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Introduction

Computational stochastics is a new and expanding area of stochastics, dealing with
computational methods of analyzing complex mathematical and statistical models. This
workshop intended to reveal and discuss the potential strength and impact of this new
discipline in a variety of applications, including chemistry, finance, genetics, medical
imaging, molecular biology and physics.

The workshop was held at the Department of Mathematical Sciences, University of
Aarhus, and was organized by StocLab (Laboratory for Computational Stochastics) and
MaPhySto (Centre for Mathematical Physics and Stochastics), University of Aarhus.

In this booklet we have collected brief accounts of the subjects of the talks given during
the workshop. Furthermore, at the end of the booklet, the programme and the list of
participants of the workshop are included.

We wish to thank all participants — the speakers in particular — for contributing to the
Workshop.

Sgren Asmussen and and Eva B. Vedel Jensen
Aarhus, March 2000.
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1 Abstracts of Talks

Soren Asmussen

Lund University
Matriz-analytic algorithms for many—server queues

ABSTRACT: Starting from a survey of the matrix—analytic method in applied probabil-
ity, we gradually specialize and end up with presenting a new algorithm for computing
the waiting distribution in a many-server queue with phase—type service times (in fact,
this algorithm is the first complete solution of the waiting time problem in say GI/PH/c
queues).

The classical set—up of the matrix—analytic area is bivariate Markov chains (J,,, L,,) where
Jy, (the phase) has a finite number of values and L,, (the level) has values in {0, 1,2,...}.
The transition matrix P may have one of two forms, GI/M/1 type or M/G/1 type. For
example, in the GI/M/1 case

By Ay O 0
Bl Al A() 0
P=1B, 4 A A

where the Ay and By, are blocks (the block—partitioning corresponds to levels). The focus
is on the computation of the stationary distribution, which in similar partitioning can
be written in the form 7, = myRF for some matrix R, given as solution of the fixpoint
problem

R =Ay+RA + R?Ay + - -

which is usually solved by iteration. See Neuts (1981), Neuts (1989) and Latouche & Ra-
maswami (1999) for surveys, which include also similar models in continuous time and
many examples; a typical application is queues with phase-type services and arrivals
governed by a finite Markov process (phase—type distributions are defined as absorbtion
time distributions in finite Markov processes).

For continuous—valued processes like waiting times, a parallel theory was developed by
Sengupta (1989), who as his main application computed the waiting time distribution
in GI/PH/1 queues. In this setting, the process (J;, L;) is obtained by piecing busy
periods together, and the level L; is the time since arrival of the customer in service, the



phase J; the same as the phase in which the server is operating. This gives a stationary
density m(z) (a row vector) at level z of the form m(z) = m(0)e’® for some matrix 7.

Asmussen & O’Cinneide (1998) pointed out that the many-server queue GI/PH/c (with
homogeneous or heterogeneous servers) is included in Sengupta’s set—up. The process
(Ji, Ly) is now obtained by piecing all-busy periods (i.e., periods where all ¢ servers are
working) together, and the level L, is the time since arrival of the last customer to enter
service, the phase J; the combination of the phases in which the servers are operating.
The argument immediately yields an algorithm for computing the matrix 7', but the
computation of 7(0) (trivial for ¢ = 1) was missing. This requires a careful analysis of
non—all-busy periods, carried out by Asmussen & Mgller (2000/01), who also treated
arrivals governed by a finite Markov process. In connection with Asmussen & Mgller
(2000/01), MatLab programs have been developed, which are available as shareware.
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Adrian Baddeley

University of Western Australia
Conditional simulation

ABSTRACT: Conditional simulation is a technique for extrapolating spatial data beyond
the restricted region or set of sites where the data were observed. For example we may
have measured the concentration of a pollutant at a few sample locations, and want to
extrapolate this to a continuous spatial map of concentration; or we may have recorded
the positions of geological faults inside a mine, and want to predict the likely locations
of faults outside the mined region.

In conditional simulation we generate randomly the values of the spatial variable/pattern
of interest outside the region where data are available, following an assumed stochastic
model, in a manner that is faithful to the observed data. In other words, adopting an
appropriate stochastic model, we draw a sample from the conditional distribution of the
spatial process given the observed data.

In these talks I will explain the concept of conditional simulation and describe some of
its pitfalls. While some instances of conditional simulation are simple and elegant, others
are complicated by issues such as sampling bias, combinatorial complexity, reducibility,
semicontinuity, and unfolding effects. The first talk will introduce the basic ideas, in
the case of continuous spatial random processes (random fields). The second talk will
address the case of random patterns of geometrical objects (random sets).

The talks include current joint work with Nick Fisher (CSIRO), Marie-Colette van
Lieshout (CWI), Henry Cheng (Fisheries WA) and others.



Laird Breyer
Aalborg University
Automatic ways of coupling Markov chains

ABSTRACT: Coupling constructions are central to some of the modern developments
in Stochastic Processes. When considering Markov processes, one problem is to define
two or more dependent chains with the same marginal distributions in such a way that
their sample paths meet in a finite time.

This allows us for example to bound the total variation distance of a Markov chain to
its stationary distribution, in an entirely probabilistic way. This has led recently to
computable bounds. For another example, in Perfect Simulation couplings are used to
produce exact samples from distributions that are otherwise hard to simulate from.

In this talk, I shall describe a family of methods for coupling chains which are applicable
whenever the transition probabilities are known, and more importantly do not require
the calculation of minorization conditions, which are needed for the well known and
widely successful “splitting technique”. It is in this sense that the methods presented are
“automatic” — they do not require analytic estimates. Various examples from Markov
Chain Monte Carlo will be given.



Ole F. Christensen (with J. Mgller and R. P.
Waagepetersen)

Aalborg University

Analysis of spatial data using generalized linear mized models and
Langevin-type Markov chain Monte Carlo

ABSTRACT: Conventional geostatistics solves the problem of estimation and predic-
tion for continuous observations (Cressie, 1993). But in many practical applications the
available data are binary or counts for which normality cannot be obtained by means of
transformation.

For modelling of non-Gaussian data generalized linear mixed models (GLMMs) (Bres-
low and Clayton, 1993) are extensions of generalized linear models (GLMs) that allows
additional components of variability due to unobservable effects which are modeled by
the inclusion of random effects in the linear predictor of the generalized linear model.
For a spatial GLMM the underlying random effects are modeled by a Gaussian process
on R%. Given the underlying and unobserved Gaussian process the observations at the
measured locations are conditionally independent and follows a GLM. Bayesian analysis
of such models is studied in Diggle et al. (1998), where uniform proper priors are used
for the model parameters. We investigate the question of posterior propriety when flat
improper priors are used.

Conditional simulation of the unobserved Gaussian field given the observed data is rel-
evant for prediction of a functional of the Gaussian field, and it requires an efficient
Markov chain Monte Carlo method. The Hastings-Langevin algorithm (Besag, 1994;
Roberts and Tweedie, 1996) turns out to be very useful when the model parameters are
considered as fixed. For this algorithm we study the desirable property of geometric er-
godicity, which ensures the validity of central limit theorems for a Monte Carlo estimate
(see Corollary 2.1 in Roberts and Rosenthal, 1997). The Hastings-Langevin algorithm
can also easily be extended with updates of the parameters for a full Bayesian analysis.

We focus on the so-called Poisson-log normal model, where as an example the algo-
rithm is applied to a data set of counts of weed plants on a field. In this example we
demonstrate that our Langevin-type algorithm has a much better performance than a
Metropolis random walk algorithm.

References
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Ian Dryden

University of Nottingham
Stochastic deformation

ABSTRACT: Informally, a deformation can be regarded as a function which geomet-
rically transforms an object. Deformations are commonly studied in statistical shape
analysis, where the geometrical properties of objects under certain invariances (such as
location, rotation and scale) are considered. Deformations can often be decomposed into
global and local components, and by global differences we mean large scale trends, such
as an overall affine or similarity transformation.  Local differences are on a smaller
scale, for example highlighting changes in a small part of an object. When comparing
the shapes of two objects it is often common to register the two objects together using
a global deformation, so that the objects are geometrically ‘close’ according to some
criterion. The local deformations are then used to assess how similar or not the objects
are in terms of shape.

For simplicity we shall concentrate on the situation where a set of k corresponding points
is available on each object, which is in m real dimensions (usually m = 2 or m = 3).
Such points are often called landmarks and the points correspond between objects in
a geometrical or functionally meaningful way. Consider two k landmark configuration
matrices in R™, T = (t1,...,t)T and Y = (y1,...,yx)" both k& x m matrices, and we
wish to deform 7" into Y, where t;,y; € IR™. A deformation is a mapping from ¢ € IR™
to y € IR™ defined by the transformation

y=®(t) = (®(t), Po(t),..., P (1)t

Here T is the source and Y is the target. The multivariate function ®(¢) should have
certain desirable properties. In particular, we often want as many of the following prop-
erties to hold as possible for the deformation: continuous, smooth, bijective, not prone to
gross distortions (e.g. not folding which will be guaranteed if the mapping is bijective),
equivariant under certain global transformations of the objects, and an interpolant. If
the interpolation property is not satisfied then we call the deformation a smoother. Note
that, as we describe it here, the deformation is from the whole space IR™ to IR™, rather
than just from a set of landmarks to another or an outline to another. However, there
are other notions of deformations and we shall consider an alternative in the second talk,
where the definition applies only to the landmarks.

D’Arcy Thompson (1917, On Growth and Form, Cambridge) considered deformations
from one species to another in order to explain size and shape differences. A regular
square grid pattern was drawn on one object and the grid was deformed to lie on the sec-
ond object, with corresponding biological parts located in the corresponding grid blocks.
In Figure 1 we see a famous example, and these grids are known as Cartesian transfor-
mation grids. The transformation grids enable a biologist to describe the shape change
between the two species, albeit in a rather subjective way. D’Arcy Thompson’s (1917)



Figure 1: Cartesian transformation grids from one species of fish to another (from D’Arcy
Thompson, 1917). The transformation is an affine deformation.

figures were drawn by hand and there have been many attempts since 1917 to recreate
these figures more objectively, and we shall briefly discuss these. Perhaps the simplest
possible size and shape change between two objects is that of an affine transformation,
as seen in Figure 1. In this case the square grid placed on the first fish is deformed
uniformly and affinely into a parallelogram grid on the second fish.

Stochastic deformations can be used for a very wide variety of applications. For exam-
ple, obtaining mean shapes and exploring shape variability; image matching and warping;
and object recognition, where templates are deformed to match observed images. Some
common methods will be reviewed in the first talk. We shall mainly concentrate on the
important m = 2 dimensional case, with deformations given by the bivariate function

y=D(t) = (D1(t), 2o(1))".

Bookstein (1989, IEEE PAMI) has developed a highly successful approach for deforma-
tions using a pair of thin-plate splines for the functions ®;(¢) and ®4(t). The thin-plate
spline is a sensible choice since it minimizes the bending required to take the first form
into the second, and it does not suffer from problems with very large bending towards
the periphery. The thin-plate spline is related to kriging in spatial statistics, and has the
advantage of having a simple analytic solution.

In the second talk we will discuss a different approach to modelling stochastic deforma-
tions of outlines, introduced by Grenander and colleagues. The deformation is applied
to the edges between landmarks, rather than the whole domain, and is particularly suit-
able where the objects under study are outlines deformed from an underlying regular
object. In some datasets there are no discernible features and yet we are still interested
in answering questions about the shape distributions of the outlines of the objects under
study.

We shall concentrate on some applications in particle science, describing joint work with
John Kent and Catherine Anderson at Leeds. The paper is on the Web at:

http://www.amsta.leeds.ac.uk/"iand/papers/blobs.ps.gz

Grenander and Miller (1994, JRSS B) describe a model for representing amorphous 2-
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dimensional objects with no obvious landmarks. Each object is represented by a set of
vertices/landmarks around its perimeter, and is described by deforming a regular polygon
using edge transformations. A multivariate normal distribution with a block circulant
covariance matrix is used to model these edge transformations. The talk will describe the
statistical properties of this multivariate model and the eigenstructure of the covariance
matrix. Various special cases of the model are considered, including articulated models
and conditional Markov random field models. We consider maximum likelihood based
inference and the model is applied to some datasets to explore shape variability.
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Ginter Doge
Freiberg University of Mining and Technology

Grand Canonical Simulations of Hard-Disk Systems by Simulated
Tempering

ABSTRACT: For the simulation of hard core Gibbs point processes in the two-dimensional
space simulated tempering is shown to be an efficient alternative to commonly used
Markov chain Monte Carlo algorithms, especially for grand canonical ensembles, i.e.,
with a variable number of disks The behaviour of the area fraction and various spatial
characteristics of the hard core process is studied using simulated samples.
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Paul Glasserman (with P. Heidelberger and
P. Shahabuddin)

Columbia University
Variance Reduction Techniques for Simulating Value-at-Risk

ABSTRACT: An important concept for quantifying and managing portfolio risk is value-
at-risk (VAR). VAR is defined as a quantile of the loss in portfolio value during a holding
period of specified duration. If the value of the portfolio at time ¢ is V(¢), the holding
period is At, and the value of the portfolio at time t + At is V(¢ + At), then the loss in
portfolio value during the holding period is L = V() — V (t+ At). For a given probability
p, the VAR, z,, is defined to be the (1 — p)’th quantile of the loss distribution:

P{L > z,} =p. (1)

Typically, the interval At is one day or two weeks and p is close to zero, often p ~ 0.01.
Monte Carlo simulation is frequently used to estimate the VAR. In such a simulation,
changes in the portfolio’s “risk factors” (e.g., interest rates, currency exchange rates,
stock prices, etc.) during the holding period are generated and the portfolio is re-
evaluated using these new values for the risk factors. This is repeated many times
so that the loss distribution may be estimated.

The computational cost required to obtain accurate Monte Carlo VAR estimates is often
enormous. This is due to two factors. First, the portfolio may consist of a very large
number of financial instruments. Furthermore, computing the value of an individual
instrument may itself require substantial computational effort. Thus each portfolio eval-
uation may be costly. Second, a large number of runs (portfolio evaluations) are required
in order to obtain accurate estimates of the loss distribution in the region of interest. We
focus on this second issue: the development of variance reduction techniques designed
to dramatically reduce the number of runs required to achieve accurate estimates of low
probabilities. The technique described in this paper combines two general purpose vari-
ance reduction techniques: importance sampling and stratified sampling. We provide a
rigorous analysis of this approach, and perform extensive experiments on it.

Our approach is to approximate the portfolio loss by a quadratic function of the under-
lying risk factors and to use this approximation to design variance reduction techniques.
Quadratic approximations are widely used without simulation; indeed the second or-
der Taylor series approximation is commonly called the “delta-gamma approximation”.
While our approach could be combined with other quadratic approximations, many of
the first and second derivatives needed for the delta-gamma approximation are routinely
computed for other purposes quite apart from the calculation of VAR. A premise of this
paper is that these derivatives are thus readily available as inputs to be used in a VAR
simulation and do not represent an additional computational burden.

When the change in risk factors has a multivariate normal distribution, as is commonly

13



assumed (and as we will assume), then the distribution of the delta-gamma approxi-
mation can be computed numerically. While this approximation is not always accurate
enough to provide precise VAR estimates, we describe how it may be used to guide
selection of an importance sampling (IS) change of measure for sampling the changes
in risk factors. IS is a particularly appropriate technique for “rare event” simulations,
which corresponds to the VAR problem with a small value of p. As the distribution of
the quadratic approximation can be computed numerically, it can also be used as ei-
ther a control variable or for stratified sampling. Numerical results show that while the
effectiveness of the control variable decreases as p decreases, the effectiveness of a com-
bination of IS and stratified sampling increases as p decreases. We provide a theoretical
analysis showing asymptotic optimality of the method as either the loss threshold or the
number or risk factors increases.

14



Paul Glasserman (with M. Broadie)

Columbia University
Pricing American Options by Simulation

ABSTRACT: Computational methods for pricing derivative securities can be broadly
divided into deterministic methods and simulation-based methods. The first type gener-
ally involves discretizing time and discretizing the possible levels of the underlying asset
prices; the discrete approximation is then solved exactly. Well-known examples of this
approach include binomial and trinomial lattices, and finite difference methods. These
methods are widely used, particularly in valuing relatively simple derivative securities in
relatively simple models.

Deterministic methods can be very fast and effective if the dimension of the state vector
representing the underlying model is 1, 2, or perhaps 3. But the time and space require-
ments of these methods typically grow exponentially in the dimension, rendering these
methods inapplicable to high-dimensional problems.

Simulation methods are based on stochastic sampling of paths of the underlying state
vector. Their space requirements generally grow linearly in the dimension of the state
vector. They typically converge in proportion to the square root of the number of paths
generated, a convergence rate independent of the dimension of the problem. This makes
simulation-based methods attractive for valuing path-dependent and multi-asset deriva-
tives.

A complication arises, however, with simulation techniques in pricing option contracts
with American-style features—i.e., contracts in which the holder can choose the time of
exercise. In this case, an optimal exercise boundary has to be determined through some
type of dynamic programming procedure. The difficulty arises in combining the forward
evolution of simulation with backward induction of dynamic programming. Recently,
several methods have been proposed to address this issue.

In this paper we discuss two methods. The first generates random trees of prices and
applies a dynamic programming recursion to each tree. High- and low-biased estimators
are combined to obtain a conservative but valid confidence interval for the true price.
The second method generates a stochastic mesh. This method simulates multiple paths
in parallel and uses information from all paths to estimate the continuation value (the
value of holding an option rather than exercising) at each node along each path. The
continuation value at each node is estimated as a discounted weighted average of the
option values at the next time step across all paths. The weights are computed from
the transition density of the underlying process. The methods are analyzed theoretically
and tested on realistic examples.

15



Niels Vaever Hartvig
University of Aarhus

A stochastic geometry model for fMRI data

ABSTRACT: Functional magnetic resonance imaging (fMRI) is a medical imaging tech-
nique where fast MR scanners are used to measure changes in blood oxygenation in the
brain. It is believed that these oxygenation changes correlate with neural activity in the
surrounding tissue, and hence the technique can be used to measure activation in the
brain as caused by external stimuli. The data acquired in these experiments consists of
a sequence of scans, typically around 100, and the aim of the statistical analysis of the
data is to identify regions in the images, where the intensity changes according to the
stimulus rhythm.

In a typical analysis of these data the problem is marginalized to a one dimensional time-
series problem for each voxel in the scan, see for instance Worsley and Friston (1995) and
Lange and Zeger (1997). The spatial structure of the data is included in a second step,
when the image of activation estimates is convolved with a smoothing kernel to obtain
a non-parametric estimate of the activation. In this approach the focus is on assessing
significance of peaks and clusters in the smoothed image, effectively by testing thousands
of hypotheses simultaneously.

In the talk I will present an approach to analyzing fMRI data where the focus is shifted
towards estimating the location and size of activated areas, rather than testing multiple
voxel-wise hypotheses. This is achieved by formulating a more structured spatial model
in the spirit of high-level image analysis, see e.g. Baddeley and van Lieshout (1993). More
specificly the spatial activation surface is modelled by a collection of Gaussian functions,
which to some extent can be thought of as individual centres in the brain. The model is
formulated in a Bayesian setting where the centres a priori are distributed as a marked
point process; here the points are the locations of the centres and the marks describe
the shape and height of the centres. The inference in the model is based on simulation
techniques, by which we can estimate the posterior mean of functions of interest, such
as the mean activation pattern. The model can be formulated either in a spatial setting
only or may be embedded in a truly spatio-temporal analysis.

One of the advantages compared to more simple models, is that the uncertainty of the es-
timated activated pattern can be readily assessed from the posterior distribution. This is
largely ignored in common analyses. Secondly we are able to relax the common assump-
tion of stationarity of the temporal activation pattern, which indeed reveals significant
features of non-stationarity in the data.

16
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Jotun Hein (with B. Knudsen)

University of Aarhus

RNA secondary structure prediction using stochastic context-free
grammars and evolutionary history

ABSTRACT: Many computerised methods for RNA secondary structure prediction have
been developed. None of these methods, however, employ an evolutionary model, thus
they leave out relevant information from the structure determination. This talk intro-
duces a method which incorporates evolutionary history into RNA secondary structure
prediction. Furthermore, many methods for structure prediction, from more than one
sequence, do not use prior information about structures. The method reported here
is based on stochastic context-free grammars (SCFGs) to give a prior distribution of
structures.

18



Anders Krogh

Technical University of Denmark
Applications of hidden Markov models in molecular biology

ABSTRACT: Hidden Markov models (HMMs) are well suited for biological sequences.
Applications of HMMs to membrane protein structure prediction and gene finding is
presented. Both problems have a grammatical structure which can be described by
a regular grammar (to a good approximation). Because of experimental uncertainties,
limited datasets, and lack of biological knowledge, it is essential to use a statistical model.
Therefore, a stochastic regular grammar, which is the same as a hidden Markov model,
is the natural model choice.

In most membrane proteins the transmembrane region is made up of a bundle of alpha
helices. Because of the nature of the lipid bilayer, the amino acids in these helices are
predominantly hydrophobic, so in the linear sequence of amino acids, a transmembrane
helix typically shows up as a stretch of hydrophobic amino acids with a typical length
of about 20-25. Additionally, it has been found that there is an abundance of positively
charged amino acids on the inside (cytoplasmic side) of the membrane. These are the two
most important features used to predict transmembrane helices and their orientation.
The advantage of using an HMM is that these and other signals can be combined in
one model, and the model can be constrained to only allow sensible structures where
for instance inside-helix-inside cannot be predicted because it violates the ’grammar’ of
membrane proteins.

In many eukaryotic genes the parts coding for protein (exons) are interrupted by long non-
coding introns. It is quite difficult to locate the short coding regions. Traditionally coding
regions were located by their codon statistics - codons occur with frequencies different
from the frequencies in non-coding regions. However, there is not enough information in
short exons to rely on a codon statistic. There is a signal of variable strength associated
with the junctions between introns and exons (splice sites). By combining these two
types of signals (and a few others) it is possible to obtain reasonable gene identification,
although it is still not quite satisfactory for higher eukaryotes such as humans. Again the
strength of the HMM is that it can deal with all the signals as well as the grammatical
constraints in genes.

19



Ole GG. Mouritsen

Technical University of Denmark
The third science — the computer experiment

ABSTRACT: Since the days of Galileo there has been an indissoluble tie within the
exact natural sciences between on the one side the experimental method of studying
the physical universe and on the other side the theoretical approach to rationalize and
predict observations. Although scholars at different periods have often stressed that ex-
act natural sciences such as chemistry and physics are primarily experimental sciences,
experience has shown that experiments without theory and theory without experiments
rarely lead to the deepest insights.

With the invention of powerful and fast computers, the tie between experiment and
theory has assumed a novel dimension in the form of the theoretical experiment or the
computer experiment. This development has proved so successful that it has been referred
to as the third natural science. In the computer experiment numerical (mathematical)
experiments can be carried out on model systems under fully controlled circumstances
by ‘teaching’ the computer the laws of nature. This allows for new discoveries within the
framework of the model under study. For example, numerical experiments can be car-
ried out under extreme or idealized conditions that may not be obtained in conventional
laboratory experiments.

Specifically, computer experiments can be used to study the collective behavior of large
assemblies of particles (e.g. atoms or molecules) using the rules of statistical mechanics
and assuming the physical interactions between the particles. Thereby it is possible to
provide a connection between the microscopic description of physical systems and the
macroscopic world as we observe it. This allows for investigation of emergent properties
of matter and complex pattern-formation processes.

The key mathematical problem in statistical mechanics involves multi-dimensional inte-
gration of functions with exponential weight factors (Boltzmann statistics). A powerful
approach to simulate the statistical mechanics of many-particle systems is Monte Carlo
importance sampling techniques which involves stochastic elements. By these techniques
it is possible to extract accurate numerical information in the large-system, long-time
limit by appropriate histogram sampling and finite-size scaling techniques. Moreover, it
is possible to explore pseudo-non-ergodic situations, where the phase space effectively
decomposes into separate subspaces, using non-Boltzmann sampling techniques. This is
of particular importance for the investigation of transitions between different states of
matter which involve symmetry-breaking.

As an illustration of the use of modern computer-simulation techniques that exploit
Monte Carlo methods to solve the statistical mechanical problems of particle systems
in and away from thermodynamic equilibrium, a broad selection of examples will be
discussed. The examples, which are drawn from the fields of physics, chemistry, and
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biology, include magnetic systems, high-temperature superconductors, liquid crystals,
liquid mixtures, cholesterol, proteins, cell membranes, and enzymes.

Some references
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Computer simulation of lyotropic liquid crystals as models of biological membranes (O.
G. Mouritsen). In Advances in the Computer Simulations of Liquid Crystals (P.
Pasini and C. Zannoni, eds.) Kluwer Academic Publ. Dordrecht (1999) pp. 139-
187.

An off-lattice model for the phase behavior of lipid-cholesterol bilayers (M. Nielsen, L.
Miao, J. H. Ipsen, M. J. Zuckermann, and O. G. Mouritsen) Phys. Rev. E 59,
5790-5803 (1999).
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Tomas Mrkvicka
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Estimation vartances for Poisson processes of compact sets

ABSTRACT: Estimators of intensity functions for various Poisson processes of compact
sets are studied. Let ® be a stationary Poisson process of compact sets in R? with
intensity a > 0 and known primary grain distribution and let W be a bounded closed
family of nonempty compact sets in R? and &)y the set of all estimators (measurable
functions of ®) which depend only on the restriction ®|yy. It is shown that ®(W) (the
number of compact sets from W in the process) is a complete and sufficient statistic for
the intensity a. The abstract Rao-Blackwell theorem [1] implies then that E[e(®)|®(W)]
is the uniformly best unbiased estimator of a parametric function 7(«) of @ among all
estimators from &y whenever e is an unbiased estimator of 7(«).

The general theory is then applied to the stationary Poisson segment process, where
the length intensity is estimated. The uniformly best unbiased estimator among the
estimators using all segments visible in an observed window is found. This estimator is
the best one, but it is hardly applicable for its involved form. When considering only
the segments which have their reference points within the observed window then the
uniformly best unbiased estimator among such estimators is ®(W) multiplied by the
mean segment length and divided by the window volume. This estimator does not use
all information but it is very easily applicable.

Finally, the variance of the last estimator is compared in some particular situations with
that of the natural estimator based on summing up the lengths of the visible parts of
the segments. It is shown that the estimator based on the number of segments has in
many cases lower variance (cf. [2] where a similar problem for Poisson flat processes has
been considered).
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Sgren Feodor Nielsen
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Sitmulated EM algorithms: A comparison

ABSTRACT: The EM algorithm is a well-known iterative method for finding the MLE
in missing or incomplete data problems. Each iteration updates a current estimate (6y)
of the unknown parameter by going through two simple steps:

E-step: Calculate the conditional expectation of the complete data log likelihood given
the observed data using the current estimate 6y, as the “true” parameter. This yields
a function 0 — Q(6|6k).

M-step: Maximize this function to find the next estimate of the unknown parameter;
gk—f—l = arg maxy Q(@l@k)

This leads to a sequence, (6x)r, of estimators converging (under suitable assumptions)
to the observed data MLE.

However, in some cases the conditional expectation required in the E-step cannot be
calculated and must —for instance— be estimated instead. Thus, the E-step is replaced
by an

SimE-step: Simulate m values of the complete data given the observed data using the
current estimate 05 as the “true” value of the unknown parameter and estimate
Q(0]6x) by the average of the m complete data log-likelihoods.

In the M-step this estimator of Q(6]6;) is maximized as a function of §. This leads to a
random sequence, (6), of estimators. We call this algorithm a simulated EM algorithm.
Two different versions of the simulated EM algorithms have been suggested:

e In each iteration new random numbers are generated, i.e. the simulations in the
kth iteration only depend on the previous simulations through ;. The sequence
(0)r is a Markov chain conditional on the observed data.

e Alternatively the random numbers can be “re-used”, i.e. in the kth iteration the
simulations are generated using 6, but the “same randomness” (the same random
numbers or uniforms) as in the previous iteration. The sequence () is determin-
istic conditioned on the observed data and the simulations, i.e. the random numbers
generated, in the first iteration. Hence, this version attempts to find the maximum
of a random function § — @Q(#|0) by the method of successive substitutions.

In this talk these two versions are compared and their relative merits are discussed.
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Estimating a non-stationary spatial
structure using simulated annealing

Serge IOVLEFF*and Olivier PERRINT
April 28, 2000

Abstract

During the past decade, a useful model for non-stationary random fields has
been developed. This consists of reducing the random field of interest to isotropy
via a bijective bi-continuous deformation of the index space. Then the problem
consists of estimating this space deformation. We propose to estimate this space
deformation using a constrained continuous version of the simulated annealing for
a Metropolis dynamic. This method provides a non-parametric estimation of the
deformation which has the required property to be bijective; so far, the previous
non-parametric methods do not guarantee this property. We illustrate our work
with two examples, one concerning a precipitation data set. We also give one idea
of how spatial prediction should proceed in the new coordinate space.

Key Words: bijective space deformation; constrained minimisation; correlation
function; Delaunay triangulation.

1 Introduction

Assumption of isotropy is clearly violated for many, if not most, spatial environmental
phenomena. Factors such as topography, local pollutant emissions, and meteorological
influences may cause such assumptions to be violated. This has led to research into
modelling a spatially non-stationary second order structure, as reviewed in Guttorp and
Sampson (1994). To deal with this non-stationarity, Sampson and Guttorp (1992) have
developed a model that consists of reducing the correlation function r(x,x’) of the spatial
phenomenon of interest, modelled by a random field Z = {Z(x),x € G C R?}, to an
isotropic one as follows:

r(x,x') = ps([|(x") = (%)), (1)

*Laboratoires SABRES, IUP Vannes-Tohannic, rue Yves Mainguy, 56000 Vannes, France
tMathematical Statistics, Chalmers University of Technology and Géteborg University, S-412 96
Goteborg, Sweden
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where ||.|| denotes the Euclidean norm in R?, & represents a bijective deformation of
the geographic coordinate system and ps is an isotropic correlation function with pa-
rameter 3 € R?, ¢ > 1. In the sequel, we refer to the geographical coordinate system
as the G-space C R?, where G stands for geographical, and to the deformed coordinate
representation as the D-space C R?, where D stands for deformed. One illustration of
model (1) is given in Figure 1 (this example is detailed in Paragraph 3.1): (i) represents
the positions x;, i = 1,2,...,n, of n sites in the G-space; (ii) represents their deforma-
tions ®(x;) in the D-space; (iii) represents the inter-site distances in the G-space versus
correlations 7(x;, x;) = ps(||®(x;) — ®(x;)]]), 1 < 7,5 < n, where ps(u) = exp(—@|u|)
with § = 1; (iv) represents the inter-site distances ||®(x;) — ®(x;)|| in the D-space versus
correlations r(x;, x;).
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Figure 1: Example of a non-stationary random field using a space deformation.

Unlike the classical geostatistical models, non-stationarity through second order mo-
ments is thus taken into account and model (1) gives the opportunity to enlarge the class
of models for studying spatial environmental random fields.

When ps is strictly decreasing, Perrin and Meiring (1998) prove the uniqueness of
both the deformation ® and psz up to a homothetic Euclidean motion for ® and up to a
scaling for pg. Perrin and Senoussi (1998) give the general form of the deformation that
reduces a non-stationary random field in the way (1), under smoothness assumptions.

Our concern in this paper is the estimation of both the space deformation ® and the
parameter (3. This estimation is based on T repetitions (independent and identically
distributed observations) of Z at each of n distinct monitoring sites x;,xs,... ,x, in G,
which may be irregularly located; G represents the convex hull of these sites. We denote
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these records using Z;(x;), t =1,2,... ,T,i=1,2,... ,n.

So far, the deformation ® has mostly been estimated with the help of a non-parametric
approach. This non-parametric estimation of ® has already been extensively developed
(Monestiez et al. (1993), Meiring (1995), Meiring et al. (1997, 1998)), and applied,
for instance, in analyses of acid precipitation (Guttorp et al. (1992)), solar radiation
(Sampson and Guttorp (1992)) and tropospheric ozone (Sampson et al. (1994)). The
latter development of the non-parametric approach for estimating ® consists of mod-
elling ® using a pair of thin-plate splines and minimising a penalised weighted least
squares criterion to estimate the D-space coordinates ®(x;) of the monitoring sites x;,
t=1,2,...,n. This treatment is carried out with a Marquardt-type algorithm. Several
drawbacks are associated with this method: (i) bijection condition is not ensured; (7i)
the fitting of the model becomes a challenging numerical problem with dimensionality
roughly proportional to the number of fixed monitoring sites (Meiring et al. (1998)); (iii)
the objective function to be minimised is non-convex and has a lot of local minima; (iv)
there is a considerable dependence on the starting values in the minimisation procedure.

Perrin and Monestiez (1998) propose a parametric approach. They model ® using a
composition of a “small” number of bijective elementary radial basis deformations. Then
they use a least squares criterion to estimate the parameters; this criterion is minimised
in a classical way (Marquardt-type algorithm). Let us specify two disadvantages of this
method: (i) so far a rational choice of the relevant number of elementary deformations
has not been implemented yet; (7i) there is a considerable dependence on the starting
values in the minimisation procedure.

To avoid all these disadvantages, we propose here to estimate, in a first step, the
D-space coordinates ®(x;), i = 1,2,... ,n, by minimising an objective function with a
stochastic algorithm, the continuous version of the simulated annealing for a Metropolis
dynamic. To ensure a bijective correspondence between the n points in the G-space and
their estimated deformations in the D-space, we impose some non-folding constraints in
the algorithm. In a second step, to estimate the deformation in the whole G-space, we
use a piecewise affine interpolation of the points x; in the G-space and the estimations
of their deformations ®(x;) in the D-space, i =1,2,... n.

The paper is structured as follows. In Section 2, we address the estimation problem
of the deformation together with the parameter 3. In Section 3, we illustrate our non-
parametric approach with two examples: the first one is purely illustrative and is only
concerned with the estimation of the deformation when the isotropic correlation is known;
the second one shows how our method can apply to precipitation data from 20 sites in
the Languedoc-Roussillon region of France. In Section 4 we give one idea of how spatial
prediction should proceed in the new coordinate space and propose a cross validation
study to demonstrate the possible improvement in predictions due to the deformation.
Further, we apply this cross validation study to our precipitation data set through a
comparison of four isotropic correlation models. Finally, Section 5 outlines one extension
related to this work.
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2 Estimation of the model

2.1 Definition of the objective function

The repetitions of Z allow us to define the sample correlation estimates 7(x;, x;) for each
couple of sites (x;,x;), 1 <i<j<mn:

T

P(xinxg) = Y (Zulxi) = Z(xi))(Zi(x5) = Z(x7)) /6 (x:)6 (x;), (2)

t=1

where Z(x;) are the empirical means and 6(x;) are the empirical standard deviations,
i=1,...,n. We denote using y; = ®(x;), : = 1,2,... ,n, the deformations of the sites
in the D-space and we define y1,¥5,...,y, and B as the estimations of y1,¥ya2,...,¥n
and  which minimise the following objective function:

Uy*, 8%) = Y _li(xi, %) — ps- (Ily; = ¥i DI, (3)

1<

with respect to the parameters y* = (y1,y3,...,¥:) and %, and subject to some non-
folding constraints described in Paragraph 2.2.

2.2 Minimising the objective function

The objective function (3) is minimised with respect to y* using a continuous state
version of the simulated annealing subject to some non-folding constraints. Simulated
annealing is a probabilistic method for finding the global minimum of an objective func-
tion that may possess several local minima (Geman and Geman (1984), Kirkpatrick et
al. (1983), Hajek (1988), Aarts and Korst (1989), Geman (1990) and Azencott (1992)
for seminal references). This is motivated by its following advantages:

e it explores the whole objective function’s surface and tries to optimise the function
while moving both uphill and downhill. Thus, it is largely independent of the
starting values, often a critical input in conventional algorithms;

e it can escape from local minima and go on to find the global minimum by the uphill
and downhill moves;

e it makes less stringent regularity assumptions regarding the function than do con-
ventional algorithms (it need not even be continuous);

e it is well suited for minimising strongly non-convex functions of several variables
(2n variables in our problem) having plenty of local minima;

e it can take intricate constraints into account.
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2.2.1 Description of the minimisation algorithm

We describe hereafter the different steps to minimise (3) both with respect to y* and £:

e starting step: set y(0) = {y;(0) = x;,i =1,2,... ,n}. Then to give an initial value
to (*, minimise the objective function (3) with respect to 5* (y* = y(0) is hold
fixed) with a Marquardt-type algorithm. Let (3(0) be the estimation of 3 at step
0. Finally, take a sequence of “temperatures” (co,cy,... ,Ck,...) decreasing to 0
by step of length n:

= 0% ey, 0€)0,1], kEN,;

e step 0: start from the configuration y(0) of the sites. The change proposition is: fix
(* = 3(0) and choose one site (candidate point) j uniformly among the n sites and
move it locally and uniformly at a position y with natural non-folding constraints
we precise hereafter. The other sites are hold fixed i.e. y;(1) = y;(0),Vi # j. Set
yv(1) ={yi(1),:=1,2,... ,n} where y;(1) is chosen as follows:

— if AU =U(yi1(1),...,y,...,ya(1),6%) = U(y(0), 3*) <0 then take y;(1) =
Y
— otherwise sample an uniform law V" in [0, 1]:
« if V <exp(—A¢U/co) take y;(1) =y;
* otherwise keep y;(1) = y;(0).

e step k£ > O:

— if [k/n] = [(k —1)/n] then proceed as in the step 0 by replacing 0 by k& and
1 by £+ 1;

— otherwise minimise (3) with respect to 3* (y* = y(k) is hold fixed) with a
Marquardt-type algorithm. Let (k) be the estimation of 5 at step k. Then
proceed as in the step 0 by replacing 0 by k£ and 1 by k£ + 1.

e stopping criterion: if U(y(pn), 8(pn)) —U(y((p+1)n), B((p+1)n)) < 107® for two
consecutive values of the integer p we stop the algorithm.

This algorithm is written in C language.

2.2.2 Description of the non-folding constraints

These constraints account for global and local non-foldings.

First, we embed G in a rectangle R. Second, we construct the Delaunay triangulation
for the n geographical sites plus the 4 vertices of R as well as the 4 mid-points of its 4
edges. To compute the Delaunay triangulation we use a program written by Shewchuk
(1996).

At step k, for each site ¢ we identify all the triangles for which this site is a vertex.
Then consider the polygon P; composed with the aggregation of these triangles and de-
note using A; 1, Aio, ..., A;g its vertices, where g; is the number of triangles. We assume
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that these vertices are ordered clockwise and denote using (Aj,
= ]_,2,... , 4.

To ensure non-folding constraints in our algorithm when the candidate point j is
moved at a position y, in other words to avoid the case where triangles overlap, we
impose that this new position is chosen uniformly in a convex set C]’?C which is the set of
points M; = (M}, M?) such that, for [ =1,2,... ,¢;:

A7) their coordinates |

Mj1 (Ail o Ailﬂ) + MJ'Z(AJI‘JH - A},l) + Ajl',lAilJrl - A},HIA?J <0, (4)

with the convention ¢; +1 = 1. In other words, this set is the kernel of P; that is the
set of all points M; € P; such that the line segment [M;,x] C P; for each x € P;. The
set Cf corresponds to the marked area of Figure 2. Note that the computation of this
region is fairly easy since it consists of a set of linear inequalities like (4).

i2 i3

Figure 2: The marked area corresponds to the acceptable move for M;.

These constraints mean that we impose moves that preserve the topological structure
of the Delaunay triangulation the same.

Note that the rectangle R and its 8 points are hold fixed in the minimisation proce-
dure. As illustrated by the left-hand plot of Figure 4, the embedding of G in R makes it
possible to write the previous constraints (4) in a similar way for all the n sites: indeed,
any one of the n site is included in a polygon for which the vertices are also vertices of the
Delaunay triangulation for the n sites plus the 8 points of R represented by m. Without
this embedding we should distinguish between the boundary points of G' and its interior
points in the determination of the acceptable move in the algorithm. Therefore, with
this embedding it is no longer necessary to distinguish between the boundary points of
GG and its interior points. Moreover, the virtual links between the sites in G and the 8
points of R prevent our algorithm from global folding of the triangulation in itself.

2.2.3 Estimating the deformation on the whole G-space

Any point x in G belongs to a unique triangle for which the vertices are three moni-
toring sites, say x;, x; and x;. Thus any point x is uniquely defined by its barycentric
coordinates in the triangle {x;,x;,x;} as follows:

X = Ux;X; + 0x ;X5 + Ox Xk,
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where (ax,;, tx,j, axx) € [0, 1] such that ax; + axj + axr = 1. We define the estimation
®(x) at point x of the deformation ® as follows:

~

(x) = ax,i¥i + ax;¥; + Ox kY

where y;, y; and y, are estimated with the simulated annealing algorithm. So defined,
the estimation ® holds the following features: continuous; bijective; it is an interpolant,
e yi=®(x;),i=1,2,...,n.

3 Applications

3.1 Illustrative example

In this example we suppose that the correlation is of the form:
r(x,x') = exp(—[|2(x) — 2(x)])),
where ® is a composition of three bijective functions of the type:

f, . R? — R?
x — b+ (x—Db)(1+ aexp(—asl|x — b||?)),

with a = (a1, az,b) a four-dimensional parameter, where b € R? is the centre of the
deformation, a; > 0 is a range parameter and a, €] —1, 1 exp(2)[ denotes the intensity of
stretching (as > 0) or shrinking (as < 0) (az = 0 corresponds to the identity function).
The form of the three functions f, we consider as well as the values of the parameters
for these functions are given in Figure 3.

We assume that the correlations between the n = 116 sites located in the upper-left
plot of Figure 1 are known. Our goal is the estimation of the deformation ®. First
we embed these sites in a rectangle and we build the Delaunay triangulation which is
represented by the left-hand plot of Figure 4. Then we estimate the positions of the
n sites in the D-space with the method described in the previous section (but without
the estimation of § =1 we suppose known in this example). In the cooling schedule we
take cg = 100 and # = 0.999, and it takes 730 seconds CPU (on a Sun Ultra 10 model
Creator, with a 300 MHz UltraSPARC-II i processor) to get the estimation of the 2 x 116
coordinates. The right-hand plot of Figure 4 represents both the true deformation and
its estimation. The quality of our estimation method can be observed by comparing
these two plots. Moreover, in the estimated D-space the isotropic structure is fairly well
achieved, as it is shown by Figure 5.

3.2 Application to a precipitation data set

The data consist of monitored precipitation data from n = 20 sites in Languedoc-
Roussillon in the south of France, for which the geographical configuration is shown
in the left-hand plot of Figure 6.
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Figure 3: (i) f,, with a; = (14,1.6,0.15,0.15); (ii) f,, with ay = (4, —0.6,0.85,0.85);
(iii) £, with a3 = (2,1.4,0.25,0.95); (iv) their composition ® = f,, o f,, o f,,.

These data are in the form of 10-day aggregates, giving 6 records during November
and December each year from 1975 through 1992. These data hold the following features:
(i) a low frequency of missing values; (i) a similar altitude (between 0 and 200 meters)
for all the sites so that an altitude correction is pointless; (iii) a homogeneous period
in the year so that a seasonal adjustment is not necessary. As pointed out by Meiring
(1995), means and variances are positively related, and therefore, sample correlations
between observations are calculated on the log scale, after adding 1 to all observations.
The sample correlation estimates for a pair of sites is based on all the time points for
which both sites have observations. The sample correlations for different pairs of sites are
sometimes based on different numbers of observations, so that the sample correlations
matrix is not positive definite. However, the model (1) fitted to the sample correlation
remains positive definite.

The right-hand plot in Figure 7 represents the geographical inter-site distances versus
the corresponding correlations 7(x;,x;), 1 < i < j < n, defined by (2), to which one
would fit an isotropic correlation model if we assume isotropy for Z (note this would
mean that @ is the identity function in (1)). According to this plot, we decide to use the
exponential model:

ps(u) = exp (=pu), B3>0,

so that the objective function (3) is re-written as follows:

U(YT: yga s 7Y:L7 ﬁ*) = Z[f(xiaxj) — exp (_6*“}7; - Yf||)]2 (5)

1<j

To minimise (5) we apply our constrained procedure described in Paragraph 2.2. The
Delaunay triangulation for the 20 sites is shown in Figure 6. In the cooling schedule we
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Triangulation in the G-space
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Figure 4: Delaunay triangulation for the n = 116 sites plus the 4 vertices of the embed-
ding rectangle as well as the 4 mid-points of its 4 edges. True deformation (D-space) of
the Delaunay triangulation restricted to the n = 116 sites and its estimation.

take ¢y = 1000 and # = 0.99. The right-hand plot of Figure 6 represents the estimated
deformation of the Delaunay triangulation. The upper right-hand plot of Figure 7 shows
the fitted exponential correlation as a function of the D-space coordinates. The G-
space has been stretched in regions of relatively lower correlations, and shrunk in regions
of relatively higher correlations, so that the exponential correlation better models the
correlations in the D-space representation (minimum of the objective function is equal to
0.023) than in the G-space system (minimum of the objective function is equal to 0.155).
Improvement of this fitting is illustrated by the interquartile intervals: the empirical
correlations are less scattered in the D-space than in the G-space.

4 Application to the prediction

We point out one possible application where the space deformation model (1) may be
useful. This is the prediction using Kriging. We refer to Cressie (1993) for a presentation
of the Kriging method.

In practice, the mean and the variance fields are very seldom known, and must be
predicted. As Host et al. (1995) illustrate, separate modelling of the mean, variance and
residual fields from monitoring data collected in space and time, may give very valuable
information about the standard errors in spatial interpolation. Prediction, of each of the
mean, variance and residual fields contributes to the overall spatial interpolation errors.
However, estimation of the mean and of the variance is not the topic of this work and
we concentrate only on the prediction of the centred and standardised random field 7.

To predict the centred and standardised random process Z at any location x € G' we
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Figure 5: On the left: inter-site distances ||x; — x;|| in the G-space versus correlations
r(x;,%;). On the right: inter-site distances ||®(x;) — ®(x;)|| in the estimated D-space
versus correlations r(x;,x;).

use the simple Kriging predictor:
Z(x) =) _ NZ(x),
=1

with (\) = (fiyj)_l (p@(H(i)(xl) — &)(X)H)) where ()\;) denote the vector of the Kriging co-
efficients, (7; ;) the empirical correlation matrix of the vector (Z(x1), Z(x2),...,Z(X,))
and (pé(H(i)(xl) - <i>(x)||)> the correlation vector between the “known sites”
(Z(x1), Z(x3),...,Z(x,)) and the “unknown site” Z(x).

One way to check whether the deformation may improve the prediction is a cross
validation study. More precisely, for each of the T' repetitions, we set aside a site and
we predict the value of Z at this site with the n — 1 remaining sites using the simple
Kriging predictor described above. We repeat this operation for each of the n sites T'
times. Then we calculate the mean square error prediction (MSEP) that has to be
compared with the one we would obtain by using the fitted isotropic correlation function
if we assume isotropy for Z. We apply this cross validation study to the precipitation
data set for each of the four following isotropic correlation models:

= exp(—/fu), exponential model (EF);

[aexp(—fiu), exponential model with nugget (EN);
= exp(—Au?), Gaussian model (G);

= Byexp(—pFiu?), Gaussian model with nugget (GN);

)
&
2
\/\/Sv
|

where 5; > 0 and (3, €]0, 1[.
The results of the cross validation study are given in the following Table which gives
the M SEP before and after the deformation for each of the four previous models:
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Geographical configuration Deformation

Figure 6: On the left: site locations and the corresponding Delaunay triangulation with-
out the rectangle (the outlines indicate the French department of Gard and the coast).
On the right: deformation of the triangulation.

before deformation | after deformation | % of improvement
E 0.224 0.129 42.4
EN | 0.203 0.136 33.1
G 0.271 0.132 51.3
GN | 0.180 0.115 36.1

We deduce that the best improvement in terms of prediction is obtained for the
Gaussian model: on average the prediction at the monitoring sites is 51.3 % better in
the D-space than in the G-space. We also deduce that the best model is the Gaussian
model both with and without deformation: nevertheless, with this model the prediction
at the monitoring sites is 36.1 % better in the D-space than in the G-space. In conclusion,
we can claim that the model with deformation for the correlation of the random field is
better than the model without deformation.

5 Discussion

Simulated annealing appears to be a suitable tool for estimating a non-stationary struc-
ture. Combined with non-folding constraints, it gives the opportunity to estimate non-
parametrically the bijective spatial deformation ®, in model (1), in such a way that the
estimation is bijective; so far the previous method using a pair of thin-plate splines does
not guarantee this feature. However we wish to note one research question: so far, the
choice of the isotropic correlation model has been made by visual inspection. One future
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Figure 7: (i) Inter-site distances ||x; — x;|| in the G-space versus empirical correlations
7(x;,%;) and the fitted exponential correlation model (solid line) (ii) Inter-site distances
|®(x;) — ®(x;)|| in the estimated D-space versus empirical correlations 7(x;,x;) and
the fitted exponential correlation model (solid line) (iii) Box-plots of the empirical cor-
relations as a function of the distances in the G-space (iv) Box-plots of the empirical

correlations as a function of the distances in the D-space.

direction would be to establish a rational choice, by using for instance an Akaike-type
criterion. Furthermore, an attempt to use a non-parametric family of correlation models
has yet to be developed.
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Fabio Spizzichino
“La Sapienza”, Rome

FEzxchangeable heterogeneous populations and computation of probability
distributions for vectors of “occupation numbers”

ABSTRACT: We consider situations of heterogeneity of the following type: let P be
a population formed with n individuals Uy, ...,U,; to U; (i = 1,...,n) we attach an
observable random variable T; and an unobservable random variable Z;. The latter is an
endogenous variable which describes the "type” of the individual U; and let Z denote
the space of values of the Z/s. Ty, ..., T, are conditionally independent, given (Z = z),
and, more in particular, the conditional distribution of T}, given (Z = z), only depends
on z; for a given, dominated, family {G.}.cz, such a conditional distribution coincides
with G,, i.e. we have

P{Ty <ty Ty Sl 21 = 21, s Do = 20} = | [ Gai(ta).
=1

We consider in details the discrete, exchangeable, case when Z = {1,2,...,D} and
(Z1, ..., Z,) has a joint exchangeable law L,. It is easy to see that (71,...,7,) is ex-
changeable as well. Such a model for (71, ...,T},) is then described by the joint survival
function

P{Ty <ty, .. Ty <tn} =Y P{Z1=2,., Zn = 2} | [ Gui(t:)

will be denoted by the symbol H (n; Z;{G.,}.cz; L)

It is interesting to notice that the m—dimensional (m < n) marginal distribution of
H(n; Z,{G.}.cz; L) is H(m; Z2;{G.}.cz; L) where L, denotes the m—dimensional
marginal of £,,. Furthermore, due to conditional independence, we have the following:

Proposition 1. Let E be an event in the o—algebra generated by T, ...,T,,; then the
conditional distribution of Ty, ..., T, given E is of the form H (n; Z;{G,|E}.cz; L,|E) .

Due to possible complexity in computations of the distributions of the type £, (1 < m <
n), and L,|E (from which one would obtain corresponding distributions for 71, ..., T},)
one can be rather interested in their simulation.

To this purpose, when n is big compared with D, it can be convenient to consider the
vector of ”occupation numbers” associated to (Zy, ..., Z,), which are the random variables
defined by:

A=Y 1z-p.j=1,..D.
=1
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We shall also write A; = ¢;(Z) and A = ¢(Z) with ¢;(z) = D" | 11.,—;; and denote by
V,..p the space of possible values of A : the elements of V,, p are the D—dimensional
vectors with non-negative integer elements, having sum equal to n.

Different MCMC methods may be natural for the simulation of distributions on V,, p
and the following considerations can be of interest, concerning the simulation of distribu-
tions for (71, ..., Z,) and then for (71, ...,T,). First we notice that there is a one-to-one
correspondence between exchangeable distributions over Z" (i.e.for (Zy, ..., Z,)) and dis-
tributions over V,, p; more precisely it is

P{Z =2} = WP{A = ¢(2)}.

Since A takes values in the finite set V,, p, it admits joint moments of any finite or-
der. For h=(hy,...,hp), h; = 0,1, ..., let us denote by p(h) the joint moment p(h) =

E (17, (A)").

The joint distribution £,, of Z determines p(h), for all h. Viceversa, from the knowledge
of the joint moments p(h) for all h, we can recover £,, and its marginal distributions.
More precisely, we have (see [Gerardi, Spizzichino, Torti (2000a)])

Proposition 2. Form < n the distribution L,, of Z is determined by the set {,u(h)}zj hy<m
of joint moments of A of order not larger than m.

Corollary 3. The joint distribution of (11, ..., T,,) is determined by {G,}.cz and
{n(W)}y __ ho<m-

Remark 4. We consider the case when the space Z of possible values for the endogenous
variables Zy, ..., Z, is finite; however in some applications it is not necessarily endowed
with an intrinsic complete ordering: for instance in the case when there is a double

classification for individuals Uy, ..., U,, Z; is a pair Z; = <Z¢(1)> Zi@)) and 2 = Z0x 23

is the space of values of Z; , with Z0) = {1,2,....,R},Z® ={1,2,....5}, D=R x S,
say. In this case, the set of occupation numbers can be looked at as the R x S random
matriz (A, s), where obviously

A,«ys = i ]_{ZZ.:(T7S)},T = 1, ceey R, S = 1, ceey S; ZZAT’S = n.
i=1

Our interest for models of the type H (n; Z;{G.}.cz; L,) in particular arised from ap-
plications in the fields of reliability and survival analysis, where the variables 17, ..., T,
are non-negative (lifetimes of individuals Uy, ..., U,). In such fields it is natural to con-
sider conditional survival probabilities for residual lifetimes given an observed history of
failure and survivals, of the type

P{Th1 >t + Tnyrs o, Tn >t + 7| Hy (1)
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with
H=A{T\=t,..Th=th,Thy1 >t,... T, >t},0 < t; <ty < ... <t <t (2)

notice that rearrangment of indexes is allowed, in view of exchangeability, and the history
in (2) can be seen as the history observed in the time-interval [0 < s < ¢] for the process
N(s) which counts, for any s, the total number of items failed up to time s:

N(s) = D Liryen )

Denote by A(t) the vector of occupation numbers for the subpopulation P"~N® formed
by the only individuals which survived at time ¢, i.e. let, for

N;(t) = Lm<n Lizimgys (4)
i=1
A8 = A, — N;(t).j = 1,.., D, (5)

A(t) = {A;(t)} ez is then a pure jump process such that Z;l:l Aj(t) =n— N(t) and it

is a non-homogeneous Markov process (in that the intensities of Ny(t)..., Np(t) at time ¢
depend only on ¢ and A(t)); its jump times are T{y), ..., T(»), which are the order statistics
of T17 Tn

In view of Propositions 1 and 2, the problem of deriving the conditional distribution
in (1) substantially reduces to that of computing the conditional law of A(t) given the
history {N(s),s < t}. Formally the problem is one to find the conditional law of a
Markov process given the point process which counts its jumps. This is then a problem
in the theory of stochastic filtering. This theory provides the tools to prove the formula
below (see [Gerardi, Spizzichino, Torti (2000b)]): for x €V,_n(),p

P(A(t)=x| Hy) x

N(t)

N(#) N(t)
X Ft(x) Z H 9k; (T(j)) T, + Z 6kjki PlA=x+ Z eki (6)
i=1 i=1
where
D
Fux) = [[[G;®)]7;e? = (01,0, 0p), 2 =1,.., D (7)
j=1

Complexity involved in the formula shows the need of using suitable simulation tech-
niques. In this respect, we highligh that the distribution to be simulated is one on the
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space V,,_n),p and we can consider a Metropolis algorithm for simulating P (A(t) = x | Hy),
starting with a symmetric, irreducible chain on V,,_n),p having transition probabilities
of the type

Gy = 0 if Zf—1|xj_yj|>1
4 k(x,y) if (x,y) € 3, j, for some 1 < j; # jo < D

where
E]’th = {(x,y)|xj1 > O>yj2 > O;le =Y + 17371'2 =Yj, — 1;1’]' = yj>j 7& j1>j2

(only transitions to adjacent states are allowed) and then Computing ratios of the type

P(A(D)=y|H. : Giy ()
713%/\8:1}]{3 In view of (6) and (7), we have, for (x,y) € 3, j,, 7 83 52@) and

P(A({t) =y | H) _ Gu(t)
e

Dty 11 (1)gk ) [yk + e (5;{4 (A:y"‘zij\i(lt)eki)

.....

N
Zk‘l ..... En sz(l) Ik, (t(j)) [ij + Zi:l 6k'jk'i:| < =X+ Z W )

Before concluding, we notice that the assumption of exchangeability for the endogenous
variables 71, ..., Z,, even though a strong one, is a direct extension of the conditions of
being i.i.d. or conditionally i.i.d, which have often been considered in the literature (see
e.g. [Richardson, Green (1997)], though for a different kind of mixture models)

References

A. Gerardi, F. Spizzichino, B. Torti (2000a), ” Exchangeable mixture models for lifetimes:
the role of occupation numbers”. Stat. Prob. Lett. (to appear).

A. Gerardi, F. Spizzichino, B. Torti (2000b), ” Filtering equations for the conditional law
of residual lifetimes from a heterogeneous population”. J. Appl. Prob. (to appear).

S. Richardson, P. J. Green (1997), ”On Bayesian Analysis of Mixtures with an Unknown
Number of Components”. J.R. Stat. Soc., B, 731-792.

42
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Oxford University
Computationally-Intensive Inference in Molecular Population Genetics

ABSTRACT: Recent experimental advances have lead to an explosion of data document-
ing diversity in modern natural populations. These kinds of data present a considerable
computational challenge, even for sophisticated modern statistical inference methods.
The problem is of considerable practical importance and has attracted recent attention,
with the development of algorithms based on importance sampling (IS) and Markov
chain Monte Carlo (MCMC).

We will begin our talk by introducing some of the models relevant to the study of molecu-
lar population genetic data. These models typically focus on (aspects of) the genealogical
tree relating the sampled individuals, which is usually unobserved, and may be treated
as “missing data”. The very high dimension of this missing data is the main reason
that these problems are so challenging. We will describe some specific IS and MCMC
approaches which have been suggested for dealing with this missing data, and compare
their performance on some of the simplest inference problems which arise in this field.
The results of these comparisons suggest some insights for computationally intensive in-
ference in problems with high-dimensional missing data which we hope will be of more
general interest.
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Numerical methods for Markov chains

ABSTRACT: In these lectures our attention is directed at computational methods for
computing stationary distributions of finite irreducible Markov chains. We let ¢;; denote
the rate at which an n-state Markov chain moves from state ¢ to state 7. The n x n
matrix () whose off-diagonal elements are ¢;; and whose i diagonal element is given
by — Z?:Lj 4 ¢ij 1s called the infinitesimal generator of the Markov chain. It may be
shown that the stationary probability vector 7, a row vector whose k-th element denotes
the stationary probability of being in state k, can be obtained by solving the homoge-
neous system of equations 7() = 0. Alternatively, the problem may be formulated as an
eigenvalue problem 7P = 7, where P = QQAt + [ is the stochastic matrix of transition
probabilities, (At must be chosen sufficiently small so that the probability of two or
more transitions occurring in time At is small, i.e., of order o(t)). Mathematically, the
problem is therefore quite simple. Unfortunately, problems arise from the computational
point of view because of the large number of states which many systems may occupy. It
is not uncommon for thousands of states to be generated even for simple applications.

We begin our discussion with an examination of the relative advantages and disadvan-
tages of iterative and direct solution methods. We show that iterative methods are
generally preferred, unless the infinitesimal generator has some special structure which
makes a direct method more efficient. Next, we discuss direct methods and show how
to implement them in a computationally efficient manner. Basic single vector iteration
methods are also considered. In particular, we examine the power method, forward
and backward Gauss-Seidel and SOR and preconditioned power iterations. Block single
vector iterative methods are also considered. Following this, iterative methods that in-
corporate a subspace of vectors are considered. These methods go under the more generic
name of projection techniques, and have been shown in comparison testing to be among
the most effective for general Markov chain problems. The final methods considered for
the computation of stationary solutions are decompositional methods described. These
are valuable when the matrix is nearly-completely-decomposable, NCD, a situation which
arises often in practice.
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Statistical Characterization of Connectivity
and Permeability of Porous Media

ABSTRACT: The study of transport phenomena in porous media is a very important
research topic in physics and engineering. A big and still unsolved problem is the ge-
ometrical characterization of permeability. It is very difficult even if three-dimensional
data are given, which may result from computer tomography and are usually lattice data.
It is natural to use methods of random-sets statistics in this context, considering the set
of pores as a sample of a random set. ‘Classical methods’ based on which use character-
istics such as contact distribution and covariance functions yield interesting information
on the size of pores, but are not able to characterize connectivity and percolation prop-
erties. Therefore, physicists have developed the concepts of local porosity distributions
and local percolation probabilities.

The talk discusses these concepts and describes how the statistical analysis can be refined
by dilating or eroding (or opening or closing) the system of pores by spheres of radius
r. This yields valuable geometrical information, but can be seen also in the context
of movement of spherical particles through the pores. An example for a characteristic
arising in this context is the specific Euler characteristic seen as a function of the sphere
radius 7.

In the numerical calculations of the characteristics, the geometry of the lattice has to be
considered; some operations which are unproblematic in Euclidean geometry have to be
modified in the lattice case. Finally, new ideas of edge-correction of ratio estimators of
random-set statistics are sketched.

45



Evaluation of first passage times of diffusion processes
through boundaries by means of a totally simulative
algorithm

Maria Teresa Giraudo, Laura Sacerdote and Cristina Zucca
Dept. of Mathematics University of Torino
V.C.Alberto 10 10123 Torino, Italy

ABSTRACT

In many contexts arising both from the theoretical and from the application point
of view the necessity often arises to consider the first passage time of diffusion processes
through a boundary rather than to describe the detailed evolution of such processes.
Methods relying on simulation often appears to be the easiest approach to such prob-
lems, but they present hidden difficulties leading in many cases to unreliable results.
Suitable improved techniques for the simulation of first passage times of diffusion pro-
cesses have been recently introduced, relying on the evaluation at each time step of the
crossing probabilities for the corresponding tied-down processes. Here we propose a re-
vision of such methods based on the evaluation of the crossing probabilities via a pure
Monte Carlo algorithm.

Keywords: Diffusion processes; First passage time; Simulation; Monte Carlo methods

1 Introduction

Diffusion processes are largely employed in literature to describe the dynamics of com-
plex systems. As analytical or numerical techniques are available only in some instances,
methods that make use of simulations appear to be the easiest approach to solve first pas-
sage time (FPT) problems for such processes. However, FPT simulation presents some
hidden difficulties that can lead to unreliable results. Though a large literature exists
about pathwise simulations of diffusion processes associated with stochastic differential
equations (cfr. Honerkamp, J. (1994); Kloeden, P.E. and Platen, E. (1992) and refer-
ences quoted therein), the work generally focuses on unbounded processes disregarding
the problems arising when the sample paths are constrained by boundary conditions.
In order to minimize the error induced by possible undetected crossings of an
absorbing boundary, in a previous paper (Giraudo, M.T. and Sacerdote, L. (1999)) a new
technique for the estimation of FPTs for diffusion processes X (¢) = {X(¢), t > 0} was
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proposed which was based on the evaluation at each time step of the FPT probability for
the corresponding tied-down processes taking at the ends of the time interval the values
of the discretized process. Though highly reliable, the mathematical complexity of the
algorithms involved makes them of difficult employment for those not mathematical
researchers to whom they could be of great interest. Here we propose a revision of such
method relying on the evaluation of the tied-down crossing probabilities by means of a
pure Monte Carlo algorithm.

After a brief survey on the necessary mathematical background in Section 2, we
introduce the new simulation method in Section 3 by describing in details the algorithm
employed. An illustration of the features of the proposed method is finally done in
Section 4 by means of some examples.

2 The FPT problem for diffusion processes

We limit ourselves to summarize here the basic definitions necessary to deal with the
problem of simulation of FPTs for diffusion processes while referring to Karlin, S. and
Taylor, H.M. (1981), Ricciardi, L.M. (1977) and Ricciardi, L.M. and Sato, S. (1990) for
a detailed exposition.

Let X (t) = {X(¢),t > 0} be a time homogeneous one dimensional diffusion process
defined over the diffusion interval I = (I,7) where [,r € (—o00,c0) and let u(z) and o?(x)
denote its drift and infinitesimal variance functions respectively. The It6 form of the
stochastic differential equation (SDE) for the process X (¢) is (cf. Arnold, L. (1974))

dX(t) = p[X(t)]dt + o [ X (t)] dW(2) (1)
X(O) = Xy
where W (t) = {W(t),t > 0} is a standard Wiener process.
The conditional transition probability density function of X (¢) is defined as
0
flatlym) =5 PX({) sw|X(r)=y), 7<teelyel (2)
Given a diffusion process X (t) originated in z; at time ¢, = 0, the first passage time
of X(t) through a boundary S > xy is the random variable
Ts(zo) =inf{t > 0: X(t) > S; X(0) =2} . (3)
Its probability density function g(S,t | z¢) is defined as

9(S,t | zo) = dP(TSE;O) <) (4)

and it can be obtained as the solution of the following Volterra second kind integral
equation (cf. Giorno, V. et al. (1989)):

9(S,t | 20) = —20(S,t | o) + Q/Ot drg(S,7 | 2)(S,t] S,7), wo<S.  (5)

Here
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w(s,t1y,7) = PEOIIXOZI 4y 15,114,7), ©)

where k(t) is a suitable function that can be arbitrarily chosen to make the kernel
of equation (2.5) regular at ¢t = 7.

Starting from the diffusion process X (t) = {X(¢),t > 0}, we will denote as X"/ (t) =
{X4.4.(t),u <t <w} the corresponding tied-down diffusion process constrained to take
the values X (u) and X (v) at the time instants v and v, u < v, respectively and behaving
otherwise as X (t) for u < ¢ < v. For the sake of simplicity, the FPT probability density
function of X, (¢) will be denoted as ¢;4.(S,t | -). Given the drift x(z) and infinitesimal
variance o2(x) of the unconstrained diffusion process, the analoguous functions for the
corresponding tied-down process can be proved to be:

o) (b | 5,0)
byv | xz,t) oz ’

pia. (T, 1) = u(x)+f(

u,v
(#)rs o) = 0
where f(x,t | y,7) is the conditional transition probability density function of the

process X ().

3 The simulation algorithm

As the main purpose of this work is to develop a reliable totally simulative technique to
estimate FPTs, we will not focus on the problems connected with the discretization of
the SDEs involved. We just briefly recall that we will make use of a scheme proposed by
Platen, E. and Wagner, W.(1983) achieving order of strong convergence v =1.5.

The most relevant source of error in the simulation of FPTs of diffusion processes
through boundaries lies in disregarding the crossings that may happen inside each dis-
cretization interval. Trying to reduce such error, a new simulation technique was recently
proposed in Giraudo, M.T. and Sacerdote, L. (1999). At each time step (7, T,11) of am-
plitude h, at the ends of which the process takes the values y,, and y,11 < S respectively,

h
a suitable approximation of the FPTs probabilities P, (S, yn, Ynt1) = [ G1.a.(S,t | yn)dt
0

were evaluated. The random value of T () was set equal to Tn—l—% either when y,.; > S
or in the case where U, < P, where U, is a (0, 1)-uniformly distributed random num-
ber. Otherwise the simulation was allowed to go on and the procedure repeated at the
successive step.

Here, in order to obtain a more manageable method, we propose a revision of the
technique where the tied-down crossing probabilities are obtained by means of a totally
simulative procedure.

At each discretization step (7,,7,4+1) a suitable number N;, of simulation runs is
carried on for the tied-down diffusion process originating in X (7,,) and constrained to
take the value X (7,41) at time 7,4;. The relative frequency M/N; 4, where M is the
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number of simulated tied-down sample paths out of N4 crossing S, is then taken as the
probability to be compared with the random generated number as above.

In order to determine M with a good precision we make use of a sort of nested
procedure. Precisely, if y,,.1 < S, the value of X; = XE;?(Tn_'_ %) is simulated. If X; > S,
M is augmented by one. Otherwise, the procedure is repeated over the interval (O, %) for

the tied-down processes constrained in XE’;/Q(Tn), XE’(Z/Z(Tn + 2) and, if no crossing has

happened, over the interval (%, h) for the tied-down processes constrained in X:é?’h(Tn +

g), Xfé?’h(7n+1). If neither this step results in a crossing, the procedure is finally repeated

. . . b\ (b h h 3h 3h
in the same way successively fpr the‘nest(‘ad 1nt§rvals (0, Z)?(Z’ 5) , (5, T) 3-Lnd (_T’ h) .
The succession of nested simulations is carried on N;4 times for each discretization

interval in order to obtain the required approximated value of P, (S, Yn, Ynt1)-

4 Numerical results

We will employ the simulation technique described in the previous Section in the two ex-
emplificative cases of the Ornstein-Uhlenbeck (O.U.) and of the Feller diffusion processes.
Even though analytical expressions for their FPT distributions are known only in a few
instances, they can be computed numerically by solving suitable integrale equations ( cf.
Ricciardi, L.M. et al. (1984) and Giorno, V. et al. (1989)).
Henceforth we use the word ”exact” for the results obtained via numerical evaluations
while the word ”simulated” is used for results arising from pathwise properties.
We briefly recall that the normalized O.U. process is solution of the SDE:

{ dX (t) = =X (t)dt + V2dW (t) (7)
X(0) =z

with diffusion interval I = (—o0, c0), while the SDE for the Feller diffusion process
is

{ AY (1) = (pY (1) + q)dt + \/2rY (1)dWV (1) (8)
Y(0) = o

where p < 0 and r > 0. The diffusion interval is I = (0, 00) and the lower boundary
x = 0 changes its nature depending on the value of the parameters p,q and r. Here we
always choose ¢ > r, hence the origin is an entrance boundary (cf. Karlin, S. and Taylor,
H.M. (1981)).

The infinitesimal coefficients for the two corresponding tied-down processes can be
obtained by means of formulae (2.7).

In Tables I and II we report the confidence intervals for the mean FPT and for its
variance obtained by means of the proposed simulation technique.

The O.U. process was originated in xy = 0 and constrained by an absorbing boundary
in S = 1, while the Feller process with parameters p = —1,¢ = 2,r = 1 was originated
in 9o = 2 and constrained by an absorbing boundary in S = 3. Different values of A have
been chosen to show the algorithm behavior as the discretization step increases. For
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each value of A, N = 1000 sample paths were simulated, while the number of simulation
runs for the tied-down processes at each step was N;4 = 100 for the O.U. process and
N4 = 600 for the Feller process. Other simulation batches have shown that in this
latter case N;q4 = 200 would have been sufficient to obtain satisfactory results. For the
Ornstein-Uhlenbeck process the exact values of E[Ts(xzg)] and of Var[Ts(xy)] are 2.09 and
5.84 respectively while for the Feller process E[Ts(yo)] = 1.41 and Var[Ts(yo)] = 3.65.

TABLE I: O.U. process
step h | C.[.(mean) | C.I.(variance) | K. — S. significance test p-level

0.01 | [2.03,2.32] [5.24,5.93] 0.2
0.05 | [2.01,2.29] [6.48,7.34] < 0.01

0.075 | [2.07,2.37] [5.50, 6.24] 0.1
0.1 [2.02,2.31] [5.22,5.01] 0.1
0.3 [1.94,2.24] [5.43,6.14] 0.2

TABLE II: Feller process
step h | C.I.(mean) | C.I.(variance) | K. — S. significance test p-level

0.01 | [1.34,1.58] [3.54, 4.00] 0.2
0.05 | [1.35,1.58] [3.40, 3.85] 0.2
0.075 | [1.39,1.64] 3.56,4.03] 0.1
0.1 [1.35,1.58] 3.32, 3.76] 0.1
0.3 [1.29,1.53] [3.28,3.72] 0.1

In the last column of Tables I and IT we reported the Kolmogorov-Smirnov significance
test p-levels obtained by comparing the FPT distributions obtained via the simulations
with the ”exact” distributions obtained by means of the above mentioned numerical
techniques.

The examples shown allow to pinpoint how the fully Monte Carlo algorithm proposed
to approximate the tied-down FPT probabilities of the simulated processes in order
to obtain fair estimates of the first passage time through a boundary leads to reliable
results. A possible increase in computational time with respect to the method proposed
in Giraudo, M.T. and Sacerdote, L. (1999), connected with the additional simulations
of the tied-down process trajectories, should be compensated by the possibility of using
larger discretization steps. However, a check done on the computational times required
has shown that the method is convenient also from such viewpoint. Furher insights in
this direction, as well as the determination of the order of error in the estimation of the
FPT by means of this technique and of its computational effort, are the objects of our
present research.
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