally to
a special nonlinear �ltering problem. We remark that while quite natural, the latter
problem does not �t into the "standard" framework and requires new technical tools.

In this paper, we derive a mean-square optimal recursive Bayesian �lter for �t
based on the observations of S�1 ; S�2 ; : : : for all �k � t: In addition we derive Duncan-
Mortensen-Zakai and Wonham-Kushner type equations for posterior distributions of �t
and prove uniqueness of their solutions.

1. Introduction

In the classical Black-Scholes model for �nancial markets, the stock price St is modeled
as a Geometric Brownian motion, namely with di�usion coeÆcient equal to �St, where
\volatility" � is assumed to be constant. The volatility parameter is the most important
one when it comes to option pricing, so, naturally, many researchers generalized the
constant volatility model to so-called stochastic volatility models, where �t is itself
random and time dependent. There are two basic classes of models - complete and
incomplete. In complete models the volatility is assumed to be a functional of the stock
price, while in incomplete models it is driven by some other source of noise, possibly
correlated with the original Brownian motion. In this paper we study a particular
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incomplete model in which the volatility process is independent of the driving Brownian
motion process. This has the economic interpretation of the volatility being inuenced
by market, political, �nancial and other factors which are independent of the systematic
risk (the Brownian motion process) associated to the particular stock price under study.
It is also close in spirit to the way traders think about volatility - as a parameter that
changes with time, and whose future value in a given period of interest has to be
estimated/predicted. They need the estimate of the volatility to decide how they
will trade in �nancial markets, especially derivatives markets. In fact, the notion of
volatility is so important to traders that they even quote option prices in volatility units
rather than in dollars (or some other currency). It is also important for investment
banks who need to know the model for the future volatility in order to be able to
price custom-made �nancial products, whose payo� depends on the future path of
the underlying stock price. Very recently new contracts have been developed, which
directly trade the volatility itself (volatility swaps, for example). We plan to address
the issue of pricing options within the framework of our model in future research.

Estimation of volatility from observed stock prices is not a trivial task in either
complete or incomplete models, in part because the prices are observed at discrete,
possibly random time points. Since volatility itself is not observed, it is natural to
apply �ltering methods to estimate the volatility process from the historical stock
price observations. Nevertheless, this has only recently been investigated in continuous-
time models, in particular by Frey and Runggaldier [4]. Most of the earlier research
was concentrated on either the time series approach (ARCH-GARCH models) or on
calibration methods. The latter do not use historical data to estimate the volatility,
but try instead to �nd the volatility process that matches best (in some appropriately
de�ned sense) the observed present prices of frequently traded option contracts. In
other words, methods have been developed to solve the \inverse problem" of �nding
the volatility process such that the corresponding theoretical prices of options become
close, in some sense, to the observed market prices of options. In this paper we adopt
the approach of �ltering the volatility from the observed historical stock prices. In
the future work we plan to combine the two approaches, thereby estimating the model
by taking into account both the historical behavior of volatility (as indicated through
past stock prices), as well as the market opinion about its future behavior (as indicated
through present option prices).

More precisely, we are concerned with nonlinear �ltering of the volatility coeÆcient
in a Black-Scholes type model in which the asset price process S = (St)t�0 is given by

dSt = rStdt+
p
vtStdBt; (1)

where B = (Bt)t�0 is a Brownian motion and vt is the (stochastic) volatility process
(see [3]). Moreover, it is assumed that vt = v(�t), v(x) is bounded positive (known)
function, and � = (�t)t�0 is a homogeneous Markov jump process taking values in the
�nite alphabet fa1; : : : ; aMg with the intensity matrix � = jj�ij(t)jj and the initial
distribution pq = P (�0 = aq); q = 1; : : : ;M .

The random process � is unobservable. Following Frey and Runggaldier [4], we
assume also that the asset price St is observed only at random times 0 := �0 < �1 <
�2 < : : : ;. This assumption is designed to reect the discrete nature of high frequency
�nancial data (e.g. tick-by-tick stock prices). The random time moments �k \represent
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instances at which a large trade occurs or at which a market maker updates his quotes
in reaction to new information" (see [3] ).

In the above setting the problem of volatility estimation is reduced naturally to
a special nonlinear �ltering problem. We remark that while quite natural, the latter
problem does not �t into the "standard" framework and requires new technical tools.

Frey and Runggaldier [4] derived a Kallianpur-Striebel type formula for the opti-
mal mean-square �lter for �t based on the observations of S�1 ; S�2 ; : : : for all �k � t and
investigated Markov Chain approximations for this formula. In this paper, we extend
their result in that we derive exact Duncan-Mortensen-Zakai and Wonham-Kushner
type �lters for �t:

2. Preliminaries.

In this Section we introduce additional notation and further specialize the mathematical
model.

To begin with let us consider the observation process. As in Frey and Runggaldier
[4], we assume that the price process is observed only at random time moments 0 < �1 <
�2 < :::: More speci�cally, observation process is the discrete-time stochastic process
(�k; S�k)k�1: By technical reasons it is more convenient to deal with the Gaussian process
Ut = logSt ruther then the original price process St. Obviously,

Ut � U�k�1 =

Z t

�k�1

�
r � 1

2
v(�s)

�
ds+

Z t

�k�1

v1=2(�s)dBs:

Write Uk�1(t) := Ut � U�k�1 and set

Yt = If�k�1<t��kgUk�1(t)

where �0 = 0: Of course, the sequences (�k; S�k)k�1and ((�k; Y�k)k�1) provide the same
information regarding the volatility process �t: Thus, without loss of generality, we can
assume that the observation is given by the process

Gk = f(�k; Y�k); (�k�1; Y�k�1); : : : ; (�1; Y�1)g:
The counting process

Nt =
1X
k=1

I(�k � t)

and the random integer-valued measure

�
�
[0; t]� �

�
=

Z t

0

I(Ys 2 �)dNs

will play an important role in the future.
We assume that the triple (Bt; �t; Nt) are de�ned on a �xed stochastic basis (
;F ;

(Ft); P ) subject to standard conditions. Let (Gt) be the right continuous complete
�ltration generated by �, that is by the processes

R t
0

R
R
f(y)�(ds; dy) with bounded

(measurable) functions f . Obviously, (Gt) � (Ft):
The following assumptions will be in force everywhere below:
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A The Brownian motion (Bt) is independent of (�t; Nt):

B The counting process (Nt) is a double Poisson (Cox) process with the stochastic
intensity n(�t), where n is bounded and strictly positive function. The jumps of
the processes (�t) and (Nt) are disjoint.

The �rst part of B means that Nt�
R t
0
n(�s)ds is a martingale with respect to (Ft)

or, equivalently, that bNt =
R t
0
n(�s)ds is an (Ft)�adapted compensator of Nt

Note also, that assumption A yields that the conditional distribution

P
�
Uk�1(t) � yjGt�; �[0;�k]

�
is Gaussian with the density

p(k�1);�(y) =
1q

2��2k�1(�; t)
e
� (y�mk�1(�;t))

2

2�2
k�1

(�;t)

where

mk�1(�; t) =
Z t^�k

�k�1

�
r � 1

2
v(�s)

�
ds

�2k�1(�; t) =
Z t^�k

�k�1

v(�s)ds:

It is also convinient to introduce the vector process It with the components

I(�t = a1); I(�t = a2); : : : ; I(�t = aM):

Obviously, It is just another representation of �t:
Set

v = v(a1); v(a2); : : : ; v(aM)

n = n(a1); n(a2); : : : ; n(aM)

It is readily checked that v(�t) = vIt, n(�t) = nIt; and the process It is a semimartingale
(with respect to (Ft)) given by the Itô equation

It = I0 +

Z t

0

�Isds+ It (2)

where (It) is a purely discontinuous vector martingale. The paths of every component
of (It) is right continuous with unit size jumps, and admits left-hand limits (see Lemma
9.2 in [8]).

Note that the disjointness of jumps of (�t) and (Nt) is equivalent to the disjointness
of jumps of (It) and (Nt):

Write

%k�1(t; y) =
E
�
diag(It)n

�p(k�1);�(y)jGt�
�

E
�
nItp(k�1);�(y)jGt�

�
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and

%(t; y) =
1X
k=1

If�k�1<t��kg%k�1(t; y)

where p(k�1);�(y) is the Gaussian density introduced above, � is the transposition sym-
bol, and diag(It) is the scalar matrix with the diagonal It.

Note that the integrand in %k(t; y) is a functional of (It). Indeed, the parameters
of the density p(k�1);�(y) can be rewritten as follows:

mk�1(�; t) =
Z t^�k

�k�1

�
r � 1

2
vIs
�
ds

�2k�1(�; t) =
Z t^�k

�k�1

vIsds:

3.Filters

3.1 The Wonham-Kushner �lter

Set �t(I) = E(ItjGt). The process �t(I) describes the dynamics of posterior conditional
distributions

P (�t = a1jGt); P (�t = a2jGt); : : : ; P (�t = aM jGt)
Of course, this posterior distribution fully de�nes the mean-square optimal nonlinear
�lter.

The main result of this paper is formulated in the following Theorem.

Theorem. The posterior distribution �t(I) veri�es the following equation

�t(I) = �0(I) +
R t
0
��s(I)ds

+
P

k:�k�t
�
%k�1(�k; Y�k)� ��k�(I)

�
� R t

0

�
diag(�s(I))� �s(I)�

�
s(I)

�
n�ds:

(3)

Equations for posterior distributions of jump processes is often referred to as Wonham-
Kushner equations and we will follow this tradition. It is redily checked that Wonham-
Kushner equation can be rewritten as follows:

�t(I) = �0(I) +

Z t

0

��s(I)ds

+

Z t

0

Z
R

�
%(s; y)� �s�(I)

��
�� e��(ds; dy))

where e�(dt; dy) = 1X
k=1

If�k�1<t��kgE
�
nIp(k�1);�(y)jGt

�
dtdy
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is the compensator of � with respect to the \observation". MoreoverZ t

0

Z
R

�
�� e��(ds; dy)

is a martingale and \�� e�" plays the role of the innovation process. The latter form
of the Kushner-Wonham equation is quite similar to its well known version developed
for di�usion type observation process (see [8], [12]).

The proof of the Theorem is based on a general �ltering result for semimartingales
- Theorem 4.10.1 in Liptser and Shiryaev [9].

Continuous time �ltering equation with discontinuous observation were addressesed
by many authors (see e.g. Grigelionis [5], [6]; Elliott, Aggoun and Moore [2]; Krylov
and Zatezalo [7] etc.) Unfortunately, these works do not cover our setting.

3.2 Duncan-Mortensen-Zakai equation

If n(x) � 1, i.e. Nt is the Poisson process with the unit intensity, the jump moments
�1; �2; : : : , do not carry any \information" regarding the volatility and the observation
process G can be reduced to the sequence Y�1 ; Y�2; : : : It is readily checked that in this
case the �ltering equation takes a much simpler form:

�t(I) = �0(I) +

Z t

0

��s(I)ds+
X
k:�k�t

%k�1(�k; Y�k)

where

%k�1(t; y) =
E
�
Itp(k�1);�(y)jGt�

�
E
�
p(k�1);�(y)jGt�

�
This fact inspires the idea to �nd a new measure P 0 that is absolutely continuous with
respect to the original measure P and such that (Nt; P

0) is the Poisson process with
the unit intensity. Such change of the measure is possible, if the �ltering problem is
treated on a �nite time interval [0; T ]. Speci�cally, the new measure is de�ned by

dP 0 = zTdPT

where PT is the restriction of P to FT , and t � T;

zt = exp
�Z t

0

� logn(�s�)dNs �
Z t

0

1� n(�s)

n(�s)
d bNs� (4)

(see e.g. Section 19.4 in Ch. 19 [8]).
In the future, an expectation with respect to the measure P 0 will be denoted E 0:

Write �0t(zI) = E 0�z�1t ItjGt

�
, and �0t(z) = E 0�z�1t jGt

�
). By the Kallianpur-Striebel

formula, we have

�t(It) =
�0t(z

�1I)
�0t(z�1)

:

The equation for �0t(z
�1I) in the case of di�usion type observation (usually referred

to as the Duncan-Mortensen-Zakai equation ) is well known ( see e.g. [12]). To derive an
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analog of this equation in the present setting, we start with the Kushner type equations
for the time evolution of �0t(z

�1I) and �0t(z
�1). To this end, let us discuss briey some

important features of our model with respect to the new measure P 0. Since (�t) and
(Nt) have disjoint jumps, the distribution of the process � remains the same under the

new measure. Similarly, since the predictable covariance of (Bt) and (Nt� bNt) is zero,
it ie readily checked that the process (Bt) is a standard Brownian motion independent
of (�t) and (Nt). Further, since (Nt) is the Poisson process with the unit intensity, we
have

%0k�1(t; y) =
E 0�Itp(k�1);�(y)jGt��
E 0�p(k�1);�(y)jGt��

and %0(t; y) =
1P
k=1

%0k�1(t; y). The compensator e� is is given now by the formula

e� 0(dt; dy) = 1X
k=1

If�k�1<t��kgE
0�p(k�1);�(y)jGt�dtdy:

Making use of Theorem 4.10.1 from [9], one can show that the following representation
for �0t(z

�1) holds true:

�0t(z
�1) = 1 +

Z t

0

Z
R

%0(s; y)(�� e� 0)(ds; dy)
Write

w(s; y) =
E(nIp(k�1);�(y)jGs�)
E(p(k�1);�(y)jGs�)

: (5)

It is readily checked that

%0(s; y)
�0s�(z�1)

= w(s; y)� 1 (6)

Theorem 4.10.1 in [9], (5) ; and (6) yield the following linear equation for �0t(z
�1) :

�0t(z
�1) = 1 +

Z t

0

Z
R

�0s�(z
�1)
�
w(s; y)� 1

�
(�� e� 0)(ds; dy):

Obviously the Dolean-Dade exponent is the unique solution of this equation. Thus we
have

�0t(z
�1) = exp

�Z t

0

Z
R

logw(s; y)�(ds; dy)�

�
Z t

0

Z
R

(w(s; y)� 1)e(�)(ds; dy)�
To derive the Duncan-Mortensen-Zakai �lter for �0t(z

�1I), we begin with deriving
the semimartingale decomposition for z�1t It. From (4) by the Itô formula, we have

z�1t = 1 +

Z t

0

z�1s�(n(�s�)� 1)(dNs � ds):
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Now, taking into account (1) and applying Itô's formula to ztIt we get

ztIt = I0 +

Z t

0

�zsIsds+

Z t

0

zs�Is�dIs

+

Z t

0

zs�Is�(n(�s�)� 1)(dNs � ds):

Now, applying Theorem 4.10.1 in [9], we �nd

�0t(z
�1I)

= �00(I) +
Z t

0

��0s(z
�1I)ds

+

Z t

0

Z
R

�
'0(s; y)� �0s�(z

�1I)
�
(�� e� 0)(ds; dy);

where '0(t; y) =
1P
k=1

If�k�1<t��kg'
0
k�1(t; y) and

'0k�1(t; y) =
E 0�diag(z�1t It)n

�p(k�1);�(y)jG 0t�
�

E 0�p(k�1);�(y)jG 0t�� :

The above results can be reformulated as follows:

Theorem. The Duncan-Mortensen-Zakai �lter is given by the equations

�0t(z
�1) = 1 +

X
k:�k�t

�0�k�(z
�1)
�
w(�k; Y�k)� 1

�
�
Z t

0

�0s(z
�1)
�
�s(nI)� 1

�
ds

and

�0t(z
�1I)

= �00(I) +
Z t

0

��0s(z
�1I)ds

+
X
k:�k�t

�
'0(�k; Y�k)� �0�k�(z

�1I)
�

�
Z t

0

�
diag(�0s(z

�1I)n� � �0s(z
�1I)

�
ds:

The proof follows from the following relations:Z
R

e� 0(ds; dy) = dsZ
R

w(s; y)e� 0(ds; dy) = �s(nI)dsZ
R

'0(s; y)e� 0(ds; dy) = diag
�
�0s(z

�1)
�
ds:
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Inverse problems for stochastic partial di�erential
equations

Marianne Huebner
Michigan State University

and
Sergey Lototsky

University of Southern California

1. Motivation and examples

Many physical models are represented by linear and nonlinear stochastic partial di�er-
ential equations. The linear SPDEs are of the form

du(t; x) =

 
A0u(t; x) +

rX
k=1

�k(t; x)Aku(t; x)

!
dt+ dW (t; x); (1)

0 � t � T; x 2 G � IRd;

where A0 +
Pr

k=1 �kAk is an elliptic di�erential operator with unknown coeÆcients
�k = �k(t; x), and W is a cylindrical Brownian motion. The cylindrical Brownian
motion is used only to simplify the presentation. A more general noise term, BdW (t; x),
with some correlation operator B can be considered without diÆculty.

Example 1: Sea surface temperature anomalies. The study of the evolu-
tion of the sea surface temperature anomalies u(t; x) (that is, u is the deviation of
the sea surface temperature from some average value), where t denotes time and x,
the space variable, is of interest for environmental research as well as for the develop-
ment of modern technological devices sensitive to water temperature. The evolution of
the temperature anomalies is described by a linear stochastic partial di�erential equa-
tion. The stochastic nature of the equation is due to short-term atmospheric forcing.
Frankignoul and Reynolds (1983) suggested adding a noise term such as cylindrical
Brownian motionW (t; x), because typical weather conditions do not have an inuence
on the sea temperature for more than three days. This assumption was supported by
experimental data (see also Ostrovskii and Piterbarg (1997)). The evolution of the sea
surface temperature anomalies has the following form

du(t; x) = (��u(t; x)� (v;r)u(t; x)� �u(t; x)) dt+ dW (t; x):

Model parameters are the heat conductivity �, Newton's cooling coeÆcient �, and
the velocity vector v of the top layer of the ocean. It is desirable to estimate these
parameters to get a more accurate model for the temperature evolution.

Example 2: Groundwater ow. The groundwater level uctuates in response
to the combined action of deep percolation, evaporation, pumping, and groundwater
depletion. A model for a one-dimensional groundwater ow is (see Serrano and Unny
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(1987):

du(t; x) = K�u(t; x) dt+ dW (t; x); x 2 (0; L); t > 0

u(t; 0) = C;

@u

@x
(t; L) = 0;

@u

@x
(0; x) = v0(x)

where u is the deviation of the groundwater level from the steady state. The physical
parameter K describes water percolation and is the model parameter to be estimated
from the measurements of u. The initial condition v0 is the initial hydraulic gradient
and is a random variable due to inaccurate measurements. There are a number of
other interesting models in hydrology that can be reduced to (1) (see e.g. Serrano and
Adomin (1996)).

2. Estimation

Being a relatively new area of stochastic analysis, stochastic partial di�erential equa-
tions have only recently been introduced as a modelling tool in applied sciences, and
the approach to estimation has been mostly intuitive and experimental. Therefore,
identi�cation in many models is an open problem.

Rigourous mathematical study of the estimation problems for model (1) involves
asymptotical analysis of the corresponding estimator. Just as in other statistical prob-
lems, small noise or long time asymptotics can be used. In the small noise asymp-
totics, estimation problems for (1) were studied by Ibragimov and Khasminski (1997
and later), and in the long time asymptotics, by Aihara (1992), Bagchi and Borkar
(1984) and others.

Still, under certain conditions, a consistent estimation in (1) is possible even if the
amplitude of the noise and the observation time are �xed. The solution is projected on
a special orthonormal basis in L2(G), and the dimension of the projection becomes the
new asymptotic parameter. The following commutativity assumption is often made to
simplify the analysis: the operators A0; : : : ; Ar have a common system of eigenfunctions
f�i; i � 1g that is an orthonormal basis in L2(G). The solution is then projected on
this basis, and the estimator is based on the �rst N Fourier coeÆcients of the solution.

The �rst examples of such estimators for the model with r = 1 and the corre-
sponding coeÆcient �1 independent of t; x were studied by Huebner et al. (1992).
This parametric model was further analysed, with and without the commutativity as-
sumption, by Huebner and Rozovskii (1995), Huebner (1997), Piterbarg and Rozovskii
(1997), Lototsky (1997), Lototsky and Rozovskii (1999).

In the non-parametric setting, the following particular case of (1) was studied under
the commutativity assumption:

du(t; x) = (A0 + �0(t)A1) u(t; x) dt+ dW (t; x); t 2 (0; T ]; x 2 G
u(0; x) = u0(x); uj@G = 0:

The set � of admissible functions �0 is such that A0 + �0(t)A1 is a strongly elliptic
operator for all t 2 [0; T ] and all �0 2 �: Possible estimators for �0 in this model
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are sieve estimator (Huebner and Lototsky (2000a)) or kernel estimator (Huebner and
Lototsky (2000b)).

If the initial condition u0 is not random, then the Fourier coeÆcients u1(t); : : : ; uN(t)
are independent Ornstein{Uhlenbeck process, and the drift of each process contains the
unknown function �0(t) and the eigenvalues of the operators A0; A1. As a result, we get
the drift estimation problem when the observations are independent but not identically
distributed di�usions. In the i.i.d. setting, this problem was studied by Nguyen and
Pham (1982) using sieves and by Kutoyants (1984) using kernel estimators.

Sieve estimator

The sieve estimator �̂N of �0(t) is obtained by maximizing the likelihood function based
on the N Fourier coeÆcients of the solution. The maximization is carried out over a
sieve �N , that is, a �nite dimensional subspace of �. The family of spaces f�N ; N � 1g
is chosen so that the approximation error decreases to zero as the the number N of
observations increases. We assume that every function � 2 � can be represented as an
in�nite linear combination of known functions fhj; j � 1g:

�(t) =
1X
j=1

�jhj(t)

and the functions fhjg are orthonormal on [0; T ]. If we choose the sieve �N to be the
span of h1(t); : : : ; hdN (t), then the sieve maximum likelihood estimate will be of the
form

�̂N =

dNX
j=1

�̂jhj(t):

The numbers �̂j are computed by solving a linear system of equations; the matrix and
the right hand side of the system are determined by the observations.

The choice of the number dN , the dimension of �N , in relation to the number N of
Fourier coeÆcients of the solution, is an essential part of designing the estimator. In
the paper Huebner and Lototsky (2000a) we describe the procedure for choosing dN
and prove consistency and asymptotic normality of the estimator.

Kernel estimator

We consider the following estimate �̂N of �0:

�̂N (t) =

Z T

0

RhN (s� t)dXN(s);

where R is a kernel function, RhN (s) = R(s=hN)=hN with hN ! 0; N ! 1, and XN

is a certain process constructed from u1; : : : ; uN . In the apper Huebner and Lototsky
(2000b) we prove the mean-square convergence of the type

lim
N!1

sup
�02�

sup
t2[t1;t2]

NEj�̂N(t)� �0(t)j2 <1;

and explicitly compute the rate  > 0 which is determined by the parameter class �
and the orders of the operators A0; A1.
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Introduction. Let G be a bounded region in Rd with smooth boundary @G;QT means
cylinder [0; T ]�G and �T = [0; T ]� @G: Let

L =
X
jkj�2p

ak(t; x)D
k
x

be a strongly elliptic di�erential operator with the coeÆcients ak being smooth func-
tions de�ned on QT . Here k = (k1; : : : ; kd); jkj =

Pd
i=1 ki; D

k
x = Dk1

x1 : : :D
kd
xd
:

Below we consider the problem of estimation of a functional parameter �(x); x 2 G;
on the base of observations u�(t; x); (t; x) 2 QT , and u� is the solution to the problem

du�(t) = Lu�dt+ �(x)g(u�)dt+ �dw(t); u�(0; x) = �(x); B(x;Dx)uj�T = h: (1)

A general estimation problem has been set up in [1]. Di�erent estimation problems
for the linear case, g(u) = u, has been considered in [3]. Below we continue these
investigations.

Denote u0 the solution to the nondisturbed problem

@u

@t
= Lu+ �g(u)

with the same boundary and initial conditions as in (1). We suppose that the opera-
tor L, the function g, the region G, the initial and boundary conditions satisfy such
regularity conditions which ensure the existence and unicity of the suÆciently smooth
solution u in some interval [0; T ]. In particular, we suppose that there exist constants
c1; c2 such that

jg(u)j � c1juj; jg(u1)� g(u2)j � c2ju2 � u1j:
On such regularity conditions see, for example, [4].

We restrict our consideration by the case when the noise w(t) is the cylindrical
Wiener process (see [5]). We assume below that the order 2p of the operator L is
strongly greater than the dimension d. Under this condition the solution u� to (1)
exists, is unique and with probability one satis�es H�older conditions of some positive
order  > 0 (see [5], [1]).

Denote < :; : >; j:j inner product and norm on the Hilbert space L2(G) of functions
of x. Denote L2 the Hilbert space of L2(G)-valued fuctions '(t) with the scalar product
and norm

(';  ) =

Z T

0

< '(t);  (t) > dt; jj'jj =
Z T

0

j'j2dt:
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We denote jj:jjH norm in a normed space H.
Below we suppose that the operator L, the function g and the noise level � are

known to the statistician and that the only unknown parameter is the function �(x).
However we know that � 2 � where � is a known subset of L2(G). We assume also
that all functions in � are continuous. Our statistical problem looks as follows. We are
given a known function � : L2(G) �! H where H is a Hilbert or an Euclidean space.
The problem is to estimate the value �(�) of the known function � at the unknown
point �.

Here are a few examples:

1. �(�) =
R
G
'(x)�(x)dx where ' is a known function from L2(G) (a bounded linear

functional of �).

2. �(�) =
R
G
j�(x)j2dx (a quadratic functional of �).

3.�(�) =
R
G
K(x; y)�(y)dy;

R
G

R
G
K2(x; y)dxdy < 1(a linear Hilbert-Schmidt opera-

tor of �).

4.�(�) = �(x0) where x0 is a given point of G (an unbounded linear functional of �).

5. �(�) = � (a linear bounded but not Hilbert-Schmidt operator).

2. Asymptotically eÆcient estimators. De�nition. Denote P
(�)
� the distribution

of the solution u� to (1). It follows easely from the results of Kozlov [6] that the
likelihood ratio

dP
(�)
�+h

dP(�)
�

(u�) = exp

�
1

�

Z T

0

< hg(u�); dw(t) > � 1

2�2

Z T

0

jhg(u�)j2dt
�
: (2)

To begin with suppose that the set � is one-dimensional and consists of all functions
�(x) = �e(x); e(x) � 1; ��0 � � � �0. Let �(�) = �. It means that in fact we deal
with parametric problem of estimation of the one-dimensional parameter �. It follows
easely from (2) that the family of measures P

(�)
� satis�es Le Cam's LAN condition (see

[7], ch.2):

dP
(�)
�

dP
(�)
0

= exp

�
�

�

Z T

0

< g(u0); dw(t) > � �2

2�2

Z T

0

jg(u0)j2dt+ opr(1)

�
:

The classic Hajek-LeCam inequality (see [7], ch.2) implies then that for any Æ > 0

lim inf
�

sup
j�j�Æ

��2E�j�� ��j2 � jjg(u0)jj�2 =
�Z T

0

Z
G

(g(u0(t;x)))
2dtdx

��2
:

Evidently in this case jjg(u0)jj2 is Fisher's information of the problem. (We can con-
sider even more general case when g = g(u;�1; : : : ; �k) is a di�erentiable function of
parameters �j. In this case Fisher's information matrix of the problem is equal to

I =
�R T

0

@g
@�i

@g
@�j
dt
�
i;j=1;:::;k

.)
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To treat our main problem, the nonparametric case, we notice that because of (2)

the family of distributions fP(�)
� g satis�es the LAN conditions in the sense of [8] with

the norming operators A� = �(g(u0)0
�1; (g(u0))�1 denoting the operator of multiplica-

tion by the function (g(u0(t; x)))
�1 (cf [3]). The version of Hajek-Le Cam inequality

from [8] gives us the possibility to write some analogues of Hajek-LeCam inequality.
For the sake of simplicity we restrict oureself by the case when the set � is suÆ-
ciently massive. Namely we assume that for any point � 2 � the intersection of � with
L2-balls Or(�) with the center in � and radius r is dense in Or(�) for suÆciently small r.

Theorem 1. Let �(�) be a Frech�et di�erentiable function. Assume that the derivative
�0(�) is a Hilbert- Schmidt operator. Then for any estimator �� of �(�)

inf
V
lim inf
�!0

sup
v2V

��2Evjj�(�)� ��jj2H � tr(�0v20(�
0)�) (3)

where inf is taken over all L2-vicinities V of � and v20 denotes the operator of multipli-

cation by the function v20 =
�R T

0
g(u0(t; x))

2dt
��1

:

We call estimators �̂� asymptotically eÆcient if for them the equality signe is real-
ized in (3).

Examples.
1. In the case of the example 1.1 the derivative �0(�) = � and

lim inf
�

sup
v2V

��2Evj�(�)� ��j2 �
Z
G

�2(x)R T
0
(g(u0(t;x)))2dt

dx:

2. In the case of the example 1.2 the derivative �0(�) = 2� and

lim inf
�

sup
V
��2Evj�(�)� ��j2 � 4

Z
G

�2(x)R T
0
(g(u0(t;x)))2dt

dx:

3. In the case of the example 1.3 the derivative is the integral operator with the kernel
K and

lim inf
�

sup
V
��2Evj�(�)� ��j2 �

Z
G

Z
G

K2(x;y)v20(x)dxdy:

4. In the case of the examples 1.4, 1.5 tr(�0v20(�
0)�) =1 and we can say only that for

any estimator ��

lim inf
�

sup
V
��2Ej�(�)� ��j2 =1

and to treate these examples we need a di�erent approach which we consider in the
next section.

3. Estimation of �. Lower bounds. Consider a metric space (M; �) where M �
L2(G) and � is a metric such that

1. �(x; y) � jx� yj; c > 0;
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2. if jx� yj = 0, then�(x; y) = 0.
Denote CÆ(B;M; �) = CÆ(B) Kolmogorov's Æ- capacity of a set B in (M; �) (see, for
example, [9]). Introduce now Shannon's capasity C�(�) of the set � letting

C�(�) = sup I(u�; �)

where I(u�; �) denotes Shannon's information in u� about � and the upper bound is
taken over all random �elds �(x) on G connected with u� by the problem (1), indepen-
dent on w and such that all realizations of � belong to �.

Theorem 2. Let the parametric set � be a subset of (M; �). Then for any estimator
�� of �

sup
�2�

P� f�(��; �) � Æg � 1� C�(�) + 1

C2Æ(�)� 1
:

In particular

sup
�
E�j� � ��j2 � sup

Æ>0
Æ2
�
1� C�(�) + 1

C2Æ(�)� 1

�
: (4)

The proof of the theorem is the same as in [2] and [3].
There exist many results about asymptotic behaviour of CÆ when Æ ! 0 (see [9]).

Shannon's capacity C� satis�es the following inequality (cf. [3]):
C�(�) � C��2 sup

�2�
j�j2 (5)

where the constant C depends on � and the given elements of the problem (1).
Let an " 1. Let f�ng be an orthonormal sequence in L2(G). We say that � =

�fang is an ellipsoidal disk in L2(G) if

� = f� 2 L2(G) : � =
X
n

cn�n;
X
n

c2na
2
n � 1g:

Theorem 3 . Let � � �fang. Then
sup
�2�

E�jj�� � ��jj � ca�1N+1 (6)

where N = minfn : n � Ca�2n+1�
�2 + 2g and c; C are constants.

The inequality (6) can be deduced from (4) and (5) in the same way as in [3].

Example. Let � = (�1 ; : : : ; �d); �j > 0: Denote H
(p)
� (G)M the set of all functions

f 2 Lp(G) such that the derivatives @rj f

@x
rj
j

satisfy in L2(G) H�older's condition of order

�j; 0 < �j � 1; rj + �j = �j; and constant M . If the index p = 2, we omit it.

Theorem 4. If � � H�(G)M , then for any estimator �� of �

sup
�2�

E�j�� � �j � C�
2�

2�+1 (7)
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where � is de�ned by the relation ��1 =
P
��1j and C is a positive constant.

Consider now the estimation problem of the example 1.4.

Theorem 5. If � � H
(1)
� (G)M , then for all estimators �� of �(x0); x0 2 G,

sup
�2�

E�j�(x0)� ��j � C�
2�

2�+1 : (8)

The proof of this theorem follows [3], and uses the method initiated by B.Levit and
consisting of proper selection of appropriate one-parametric estimation problems re-
lated to the initial problem (see details in [6], ch.4).

4. Consistent estimators of �. A naturally looking estimator for �R T
0
g(u�(t))(du�(t)� Lu�(t)dt)R T

0
(g(u�(t))2dt

(9)

evidently has no sense. To correct this "naive" estimator we argue as follows. Notice
at �rst that under our conditions fu�; (t; x) 2 QTg are observable, they are statistics.
Let f(t) be an L2(G)- valued step function whose values are in�nitely di�erentiable
functions of x 2 G with compact support strongly inside G. ThenZ T

0

< f(t); du�(t) =
X
j

< f(tj�1); u�(tj)� u�(tj�1) >

and Z T

0

< u�(t); L
�f(t) > dt

also are statistics. We write the di�erence of these statistics asZ T

0

< f(t); du�(t)� Lu�(t)dt > : (10)

This integral is a statistic. The set of above de�ned step functions is dense enough
in L2(G) and standard arguments show that the integrals (10) will be statistics for
all f(t) such that jjf(t)jj2 + jjL�f jj2 < 1. Finally, if a : R1 ! R1 is continuous and
ja(x)j � c(1 + jxj), then the integralsZ T

0

a(u�(t)) < f(t); du�(t)� Lu�(t)dt > (11)

also are statistics.
De�ne now corrected versions of our naive estimators (9) as follows

��(x) = ��(x; fx) =

R T
0
g(u�(t) < fx; du�(t)� Lu�(t)dt >R T

0
g2(u�(t))dt

: (12)
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The function fx does not depend on t and for all t is equal to �x(y) where �x(y); y 2 G
is a continuous function with a sharp maxima at the point x. We may, for example
take �x(y) = (r(�))dK(r(�)(x � y) where

R
Rd K(x)dx = 1 and r(�) ! 1 when � ! 0

(kernel estimators). These estimators evidently are statistics.

Theorem 6. Assume that infx2G jg(u0(0; x))j = m > 0: Let � � H�(G)M;
beta > 1=2. Then there exist estimators �� such that

sup
�2�

E�j�� � �j2 � c�
4�

2�+1

where � is de�ned as above and c is a constant.

The proof of the theorem is a reprise of the arguments given in [3], though the argu-
ments are more involved. The estimators �� are selected from the estimators (12).

Corollary. Let under the conditions of the Theorem 6 the set � = H�(G)M; � > 1=2.
Then

inf
��
sup
�2�

E�j�� � �j2 � �
4�

2�+1 :

The estimators of the Theorem 6 can be used also to prove the following result.

Theorem 7. Let � = H1
� (G)M . Let x0 2 �. Then

inf
��
sup
�2�

E�j�� � �(x0)j2 � �
4�

2� + 1
:

5. Asymptotically eÆcient estimators. Construction. Let us return to the prob-
lem of estimation of the values �(�) of a function � with a Hilbert-Schmidt derivative
�0. A natural way to construct estimators for �(�) is to put the estimator of the the-
orem 6 into the function � to get the plug-in estimator �(��).

Theorem 8. Assume that infx jg(u0(0; x)j = m > 0. Assume that the set � =
H�(G)M . Let �(�) be a Frech�t di�erentiable function and let the derivative �0(�) as a
function of � satisfy H�older condition of order �. If � > 1=2+ 1=(2�), then there exist
estimators �� of �(�) such that the di�erences �

�1(����(�)) are asimtotically normal
with mean zero and correlation operator �0(�)v0 and

lim
�
��1E�jj�� � �(�)jj2H = tr(�0(�)v0(�0(�))�):

Theorem 9. Let under the conditions of the Theorem 8 the function �(�) = K�; K
be a linear Hilbert-Schmidt operator. If � > 1=2, there exist estimators K� of �(�)
such that the di�erences ��1(K� � K�) are asymptotically Gaussian with mean zero
and correlation operator Kv0 and

lim
�
��1E�jjK� �K�jj2H = tr(Kv0K

�):
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The proof of both Theorems follows the same lines as in [3]. It follows from the results
of Sect. 2 that the estimators of Theorems 7, 8 are asymptotically eÆcient.

Remark. It follows from the condition � � H�(G)M; � > 1=2 that all functions
from � are continuous and satisfy H�older's condition of order � � 1=2.
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Parameter identi�cation for rescaled solutions of
PDE with random data

Nikolai Leonenko
Cardi� University

We present a systematic study of classical statistical inference problems (parameter
estimation and hypothesis testing ) for random �elds arising as rescaled solutions of
the nonlinear di�usion equation (the Burgers' turbulence problem) as well as solutions
of fractional di�usion equation with weakly dependent and strongly dependent random
initial conditions.

A nonlinear di�usion equation known as the Burgers' equation describes various
physical phenomena, from nonlinear acoustic and kinematic waves, to the growth of
molecular interfaces and formation of large-scale structures of the universe (see Woy-
czynski (1998), Leonenko and Woyczynski (1998a), Leonenko (1999) and the references
therein).

One-dimensional Burgers' equation have also emerged in models of �nancial markets
(see He and Lelard (1993), Hodges and Carverhill (1993, 1997).

We introduce a new statistical model of random �elds arising in Burgers' turbulence
and provide statistical inference tools for them, both in the space and in the frequency
domain.

We begin with a review of results on parabolically rescaled solutions of Burgers'
equation (with viscosity parameter � > 0)

@u

@t
+ u

@u

@x
= �

@2u

@x2

with weakly dependent and strongly dependent random initial data (see Leonenko and
Woyczynski(1998a, 2001)). The statistical inference for rescaled solutions of Burgers'
equation with weakly dependent initial conditions is reduced to the statistical analysis
for stationary Gaussian processes with the covariance function of the form

B(x) = c

�
1� x2

4�t

�
e�

x2

8�t ; x 2 R

and the spectral density of the form

g(�) = q�2e�2�t�
2

; � 2 R;
where c; q and � are unknown parameters.

On the other hand, statistical inference for the rescaled solutions of Burgers' equa-
tion with strongly dependent initial data can be reduced to analysis of stationary
Gaussian process with the spectral density of the form

f(�) = p j�j1+� e�2�t�2 ; � 2 R; 0 < � < 1;

where p and � are unknown parameters. The parameter �; called here the fractional
exponent is also unknown. This parameter characterizes the decay at in�nity of the
correlation function of the initial data.
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We discuss estimation of several important physical parameters of the equation
itself (such as kinematic viscosity � ) and parameters of the initial data (such as
fractional exponent). We use information on parameters containes in the limiting co-
variance structure of parabolically rescaled solution of Burgers' equation with random
data (estimation in space domain). On the other hand our statistical analysis in fre-
quency domain is based on asymptotic theory of minimum contrast estimators. These
results are obtained jointly with W.A.Woyczynski (Case Western Reserve University,
Cleveland).

Similar results for multidimensional Burgers' equation can be found in Leonenko
Woyczynski (1999).

Fractional di�usion equations were introduces to describe physical phenomena such
as di�usion in porous media with fractal geometry, kinematics in viscoelastic media, re-
laxation processes in complex systems, propagation of seismic waves and turbulence(see
Leonenko Woyczynski (1998), Anh and Leonenko (1999, 2000, 2001), Anh et al. (1999),
Angulo et al.(2000), Beghin et al.(2000) and references therein). These equations are
obtained from the classical di�usion equation by replacing the �rst and/or second-order
derivative by a fractional derivative.

We consider the following fractional di�usion equation

@�u

@t�
= ��(I ��)=2(��)�=2u; � > 0

with random data, where the time derivative of order � 2 (0; 1g is de�ned in Caputo-
Djrbashian sense, and the operators �(I � �)=2;  � 0; and (��)�=2; � > 0; are
interpreted as inverses of the Bessel and Riesz potentials respectively and � is the
n-dimansional Laplacian.

We present a spectral representation of the mean-square solution of the fractional
di�usion equation with random data. Gaussian and non-Gaussian limiting distribu-
tions of the renormalized solution are described in terms of multiple stochastic integral
representations.

In particular, the second order spectral density of rescaled solution

g(�) =
const

j�jn��E
2
�(��t� j�j�); � 2 Rn

where � 2 (0; n) is the parameter of the strongly dependent initial condition, and

E�(�x) =
1X
j=0

(�1)jxj
�(�j + 1)

; x � 0

is the Mittag-Le�er function.
A Gaussian random �eld with the spectral density g(�) can be used as model of

physical phenomena with important features such as long-range dependence and inter-
mittency simultaneously.These results are obtained jointly with V.Anh (Queensland
University of Technology, Brisbane )

The minimum contrast estimates of unknown parameters of this spectral density
can be used (see Leonenko and Moldavska(1999)).

35



References

J.M. Angulo, M.D. Ruiz-Medina, V.V. Anh and W. Grecksch (2000) Fractional dif-
fusion and fractional heat equation. Adv. Appl. Prob., 32, 1-23, 2000

V.V. Anh, J.M. Angulo and M.D.Ruiz-Medina (1999) Possible long-range dependence
in fractional random �elds. J. Stat. Plann. and Inference, 80 (1/2), 95-110

V.V. Anh and N.N. Leonenko (1999) Non-Gaussian scenarios for the heat equation
with singular initial conditions. Stoch. Proc. Appl., 84, 91-114

V.V. Anh and N.N. Leonenko (2000) Renormalization and homogenization of frac-
tional di�usion equations with random data. Submitted

V.V. Anh and N.N. Leonenko (2000) Scaling laws for fractional di�usion-wave equa-
tion with singular data. Statist. Probab. Letters, 48, 239-252

V.V. Anh and N.N. Leonenko (2001) Spectral analysis of fractional kinetic equations
with random data. J. Stat. Physics. Submitted

L. Beghin, V.P. Knopova, N.N. Leonenko and E. Orsingher (2000) Gaussian limiting
behavior of the rescaled solution of the linear Korteweg-de Vries equation with
random data. J. Stat. Physics, 99 (3/4), 769-781

H. He and H. Lelard (1993) On equilibrium asset price processes (1993). Review of
Financial Studies, 6, N 3, 593-617

S. Hodges and A. Carverhill (1993) Quassi-mean reversion in an eÆcient stock market;
the characterization of economic equilibria which support Black-Schols option
pricing. J. Econ., 102, 395-405

S. Hodges and M.J.P. Salby (1992) The risk premium in trading equilibria with sup-
port Black-Schols option pricing. In: Mathematics of derivative securities (M.
Demster, S.Sliska, eds) Cambridge University Press., 41-52

N. Leonenko (1999) Limit Theorem for Random Fields with Singular Spectrum.
Kluwer, Dordrecht

N.N. Leonenko and E.M. Moldavska (1999) Minimum contrast estimators of a pa-
rameter of the spectral density of continuous time random �elds. Theor. Probab.
and Math. Statis., 58, 101-112

N.N. Leonenko and W. Woyczynski (1998) Scaling limits of solution of the heat equa-
tion with non-Gaussian data. J. Stat. Phys., 91 (1/2) , 423-428

N.N. Leonenko and W.A. Woyczynski (1998a) Exact parabolic asymptotics for sin-
gular n-D Burgers' random �elds: Gaussian approximation. Stoch. Proc. Appl.,
76, 141-165

36



N.N. Leonenko and W.A. Woyczynski (1999) Parameter identi�cation for singular
random �elds arising in Burgers' turbulence. J. Stat. Plann. and Inference, 80,
1-13

N.N. Leonenko and W.A. Woyczynski (2001) Parameter identi�cation for stochastic
Burgers' ows via parabolic rescaling. Probab. and Math. Statist., to appear

W.A. Woyczynski (1998) Burgers-KPZ Turbulence. G�ottingen Lectures, v. 1700 of
Lecture Notes in Math. Springer, Berlin

37



Likelihood inference for a linear SPDE observed at
discrete points in time and space

Bo Markussen
University of Copenhagen

1. Introduction

The purpose of the present paper is to propose an approximate likelihood and study
the asymptotic properties of the associated maximum likelihood estimator for the pa-
rameter � = (�1; �2; �0; �1; �2) given observations in discrete points in time and space
of the stationary solution of the parabolic (�2 = 0) or hyperbolic (�2 > 0) stochastic
partial di�erential equation

�2
@2

@t2
V (t; x) + �1

@

@t
V (t; x) = �0V (t; x) + �1

@

@x
V (t; x)

+ �2
@

@x2
V (t; x) +W�(t; x); t 2 R; 0 < x < 1 (1a)

with Dirichlet boundary conditions

V (t; 0) = V (t; 1) = 0; t 2 R: (1b)

Here the parameters satis�es �1; �2 > 0, �2 � 0 and the stochastic disturbance term
W�(t; x) is related to Brownian white noise W (t; x) via the equation

W�(t; x) = e
� �1

2�2
x
W (t; x): (2)

The proposed approximate likelihood would have to be optimized using numerical
methods. The motivation for studying this statistical problem is applications in math-
ematical �nance to the modeling of the term structure for bonds of di�erent maturity
times, see Cont (1998) and Santa-Clara & Sornette (1999). In these models the spatial
component represents time to maturity. In Cont (1998) it is argued that the short
rate (x = 0) and the long rate (x = 1) can be modeled independently of the pro�le
from the short rate to the long rate. Moreover it is argued that the deviation from the
average pro�le can be modeled by the solution V (t; x) to the stochastic partial di�er-
ential equation. Realistic data thus consist of observations at discrete points in time
and space organized in a lattice. The spatial resolution is usually fairly low consisting
of e.g. 20 maturity times. Calculating the discrete Fourier transforms and using the
Galerkin approximation would thus be inadequate and result in biased estimates. The
solutions to the parabolic and hyperbolic equations have di�erent properties, see the
discussion in Cont (1998), whence it is of interest to test the hypothesis of a parabolic
equation against a hyperbolic equation.

The paper is organized as follows. In section 2 we describe for which parameters
there exists a stationary solution to (1), give a representation of the stationary solution,
and describe the sample path properties of the solution. In section 3 we give a time
series representation for a observation of V (t; x) in discrete points in time and space
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organized in a lattice. In section 4 we propose an approximate likelihood and give
conditions under which this approximate likelihood has the same �rst order asymptotic
properties as the exact likelihood. Moreover we derive the likelihood ratio test for a
parabolic equation against a hyperbolic equation.

This extended abstract is a shortened version of Markussen (2001b).

2. The stationary solution and its properties

The stochastic partial di�erential equation (1) contains a second order derivative
w.r.t. time and is thus most easily formulated in terms of white noise calculus in the
sense of e.g. Holden et al. (1996). But since the equation (1) lives in one dimensional
space there exists an ordinary solution, which coincides with the solution of the corre-
sponding equation in the calculus of Walsh (1986), see also Kallianpur & Xiong (1995).
The following theorem is well-known.

Theorem 1. If the parameter � = (�1; �2; �0; �1; �2) lies in the parameter space � � R
5

given by

�1; �2 > 0; �2 � 0; �0; �1 2 R;
�1
4�2

+ �2�2 > �0

then there exists a unique stationary solution V (t; x) =
P1

k=1 Uk(t)Xk(x) to the stochas-
tic partial di�erential equation (1). Here the deterministic functions Xk(x) are given
by

Xk(x) =
p
2 sin(�kx)e

� �1
2�2

x
;

and the coeÆcients Uk(t) are independent stochastic processes. Let the independent
Brownian motions Bk(t), k � 1 be given by

Bk(t) =

Z t

0

Z 1

0

W�(s; y)Xk(y)e
�1
�2 dy ds;

and put

�k = �0 � �21
4�2

� �2k2�2; �k = �21 + 4�2�k:

In the parabolic case Uk(t) is a stationary solution to the stochastic di�erential equation

dUk(t) =
�k
�1
Uk(t) ds+ dBk(t);

and in the hyperbolic case Uk(t) is the �rst component of a stationary solution �Uk(t) =
(Uk(t); ~Uk(t)) to the stochastic di�erential equation

d �Uk(t) =

8>>>>>>>>><>>>>>>>>>:

1
2�2

 
��1 p

�kp
�k ��1

!
�Uk(t) dt+

 
0

1

!
dBk(t) if �k > 0

1
2�2

 
��1 2�2

0 ��1

!
�Uk(t) dt+

 
0

1

!
dBk(t) if �k = 0

1
2�2

 
��1 p��k

�p��k ��1

!
�Uk(t) dt+

 
0

1

!
dBk(t) if �k < 0:

(3)
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In the hyperbolic case the paths of the coeÆcient processes Uk(t) are continuous
di�erentiable as is seen from (3). This fact suggest that the solution V (t; x) is more
smooth in the hyperbolic case than in the parabolic case. Following Walsh (1986)
Theorem 3.8 we can prove Theorem 2.

Theorem 2. The solution V (t; x) to the stochastic partial di�erential equation (1) has
a version that is continuous in (t; x). Moreover if for some �xed t0 <1,

!t(Æ) = sup
x;y2[0;1]:jx�yj�Æ

jV (t; x)� V (t; y)j; t 2 [0; t0];

!(Æ) = sup
s;t2[0;t0];x;y2[0;1]:((s�t)2+(x�y)2)

1
2�Æ
jV (s; x)� V (t; y)j

are the moduli of continuity in space at time t respectively in time and space then there
exists a constant � < 1 and random variables Yt, t 2 [0; t0] and Y with exponential
moments such that for 0 � Æ � 1,

!t(Æ) � YtÆ
1
2 + �Æ

1
2

p
log(Æ�1);

!(Æ) �
(
Y Æ

1
4 + �Æ

1
4

p
log(Æ�1) if �2 = 0

Y Æ
1
2

p
log(Æ�1) + �Æ

1
2 log(Æ�1) if �2 > 0.

Theorem 2 states that the solution V (t; x) to (1) has paths that essentially are
H�older continuous of order 1

2
in space and 1

4
in time in the parabolic case, and of order

1
2
in time and space in the hyperbolic case. The paths are thus substantially more

rough in time in the parabolic case, in which case they also by Walsh (1986) Theorem
3.10 have non-vanishing quartic variation.

3. Time Series Representation

Let a �xed time step � > 0 and �xed rational spatial coordinates an
b
2 (0; 1), n =

1; : : : ; N be given. Let the N -dimensional time series V �(t), t 2 N0 , and the 2b-
dimensional time series U�(t), t 2 N0 be given by

V �(t) = V
�
t�;

an
b

�
n=1;::: ;N

; U�(t) =
�P1

j=0 Uk+2bj(t�)
�
k=1;::: ;2b

;

and let the matrices � 2 RN�N and 	 2 RN�2b be given by

� = diag
�
e
� �1

2�2

an
b
�
n=1;::: ;N

; 	 =
�p

2 sin
�
�k an

b

��
n=1;::: ;N
k=1;::: ;2b

:

Then the time series V �(t) has the state space representation

V �(t) = �	U�(t); t 2 N0 :

The components of the time series U�(t) are independent and given as in�nite sums of
the independent time series U�

k (t) = Uk(t�). In the parabolic case, U�
k is a �rst order

autoregressive process

U�
k (t+ 1) = e

�k
�1

�
U�
k (t) + "�k (t+ 1) � N �0; �1

2�1�k

�
;

"�k (t) i.id. N
�
0;

�1
2�1�k

(1� e
2
�k
�1

�
)
�
:
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In the hyperbolic case, U�
k (t) is the �rst component of the similarly de�ned two-

dimensional �rst order autoregressive process �U�
k (t) = (U�

k (t);
~U�
k (t)),

�U�
k (t+ 1) = ��k �U�

k (t) + �"�k (t+ 1) � N2(0; �
2
k);

�"�k i.id. N2(0; �
2
k � ��k �

2
k�

��
k ):

Here the structure of the autoregression coeÆcient ��k and the stationary variance �2k
depends on the sign of �k. If �k > 0 then

��k = e
� �1

2�2
�

 p
�k

2�2
� 0

0 �
p
�k

2�2
�

!
; �2k =

 
�22

�2�1�k
�1�22

�2�k�k
�1�22

�2�k�k
�22

�2�1�k +
4�22
�1�k

!
;

if �k = 0 then

��k = e
� �1

2�2
�

�
1 1
0 1

�
; �2k =

 
2�2
�31

1
�21

1
�21

1
�1�2

!
;

and if �k < 0 then

��k = e
� �1

2�2
�

 
cos(

p��k
2�2

�) sin(
p��k
2�2

�)

� sin(
p��k
2�2

�) cos(
p��k
2�2

�)

!
;

�2k =

 �1
2�1�k

�1
2�k

p��k�1
2�k

p��k
�1

2�1�k
+ �1

�k�k

!
:

4. Approximate Likelihood Inference

Assume observations of V (t; x) in discrete points in time and space at the lattice given
by

t = �; 2�; : : : ; T�; x =
a1
b
; : : : ;

aN
b

(4)

are at our disposal, i.e. that the time series

V �(t) = �	U�(t); t = 1; : : : ; T

have be observed. In practical applications it might be necessary to let the spatial
sampling points an

b
, n = 1; : : : ; N depend on the time point t. If the spatial sampling

points e.g. are altered to an(t)
b

or x(t) + an
b
, n = 1; : : : ; N in some appropriate periodic

fashion then we conjecture Theorem 4 below to remain true for some other Fisher
information matrix.

Let the cuto� point K(T ) and the white noise variances � 2k (T ) be given by

K(T ) =

(
d 1
�

q
�1

2�2�

p
logT e if �2 = 0

dT 1
4 e if �2 > 0

;

� 2k (T ) =
1X

j2N0 :k+2bj�K(T )

�1
2�1�k+2bj

; k = 1; : : : ; 2b:

(5)
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We propose to approximate the distribution of V �(t) by the distribution of �	Û�(t),
where

Û�(t) =
�P

j2N0 :k+2bj<K(T )U
�
k+2bj(t) + "̂k(t)

�
k=1;::: ;2b

;

"̂k(t) i.id. N
�
0; � 2k (T )

�
;

Since we have an explicit description of the �nite dimensional state space model
�	Û�(t) the approximate likelihood can easily be calculated via the Kalman-Bucy
�lter, and thereafter optimized via numerical methods.

Let '�
k (!), ! 2 (�1

2
; 1
2
] be the spectral density of the time series U�

k (t) under the
parameter �. If �0 is the true value of the parameter then the time series V �(t) =
�	U�(t) has spectral density ��

�0
(!) given by

��
�0
(!) = �	diag

�P1
j=0 '

�
k+2bj(!)

�
k=1;::: ;2b

	���;

and the approximation �	Û�(t) has spectral density ��
T;�0

(!) given by

��
T;�0

(!) = �	diag
�P

j2N0 :k+2bj<K(T )'
�
k+2bj(!) + � 2k (T )

�
k=1;::: ;2b

	���:

We measure the quality of the approximation via the L2-distance between the spectral
density ��

�0
(!) and the approximation ��

T;�0
(!) in the L2-space of C

N�N -valued func-

tions on (�1
2
; 1
2
]. For a matrix A 2 C N�N , the Schatten p-norm kAkp, p 2 [1;1] is de-

�ned as the lp-norm of the eigenvalues of the positive semi de�nite matrix jAj = (A�A)
1
2 .

For a matrix valued function � : (�1
2
; 1
2
]! C

N�N , the Lp-norm k�kp is de�ned as the
usual Lp-norm of the real function k'(�)kp. These Lp-norms behaves much like the
usual Lp-norms and especially satis�es the H�older inequality.

Lemma 1. If the cuto� point K(T ) and white noise variances � 2k (T ) are given by (5)

then T
1
2k��

� � ��
T;�k2 is bounded as T !1.

The analysis now relies on the following theorem proved in Markussen (2001a).

Theorem 3. Let V (t), t 2 N be a N-dimensional Gaussian time series, i.e.

VT =
�
V (1); : : : ; V (T )

�� � NT�N
�
0;�T (')

�
;

where �T (') is the Toeplitz matrix associated to the spectral density �(!). For each
T 2 N let �T;�(!), � 2 � � Rd be a family of spectral densities and let lT (�) be the
corresponding log likelihood ratio,

lT (�) = �1
2
log det �T (�T;�)� 1

2
tr
�
�T (�T;�)

�1VTV �
T

�
: (6)

If T
1
2k� � �T;�0k2 is bounded as T ! 1 then under additional mild regularity condi-

tions, see Markussen (2001a), the maximum likelihood estimator �̂T = argmax�2�lT (�)
is
p
T -consistent for �0 and the localized log likelihood ratio converges uniformly to a

Gaussian shift process, i.e. there exists d-dimensional random variables GT such that

E
�

sup
u2Rd:juj�r;�0+T�

1
2 u2�

jlT (�0 + T�
1
2u)� lT (�0)�

�
u�GT � 1

2
u�J�0u

�j� (7)
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vanishes for every r > 0 and GT converges in distribution to Nd(0; J�0) as T ! 1.
Here the Fisher information matrix J�0 is given by

J�0 = lim
T!1

�
1
2

R 1
2

� 1
2

tr
�
��1T;�0(!)@i�T;�0(!)�

�1
T;�0

(!)@j�T;�0(!)
�
d!
�
i;j=1;::: ;d

:

The additional regularity conditions are satis�ed for the stochastic partial di�eren-
tial equation model under consideration, see Markussen (2001a), whence Theorem 3
applies by lemma 1. Using the LAN-property (7) we get the following theorem.

Theorem 4. Let �0 = (�1; �2; �0; �1; �2) be the true parameter and let the cuto� point
K(T ) and the white noise variances � 2k (T ) be given by (5). Then the approximate log
likelihood lT (�) given in (6) can be calculated via the Kalman-Bucy �lter, and the ap-
proximate maximum likelihood estimator �̂T = argmax�2�lT (�) is normal

p
T -consistent

for �0 with Fisher information�
1
2

R 1
2

� 1
2

tr
�
��
�0
(!)�1@i��

�0
(!)��

�0
(!)�1@j��

�0
(!)
�
d!
�
i;j=1;::: ;5

and asymptotically eÆcient as T ! 1 in the sense of Hajek-LeCam, see LeCam &
Yang (2000). If �2 = 0 then the likelihood ratio test statistic �(T ) = 2 sup�2� lT (�) �
2 sup�2�:�2=0 lT (�) for a parabolic against a hyperbolic equation converges in distribution
to 1

2
"0 +

1
2
�21 as T ! 1. Here "0 is the point measure in 0 and �21 is the chi-square

distribution with one degree of freedom.
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What is the Time Value of an Option?

Jaroslav Mohapl
University of Waterloo

Plotted against time, the price of a common American option traded on a Canadian
or US market exhibits changes as random as an ordinary stock. From an in-the-money
option, such a behavior is anticipated due to the presence of the intrinsic value. An
out-of-the money option has no intrinsic value; the random behavior is thus a feature
of the time value, or premium, paid for the option on the market. A closer look at
summary statistics published by exchanges after the bell shows that absolute changes in
the option price are usually smaller then those of the underlying equity. This is caused
by the cushioning e�ect of the option's time value. Though the premium is known to
decline with time and has the cushioning e�ect, the option price and its underlying
security price arise from independent negotiations between traders on the stock and
option markets, respectively. It is thus worthwhile to ask about its volatility and how
the volatility a�ects the predictability of the American option price. The argument
below shows that under fairly general assumptions about the equity price and the time
value, the conditional expectation one would naturally use for prediction of the option
price is random and satis�es a stochastic partial di�erential equation (SPDE). The
assumptions arise from analysis of the current option and equity market prices posted
daily by the Montreal and Toronto Stock Exchanges, respectively. The equation can
be used for option pricing in a similar manner as the deterministic counterpart with
minor modi�cations and shall be useful for those who need to include the expected
premium prices and their volatility into their calculations.

The de�nition of an option and basic risk management strategies are described in
[19]. The market price of an American option consists of two quantities: the time-value
and the intrinsic value. The instantaneous price, say, of a call option with an exercise
price Q Canadian dollars is thus described by the formula

C(t; St; Q) = R(t; St; Q) + max(St �Q; 0); (1)

where R(t; St; Q) is a random function describing the time value at time t and max(St�
Q; 0) is the intrinsic value of the option. We consider a contract that gives the right to
buy a single share of a common stock. Literature on �nancial derivatives [18] commonly
assumes that St, the underlying equity price at time t, is a random quantity generated
from a stochastic process satisfying for s � t an Itô's equation

dSt = �(t; St) + �(t; St)dwt; Ss = y: (2)

Functions �(t; y) and �(t; y) are deterministic, wt is a Wiener process and Ss = y is the
initial condition. This model is often acceptable even if the "ideal conditions" in the
market considered by [2] are not ful�lled. The particular shape of �(t; y) and �(t; y) can
be determined by analysis of historical data, fundamentals of the company issuing the
underlying stock, market conditions etc. De�nition, meaning and assumptions assuring
that a unique solution of (2) exists are e.g. in [13]. Investigation of the historical equity
market prices etc. was done using methods described, for example, in [4], [9], and [6].
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Statistical inference on continuous-time stochastic processes is discussed in [16]. The
time value is of the form

R(t; St; Q) = r(t; St; Q) + �(t; St; Q); (3)

where r(t; y; Q) is a deterministic function and �(t; y; Q) is a Gaussian random �eld.
The choice is determined by the data and their spatio-temporal analysis. Theoretically,
R(t; St; Q) should be always non-negative before the time of expiry, a condition the
Gaussian �eld cannot satisfy. However, if the last trade on an option took place early
in the day and the stock price changed substantially by the end of the session, which is
a usual situation caused by the low volume of options traded on the market compared
to the volume of the underlying stock, the time value calculated from closing data using
(1) may well be negative. Use of non-negative time values only causes an undesired loss
of information. Common transformations for variance stabilization that might result
in a model with non-negative values did not contribute to �t improvement either.
Validation of the model (3) and related problems are discussed e.g. in [14], [8] and [10].

Let us suppose that (2) determines a (unique) conditional probability density func-
tion p(s; y; t; x). Following [3], [5] and others it is natural to predict the value f(St) of
an arbitrary integrable function of the equity price St using the conditional expectation
based on equity price observed at the present time s:

E[f(St)jSs = y] =

Z 1

�1
f(x)p(s; y; t; x)dx: (4)

Hence, introducing the quantity

�(s; y; Q) = E[�(t; St; Q)jSs = y] (5)

we can describe the expected market price of the option at time t prior to the date of
expiry conditioned on the current equity value observed at time s as

V (s; y; Q) = E[C(t; St; Q)jSs = y] (6)

=

Z 1

�1
(r(t; x; Q) + max(x�Q; 0))p(s; y; t; x)dx+ �(s; y; Q): (7)

The second summand �(s; y; Q) is random and since integration is a linear operation,
it is a Gaussian random variable. It describes the uncertainty arising from negotiations
on the option market, which cannot be explained by the information contained in the
underlying equity price.

In most applications, p(s; y; t; x) is likely to satisfy the backwards Kolmogorov equa-
tion [11]. An expression similar to (6) is thus obtained by solving the SPDE

@

@s
V (s; y; Q) = ��(t; y) @

@y
V (s; y; Q)� �(t; y)2

2

@2

@2y
V (s; y; Q) + _W (s; y; Q) (8)

with terminal condition

V (t; y; Q) = r(t; Q; y) + max(y �Q; 0) (9)
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and Gaussian white noise term _W (s; y; Q). Notice that Q is treated as a parameter.
Without the noise, (8) is the backwards Kolmogorov equation. Solution of (8) has form

V (s; y; Q) =

Z 1

�1
V (t; x; Q)p(s; y; t; x)dx+

Z t

s

Z 1

�1
p(s; y; �; x)W (d�; dx;Q): (10)

where W (s; y; Q) is a Brownian sheet and the last integral is in Itô's sense. A general
theory introducing SPDE's and methods of solution is given, for example, in [7] and
[17]. The expected value of (10) serves as the option value predictor, whereas the
variance of (10) is necessary to assess the error of the prediction.

The equation (8) can be modi�ed to incorporate further factors, such as the interest
rate. Let us take a writer of a covered call option, for example. On American markets,
options are issued and expire the third Friday of the month. Their lifetime is about
three months and more. In anticipation of an important event such as company's
quarterly report or announcement of the federal reserve within the option's lifetime,
the writer may plan to change position after the announcement and if possible, cover
his options by equivalent option contracts and sell the underlying equity afterwards.
Buying equivalents of its options, the writing institution is loosing not only the intrinsic
value (if present) and a part of the premium but also the interest associated with assets
�xed in stocks the writer must hold to cover his options. Due to the presence of the
time value, the likelihood a market participant who bought the option on the market
will exercise it is nearly zero. It is always more advantageous to cash in the intrinsic
value on the option market and add some of the premium back into the seller's account.
The assumption that the writer has no need to cover the exercise expenses prior to the
expiry date is thus plausible and allows us to calculate the lost interest easily. This
interest loss can be incorporated in the equation (8) by subtracting an extra term from
the right side:

@

@s
V (s; y; Q) = ��(s)V (s; y; Q) (11)

��(t; y) @
@y
V (s; y; Q)� �(t; y)2

2

@2

@2y
V (s; y; Q) + _W (s; y; Q):

The function �(s) is positive and describes the possibly time dependent interest rate.
The solution V (s; y; Q) of (11) with terminal condition (9) is interpreted as the expected
expense associated with buying the option back on the market at time t before expiry
conditioned on the equity price at time s. Solution of the equation has form

V (s; y; Q) =

Z 1

�1
V (t; x; Q)e

R t
s
�(u)dup(s; y; t; x)dx+ (12)

Z t

s

Z 1

�1
e
R t
�
�(u)dup(s; y; �; x)W (d�; dx;Q):

The Gaussian distribution of V (s; y; Q) in (12) allows us to specify a con�dence region
for the predicted expense. The distribution of V (s; y; Q) is likely to contain parameters
estimable by methods described in [12]. Investigation of variability due to the use of
estimated instead of exact parameter values may be thus of interest. The function
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e
R t
s
�(u)du in (12) describes the appreciation of the stock over time and in this case it

increases the writer's loss. Comparison of the outlined option valuation procedure and
the familiar Black-Scholes formula can be done by addressing the theoretical back-
ground leading to the formulas and the corresponding empirical valuation methods.
Both approaches take an Itô's process as a model of the stock market price. Here, the
ideal market assumptions required by [2] for elimination of the equity price random-
ness and resulting in their popular equation are replaced by the assumption that the
optimal predictor of the option price is described by the conditional expectation calcu-
lated from the equity's probability distribution; see [3], [15] and [5]. Consequently, the
option does not have to be European unless interest should be included in calculations.
In addition, the method introduced above involves the premium charged to the intrin-
sic value on the option market. [1] assess their model by testing "market eÆciency"
using historical data and di�erent hedging strategies. If their valuation formula was
wrong then one of the strategies would lead to a systematic pro�t or loss for the user.
Diagnostics of results presented here relies on a common analysis of historical data and
model residuals.
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Stochastic partial di�erential equations driven by
fractional Brownian motion

Bernt �ksendal
University of Oslo

We use fractional white noise theory to study stochastic partial di�erential equations
driven by multiparameter fractional Brownian motion with all its Hurst coeÆcients in
the interval (1/2, 1). In particular, we give explicit solutions of the fractional versions
of the following SPDEs: The linear heat equation, the Laplace-Poisson equation and
the quasi-linear heat equation.

Compared to the corresponding SPDEs driven by the classic multi-parameter Brow-
nian motion (when all the Hurst coeÆcients are being equal to 1/2), the solutions in
the fractional case tend be be smoother. In particular, in the fractional case we typ-
ically get genuine L2{solutions (and not just distribution valued solutions) in higher
dimensions than in the classical case. This feature makes the fractional white noise
more tractable than the classical white noise when we apply SPDEs in mathematical
modelling.

The talk is partially based on joint works with Yaozhong Hu and Tusheng Zhang.
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Parameter estimation in equations of stochastic
uid mechanics under Lagrangian data

Leonid I. Piterbarg
University of Southern California

Let u(t; x; �) 2 Rd; be a random velocity �eld, t � 0; x 2 Rd depending on an
unknown multi dimensional parameter �. Denote by X(t; r) the displacement of a
particle released at moment t = 0 at the point r, driven by the given velocity �eld, i.e

_X(t; r) = u(t; X(t; r)); X(0; r) = r; (1)

where the dot means time derivative. The sample

X1(t); X2(t); : : : ; XN(t); t 2 (0; T ) (2)

corresponding to di�erent initial values

Xn(t) = X(t; rn); X(0; rn) = rn; n = 1; : : : ; N

is called Lagrangian data with observation time T . We stress that the sample (2) is
not independent because all Xn(t) come from the same equation (1). Our purpose is to
study asymptotic behavior of the Maximum Likelihood estimator �̂ of � based on La-
grangian data as T !1. Originally this problem has come from oceanography where
measurements by drifters (current following devices) have been increasingly growing
during the last two decades (Davis, 1991). We consider two models of a turbulent ow
with in�nitely small and �nite velocity correlation time respectively. The asymptotic
behavior of �̂ crucially depends on the sign of the Lyapunov exponent, �, for the cor-
responding ow of di�eomorphisms. In the case of the delta-correlated velocity �eld �
has been found in (Le Jan, 1985, Baxendale and Harris, 1986). An explicit expression
for the Lyapunov exponent for the turbulent ow with memory is given here. In the
�rst model we assume that

u(t; x) = �u(x; �) + u0(t; x);

where �u(x; �) is a deterministic vector �eld and u0(t; x) is a Gaussian white noise in
time, i.e.

Eu0(t; x) = 0; Eu0(t; x)u0(s; y)� = Æ(t� s)B(x; y):;

De�ne (Nd)-dimensional vectors y = (x1; : : : ; xN ), U(y) = (�u(x1); : : : ; �u(xN )),
Y (t) = (X1(t); : : : ; XN(t)), and (Nd � Nd)-matrix D(y) = (B(xm; xn)): The process
Z(t) is a di�usion process in RNd with the drift U(y) and the di�usion matrix D(y),
(Kunita, 1990), i.e.

dY (t) = U(Y (t))dt+D1=2(Y (t))dW (t):
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Thus, the problem is reduced to estimation in a �nite dimension di�usion with the
di�usion matrix degenerating on some hyperplanes. In the case of non-degenerate dif-
fusion this problem was comprehensively considered before (e.g. Citovich, 1977 and
Kutoyants, 1993). The incremental observed information can be found using the gen-
eral maximum likelihood ideology (e.g. O.E.Barndorf-Nielsen and M.S�rensen, 1994)

Ikl(�) = D�1(Y (t))
@U(Y (t); �)

@�k
� @U(Y (t); �)

@�l
;

where the dot means the dot product in RNd. Now let �u(x; �) � � and u0(t; x) be
isotropic. Isotropy implies that the correlation tensor is expressed through two func-
tions bL(r); bN(r) : R1

+ :! R1 called the longitudional and transversal correlation
functions respectively (Monin and Yaglom, 1971, 1975),

bij(x) = bN (r)Æij +
yiyj
r2

(bL(r)� bN (r));

where r = jxj. We suppose that bij(x) are twice di�erentiable

bL(r) = b0 � 1

2
�Lr

2 +O(r4); bN(r) = b0 � 1

2
�Nr

2 +O(r4); (3)

and

bL(r); bN(r)! 0

as r ! 1; where b0; �L; �N > 0. The top Lyapunov exponent for the ow of di�eo-
morphisms generated by the considered velocity �eld is given by

� =
d� 1

2
�N � �L

2
:

The following statement addresses the asymptotic of the mean square error for the �rst
model.

Theorem 1 (L.Piterbarg, 1998) Relation

lim
T!1

TE(�̂ � �)(�̂ � �)� =
B(0)

N

holds in the following cases

d � 4; or d = 3; � � 0; or d = 2; � > 0;

and relation

lim
T!1

TE(�̂ � �)(�̂ � �)� = B(0)

holds if one from the following is true

d = 2; � < 0; or d = 1:
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Now consider another model corresponding to the turbulence with memory

u(t; x) = �u(x; �) + u0(t; x; �);

where the uctuation velocity satis�es an Euler equation with a Gaussian white noise
forcing

@u0

@t
+ u0 � ru0 = a(u0; x; �)+�(t; x); (4)

where a(u0; x; �) is a function presenting dissipation and deterministic forcing and
known up to the unknown parameter,

E�(t; x) = 0; E�(t; x)�(s; y)� = Æ(t� s)B(x; y): (5)

In this case the vector Z(t) = ( _X1(t); X1(t); : : : ; _XN(t); XN(t)) is a di�usion in R2Nd

with a degenerated di�usion matrix. Introduce

A(Z(t)) = (a( _X1(t)� �u(X1(t)); X1(t)); :::; a( _XN(t)� �u(XN(t)); XN(t))):

Then the incremental observed information is

Ikl(�) = D�1(Y (t))
@A(Z(t); �)

@�k
� @A(Z(t); �)

@�l
:

Assume isotropy of �(t; x) such that (3) holds for B(x; y) appearing in (5), and

�u(x; �) = �; a(u0; x; �) = �au0; (6)

where a is unknown parameter and � = 1=a is so called the Lagrangian correlation
time. Set � = �N � �L, where �N , �L are given in (3) .

Theorem 2 If d = 2 and � > 0; then the Lyapunov exponent for the ow de�ned by
(4,6) is positive and given by

� =
1

2�

�
K�2=3(1=6�� 3)
K1=3(1=6�� 3)

� 1

�
;

where K�(x) is the modi�ed Bessel function of the second kind and order �:

Proposition 3 Under conditions of Theorem 2

lim
T!1

TE(�̂ � �)(�̂ � �)� =
B(0)

a2N
; lim

T!1
TE(ba� a)2 =

2a

N
:

The last statement is not completely proven yet.
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Stochastic Allen Cahn: Analysis and Numerics

Tony Shardlow
Durham University

1. Introduction

I will present an analysis of the Allen-Cahn equation perturbed by a space-time noise
process. The equation has the following form

du =
h
�2�u+ f(u)

i
dt+ �dW (t); (1)

where � is the Laplacian, � and � are small parameters, f(u) = 1
2
(u� u3), the initial

data u(0) should be speci�ed, and homogeneous Neumann boundary conditions are
speci�ed on the domain [0; 1]. The purpose of this work is see how the many results in
the deterministic case � = 0 extend to the stochastic case.

2. Allen-Cahn Equation

Background references on this equation include [1], [3], [20], [12], [13], [15], [21], [6], [2].
The dynamics of this equation in the case � = 0 divides into regimes. Very quickly,

the solution u will converge to u(t; x) � �1. The leads to solutions consisting of
phases u � �1 separated by transition layers of width �. In intermediate time, the
phase boundaries evolve and it can be shown the contours fu = 0g obeys an ODE
of the following form: let hi be a well ordered set representing the positions of the
contours fu = 0g, then

dhi
dt

=
�

kU 0k2
h
�i+1e

��i+1(1+Æi;N )��1`i+1 � �ie
��i(1+Æi;1)��1`i

i
(2)

where `i = hi � hi�1 (for f(u) = 1
2
(u � u3), �i = 4, kU 0k2 = 2=3, �i = 1). These

equations hold in the case � = 0 on an exponentially long time scale e1=�
2
. Finally, the

solution reaches a stable equilibrium at one of the homogeneous phases u(x) = �1 for
0 � x � 1.

Analysis in [17] in the case � 6= 0 shows that a solution u�;� of (1) with noise intensity
� converges to the corresponding deterministic problem u� in the limit �

2=�! 0 in the
mean square sense. In the limit �2=� ! 1, the mean square norm of u�;� blows up
because of the ill posedness of the space-time process W (t) in L2.

The second part of the analysis is a formal derivation of the SDEs corresponding
to (2). A formal derivation in [17] shows that

dhi =
�

kU 0k2
h
�i+1e

��i+1(1+Æi;N )��1`i+1 � �ie
��i(1+Æi;1)��1`i

i
dt

+
��1=2

kU 0kd�i(t):
(3)
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The derivation is based on asymptotics done by [20] and is not rigorous (in contrast
to the results for � = 0 derived in [19]). The result is however supported by numerical
simulations that suggest convergence in a weak sense.

3. Numerics

To verify the formal derivation of (3) numerically, I chose to simulate the numerical
solution of the SDE (3) and compare it to the numerical solution of the stochastic PDE
(1).

The numerical solution of SDEs is well understood and the subject of several ex-
cellent monographs, for example [11] and [14]. There are no special diÆculties in
simulating (3).

In contrast however, the numerical solution of parabolic stochastic PDEs is a rel-
evantly recent topic. Research in this area includes Gyongy [10, 9], Shardlow [16],
and Davie-Gaines [4]. By far the most general results are those of Gyongy who suc-
ceeds in proving convergence of numerical methods for very general types of equations.
Shardlow writes for equations of the form (1) and is motivated by work on the approx-
imation of ergodicity [18]. The results consider �nite di�erence schemes, taking the �
method in time and the standard three point approximation to the Laplacian in space,
together with a spectral approximation to the noise term. For a time step �t and
grid spacing �x, the rate of convergence is proven to be �x1=2 subject to a stability
condition (1�2�)�t � �x2=4. Davie-Gaines give an interesting result about how rates
of convergence will never be better than �x1=2 unless more sophisticated approaches
are used to evaluate the noise. Other references in this general area include [5], [7], [8].

I implemented schemes for the SDE and Allen-Cahn equation and computed solu-
tions for a simple test case. An initial condition was chosen with a single interface,
and the mean and variance computed for the change of the location of the interface by
simulating the equations for many realisations of the noise. The computations support
the derivation of (3) and are presented in [17].
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On the small time large deviation principle for
solutions of stochastic partial di�erential equations

T.S.Zhang
University of Manchester

The aim of this talk is to present some results on the small time asymptotics of
di�usion processes and heat semigroups on Hilbert spaces, which includes solutions
of some stochastic evolution equations. First let us recall the basic results in �nite
dimensions. Let L = 1

2
� be the one half of the Laplacian operator on Rd. Then we

know that the heat kernel is the transition density of the Brownian motion given by

Pt(x; y) = (2�t)�
d
2 expf�d

2(x; y)

2t
g;

where d(x; y) stands for the usual distance on Rd.
It is clear that the following small time asymptotics holds

lim
t!0

2t logPt(x; y) = �d2(x; y): (1:1)

Much work has been done to extend the above asymptotics to general situations where
the Laplacian is replaced by general elliptic operators , Rd is replaced by some �-
nite dimensional Riemannian manifolds and d(x; y) is the corresponding Riemannian
distance. The results are quite satisfactory, see [6], [23] and references therein.

We are here concerned with the above asymptotics in in�nite dimensional cases
where L will be the generator of a symmetric di�usion process Xt; t � 0 on some
Hilbert space E. Because of the lack of the transition density , the natural replacement
for Pt(x; y) in the equation (1.1) is P (X0 2 B;Xt 2 C), where C, B are two Borel
subsets. The distance d(x; y) between two points x; y is replaced by the distance of the
two sets C and B. Speci�cally, we obtained the following small time asymptotics

lim
t!0

2t logP (X0 2 B;Xt 2 C) = �d2(B;C); (1:2)

where d is the appropriate Riemannian distance associated with the di�usion. The
upper bound and the lower bound are proved separately. The upper bound is proved
for any two Borel subsets B, C with positive measures and quite general di�usions
with continous di�usion operators. For the lower bound, we assume that the di�usion
is a solution of a stochastic di�erential equation or a stochastic evolution equation on
the Hilbert space . We �rst establish a small time large deviation principle for solutions
of stochastic evolution equations of the type:

ut = x�
Z t

0

Ausds+

Z t

0

b(us)ds+

Z t

0

�(us)dWs (1:3)

Then the lower bound follows from the large deviation principle.
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