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1 Introduction

This workshop was the first in a series to be organized by MaPhySto. The workshop brought
together researchers with varied backgrounds, with a common interest in inverse problems re-
lating to stratified media. There were series of lectures on both theory and applications.

In this leaflet we have gathered the (extended) abstracts of the talks given and the posters pre-
sented. Furthermore, at the end, the list of participants is reproduced.

The organizing committee for the workshop consisted of:

• Jean-Claude Guillot (Universit´e Paris-Nord)

• Jens Ledet Jensen (Aarhus)

• Arne Jensen, (Aalborg)

• Bo Holm-Jacobsen (Aarhus)



2 Workshop Program

Thursday April 22 (in Auditorium D2, building 531)

09.00-9.45 REGISTRATION AND COFFEE/TEA

9.45-10.00 WELCOME BY OLE E. BARNDORFF-NIELSEN

Chairman: Jean-Claude Guillot

10.00-11.00
M. Thompson: Helioseismology: inferring the structure and dynam-
ics of the inside of the Sun I.

COFFEE/TEA

11.15-12.15 V. Enss: The Schr̈odinger Equation – Non-relativistic and Relativistic.

12.30-14.00 LUNCH

Chairman: Bo Holm-Jacobsen

14.00-15.00
M. Thompson: Helioseismology: inferring the structure and dynam-
ics of the inside of the Sun II.

15.10-16.10 V. Enss/W. Jung: The Klein-Gordon Equation.

COFFEE/TEA

16.40-17.40
Poster Presentation by: J. M. Jensen, I. Møller, L. Engell-Sørensen,
I. Gonzalez Hernandez.
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Friday April 23 (in Auditorium D2, building 531)

Chairman: Volker Enss

9.30-10.30 J. Ralston: Inverse scattering problems in stratified media.

COFFEE/TEA

11.00-12.00 E. Clévédé: Global scale seismic tomography I.

12.30-14.00 LUNCH

Chairman: Adrian Nachman

14.00-15.00 J. Ralston: Solving Forward Problems with Gaussian Beams.

15.10-16.10 E. Clévédé: Global scale seismic tomography II.

COFFEE/TEA

16.40-17.40
P. Weidelt: The 1D-inverse problem of magnetotellurics:
A training site for mathematical physicists.

18.00-19.00 DISCUSSION

19.00-22.00 CONFERENCEDINNER

Saturday April 24 (in Auditorium D2, building 531)

Chairman: Peter Weidelt

9.00-10.00
D. Sinoquet: Seismic reflection tomography for 3D complex geologic
structures I.

COFFEE/TEA

10.30-11.30
A. Nachman: The Dirichlet-to-Neumann map and its connections to
Inverse Scattering and Inverse Spectral problems.

12.00-13.00 LUNCH

Chairman: James Ralston

13.00-14.00
P. Weidelt: Construction of bounds for spatial averages of electrical
conductivity.

14.10-15.10 A. Nachman: An exact, non-iterative inversion method.

COFFEE/TEA

15.40-16.40
D. Sinoquet: Seismic reflection tomography for 3D complex geologic
structures II.
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3 Abstracts

Éric Cl évédé (Département de Sismologie, Paris):
Global Scale Seismic Tomography.

ABSTRACT: Understanding the physical nature and dynamic of the Earth constitutes a chal-
lenge, by the size and uniqueness of this object. If the surface and, in some cases, the first
few kilometers below, can be directly observed and sampled, the main part of the Earth’s body
is unreachable, and only seismology can provide tools to probe the planet. The Earth can be
viewed, in a first order approximation, as a layered, one-dimensionally stratified, chemically
differentiated planet, composed of crust, mantle and core. However, surface tectonic provides
a clue that below the surface matter is in motion. It appears that convection occurs, involving
the whole mantle at various spatial scales. The resulting lateral variations in composition and
temperature are reflected on the elastic properties of the media, allowing seismology to provide
snapshots of the Earth dynamic.

Probing the whole Earth body with seismic waves, the “global scale seismic tomography”, im-
plies several relevant problems. Huge amount of energy is required, provided by the Earth itself
through the world wide seismic activity. An inherent problem is thus the spatial repartition of the
seismic sources together with the seismometers distribution, linked to the ocean-continent dis-
tribution at the Earth’s surface. This practical problem influences the choice of data within the
seismic signal. The useful seismic signal (in terms of global scale tomography) covers a wide
frequency band, ranging from around 1 Hz to 30 mHz for the body waves, 30mHz to 3mHz for
the surface waves, and 3mHz to 0.3 mHz for the Earth free oscillations. These different types
of data have different resolving power (both spatially and in term of the amplitude spectrum of
the structure), depending on their wavelength. The amount of data necessary and the quantity of
physical parameters to determine lead to a cumbersome numerical problem, usually treated as a
quasi-linear problem. Different approaches have been used to allow this problem to be solved,
both in the theoretical aspect (e.g. geometrical optic approximation) and the physical a priori
aspect (e.g. neglecting anisotropy). However, with the improvement of computation capability,
more complete approaches are in development.

In this presentation the geodynamical context will be first introduced. In a second part, the main
tomographic approaches will be described, together with the resulting models. As a conclusion
the new prospects in global tomography will be presented.
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Geometrical Approach to Inverse Scattering

Volker EnssandWolf Jung

Institut für Reine und Angewandte Mathematik, RWTH Aachen

Abstract

We present ageometricalapproach to the inverse scattering problem for the Schr¨odinger
and Klein-Gordon equations. For given scattering operatorS we show uniqueness of the
potential, we give explicit limits of the high-energy behavior of the scattering operator,
and we give reconstruction formulas for the potential.

Our mathematical proofs closely follow physical intuition. A key observation is that
at high energies the translation of wave packets dominates over spreading during the
interaction time.

1 Introduction, the Schrödinger Equation

TheSchrödinger equation is a linear evolution equation for a function of timet ∈ R with
values in a state space (phase space)H which is a Hilbert space:

Ψ(·) : R →H.

The initial value problem reads

i
d

dt
Ψ(t) = H Ψ(t), Ψ(0) = Ψ, (1.1)

with a linear operatorH acting onH. This type of equation includes as special cases non-
relativistic and relativistic quantum mechanics, the Dirac equation, the linear wave equation
(with the usual method to transform a second order equation into a first order system), and
other evolution equations. In the models mentioned above the operatorH is self-adjoint on
a suitably chosen domainD(H). Then exp{−itH} is a well defined unitary operator for all
t ∈ R and the unique global solution of the initial value problem (1.1) is

Ψ(t) = e−itHΨ . (1.2)

We describe our geometrical approach to the inverse problem for the Schr¨odinger equa-
tion as an equation which describes the motion of particles according to the laws of quan-
tum mechanics and for the Klein-Gordon equation. The time scales for interaction and for
spreading of wave functions differ at high energies. This implies the simplicity of the leading
behavior of the scattering operator because only the translational part of the time evolution
matters as long as the interaction is strong. We obtain explicit formulas for the high energy
scattering operator which can be used to reconstruct the potential uniquely. We want to ex-
plain why the statements are true and how physical intuition and mathematical proofs are
closely analogous.
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Enss and Jung Inverse Scattering

2 Particles in Quantum Mechanics

We describe the state of a quantum mechanical particle inν-dimensional space by a normal-
ized vectorΨ ∈ H. The vector can be represented by a square integrable functionψ(·) ∈
L2(Rν , dx) with volume measuredx as a function depending on theposition x ∈ Rν , or
one can use its Fourier transform

ψ̂(·) ∈ L2(Rν , dp), ψ̂(p) := (2π)−ν/2

∫
dx e−ipx ψ(x) (2.1)

depending on themomentum variablep ∈ Rν . We always assume the normalization

‖Ψ‖2 =

∫
dx |ψ(x)|2 =

∫
dp |ψ̂(p)|2 = 1.

We use for the abstract state vector a capital letterΨ, for its representation as a function of
position ψ(x), or its momentum space wave function̂ψ(p), respectively, and write

H ←→ L2(Rν , dx) ←→ L2(Rν , dp)

Ψ ←→ ψ(x) ←→ ψ̂(p) (2.2)

to indicate the switching between representations.
For a given stateΨ the probability measuresµx on configuration space andµp on

momentum space, respectively,

µx(A) =

∫
A

dx |ψ(x)|2 and µp(B) =

∫
B

dp |ψ̂(p)|2 (2.3)

describe the probabilities to find the particle inA ⊂ Rν in configuration space or inB ⊂ Rν

in momentum space. One may visualize such a state as a cloud of very many particles where
µx(A) describes the fraction of them which have their position inA and, similarly,µp(B)
is the fraction with momentum inB. Such a state is also called awave packet.

We extend the triple of representations of state vectors to the linear operators acting on
them. The Fourier transformation (2.1) interchanges differentiation and multiplication of
a function with its argument. Thus we obtain for the position and momentum operators,
respectively,

x ←→ x ←→ i∇p , (2.4)

p ←→ −i∇x ←→ p. (2.5)

If the forces acting on the particle are described as the negative gradient of a potential function
V (x) (conservative mechanical system) then the generatorH of the time evolution, the
Hamiltonianor Schr̈odinger operator, is the energy operator

H = H0 + V (x) (2.6)

which is a sum of the kinetic energy operatorH0 – responsible for the kinematics – and the
real valued potential energy which determines the dynamics.
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3 Kinematics

The kinetic energy operator orfree HamiltonianH0 usually is a functionH0(p) of the mo-
mentum of the particle. We will study two typical cases, nonrelativistic (NR) and relativistic
(Rel) kinematics. In the first case

NR: H0(p) =
1

2m
p2. (3.1)

It acts as a multiplication operator on̂φ and as a differential operator onφ :

H0 Φ ←→ (H0 φ)(x) = − 1

2m
(∆φ)(x) ←→ H0(p) φ̂(p) =

1

2m
p2 φ̂(p).

Generally, thevelocity operatoris the change of position in time:

v(p) =
d

dt
eitH0 x e−itH0

∣∣∣
t=0

= i [H0, x] = ∇p H0(p) , (3.2)

a function of the momentum operator. In the nonrelativistic case it is unbounded:

NR: v(p) =
p

m
. (3.3)

Let us now turn to the scalar relativistic case:

Rel: H0(p) =
√

p2c2 + m2c4 =
√

p2 + m2 (speed of lightc = 1). (3.4)

Here the velocity operator is bounded:

Rel: v(p) = ∇p H0(p) = c
pc√

p2c2 + m2c4
=

p√
p2 + m2

. (3.5)

Thefree time evolutionoperator is a simple multiplication operator in momentum space

e−itH0Φ ←→ (e−itH0φ)(x) ←→ e−itH0(p)φ̂(p). (3.6)

While for short times the free classical and quantum time evolutions differ considerably they
behave similarly for large times. Asymptotically, the distribution in configuration space of a
quantum state is in good approximation the same as that of the corresponding cloud of free
classical particles, of the “classical wave packet”. For later applications we study a partic-
ular family of statesΦp̄ with compact momentum support around a verylarge “average”
momentum p̄ ∈ Rν . The unitary operatorexp(ip̄x), a function of the position operatorx,
shifts a state in momentum space byp̄:

Φ0 ←→ φ0(·) ←→ φ̂0(·) ∈ C∞0 (Rν ) (3.7)

Φp̄ =eip̄xΦ0 ←→ φp̄(x) = eip̄xφ0(x)←→ φ̂p̄(p) = φ̂0(p− p̄). (3.8)

Sinceφ0(·) ∈ S(Rν ), the Schwartz space of rapidly decreasing functions, these states are well
localized in configuration space, too, uniformly in̄p. They have average velocities around
v(p̄) ∈ Rν , where

v(p̄) = ∇H0(p̄) =: v(p̄) ω =

p̄/m NR ,

p̄/
√

p̄2 + m2 Rel,
ω =

v(p̄)

|v(p̄)| ‖ p̄. (3.9)
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In our context we have to control the localization in configuration space of freely evolving
wave packets. This depends mainly on the support of the state in velocity (momentum)
space. Therefore, we have chosen compactly supported momentum space wave functions.
Then in configuration space the states cannot have compact support as well but rapid falloff
is sufficient there. A special case of suchnon–propagation propertiesof quantum wave
packets for long times is∫

|x|<tv(p̄)/2

dx |(e−itH0φp̄)(x)|2 <
const(Φ0, n)

(1 + |t v(p̄)|)n
(3.10)

for any n ∈ N uniformly for large p̄. A classical free particle which starts at time0 from
the origin and has momentump ∈ supp φ̂p̄ will be localized at timet in the region

x(t) ∈
{

x = t v(p)
∣∣∣ p ∈ supp φ̂p̄

}
⊂ {x | |x− t v(p̄)| < v(p̄)/3} . (3.11)

The “classically forbidden” region|x| < t v(p̄)/2 is separated from the “allowed region” by
at leastt v(p̄)/6. The state mainly propagates within the classically allowed region which
moves away from the origin with a positive minimal speed. The “quantum tails” of the wave
packet in the classically forbidden region do not vanish, nevertheless, they decay very fast
in time, both in the future and past. This is physically and mathematically in close analogy
to rays versus waves in optics. While the shadow behind an obstacle is not totally black due
to diffraction it is, nevertheless, quite dark away from the region which can be reached by
straight rays (the role of the increasing separationt v(p̄)/6 ).

4 Dynamics

The interacting (perturbed) time evolution is generated by the HamiltonianH,

e−itHΨ, H = H0 + V (x). (4.1)

We will consider hereshort-rangepotentialsV (x) which are roughly those which decrease
at least like|x|−(1+ε), ε > 0, as |x| → ∞. More precisely, the set of short-range potentials
is

Vs =

{
V

∣∣∣∣ ∫ ∞
0

sup
|x|≥R

|V (x)| dR <∞
}

. (4.2)

For simplicity of presentation we will restrict ourselves in this paper to bounded potentials.
Singular and long-range potentials can be included using standard techniques.

In the present context a short-range potential behaves similarly to a compactly supported
one. Depending on the required accuracy it is essentially concentrated in a ball of some radius
R around the origin.

The influence on the particle by the force−∇V (x) is relevant only as long as the particle
is essentially localized in the interaction region, i.e. where the potential is strong. We study
the scattering states which form thecontinuousspectral subspace
Hcont(H) = {eigenvectors ofH}⊥, they leave the interaction region for large times.
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5 Scattering

For short-range potentials the asymptotic motion of scattering states is an essentially free
motion: For any scattering stateΨ ∈ Hcont(H) there exist free asymptotic configurations
Φ± ∈ H such that∥∥e−it [H0+V ] Ψ− e−itH0 Φ±

∥∥→ 0 as t→ ±∞. (5.1)

This is usually called asymptotic completeness of the wave operators. Similarly, for any
incomingconfigurationΦ− or outgoing Φ+ there is a corresponding stateΨ ∈ Hcont(H)
such that (5.1) holds (existence of wave operators).

A convenient tool to describe scattering is the scattering operatorS which maps an in-
coming configurationΦ− to the corresponding outgoing configurationΦ+ of the same state
Ψ. For givenΦ− let

Ψ = lim
t−→−∞

ei t− [H0+V ] e−i t− H0 Φ− and

Φ+ = lim
t+→∞

ei t+H0 e−i t+ [H0+V ] Ψ.

Then

S(t+ , t−) := ei t+H0 e−i t+ [H0+V ] ei t− [H0+V ] e−i t− H0 , (5.2)

S := s-lim
t+→∞

t−→−∞

S(t+ , t−), satisfies S Φ− = Φ+. (5.3)

For microscopic particles for which quantum mechanics is an adequate description one cannot
really observe more details of the scattering process than those encoded in the scattering
operator. We denote the mapping

Vs → L(H), V 7→ S = S(V ) (5.4)

as thescattering mapfrom short-range potentials to bounded (unitary) scattering operators
on the Hilbert space of asymptotic configurations.

Thedirect problem of scattering theory is to determine for a given potentialV the scat-
tering operator while theinverse problem is to determine the potential(s) if the scattering
operator or part of it is known.

6 Uniqueness of the Potential

We denote byF (H0 ≥ E) the multiplication operator in momentum space with the charac-
teristic function of the set{p ∈ Rν | H0(p) ≥ E}, i.e. the spectral projection of the kinetic
energy operator to energies aboveE. The main results about uniqueness are of the following
form. They are a corollary of the asymptotic behavior of the scattering operator shown below.

Theorem 6.1 The scattering mapS : Vs → L(H) is injective. Actually, the high-energy
part of the scattering operator alone:S F (H0 ≥ E), E arbitrarily large, determines the
short-range potential uniquely.

9



Enss and Jung Inverse Scattering

7 Time Scales and Length Scales for Interaction and
Spreading

For high energy states as constructed in (3.8) scattering theory becomes simple because two
time scales, an interaction timeTI(p̄) and a kinematical time of spreadingTSp(p̄) satisfy
TI(p̄)/TSp(p̄) → 0 as |p̄| → ∞. For a potential which is essentially supported in a ball of
radiusR theinteraction time is of the orderTI(p̄) = R/v(p̄). More precisely, forΦp̄, Φ′p̄
as in (3.8) and anyε > 0 there is a radiusρ(ε) such that uniformly for large|p̄|

|(Φ′p̄, [ S − S(t+ , t−) ] Φp̄)| < ε

v(p̄)
if ± t± > ρ(ε)/v(p̄) ≈ TI(p̄). (7.1)

ρ(ε) is the length scaleLI of interaction which is independent of̄p. Intuitively, the radius of
the interaction region and the extension in configuration space of the states up to effects of size
ε sum up toρ(ε). The interaction time (and consequently the interaction strength) decreases
with |p̄| → ∞ in the nonrelativistic case and remains fixed and positive for relativistic
kinematics.

The kinematicaltime scale of spreadingTSp(p̄) denotes the time after which spreading
of wave packets becomes relevant in the time evolution. As

H0(p) Ψp̄ = H0(p) eip̄x Ψ0 = eip̄x H0(p̄ + p) Ψ0

we will expand the kinetic energy function around̄p

H0(p̄ + p) =: H0(p̄) +∇H0(p̄) · p + H2(p̄, p). (7.2)

The first summand is a number giving an irrelevant phase, the second equalsv(p̄) · p by
(3.9). It is the dominant term which – as a multiple of the momentum operator – generates
a translation of the wave packetwithout changing its shape. Only the third termH2 (which
is defined by (7.2) ) is responsible for the spreading of the wave packet. In our examples of
“power like” Hamiltonians this part of the Hamiltonian is weak compared to the translational
component: On a compact subset of momentum space likep ∈ supp φ̂0

TI(p̄)

TSp(p̄)
∼ |H2(p̄, p)|

v(p̄)
≤ const

|p̄| −−−−→|p̄|→∞
0. (7.3)

Therefore, the timeTSp(p̄) is by a factor proportional to|p̄| longer thanTI(p̄), independent
of the kinematics. For large|p̄| we may choose times when the scattering due to the potential
is over but the spreading has not yet really started. Alternatively, the timeTSp(p̄) translates
into a length scaleLSp(p̄) = v(p̄) TSp(p̄). A particle has to travel at least that far until
spreading may become visible.LSp(p̄) increases proportional to|p̄| for both kinematics.
Again, the ratioLI/LSp = TI/TSp ∼ 1/|p̄| → 0 for any precisionε.

Usually, an interacting time evolution is complicated because the translation of a wave
packet, its spreading, and the influence of the potential all occur at the same time and in
the same region. In the high-energy limit it is sufficient for the calculation of the scattering
operator to treat translation of wave packets rather than their correct free evolution. Since in
this limit spreading occurs only when and where the interaction is negligible, i.e. when the
free and interacting time evolutions are almost the same, the effect of spreading is canceled
(becomes invisible) in the scattering operator. Thus, high energy scattering is simple and it
can be inverted simply!

10



Enss and Jung Inverse Scattering

8 High Energy Scattering

The crucial uniformity of the estimate (7.1) enables us to interchange the limits
±t± → ∞ and |p̄| → ∞. This simplifies the remaining discussion very much. Actually,
not the time but the separation from the region of a strong potential determines the quality of
approximation. With correspondingly chosen variablesr± := t± v(p̄) we get

lim
|p̄|→∞

(Φ′p̄, S Φp̄) = lim
|p̄|→∞

lim
±t±→∞

(Φ′p̄, S(t+ , t−) Φp̄)

= lim
|p̄|→∞

lim
±r±→∞

(
Φ′p̄, S

(
r+

v(p̄)
,

r−
v(p̄)

)
Φp̄

)
= lim
±r±→∞

lim
|p̄|→∞

(
Φ′p̄, S

(
r+

v(p̄)
,

r−
v(p̄)

)
Φp̄

)
. (8.1)

As seen in (7.1) the asymptotic equality (8.1) remains true even after multiplication with
v(p̄) which is a much stronger statement in the nonrelativistic case. To determine

(Φ′p̄, S(t+ , t−) Φp̄) =
(
Φ′0, e−ip̄x S(t+ , t−) eip̄x Φ0

)
(8.2)

for large finite times and̄p consider e.g. the second pair of factors in (5.2).

e−ip̄x eit− [H0+V ] e−it−H0 eip̄x

= eit− [H0(p+p̄)+V (x)] e−it−H0(p+p̄)

= eit− [H0(p̄)+v(p̄)·p+H2(p̄,p)+V (x)] e−it− [H0(p̄)+v(p̄)·p+H2(p̄,p)]

= eit− [v(p̄)·p+H2(p̄,p)+V (x)] e−it− [v(p̄)·p+H2(p̄,p)]

= eir− [!·p+{H2(p̄,p)/v(p̄)}+{V (x)/v(p̄)}] e−ir− [!·p+{H2(p̄,p)/v(p̄)}] (8.3)

using againt± = r±/v(p̄) and the directionω = v(p̄)/v(p̄) as in (3.9). Due to (7.3) the
functions of the momentum operator

[ω · p + {H2(p̄, p)/v(p̄)} ] −−−−→
|p̄|→∞

ω · p (8.4)

converge in strong resolvent sense and similarly for the other exponent. Therefore, for fixed
r− and large|p̄| the following approximation is good:

eir− [!·p+{H2(p̄,p)/v(p̄)}+{V (x)/v(p̄)}] e−ir− [!·p+{H2(p̄,p)/v(p̄)}]

≈ eir− [!·p+{V (x)/v(p̄)}] e−ir−!·p (8.5)

= exp

{
−i

v(p̄)

∫ 0

r−

dr V (x + ω r)

}
. (8.6)

The approximation (8.5) is the only approximation we have to make! If{H2(p̄, p)/v(p̄)}
would commute with{V (x)/v(p̄)} then we would have exact cancellation and (8.5) would
be an equality as well. A careful estimate of the correction terms can be given for all Hamil-
tonians considered here. It is uniform inr− and when compared to{V (x)/v(p̄)} it has
additional falloff like 1/|p̄| for p̄→∞ due to (7.3).
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Combining (8.6) with the corresponding term for positive times we obtain for large|p̄|

(Φ′p̄ , S Φp̄) ≈
(

Φ′0 , exp

{
−i

v(p̄)

∫ ∞
−∞

dr V (x + ωr)

}
Φ0

)
. (8.7)

9 High Energy Limits of the Scattering Operator

Next we give the limiting behavior of the scattering operator in simple cases,Φp̄, Φ′p̄, and
p̄ ∈ Rν as given in (3.8). The strong influence of the kinematics is clearly visible. For an
overview of many further results see [5] and the references.

Theorem 9.1 (scalar relativistic, short-range, [15])
For the scalar relativistic Hamiltonian

H =
√

p2 + m2 + V (x)

with v(p̄)→ 1 one obtains

(Φ′p̄, S Φp̄) −−−−→
|p̄|→∞

(
Φ′0, exp

{
−i

∫
dr V (x + ωr)

}
Φ0

)
. (9.1)

If, however,v(p̄)→∞ we can expand the exponential in (8.7)

exp

{
− i

v(p̄)

∫
dr V (x + ωr)

}
≈ 1− i

v(p̄)

∫
dr V (x + ωr) + · · ·

(9.2)

which explains the following nonrelativistic result. The leading behavior of the scattering
operator is the identity operator (no scattering). The next order correction depends on the
potential.

Theorem 9.2 (nonrelativistic, short-range, [10], [4], [18], [6], [8])
For the Hamiltonian

H =
1

2m
p2 + V (x)

v(p̄) (Φ′p̄, i(S − 1) Φp̄) −−−−→
|p̄|→∞

∫
dr (Φ′0, V (x + ωr) Φ0). (9.3)

In the quotations we have included similar results obtained by other methods, sometimes
under more restrictive assumptions. This result is to be expected from the Born approxima-
tion. It holds also under the given weaker assumptions on the falloff of the potential where
the validity of the Born approximation is not established.
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The estimate (7.1) and the remark following (8.6) justify that multiplication with
v(p̄) ∼ |p̄| is permitted. The terms omitted in the approximation are smaller than those
involving V/v(p̄) .

Remark
In all these limits there areerror bounds for large but finite|p̄| which are explicit. E.g. in
equation (9.3) we obtain∣∣∣∣v(p̄) (Φ′p̄, i(S − 1) Φp̄)−

∫
dr (Φ′0, V (x + ωr) Φ0)

∣∣∣∣ ≤ const(Φ′0, Φ0, V )

|p̄| .

10 Reconstruction of the Potential

The conditionν ≥ 2 (multidimensional inverse problem) enters here to obtain from the
above limits reconstruction formulas and uniqueness. For bounded continuous (or more gen-
eral) functionsV the expression

X(x,ω) :=

∫
dr V (x + ωr) (10.1)

is the X-ray transform ofV . In ν = 2 dimensions lines and hyperplanes are the same.
Therefore, (10.1) is the Radon transform as well. The latter is known to be uniquely invert-
ible because the assumption (4.2) impliesV ∈ L2(R2), see e.g. Theorem 2.17 in Chapter
I of [11]. The inverse Radon transform yields the unique potential. In higher dimensions
one fixes e.g.x3, . . . , xν and reconstructs the “slices” subsequently. In particular, it is suffi-
cient to varyω in a two dimensional plane. For unbounded or discontinuous potentials the
expectation value between states from a dense set of nice vectors (like those which satisfy
(3.7) ) effectively smoothes the potential. This is enough to reconstruct the potential as a
multiplication operator.

11 The Klein-Gordon Equation

The Klein-Gordon equation describes the evolution of a wave-packet for a relativistic spin-0
particle of massm > 0 in Rν . Setting the velocity of lightc = 1, Planck’s constant~ = 1
and the chargeq = 1, we have the free equation

ü = ∆u−m2u , or ü +
[
p2 + m2

]
u = 0 (11.1)

with the momentum operatorp = −i∇. For a particle in an electromagnetic fieldE =
−∇A0, the corresponding equation reads

(∂t + iA0(x))2u = ∆u−m2u , or

ü + i2A0(x) u̇ +
[
p2 + m2 −A0(x)2

]
u = 0 , (11.2)

thusA0 : Rν → R influences the evolution ofu(t) : Rν → C . In the direct scattering
problem, the large time/large distance asymptotics of solutions of (11.2) are described by a
scattering operatorS, that is determined from a suitably decaying potentialA0. We shall solve
the inverse problem: DetermineA0 from S, thus from data that are in principle measurable

13
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in a scattering experiment. All spin-0 particles in nature are unstable, and the one-particle
Klein-Gordon equation has very limited physical applications. We believe that it is interest-
ing nevertheless, since we can compare the results to the Dirac equation (a relativistic wave
equation for spin-1/2 particles), and to acoustic scattering.

To obtain a system of first-order equations, we set

ψ̃(x) =

(
ψ̃1(x)

ψ̃2(x)

)
:=

(
u(x)
u̇(x)

)
, and ˆ̃ψ(p) =

(
ˆ̃ψ1(p)
ˆ̃ψ2(p)

)
(11.3)

for the momentum representation. The tilde is used because we will soon introduce another

representation, where the tilde is omitted. Now (11.1)⇔ i ˙̃Ψ = H̃0 Ψ̃

with H̃0 =

(
0 i
−i B2

0 0

)
andB2

0 = −∆ + m2 = p2 + m2, and (11.2)⇔ i ˙̃Ψ = H̃1 Ψ̃

with H̃1 =

(
0 i
−i B2

1 2A0(x)

)
, whereB2

1 = −∆ + m2 − A0(x)2 = p2 + m2 − A0(x)2.

We have to specify Hilbert spaces and domains forH̃0 andH̃1, such that these operators are
well-defined and self-adjoint. The choice of̃H = L2(Rν , C 2) is not possible, and before
we can define the correct spaces, we shall take a look atB2

0 andB2
1 in H = L2(Rν , C ): B2

0

is self-adjoint and strictly positive on its domainH2(Rν ) (a Sobolev space), and we assume
A0 ∈ L∞(Rν , R) with ‖A2

0Φ‖L2 ≤ a‖B2
0Φ‖L2 for somea < 1 and allΦ ∈ H2. By the

Kato-Rellich Theorem,B2
1 is self-adjoint and strictly positive onH2(Rν ). Now Bk :=

√
B2

k

is a well-defined self-adjoint operator onH1(Rν ). B2
0 andB2

1 are second-order differential

operators, andB0 is a pseudo-differential operator:\(B0Φ)(p) =
√

p2 + m2 Φ̂(p). There is
no explicit expression forB1. If we define the Hilbert spaces

H̃0 := H1(Rν )⊕ L2(Rν ) with ‖ψ̃‖2
H̃0

= ‖B0 ψ̃1‖2
L2 + ‖ψ̃2‖2

L2 and (11.4)

H̃1 := H1(Rν )⊕ L2(Rν ) with ‖ψ̃‖2
H̃1

= ‖B1 ψ̃1‖2
L2 + ‖ψ̃2‖2

L2 , (11.5)

thenH̃k is self-adjoint inH̃k with DH̃k
= H2 ⊕H1. Now H̃0 andH̃1 are equal as sets, they

have different but equivalent norms, and the natural identification operatorJ : H̃0 → H̃1

is a linear isomorphism. For the Schr¨odinger- or Dirac equation, the integrand|ψ(x)|2 of
the squared norm is interpreted as a probability or charge density, and for the Klein-Gordon
equation,ψ̃∗1(x)(−∆ + m2 − A2

0(x))ψ̃1(x) + |ψ̃2(x)|2 represents an energy density.
Now H̃0 andH̃1 act on different Hilbert spaces, and the definition of the wave operators

must be modified: The identification operatorJ is used to compare the interacting states

with free asymptotic configurations.e−iH̃1tΨ̃± − J e−iH̃otΨ̃ → 0 for t → ±∞ leads to
Ψ̃± = Ω̃±Ψ̃ with the wave operators

Ω̃± := s-lim
t→±∞

eiH̃1tJ e−iH̃0t : H̃0 → H̃1 . (11.6)

J is not isometric, but the unitary operatorT̃ =

(
1

B1
B0 0

0 1

)
“behaves likeJ for large|x|”,

thusΩ̃± = s-lim
t→±∞

eiH̃1tT̃ e−iH̃0t, and it is isometric. On suitable statesΨ̃ with momentum

support bounded away from the origin, we have the representation

Ω̃± Ψ̃ = Ψ̃ + i

∫ ±∞
0

dt eiH̃1t(H̃1J − JH̃0) e−iH̃0t Ψ̃ (11.7)

14
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as an absolutely convergent Riemann or Bochner integral. It is obtained by writing the RHS
of (11.6) as an integral of its derivative.

We shall introduce the Foldy-Wouthuysen representation ofH̃k: For Ψ̃ ∈ H̃0 or Ψ̃ ∈ H̃1

setΨ =

(
Ψ1

Ψ2

)
:=

(
B0 Ψ̃1

Ψ̃2

)
. In the FW-momentum representation, we haveψ̂(p) =( √

p2 + m2 ˆ̃ψ1(p)
ˆ̃ψ2(p)

)
, and the FW-position representation is given by the inverse Fourier

transformψ(y) of ψ̂(p). The Newton-Wigner position operatory is defined as multiplication
with y in the representationψ(y). NowH0 = L2(Rν )⊕ L2(Rν ) = H1 as sets, and we keep
the notationJ for the natural identification operator. The inner products are given by

‖ψ‖2
H0

= ‖ψ1‖2
L2 + ‖ψ2‖2

L2 ‖ψ‖2
H1

= ‖B1
1

B0
ψ1‖2

L2 + ‖ψ2‖2
L2 . (11.8)

(B0 andB1 are isomorphismsL2 → H1, thusB1 1/B0 is an isomorphismL2 → L2.) The
Foldy-Wouthuysen representation of the Hamiltonians is

H0 =

(
0 i

√
p2 + m2

−i
√

p2 + m2 0

)
and (11.9)

H1 =

 0 i
√

p2 + m2

−i [p2 + m2 − A2
0(y)] 1√

p2+m2
2A0(y)

 (11.10)

The inner product ofH1 can be written as(Φ, Ψ)H1 = (J−1Φ, g J−1Ψ)H0 for Φ, Ψ ∈ H1,

whereg :=

(
1− 1√

p2+m2
A2

0(y) 1√
p2+m2

0

0 1

)
is a strictly positive, bounded self-adjoint

operator onH0. The S-matrix is given by

S = Ω∗+ Ω− = (J−1Ω+)∗g (J−1Ω−) . (11.11)

In contrast tox, the Newton-Wigner position operatory is self-adjoint. We have

H0 =
√

p2 + m2 β with the matrixβ =

(
0 i
−i 0

)
. The velocity is given by

v = i[H0, y] = ∇pH0 =
p√

p2 + m2
β . (11.12)

The eigenspacesβ = ±1 are the spectral subspaces of positive/negative kinetic energy. The
negative energy subspace corresponds to anti-particles, here we have

v = − p√
p2 + m2

.

12 Inverse Scattering for the Klein-Gordon Equation

The NW-position operator generates translations in momentum space:

Ψp̄ := eip̄·y Ψ0 ←→ ψp̄(y) = eip̄·y ψ0(y) ←→ ψ̂p̄(p) = ψ̂0(p− p̄)
(12.1)
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with p̄ = p̄ω, ω ∈ Sν−1, p̄ ≥ 0. We shall consider the high-energy asymptotics of scattering
by lettingp̄→∞. Now

e−ip̄·y (S ψp̄

)
=
(
e−ip̄·y S eip̄·y

)
Ψ0 , (12.2)

and we have

Theorem 12.1 Suppose thatν ∈ N , m > 0 andS is the scattering operator for a Klein-
Gordon particle of massm in an electrostatic fieldE = ∇A0, whereA0 : Rν → R is
continuous and vanishes at infinity with integrable decay:
∞∫
0

dR ‖χ(|x| > R) A0(x)‖∞ <∞. Moreover, we make the Kato-Rellich assumption

‖A2
0Ψ‖ ≤ a‖(p2 + m2)Ψ‖ with a < 1. Then the high-energy asymptotics ofS are given by

s-lim
p̄→∞

e−ip̄yS eip̄y = exp

{
− i

∫ ∞
−∞

dr A0(y + rω)

}
, (12.3)

wherep̄ = p̄ω with ω ∈ Sν−1. If ν ≥ 2, thenA0 can be reconstructed uniquely from the
scattering operatorS.

Existence of the wave operators and completeness (i.e.Ran(Ω−) = Ran(Ω+)) can be shown
with standard techniques. By (11.11) we have

e−ip̄yS eip̄y =
(
e−ip̄y(J−1Ω+)eip̄y

)∗ (
e−ip̄yg eip̄y

)(
e−ip̄y(J−1Ω−)eip̄y

)
.

The term in the middle is negligible for̄p→∞ due to the strong convergence

e−ip̄yg eip̄y =

(
1− 1√

(p+p̄)2+m2
A2

0(y) 1√
(p+p̄)2+m2

0

0 1

)
→
(

1 0
0 1

)
.

By Lemma 12.2 below, we have

s-lim
p̄→∞

e−ip̄yJ−1Ω±eip̄y = exp
{
i

∫ ±∞
0

dr W (r)
}

,

whereW (r) is the multiplication operator in the Foldy-Wouthuysen position representation
ψ(y) given by

W (r) = eiβω ·pr A0(y) e−iβω·pr

= eiω ·pr 1 + β

2
A0(y) e−iω ·pr + e−iω ·pr 1− β

2
A0(y) eiω·pr

=
1 + β

2
A0(y + rω) +

1− β

2
A0(y − rω) . (12.4)

Note that positive energy states are translated with the asymptotic velocityω = cω, and
negative energy states with−cω. Combining the three strong limits yields

w-lim
p̄→∞

e−ip̄yS eip̄y =
(

exp
{
i

∫ ∞
0

dr W (r)
})∗

1 exp
{
i

∫ −∞
0

dr W (r)
}

= exp
{
− i

∫ ∞
−∞

dr W (r)
}

.
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Now bothe−ip̄yS eip̄y and the weak limit are unitary, thus strong convergence is estab-
lished. We employ the equation (12.4) forW (r) and replace−r by r in the integral of the
second term to obtain (12.3).

The exponent in (12.3) contains the X-ray transform of the electrostatic potential

X(y, ω) =

∫ ∞
−∞

dr A0(y + rω). X is continuous and vanishes for|y| → ∞ orthogonal to

ω, thus it can be obtained uniquely from its exponential, and the potentialA0 is recovered as
explained in Section 10.

Lemma 12.2 Under the assumptions of Theorem 12.1 we have the limit

s-lim
p̄→∞

e−ip̄yJ−1Ω±eip̄y = exp
{
i

∫ ±∞
0

dr W (r)
}

, (12.5)

whereW (r) is given by(12.4).

To prove (12.5), we show first that it is sufficient to consider a finite time interval. We employ
the dense subspaceD := {Ψ ∈ H0 | ψ̂ ∈ C∞0 (Rν )}. For Ψ ∈ D, we have the Bochner
integral

e−ip̄y(J−1Ω±)eip̄y Ψ− e−ip̄yJ−1eiH1tJ e−iH0teip̄y Ψ

= i

∫ ±∞
t

ds e−ip̄yJ−1eiH1s(H1J − JH0) e−iH0seip̄y Ψ , (12.6)

and the integrand is bounded by an integrable functionh(s), which is independent of̄p ≥ p̄0.
Setting

V := J−1H1J −H0 =

(
0 0

iA2
0(y) 1√

p2+m2
2A0(y)

)
, (12.7)

h(s) is obtained from the decomposition∥∥∥V e−iH0seip̄y Ψ
∥∥∥

≤
∥∥∥V F (|y| ≤ s

2
) e−iH0seip̄y Ψ

∥∥∥ +
∥∥∥V F (|y| ≥ s

2
) e−iH0seip̄y Ψ

∥∥∥
≤

∥∥∥V ∥∥∥ · ∥∥∥F (|y| ≤ s

2
) e−iH0seip̄y Ψ

∥∥∥ +
∥∥∥V F (|y| ≥ s

2
)
∥∥∥ · ∥∥∥Ψ∥∥∥ ,

whereF (. . . ) is the multiplication with the characteristic function of the indicated region.

Now the first term is bounded by
const

(1 + s)2 from a non-propagation property analogous to

(3.10), and the second term is integrable by the decay properties ofA0.
s

2
should be read as

cs

2
, wherec is the velocity of light: For largēp the velocity support ofΨp̄ is contained in

|v| > c/2. Now the LHS of (12.6) is bounded by±
±∞∫
t

ds h(s) uniformly for p̄ ≥ p̄0, and
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by anε/3-trick we may interchange the limitst → ±∞ andp̄ → ∞. Thus it is sufficient to
show

lim
p̄→∞

e−ip̄yJ−1eiH1tJ e−iH0teip̄y Ψ = exp
{
i

∫ t

0

dr W (r)
}

Ψ . (12.8)

We employ the Dyson-expansion

e−ip̄yJ−1eiH1tJ e−iH0teip̄y Ψ

=
∞∑

n=0

in
∫ t

0

dtn

∫ t

tn

dtn−1 · · ·
∫ t

t3

dt2

∫ t

t2

dt1 e−ip̄yV (tn) V (tn−1) . . . V (t2) V (t1) eip̄y Ψ

with V (t) := eiH0tV e−iH0t, whereV is given by (12.7). Then-th term is bounded by
(|t| ‖V ‖L(H0))

n‖Ψ‖/n! independently of̄p, thus the limitp̄ → ∞ can be taken term-wise.
Now (12.8) follows from

lim
p̄→∞

∫ t

0

dtn

∫ t

tn

dtn−1 · · ·
∫ t

t3

dt2

∫ t

t2

dt1 e−ip̄yV (tn) V (tn−1) . . . V (t2) V (t1) eip̄y Ψ

=

∫ t

0

dtn

∫ t

tn

dtn−1 · · ·
∫ t

t3

dt2

∫ t

t2

dt1 W (tn) W (tn−1) . . . W (t2) W (t1) Ψ

=
1

n!

∫ t

0

dtn

∫ t

0

dtn−1 · · ·
∫ t

0

dt2

∫ t

0

dt1 W (tn) W (tn−1) . . . W (t2) W (t1) Ψ

=
1

n!

(∫ t

0

dr W (r)
)n

Ψ .

This is proved in [16], and here we shall sketch the proof forn = 1:

lim
p̄→∞

∫ t

0

dr e−ip̄yV (r) eip̄y Ψ =

∫ t

0

dr W (r) Ψ . (12.9)

The integrand can be written as a product(
e−ip̄yeiH0reip̄y

)(
e−ip̄yV eip̄y

)(
e−ip̄ye−iH0reip̄y

)
Ψ with

e−ip̄ye±iH0reip̄y = e±iβ
√

(p + p̄)2 + m2 r. We have√
(p + p̄)2 + m2 − (p̄ + ω·p)→ 0 for p̄→∞ andp ∈ Rν . Thus(

eiβ
√

(p + p̄)2 + m2 t − eiβ(p̄ + ω ·p)t
)

Ψ

= eiβ(p̄ + ω ·p)t
(
eiβ(

√
(p + p̄)2 + m2 − p̄− ω ·p)t − 1

)
Ψ→ 0 (12.10)

for all Ψ ∈ H0 (by the dominated convergence theorem applied to
∫

dνp | . . . ψ̂(p)|2). This

equation shows that in the high-energy limit, the spreading of a wave packet is negligible
compared to the translation. We have

e−ip̄yV eip̄y =

(
0 0

iA2
0

1√
(p+p̄)2+m2

2A0(y)

)
→
(

0 0
0 2A0(y)

)
, (12.11)
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and thus the integral on the LHS of (12.9) is asymptotically∫ t

0

dr eiβ(p̄ + ω·p)r
(

0 0
0 2A0

)
e−iβ(p̄ + ω·p)r Ψ

=

∫ t

0

dr eiβ2p̄r eiβω ·pr
(
−A0 0

0 A0

)
e−iβω ·pr Ψ

+

∫ t

0

dr eiβω ·pr
(

A0 0
0 A0

)
e−iβω ·pr Ψ ,

since the second matrix commutes withβ, while the first is anti-commuting withβ. Now the
Riemann-Lebesgue Lemma is valid for the Bochner integral, thus the integral of the first term
vanishes for̄p → ∞, due to cancellations by rapid oscillations. The second integral yields
the RHS of (12.9).

This completes our sketch of the proof of Lemma 12.2, and thus of Theorem 12.1. It can
be generalized to include an electromagnetic field(A0, A): Then the Klein-Gordon equation
reads

ü + i2A0 u̇ +
[
(p−A)2 + m2 −A2

0

]
u = 0 ,

and the operators and Hilbert spaces are defined in a similar way, whereB2
1 is changed to

B2
1 = (p−A(x))2 + m2 − A0(x)2. We have

Theorem 12.3 Suppose thatν ∈ N , m > 0 andS is the scattering operator for a Klein-
Gordon particle of massm in an electromagnetic field(A0, A), which is bounded and decays
integrably: ForA ∈ {A0, A, div A} we haveA ∈ L∞(Rν ) and
∞∫
0

dR ‖χ(|x| > R) A(x)‖∞ <∞. Moreover, we make the Kato-Rellich assumption

‖(B2
1 −B2

0)Ψ‖ ≤ a‖B2
0Ψ‖ with a < 1. Then the high-energy asymptotics ofS are given by

s-lim
p̄→∞

e−ip̄yS eip̄y = exp

{
− i

∫ ∞
−∞

dr

(
A0 −iω ·A

iω ·A A0

)
(y + rω)

}
, (12.12)

wherep̄ = p̄ω with ω ∈ Sν−1. Denoting the restriction ofS onto the subspace of posi-
tive/negative energy byS±, we obtain

s-lim
p̄→∞

e−ip̄yS± eip̄y = exp

{
− i

∫ ∞
−∞

dr
(
A0 ∓ ω ·A

)
(y + rω)

}
. (12.13)

If ν ≥ 2 and A0, A are continuous, thenA0 and B = rotA ∈ S ′ can be reconstructed
uniquely fromS or S+ (we need an additional technical assumption onA, e.g.A ∈ L2 is
sufficient).

This theorem was announced in [15], and a complete proof will be given in [16]. Note that
equation (12.13) is the same for the Dirac equation, which was treated in [15] by a similar
approach, where the decay assumptions on the potentials are the same, but the Kato-Rellich
condition looks less restrictive. The inverse scattering problem for the Dirac equation was
solved by stationary methods in [13] and [12] under stronger assumptions on the potentials,
and the geometrical, time-dependent method of [15] was extended in [14] to cover time-
dependent electromagnetic fields. In [1], the inverse scattering problem for the Schr¨odinger
equation with electric and magnetic potentials was solved with the geometrical method.
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Acoustic waves in an inhomogeneous medium are described byü = c2ρ∇1
ρ
∇u. If

c(x) → 1 andρ(x) → 1 for |x| → ∞ suitably, there is a scattering theory with the cor-
responding free equation given byü = ∆u. The high-energy asymptotics will be described
by the eikonal equation and are not easily obtained from our time-dependent approach. If
we consider the special case ofc ≡ 1, thus ü = ∆u − 1

ρ
∇ρ · ∇u, the high-energy limit

is calculated in the same way as for the Klein-Gordon equation with magnetic field, and(
1
ρ
ω · ∇ρ

)
(y + ωr) = ∂

∂r
log ρ(y + ωr) yields e−ip̄yΩ±eip̄y → ρ1/2. Together with

e−ip̄yg eip̄y → ρ−1, the limit e−ip̄yS eip̄y → 1 is obtained. See [16] for details.

The books [17] and [19] give the background on mathematical scattering theory for Schr¨o-
dinger and Dirac operators. The paper [5] introduces the method in an elementary way for
non-specialists and gives many references.

The papers [1], [2], [5]-[9], and [15] (preprint versions) can be downloaded via our home-
pages http://www.iram.rwth-aachen.de/ ∼enss and .../ ∼jung or by
FTP from ftp.iram.rwth-aachen.de/pub/papers/... or from mp arc .
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Poincaré66, 237–270

[13] H.T. ITO (1995) High-energy behavior of the scattering amplitude for a Dirac operator.
Publ. Res. Inst. Math. Sci.31, 1107–1133

[14] H.T. ITO (1998) An inverse scattering problem for Dirac equations with time-dependent
electromagnetic potentials. Preprint, Kyoto Univ.

[15] W. JUNG (1997) Geometrical approach to inverse scattering for the Dirac equation. J.
Math. Phys.38, 39–48; and: Der geometrische Ansatz zur inversen Streutheorie bei der
Dirac-Gleichung. Diplomarbeit RWTH Aachen (1996).

[16] W. JUNG (1999) Geometrical approach to inverse scattering for the Klein-Gordon equa-
tion, in preparation

[17] M. REED AND B. SIMON (1979)Methods of Modern Mathematical Physics III, Scat-
tering Theory. Academic Press, New York etc.

[18] Y. SAITO An asymptotic behavior of the S–matrix in the inverse scattering problem. J.
Math. Phys.25, 3105–3111 (1984); An approximation formula in the inverse scattering
problem. J. Math. Phys.27, 1145–1153 (1986).

[19] B. THALLER (1992)The Dirac Equation. Springer, Berlin

[20] R. WEDER (1996) Multidimensional inverse scattering in an electric field. J. Funct.
Anal. 139, 441–465

[21] R. WEDER (1997) Inverse scattering forN-body systems with time-dependent poten-
tials. In: Inverse Problems of Wave Propagation and Diffraction, pp. 27–46, G. Chavent,
P.C. Sabatier eds., Lecture Notes in Phys.486, Springer, Berlin

[22] R. WEDER (1997) Inverse scattering for the nonlinear Schr¨odinger equation. Comm.
Partial Differential Equations22, 2089–2103

21



Jesper Munk Jensen (Aarhus)1:
Forward and inverse modelling in an acoustic sun.

ABSTRACT: Helioseismology is an area where geophysical methods have found application in
solar physics and enabled investigation of the solar interior. In helioseismology the traditional
approach has been to consider global oscillation modes of the entire sun, but in the last few years
a new approach, called Time-Distance helioseismology, has emerged, where one considers lo-
cal wave propagation on the sun. It has become possible to measure the traveltime between two
points on the solar surface as a cross correlation function and thus produce solar seismograms
which are very much like the seismogram considered in terrestrial seismology. From these data
it is possible to do a tomographic imaging of local structures in the outer part of the sun (Koso-
vichev and Duvall 1997). This approach is very close to traditional terrestrial seismology and
we have used methods from this field to investigate properties of both the forward and inverse
problem.

Using a Finite-Difference code, we have modelled the wave propagation in an acoustic media
with properties reminiscent to those of the sun. Thus we have produced artifical data to use in
the inverse procedure. For the inversion we have used a method that is based on a MultiChan-
nel Deconvolution (MCD) algorithm (Jacobsen et al. 1998) that speeds up the calculations by
doing the computational work in the Fourier domain. This means that inversions can be done
in a matter of seconds, even for high volume data sets. Solving the inverse problem in this way
require knowledge of the correct Fr´echet kernels. We have tested two different approaches to
the calculation of the Fr´echet kernels. One is the well known ray approximation, but as this is a
high frequency approximation we have problems with the low frequency wave propagation on
the sun. The other approach takes the whole first Fresnel zone into account and is better suited
to investigation of low frequency phenomena.
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Ingelise Møller (Aarhus):
Inversion of 2D geoelectrical data by iterative use of a 1D Fréchet derivative.

ABSTRACT: Geoelectrical methods have many applications in environmental geophysics. The
development of fast data acquisition systems (e.g. Sørensen 1996) that can collect 10 - 15
profile kilometres during one day have made DC-resistivity methods practicable in large scale
mapping. Data collected at every one metre in 8 electrode configurations result in about 100
000 data values per day in the field. Interpretation of such amounts of data is a computational
heavy task, where shortcuts in the inversion procedures are useful.

The geoelectrical data are nonlinear functions of the ground resistivity. Therefore the inverse
problem is usually solved iteratively using a linearized Gauss Newton method (e.g., Sasaki,
1989) where the Jacobian matrix (the partial derivatives of the forward solution with respect to
the model parameters) has to be calculated at each iteration. When large data volumes are to
be inverted this procedure becomes very time consuming because partial derivatives must be
calculated and large linear systems must be solved. The computations can be reduced avoid-
ing calculations of the Jacobian matrix (e.g., Li and Oldenburg 1994, Loke and Barker 1996).
Sasaki (1994) has used the partial derivative of the homogeneous halfspace, which is given an-
alytically, as the Jacobian matrix.

A 2D inversion algorithm is presented that uses the partial derivatives of the homogeneous
halfspace as Jacobian matrix. Because the partial derivative of the homogeneous halfspace is
translational invariant, the inversion at each iteration can be solved as a multichannel decon-
volution (Møller et al. 1998). A multichannel deconvolution formulation leads to an inverse
solution in the wave number domain, where the 2D problem decouples into many 1D problems.
The regularization follows a pragmatic stochastic approach.

A profile of 512 m with data sampled every one metres in 8 electrode configurations results
in 4096 data values. The model is parameterized into 7680 model cells. One inversion with 8
iterations takes 48 cpu minutes on a pentium PC. More than 99% of the calculation time is spent
on the forward modelling.

Model estimates obtained by the algorithm have been compared with model estimates from a
rigorous 2D inversion program. Models with equal rms misfit are not significantly different.
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Lisbeth Engell-Sørensen (Bergen):
Micro-Seismicity for Passive Monitoring of Rock-Masses.

ABSTRACT: The main objectives of the project is to investigate the information potential of mi-
cro seismic events recorded by passive geophone monitoring within the subsurface. The Ekofisk
area serve as a test area and especially the recordings obtained through the acquisition campaign
early 1997 in Central Ekofisk field. The following sub-objectives are explicitly investigated for
the present application:

a) Source relocation in a stratified reservoir model.

b) Source mechanism determination, which includes the determination for composite sources.

c) Simultaneous inversion for layered velocity structure and location to refine the position
of sources. All three objectives consider the presence of observations obtained in one or
more boreholes.

In order to be able to include anisotropy in the reservoir model, a recently completed raytracing
computer code has been chosen for modelling arrival times and waveforms of P, SV and SH
waves in a three-dimensional model on three-component sensors. In order to spend the least
computer time, the computer code has been adobted for the present purpose: tracing rays from
many sources to few receivers, and not visa versa. The location problem has been solved by grid
search and linear interpolation between grid points, where the object function is a weighted sum
of P and P-minus-S wave traveltime residuals and P-wave polarity residuals. The source mech-
anism problem has been solved by linear inversion (the least-squares solution) of first arriving
P, SV, and SH waveforms. The relocation shows clustering of events along planes, whereas the
source mechanism study give more distributed slip directions.

Based on the experiments so far, the micro-seismicity in the Ekofisk chalk reservoir may turn
out to deliver valuable information for production monitoring, drilling/completion, and struc-
tural geology.
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Irene Gonzalez Hernandez (Queen Mary and Westfield College):
Ring diagram analysis: A local helioseismology technique.

ABSTRACT: Meridional (north-south) flows and differential rotation beneath the surface of
the Sun are studied using ring-diagram analysis. The technique is based on the construction
and analysis of the 3-dimensional power spectrum of acoustic waves of medium-high horizon-
tal wavenumber. The “traditional” helioseismic analyses, using the frequencies of the Sun’s
global resonant modes of oscillation, produce only longitudinal averages of the solar interior.
By contrast, ring-diagram analysis allows the study of the structure beneath relatively small
(∼ 15◦× 15◦) patches of the Sun’s surface. The existence of horizontal velocity fields in the re-
gion where the waves propagate produces a shift in their frequencies. By fitting the observations
to a model of this frequency shift, and performing inversions in the radial direction beneath each
patch, we reconstruct the depth dependence of the Sun’s subsurface velocity field.

Here we show the results of applying this technique to 120 patches over the solar surface, cov-
ering a total surface extention of360◦ in longitude and about75◦ in latitude. The data, which
are from the Michelson Doppler Imager (MDI) instrument on board the Solar and Heliospheric
Observatory (SoHO) satellite, are full-disc dopplergrams taken every minute during the first
MDI Dynamics Programand span an entire solar rotation.
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Adrian I. Nachman (Rochester):
The Dirichlet-to-Neumann map and its connection to Inverse Scattering and In-
verse Spectral problems.

An exact, noniterative inversion method.

EXTENDED ABSTRACT

These lectures followed the lively group discussion at the workshop between practitioners and
theoreticians working on Inverse Problems. My aim was to show that new bridges between the
two groups are being built: significant recent progress in the analytical understanding of multi-
dimensional inverse problems has made it possible for an increasing number of mathematicians
to begin to address some of the difficult issues arising in practical inversion.

In addition to proofs of uniqueness for a number of classical multidimensional problems which
had been open for a long time, we now have exact reconstruction methods, stability estimates
and (at least) an indirect characterization of admissible data for inversion. On other issues raised
at the workshop, such as nonlinear resolution analysis and what can be inferred from finite sets
of data, answers are beginning to emerge in one dimensional problems. (See, for example, the
nonlinear version of the Shannon Sampling Theorem in [24] and the error estimates on deter-
mination from partial data in [5].) Other problems mentioned during the discussion, such as an
explicit characterization of the data, simple examples of exact multidimensional inversion and
fast reconstruction algorithms, require further research. By analogy to the history of the Fourier
transform, one could say that we have just found (for a number of problems) the nonlinear ana-
logue of the Fourier Inversion Theorem. More time will be needed for (what I would call) a
FIST (Fast Inverse Scattering (or Inverse Spectral) Transform) to emerge.

Central to many of the new developments has been the work on the electric impedance tomog-
raphy problem. The basic question it poses is whether it is possible to determine the (variable)
electric conductivity inside a body from voltage and current measurements made on its surface.
This question appears to have been motivated originally by geophysical applications ([9]); it is
also of great interest in medical imaging ([6]). Mathematically, the problem can be formulated
as follows. LetΩ be a bounded region inRn , n ≥ 2, (the cases of interest in applications are
n = 2 andn = 3) with a smooth (or at least Lipschitz) boundary∂Ω. Application of a volt-
age potentialf (to electrodes) on the boundary∂Ω induces a potentialu(x) insideΩ. If the
conductivity is assumed isotropic (the anisotropic problem will be discussed below) then it is
represented by a functionγ(x), which we assume bounded and with a positive lower bound.
The vector of current flow is thenγ(x)∇u(x), by Ohm’s law. If there are no current sources
or sinks insideΩ, then the divergence of the current is zero, and this yields the second order
elliptic equation satisfied byu(x):

∇ · (γ(x)∇u(x)) = 0 in Ω

with Dirichlet boundary conditionu(x) = f(x) for x on ∂Ω. For any voltagef(x) on ∂Ω we
can measure the corresponding normal component of the current flux across the boundary∂Ω.
This defines a linear operatorΛγ on∂Ω, the Dirichlet-to-Neumann (voltage-to-current) map:

Λγf(x) = ν(x) · γ(x)∇u(x) , x ∈ ∂Ω ,
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with u the unique solution of the Dirichlet problem described above. The inverse problem is to
determine the conductivityγ(x) insideΩ̄ from knowledge ofΛγ on the boundary. It was first
formulated at this level of generality by Calder´on ([4]), whose paper has sparked a considerable
amount of research on this and a variety of related problems. The reader interested in the
corresponding question for the Maxwell equations (where the data consists of the map taking
the tangential component of the electric field on the boundary to the tangential component of the
resulting magnetic field) is referred to [11,12,18,19,20] For the analogous problem in elasticity,
see [17].

Note that, while the operatorΛ on ∂Ω is linear, its dependence onγ is nonlinear, hence so is
the inverse problem. A formal variable count shows that in dimensionn the data depends on
2(n− 1) variables, whileγ(x) is a function ofn variables; thus, the problem is overdetermined
if n ≥ 3 and formally determined whenn = 2. Uniqueness was proved in [23] forn ≥ 3
and [14] for n = 2. The paper [14] gives a method to calculateγ from Λγ. The method
is, in principle, exact (no linearizing approximations are introduced) and direct (i.e. does not
require multiple solutions of the forward problem through updated guesses of the medium).
An intermediate object, the scattering transformt(k) of γ(x) is calculated fromΛγ by solving
certain linear integral equations on the boundary∂Ω; γ(x) is then obtained fromt(k) by solving
linear integral equations in the complex domain. The introduction in [14] explains the main
steps in this reconstruction procedure.

In joint work with my graduate student, L. Liu ([10]), we proved that this method yields the
following stability estimate in dimension 2 (similar to the ones obtained in [1,2] for dimensions
n = 3): Assume that there is an a priori bound on theLp norm of the derivatives up to order 2
of the conductivitiesγ1, γ2 : ‖γj‖W 2,p(Ω) 5 M for somep > 1, andγj(x) = 1/M , j = 1, 2.
Then for anyδ < 2(p− 1)/p, there is a constantCM such that

‖γ1 − γ2‖L∞(Ω) 5 CM |log ‖Λ1 − Λ2‖|−δ ,

where‖Λ1 − Λ2‖ is the distance in the operator norm (fromH1/2(∂Ω) to H−1/2(∂Ω)) between
the corresponding Dirichlet-to-Neumann maps.

The inversion method of [14] was applied in [7] to the inverse scattering problem at fixed fre-
quency (with data measured in the far field or the near field – see also [13]), as well as to the
recovery of an inhomogeneous nonlinear medium, where the equation is of the form

−∆u + a(x, u) = 0 .

For the nonlinear conductivity equation, see [21].

Inversion from the Dirichlet-to-Neumann map can also be used for solving certain multidimen-
sional inverse spectral problems. In [16] we showed that for the Schr¨odinger operator−∆ + q,
knowledge of the Dirichlet eigenvalues in the domainΩ ⊂ R

n , n ≥ 2, as well as of the normal
derivatives on the boundary∂Ω of the corresponding orthonormal eigenfunctions determines the
appropriate Dirichlet-to-Neumann map and thereby the potentialq. This boundary spectral data
in fact determines the boundary data at all frequencies, and so can be treated by time-domain
methods (quite different from the fixed frequency methods discussed in these lectures) as well.
See, for instance, [3,8] for some far reaching generalizations.

When the conductivity is anisotropic, it is represented by a symmetric positive definite matrix-
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valued functionγ = (γij(x)) and the equation for the potentialu insideΩ becomes

n∑
i,j=1

∂

∂xi

(
γij(x)

∂u

∂xj

)
= 0 in Ω, u = f on∂Ω .

The corresponding Dirichlet-to-Neumann map, defined by

Λγf =
n∑

i,j=1

νiγij ∂u

∂xj

∣∣∣
∂Ω

,

no longer determinesγ in this case: any diffeomorphismΦ of Ω which equals the identity on
the boundary gives rise to a conductivity

γ∗ =
(DΦ)Tγ(DΦ)

det(DΦ)
◦ Φ−1

with Λγ∗ = Λγ. Nevertheless, in joint work with P. Ola [15], we investigated precisely what
can be reconstructed from knowledge ofΛγ in dimension two. In particular, givenΛγ, is it
possible to determine whether there exists an isotropic conductivityγ̃ in Ω yielding the same
boundary measurementsΛγ̃ = Λγ? Assume, for simplicity, thatγ = 1, the identity matrix,
near∂Ω and extendγ to be= 1 outsideΩ. There is (see [22]) a unique diffeomorphismΦ of
R

2 which tends to the identity at infinity such that the correspondingγ∗ (as defined above) is
isotropic. We are thus relying on the presence of the isothermic coordinates in two dimensions.
GivenΩ with an anisotropic conductivityγ, we can think of the forward problem as yielding
the Dirichlet-to-Neumann mapΛγ on ∂Ω as well as the diffeomorphismΦ, the corresponding
isotropicγ∗ and the domainΩ∗ = Φ(Ω). In the inverse problem we are givenΛγ on ∂Ω, and
our result is that one can reconstructΩ∗, γ∗ on Ω∗ andΦ outsideΩ (but notΦ insideΩ). In
particular we are able to determine that the measurementsΛγ are compatible with an isotropic
conductivityγ̃ (i.e. Λγ = Λγ̃) if and only if the functionΦ|∂Ω (which we can calculate from
Λγ) is the identity on∂Ω. In general, if two conductivitiesγ1 andγ2 with correspondingΦ1, Φ2

have the same Dirichlet-to-Neumann map, thenΦ1 andΦ2 agree on∂Ω andγ2 can be obtained
from γ1 via the diffeomorphismΦ−1

2 ◦ Φ1 which equals the identity on the boundary.
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James Ralston (UCLA):
Inverse scattering problems in stratified media.

EXTENDED ABSTRACT

This talk was on inverse scattering at fixed energy for the acoustic wave equation in a layered
medium, and it was based on [GR]. The layered medium problem is typical of a class of inverse
problems in which the scattering amplitude is given, and one wishes to recover coefficients
in the wave equation. One can introduce the scattering amplitude for these problems in the
following way. Assume that the motion of an idealized, “unperturbed” medium is governed by

a wave equation
utt + L0u = 0, (1)

whereL0 is a nonnegative, self-adjoint differential operator. Assuming further thatL0 has a
spectral representation in terms of generalized eigenfunctionsψ0, i.e. L0ψ0 = k2ψ0, we can
contruct time-harmonic solutions,u = exp(−ikt)ψ0, k > 0, of (1). In simple cases these
will be travelling plane waves. Next we suppose that the motion of a more realistic medium is
governed by the “perturbed” wave equation

utt + Lu = 0, (2)

whereL is also self-adjoint andL−L0 is strongly localized in space – either it vanishes outside
a bounded set or its coefficients tend rapidly to zero as|x| → ∞. In this situation one expects
that there should be time-harmonic solutions of (2) which are superpostions ofexp(−ikt)ψ0

and a scattered wave propagating away from the pertubation. One way to get such solutions is
to imagine that the perturbation is turned on at timet = 0, and consider the solutionu(x, t) =
exp(−ikt)ψ0(x) + v(x, t) to (2) in t > 0 with

vtt + Lv = e−ikt(L0 − L)ψ0, v(x, 0) = vt(x, 0) = 0. (3)

In many cases the “Limiting Amplitude Principle” (see [LP], Chpt. V.4) shows thatv does tend
to exp(−ikt)w(x) ast→∞ so that

wε(x) = ε

∫ ∞
0

e(ik−ε)tv(x, t)dt

converges tow asε→ 0+. However, in the mathematical literaturewε is more often introduced
as the square-integrable solution to

(L− (k + iε)2)wε = (L0 − L)ψ0.

Then one recoversw by showing that the resolvent(L − (k + iε)2I)−1 converges in suitable
norms asε→ 0+ (the “Limiting Absorption Principle”). However one introduces the scattered

wavew associated withψ0, it is the asymptotics ofw as|x| → ∞ that determine the scattering
amplitude. In the the simplest case, i.e.L0 = −∆, L = −c2∆ with c(x) = 1 for |x| large, and
ψ0(x) = exp(ikω · x), |ω| = 1, one finds thatexp(−ikt)w(x) is asymptotically an outgoing
spherical wave: inn space dimensions

w(x) = eik|x|/|x|(n−1)/2 (a(x/|x|, ω) + O(1/|x|)) ,
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and the scattering amplitude at energyk2 is the functiona(θ, ω). There are constraints on what

one can hope to recover from the scattering amplitude. To see how these arise (and introduce
an equation that I will need shortly) leth be the Fourier transform of(∆ + k2)w in the example
above. Thenh is a solution of the singular integral equation

h(ξ, kω) + lim
ε→0+

(2π)−n

∫
Rn

q̂(ξ − η)
h(η, kω)

|η|2 − k2 − iε
dη = −q̂(ξ − kω), (4)

whereq = k2(c−2 − 1) andf̂ denotes the Fourier transform. One can show by fairly standard
asymptotic analysis thath is related to the scattering amplitude by

h(kθ, kω) = c(n, k)a(θ, ω), (5)

wherec is a constant:c(3, k) = (4π)−1. If one considers the variational (Frechet) derivative of
h with respect tôq, and evaluates this at̂q = 0, it follows from (4) and (5) that

c(n, k)δa(θ, ω) = −δq̂(k(θ − ω)).

In other words, infinitesimally close to the zero perturbation, the scattering amplitude at energy
k2 only determines that Fourier transform of the perturbation on the ball of radius2k. This
suggests that one can only hope to recover the perturbation exactly from the scattering ampli-
tude at finite energies when its Fourier transform on a ball determines the Fourier transform on
all space. This is true when the perturbation decays at an exponential rate – so that its Fourier
transform is real analytic – and we shall assume that here. The preceding is based on an obser-
vation of Roman Novikov, and one should see [N2] for further discussion of its implications in
potential scattering. The equation (4) is a starting point for recovering the perturbation from the

scattering amplitude. To proceed one first connects the scattering amplitude with a nonphysical
scattering amplitude depending on a real parameterσ and a unit vectorν, using ideas of Faddeev
[F]. Then one performs an unlikely analytic continuation from [ER] which is made possible by
the exponential decay of the perturbation. At the end of this reasoning one concludes that, if
one can solve

hν(ξ) + (2π)−n

∫
Rn

q̂(ξ − η)
hν(η)

(η + iτν)2 − k2
dη = −q̂(ξ − ζ)

for hν(ξ; ζ, iτ) for τ sufficiently large, then the scattering amplitude determines the restriction
of hν to the (complex) manifold determined by

(ξ + iτν)2 = (ζ + iτν)2 = k2 (7)

for |Im{ξ}| and|Im{ζ}| sufficiently small. Then one shows that the norm of the integral opera-
tor in (6) goes to zero asτ goes to infinity (when the dimensionn greater than 2), establishing
the existence of the solution forτ sufficiently large. Taking limits in (6) along suitable curves
(ξ(s), ζ(s), τ(s) lying in (7) with τ(s) → ∞, one shows that the scattering amplitude deter-
mines the restriction of̂q(ξ) to |ξ| < 2k. When the wave equation in a layered medium is the

unperturbed problem – as opposed to the homogeneous medium in the example above – the un-
perturbed operatorL0 no longer has a spectral representation in terms of the Fourier transform.
In [GR] the unperturbed operator isL0 = −c2

0(xn)∆ in Rn, n ≥ 3, wherec0(s) takes positive
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constant valuesc+ for s > s+ andc− for s < s− with c− < c+, but for s− ≤ s ≤ s+ c(s)
can be any positive measurable function such thatc and1/c are bounded. This complicates
the structure of the resolvent(L0 − λI)−1, and the integral equations (4) and (6). However,
the limiting absorption principle holds for this problem (and more general ones: see [dBP],
[BdMM]), and, using the representation of(L0− λI)−1 in terms of the Fourier transform in the
variables other thanxn and a Green’s function inxn, one can carry out the argument outlined
in the preceding paragraph. The scattering amplitude itself is considerably more complicated
because of the total reflection of waves with incident directionsθ = (θ1, . . . , θn), |θ| = 1 ,
0 < θn <

√
1− (c−/c+)2, and the possibility of guided waves which have zero asymptotics

in all directions withθn 6= 0. One needs to include the asymptotics of all these waves in the
scattering amplitude to link the physical scattering amplitude with the Faddeev-type scattering
amplitude. Thus, in addition to requiring an analytic continuation which cannot be done nu-
merically, this method of recovering the perturbation makes use of the full scattering data at
energyk2 which could be very difficult to collect. It is not proposed as a practical method of
recovering the physical sound speedc(x). Instead I offer it as an example of what can be shown
to be theoretically possible. The part of the inverse scattering literature that is closest in spirit

to what I have discussed here deals with perturbations which decay exponentially in space (in
dimensions three and greater). In quantum scattering R. Novikov [N1] showed that the scatter-
ing amplitude at fixed energy determined the potential in this case. This was followed by [ER]
which obtained the same result for both a potential and a magnetic field. Isozaki [I] treated per-
turbations of a simple layered medium, using the analytic continuation introduced in [ER]. His
results are generalized in [W] and [GR]. When one considers perturbations of the homogeneous

medium which are localized in a bounded domain D – or any perturbed equation which reduces
to ∆ outside D – knowing the scattering amplitude at energyk2 is equivalent to knowing the
Dirichlet-to-Neumann map forL − k2 for the boundary of D. Thus these problems can be at-
tacked by the methods described by Professor Nachman in his lectures. In fact the solution of
(6) is related to the construction of the exponentially growing solutions. For the Schr¨odinger
equation with magnetic potential a construction of such solutions based on (6) has been carried
out by Ziqi Sun [S]. I will not attempt to survey the literature on inverse problems where one is
given the Dirichlet-to-Neumann map. However, since the acoustic layered medium is in a sense
a prototype for the elastic layered medium, I should point out that Nakamura and Uhlmann
[NU] have shown that the parameters of an elastic medium are determined by its Dirichlet-to-
Neumann data.
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James Ralston (UCLA):
Solving Forward Problems with Gaussian Beams.

EXTENDED ABSTRACT

Gaussian beams are high frequency asymptotic solutions to linear partial differential equations.

Over the past thirty years they have been useful in a variety of problems in mathematical physics
and the theory of partial differential equations ([2]-[8]), and they have been used to model lasers
in electrical engineering ([1]). In this talk I gave a short description of how they are constructed.
They may be useful in solving forward problems efficiently when caustics are present, and they
could be used to refine ray tracing methods if one wished to determine more than the travel time.
In essence Gaussian beams are geometric optics approximations restricted to follow a single ray

path. One begins with the Ansatz

u(x, t, k) = eikφ(x,t)a(x, t, k), a(x, t, k) = a0(x, t) + k−1a1(x, t) + · · ·+ k−SaS(x, t),

where the amplitudea(x, t, k) is vector-valued when one is solving a system of equations. In
geometric optics one uses precisely this Ansatz, and assumes that the phase functionφ is real-
valued. One can localizeu to a small bundle of ray paths by choosing the amplitude correctly,
but the asymptotic solution will usually develop caustics as it evolves, and then the solution
cannot be continued in the form given in the Ansatz. In the construction of Gaussian beams the
phase has a nonnegative imaginary part which is strictly positive off a single ray path. More
precisely,φ will be constructed so that the imaginary part of its Hessian is strictly positive on
vectors orthogonal to the ray path in space-time. In this case caustics do not develop. The

localization to a single ray path makes the beam construction simpler than geometric optics.
If one applies any k-independent linear partial differential operator tou, the result will be an
expression of the form

M∑
m=−S

kmbm(x, t)eikφ(x,t). (1)

If b vanishes to orderr on the ray path(x(t), t), the positive imaginary part ofφ makes

|b(x, t)eikφ(x,t)| ≤ C|x− x(t)|re−c|x−x(t)|2 = O(k−r/2),

uniformly in t. Thus we can solve the equation up to any prescribed order (sayk−S+M ) simply
by making the coefficientsbm vanish to sufficiently high order on the ray path. This can be
done by solving ordinary differential equations along the ray path. On any fixed interval in
time the difference between the true solution and the Gaussian beam with the same initial data
will then be of the order ofk−S+M . The key observations in the Gaussian beam construction

enter when one solves the equationbM(x, t) = 0 to eliminate the highest power ofk in (1).
For scalar equations the requirementbM(x, t) = 0 is equivalent to the eichonal equation. For
systems it is homogeneous system of linear equations which must have a nontrivial solution. In
isotropic elasticity this system has nontrivial solutions if and only if the phase satisfies either of
the equations

i) (φt)
2 = (λ(x) + 2µ(x))|∇xφ|2 (”compression waves”) or
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ii) (φt)
2 = µ(x)|∇xφ|2 (”shear waves”),

i.e. one has an eichonal equation for each wave speed. Settingz = (x, t), we can write these
equations compactly asP (z, φz) = 0, whereφz denotes the gradient in(x, t), andP (z, ζ) is a
polynomial inζ. The ray paths are the projections ontoz of the solutions of the system

ż = Pζ(z, ζ), ζ̇ = −Pz(z, ζ), (2)

such thatP (z(s), ζ(s)) = 0. For the Gaussian beam construction we wantP (z, φz) to vanish
to high order on a ray pathz(s). If we setφz(z(s)) = ζ(s), then the gradient ofP (z, φz(z))
evaluated onz = z(s),

Pzi(z(s), φz(z(s))) + Pζj(z(s), φz(z(s)))φzjzi(z(s))

vanishes by (2). Requiring that the Hessian ofP (z, φz(z)) vanish onz = z(s) leads to the
matrix equation

Ṁ + A + BM + MBt + MCM = 0, (3)

where

A(s) = Pzz(z(s), ζ(s)), B(s) = Pzζ(z(s), ζ(s)), C(s) = Pζζ(z(s), ζ(s)) and

M(s) = φzz(z(s).

This is a matrix Riccati equation, and one can solve it by takingM = NY −1, where(Y, N) is
a matrix solution to the linearization of (2) along(z(s), ζ(s))

ẏ = Bty + Cη, η̇ = −Ay −Bη. (4).

The forms (symplectic and complex symplectic)

< (y1, η1), (y2, η2) >= y1 · η2 − y2 · η1, and

< (y1, η1), (y2, η2) >C= y1 · η2 − y2 · η1

are constant on pairs of solutions of (4). Making use of this, elementary arguments show that any
matrix solution(Y (s), N(s)) of (4) with initial data(Y (0), N(0)) = (I, M0), whereM0ż(0) =
ζ̇(0) and Im{M0} is positive on vectors orthogonal tȯz(0), will have Y (s) invertible for all
s. This leads to the absence of caustics in Gaussian beams. Then one can go on verify the
following: Given any ray path on which time is strictly increasing, and the corresponding curve

(z(s), ζ(s)), for every choice of the initial Hessianφxx(z(0)) such that Imφxx(z(0))} > 0 one
can construct a complex phaseφ such that

φ(z(s)) =

∫ s

0

ζ(r) · ż(r)dr,

φz(z(s)) = ζ(s), φzz(z(s)) satisfies (3) and Im{φzz(z(s))} is strictly positive on vectors or-
thogonal to the ray path. This gives us the Taylor series of the phase along the ray path up to

order 2. The equations for the higher order terms in the Taylor series of the phase are linear
systems of ordinary differential equations alongz(s), as are the equations for the Taylor series
of the amplitudesaj. Thus the remainder of the construction can be carried out quite easily. A
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Gaussian beam is essentially zero outside a tube of radiusO(k−1/2) around its ray path. To get
solutions with larger support one can take linear superpositions via integration with respect to
the parameters in the initial data. This will produce solutions following a bundle of ray paths
which can develop caustics. Since the solutions are uniformly accurate with respect to the pa-
rameters, the superposition will give an accurate asymptotic solution near caustics. I concluded

with one explicit example. For the acoustic wave equation

utt = ∆u

and the ray path(x1(s), x2(s), t(s)) = (0, s, s) one has the Gaussian beam

u(x1, x2, t) = a(x1, x2, t)e
ikφ(x1,x2,t),

φ =
x2 − t

2
+

a2tx2
1

1 + 4a2t2
+ i(

ax2
1

2 + 8a2t2
+

b(x2 − t)2

2
) anda(0, t, t) = (1 + 2ait)−1/2.

Note that the phase is shifted byπ/2 as one would expect at a caustic, but here the shift takes
place continuously as one goes fromt = −∞ to t =∞.

References

1. J.A. Arnaud, Beam and Fiber Optics, Academic Press, New York, 1976.

2. V.M. Babich, Eigenfunctions concentrated in a neighborhood of a closed geodesic, Math.
Problems in Wave Propagation Theory, Sem. Math. V.A. Steklov Math. Inst.9(1968), Trans-
lated by Consultants Bureau, New York, 1970.

3. V.M. Babich and V.S. Buldyrev, Asymptotic Methods in Short Wave Diffraction Problems,
(Russian) Nauka, Moscow 1972

4. M.Combescure, D.Robert and J.Ralston, A proof of the Gutzwiller semiclassical trace for-
mula using coherent states decomposition, to appear in Commun. Math. Phys. in 1999.

5. G. Hagedorn, Semiclassical quantum mechanics, I, Commun. Math. Phys.71 (1980),77-93.
II, Ann. Inst. H. Poincar´e 42(1985), 363-374.
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Delphine Sinoquet (Institut Francais du Petrole):
Seismic reflection tomography for 3D complex geologic structures.

ABSTRACT: Seismic reflection tomography allows the determination of the velocity and of the
reflector geometries of the subsurface from the traveltimes of the seismic waves. The solution
of the inverse problem is the model that minimizes the misfits between observed traveltimes and
traveltimes computed by ray tracing (the forward problem).

In the inverse problem, the introduction of a priori geological information is crucial to well pose
the mathematical problem, more especially to remove the indetermination linked to the depth-
velocity ambiguity inherent in traveltime inversion.

An other difficulty comes from the complexity of the traveltime curves to be inverted. The
geological structures we are interested in, often generate multi-valued traveltimes (several trav-
eltimes for one couple source-receiver). These data are very precious to well determine the earth
model but they require an adequate formulation of the forward and inverse problems.

In this talk, I will address these different issues and illustrate them with applications in oil
exploration.
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Michael J. Thompson (Queen Mary and Westfield College):
Helioseismology: inferring the structure and dynamics of the inside of the Sun.

EXTENDED ABSTRACT

1. Introduction; the Sun, a star

Helioseismology is the study of the internal structure and dynamics of the Sun using ‘sun-
quakes’. To be more precise, the Sun is oscillating simultaneously in many thousands of global
normal modes. These oscillations, which are far too small to be seen with the naked eye, are
excited by turbulent convection just below the visible surface and manifest themselves in minute
brightness variations and displacements over the Sun’s surface. The frequencies of the normal
modes are determined by conditions inside the Sun: the helioseismic inversion problem is to
use these frequencies to make inferences about the structure and dynamics of the solar interior.
A good starting point for learning about helioseismology is the collection of articles in the 31
May 1996 issue of Science (Science272, 1281 – 1309). Another is the review paper by Gough
& Toomre (1991).

2. Global resonant oscillations of the Sun

The Sun is a self-gravitating fluid body, held up by pressure against collapsing under its own
gravity. As such its structure is described by the equations of fluid dynamics, together with
details of the microphyscs (nuclear reaction rates, equation of state of the fluid, opacity of the
material to radiation). The starting point for helioseismic investigations is usually a spherically
symmetric, non-rotating model of the Sun, obtained by solving the fluid equations numerically.
For a good up-to-date discussion of the modelling, see Christensen-Dalsgaardet al. (1996); for
an extensive discussion of the modelling of stars seee.g. the books by Kippenhahn & Weigert
(1990) and Hansen & Kawaler (1994).

The normal-mode oscillations that we study can be well approximated by linear adiabatic per-
turbations of the equilibrium model. (Strictly speaking, at this stage, these are oscillations of
the non-rotating star: we introduce rotation in the next section.) The linear approximation is a
good one, since the mode amplitudes are only up to a few metres, compared with the radius of
the Sun which is7× 108 metres. The adiabatic approximation is that the fluid elements do not
exchange heat with their surroundings during the oscillation: this is an excellent approximation
thoughout most of the solar interior, where the timescale for heat exchange is very much longer
than the periods of the oscillations. Together with appropriate boundary conditions at the cen-
tre and surface of the solar model, the oscillation equations constitute a self-adjoint eigenvalue
problem, the eigenvalues being the squared frequencies of the normal modes. Given an equilib-
rium model of the Sun (see above), this eigenvalue problem is solved numerically to obtain the
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frequency spectrum and associated eigenfunctions as functions of position through the solar in-
terior. See for example Christensen-Dalsgaard (1982) or Christensen-Dalsgaard & Berthomieu
(1991), or the books by Unnoet al. (1989) and Cox (1980). The outcome of these calculations
is thate.g.the radial displacement of a given mode is

R
[
ξnl(r)Y

m
l (θ, φ)eiωt

]
where(r, θ, φ) are spherical polar coordinates centred on the centre of the Sun,(n, l, m) are
three integers labelling the mode – usually called the radial order (n), the degree (l) and the
azimuthal order(m); ω is the frequency of the mode;t is time; andR[. . .] denotes the real part.
Also Y m

l is a spherical harmonic or degreel and orderm, and the radially dependent functions
ξnl are obtained from the numerical calculation. Of course at the surface of the Sun the temporal
and horizontal dependencies can be observed, but not directly the radial dependence. In the case
of the spherically symmetric model, the frequencies depend only onn andl, not onm. Since
the azimuthal orderm runs over all integer values from−l to +l, this means that each frequency
of the spherically symmetric model has a(2l + 1)-fold degeneracy. This degeneracy is lifted by
rotation or other departures from spherical symmetry.

3. Effect of rotation on the oscillations

The observed modes have periods in the region of 5 minutes. The rotation period of the Sun is
much longer, about one month. Therefore the effects of rotation on the observed modes can be
treated as a small perturbation. The leading-order effect of rotation is to shift the frequencies of
m 6= 0 modes, so that the frequency of a mode with quantum numbers(n, l, m) differs from the
frequency of a corresponding mode withm = 0 by an amount

ωnlm − ωnl0 = m

∫
Knlm(r, θ)Ω(r, θ)r dr dθ ,

a weighted integral of the internal rotationΩ(r, θ) inside the Sun. Here the integral is over
the whole of the interior of the Sun, and the kernelsKnlm(r, θ) are presumed known functions
which are calculated from a spherically symmetric non-rotating model and its eigenfunctions. I
note in passing that the symmetry properties of the kernels means that at this order the observ-
able frequency splittingωnlm−ωnl0 is an odd function ofm that depends only on a North-South
symmetric, longitudinally averaged measure of the internal rotation rate. However, the kernels
do have different dependencies on radiusr and colatitudeθ according to the values of(n, l, m),
which enables us to resolve the internal rotation in the Sun as a function ofr andθ. Details of
the kernels and some of the inversion methods are given bye.g. Schouet al. (1994). The in-
version problem is then to make inferences aboutΩ given the observational data (the frequency
splittings) and given the kernelsKnlm.

4. The inversion problem & techniques

The above inversion problem can be written schematically as

di =

∫
Ki(r)Ω(r) dr + εi (i = 1, . . . , M)
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Given a finite number ofM datadi, and known functionsKi(r), we wish to make inferences
about the functionΩ(r). I have explicitly shown here that the data contain errors (noise)εi. This
is a linear inversion problem for which various approaches are possible. Two techniques which
are commonly used in helioseismology are data fitting with the Reguarlized Least Squares
method (Tikhonov regularization) and construction of averages with the Optimally Localized
Averages (Backus-Gilbert) method. These and other techniques as they are applied in helioseis-
mology are discussed in the papers by Christensen-Dalsgaardet al. (1990), Pijpers & Thomp-
son (1992, 1994), Thompson (1995); not so current, but still interesting, is the paper by Gough
(1985).

5. Results on the Sun’s internal rotation

Recent results on the solar internal rotation as inferred by helioseismology may be found in
Schouet al. (1998), Thompsonet al. (1996), Chaplinet al. (1999) and Elsworthet al. (1995).
There have been many surprises, basically because our understanding of angular momentum
transport under stellar conditions is still rather poor. It has long been known that at its surface the
Sun rotates differentially, with the equatorial regions completing one rotation in about 25 days,
and the higher solar latitudes rotating rather more slowly. Prior to helioseismology, numerical
simulations of the rotation in the Sun’s convective envelope (the outer 30 per cent of the Sun
by radius) suggested that the surfaces of constant rotation rate would be essentially cylinders
centred on the rotation axis: in fact it seems that the rotation is more nearly constant with depth,
at any given latitude, so that the surface rotation profile persists through the convection zone.
There are departures from this, however, including a local maximum in the rotation rate which
occurs in the equatorial region and at a depth corresponding to about 7 per cent of the Sun’s
total radius. There is also a shear layer immediately beneath the visible surface, at least at
low- and mid-latitudes. Beneath the convective envelope, there is a transition to a latitudinally-
independent rotation rate, the transition occurring in a thin layer which has been named the
‘tachocline’. The tachocline width seems to be smaller than the inversion resolution at those
depths, but it has been estimated (by assuming the transition is a simple step with a characteristic
width) that its width is of the order of 4 per cent of the solar radius (Charbonneauet al. 1999;
cf. Antia et al. 1998, Kosovichev 1996). Inferences about the deep interior, especially the inner
20 per cent, remain very difficult because of the relatively few modes that penetrate there and
because of the predominant influence on the modes of the outer part of the star. As best we can
tell, the rotation of the inner 60 per cent is consistent with rigid-body rotation, and certainly
some earlier models which predicted a very rapidly rotating core (a relic of the young Sun,
which probably did rotate much more rapidly than the Sun does today) can be firmly ruled out.

6. Results on the Sun’s internal structure and physics

The inferences about rotation utilise the splitting between modes of different azimuthal order
within the same multiplet of2l+1 modes (m = −l, . . . , l). The mean frequency of the multiplet
is used to make inferences about the radially symmetric structure of the solar interior, and about
the physics that governs the structure. The most accessible quantity is the adiabatic sound speed.
Early inferences were made using an Abel inversion of an asymptotic formula based on a WKB
representation of the modes (Christensen-Dalsgaardet al. 1985). Most recent work though has
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been based upon linearizing about a known reference model, utilizing a variational principle for
the frequencies (e.g.,Dziembowskiet al. 1990, Basuet al. 1996, 1997). For further results, see
the paper by Goughet al. (1996). A comprehensive study of the effect of choices of values of
trade-off parameters in such structure inversions has been made by Rabello-Soareset al. (1999).
Although the sound speed is the most accessible aspect of structure, it is also possible for exam-
ple to estimate the density stratification, which also directly affects the modes. More indirectly,
one can study other secondary quantities, for instance by calculating the dependence of the fre-
quencies on these quantities, and then inverting for them (e.g.,parametrising the opacity of the
solar interior to radiation, then calculating the effect of opacity changes on the frequencies, and
inverting the frequencies to make inferences about the opacity: Korzennik & Ulrich 1989, Tri-
pathyet al. 1998). Among the inferences from helioseismology are that the depth of the Sun’s
convective envelope is about 29 per cent of the total radius (Christensen-Dalsgaardet al. 1991)
and that the helium abundance in the convective envelope is about 25 per cent by mass (e.g.,
Vorontsovet al. 1991, Richardet al. 1998). The latter is an interesting result, since it is about
3 per cent lower than the initial solar helium abundance necessary to produce models of the
present solar age that have the observed solar luminosity: together with evidence from the run
of sound speed with depth – Christensen-Dalsgaardet al. (1993) – it provides rather compelling
evidence that the helium and other elements heavier than hydrogen have gradually settled under
the influence of gravity over the lifetime of the Sun. The observed modes are also sensitive to
relatively small changes in the equation of state, and helioseismology has been able to guide
theoretical development of equations of state under stellar conditions (Christensen-Dalsgaard &
Däppen 1992).

The study of departures from spherical symmetry is much less well developed than the study
of the symmetric structure. Such asymmetries could arise from magnetic fields and from large
convective cells, for example. For some intriguing inversion results, see the paper by Goughet
al. (1996).

7. Local helioseismology techniques

Recently, helioseismologists have also begun to develop and exploit local techniques which
depend on observations of wave fields on patches of the surface. These techniques may well
provide a better way to study departures from spherically symmetry in the Sun, at least in the
outer part of the solar interior. Here I shall do no more than list some of the techniques and
give some references to them. The ring-diagram analysis decomposes the wave field observed
in a patch of surface of the Sun by Fourier-analysing it in two horizontal spatial directions and
in time, hence producing 3-D power spectra. The technique is so named because slices through
such spectra at fixed temporal frequency produce rings of power, showing how the dispersion
relation varies as a function of horizontal wavenumber. The technique is described, together
with some solar results, in the papers by Patr´onet al. (1995), Gonz´alez Hernándezet al. (1998),
Thompsonet al. (1996), Haberet al. (1998) and Schou & Bogart (1998).

A quite different technique, but one which shows considerable promise, is time-distance helio-
seismology. The idea is that one measures travel times along rays between observed points at
the surface of the Sun. In fact, what is done is to correlate the wave displacement at some point
with points in an annulus about it, and to infer a travel time from the time-lag. For details, see
Duvall et al. (1993, 1997) and Kosovichev & Duvall (1997); also Jensenet al. (1998).
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Other techniques include helioseismic holography (Braunet al. 1998), and the study of varia-
tions of spatial phase over the solar surface (Julienet al. 1995).

Some if not all of these local techniques will add valuable information to what has been and will
be learned from the global techniques, particularly in terms of structures and flows near sunspots
and other magnetic features and the structure of the turbulent convection in the subsurface layers
of the Sun.

I thank the organisers for a nice meeting and for inviting me to give these two lectures on helio-
seismology and helioseismic inversion. I am also very grateful to the Theoretical Astrophysics
Center, Aarhus, for their hospitality and financial support for my visit during March and April
of 1999.
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González Hernández, I., Patr´on, J., Chou, D.-Y. and the TON Team, 1998. [On the reliability of
ring diagram analysis].Astrophys. J., 501, 408 – 413.

Gough, D. O., 1985. [Inverting helioseismic data].Solar Phys., 100, 65 – 99.

Gough, D. O., Kosovichev, A. G., Toomre, J.et al., 1996. [The seismic structure of the Sun.]
Science, 272, 1296 – 1300.

Gough, D. O. & Toomre, J., 1991. [Seismic observations of the solar interior.] Annual Reviews
of Astronomy & Astrophyscs,29, 627 – 685.

Haber, D. A., Hindman, B. W., Toomre, J., Bogart, R. S., Schou, J. & Hill, F., 1998. [Sub-
photospheric convective flows determined by ring-diagram analyses of SOI-MDI observa-
tions]. InStructure and dynamics of the interior of the Sun and Sun-like stars; Proc. SOHO
6/GONG 98 Workshop, eds S.G. Korzennik & A. Wilson, ESA SP-418, ESA Publications
Division, Noordwijk, The Netherlands, p. 791 – 796.

Hansen, C. J. & Kawaler, S. D., 1994.Stellar interiors. Physical principles, structure, and
evolution. Springer, New York.

Jensen, J. M., Jacobsen, B. H. & Christensen-Dalsgaard, J., 1998. [MCD inverson for sound
speed using time-distance data]. InStructure and dynamics of the interior of the Sun and
Sun-like stars; Proc. SOHO 6/GONG 98 Workshop, eds S.G. Korzennik & A. Wilson, ESA
SP-418, ESA Publications Division, Noordwijk, The Netherlands, p. 635 – 640.

Julien, K. A., Gough, D. O. & Toomre, J., 1995. [Inversion for background inhomogeneity
from phase distortion of two-dimensional wave fields]. InProc. GONG’94: Helio- and
Astero-seismology from Earth and Space, eds Ulrich, R. K., Rhodes Jr, E. J. & D¨appen, W.,
Astronomical Society of the Pacific Conference Series, vol. 76, San Francisco,76, 196 –
199.

46



Kippenhahn, R. & Weigert, A., 1990.Stellar structure and evolution, Springer-Verlag, Berlin.

Korzennik, S. G. & Ulrich, R. K., 1989. [Seismic analysis of the solar interior. I. Can opacity
changes improve the theoretical frequencies?].Astrophys. J., 339, 1144 – 1155.

Kosovichev, A. G., 1996. [Helioseismic constraints on the gradient of angular velocity at the
base of the solar convection zone].Astrophys. J., 469, L61 – L64.

Kosovichev, A. G. & Duvall, T. L., Jr, 1997. [Acoustic tomography of solar convective flows
and structures]. InSCORe’96: Solar Convection and Oscillations and their Relationship,
eds Pijpers, F. P., Christensen-Dalsgaard, J. & Rosenthal, C. S., Kluwer, Dordrecht, p. 241
– 260.

Patrón, J., Hill, F., Rhodes Jr, E. J., Korzennik, S. G. & Cacciani, A., 1995. [Velocity fields
within the solar convection zone: evidence from oscillation ring diagram analysis of Mount
Wilson dopplergrams].Astrophys. J., 455, 746 – 757.

Pijpers, F. P. & Thompson, M. J., 1992. [Faster formulations of the optimally localized averages
method for helioseismic inversion].Astron. Astrophys., 262, L33 – L36.

Pijpers, F. P. & Thompson, M. J., 1994. [The SOLA method for helioseismic inversion].Astron.
Astrophys., 281, 231 – 240. Rabello-Soares, M. C., Basu, S. & Christensen-Dalsgaard, J.,
1999. [On the choice of parameters in solar structure inversion].Mon. Not. R. astr. Soc., in
press.

Richard, O., Dziembowski, W. A., Sienkiewicz, R. & Goode, P. R., 1998. [On the accuracy of
helioseismic determination of solar helium abundance].Astron. Astrophys., 338, 756 – 760.

Schou, J. & Bogart, R. S., 1998. [Flows and horizontal displacement from ring diagrams].
Astrophys. J., 504, L131 – L134.

Schou, J., Christensen-Dalsgaard, J. & Thompson, M. J., 1994. [On comparing helioseismic
two-dimensional inversion methods].Astrophys. J., 433, 389 – 416.

Schou, J.et al., 1998. [Helioseismic studies of differential rotation in the solar envelope by the
Solar Oscillations Investigation using the Michelson Doppler Imager].Astrophys. J., 505,
390 – 417.

Thompson, M. J., 1995. [Linear inversions for the Sun’s internal rotation.]Inverse Problems,
11, 709 – 730.

Thompson, M. J., Toomre, J.et al., 1996. [Differential Rotation and Dynamics of the Solar
Interior.] Science, 272, 1300 – 1305.

Tripathy, S. C., Basu, S. & Christensen-Dalsgaard, J., 1998. [Helioseismic determination of
opacity corrections]. InPoster Volume; Proc. IAU Symposium No 181: Sounding Solar and
Stellar Interiors, Nice, Sept. 30 – Oct. 3, 1996, eds Provost, J. & Schmider, F.X., Universit´e
de Nice, p. 129 – 130.

Unno, W., Osaki, Y., Ando, H., Saio, H. & Shibahashi, H., 1989.Nonradial Oscillations of
Stars, 2nd Edition(University of Tokyo Press).

Vorontsov, S. V., Baturin, V. A. & Pamyatnykh, A. A., 1991. [Seismological measurement of
solar helium abundance].Nature, 349, 49 – 51.

47



Peter Weidelt (TU Braunschweig):
The inverse problem of magnetotellurics: A training site for the mathematical
geophysicist.

EXTENDED ABSTRACT

1. Introduction

Magnetotellurics is a geophysical method, which tries to infer the electrical conductivity dis-
tribution inside the Earth from determinations of the frequency dependence of the electromag-
netic surface impedance, which is the ratio of orthogonal horizontal electric and magnetic field
components. These fields are either excited by controlled sources or induced by time-varying
magnetic fields of ionospheric or magnetospheric origin. Generally, the frequencies are so low
that displacement currents can safely be neglected and diffusion dominates over wave propaga-
tion.

The electromagnetic skin effect is the physical basis behind the fact that the frequency de-
pendence of the surface impedance contains differential information about the variability of
electical conductivity with depth: Low frequency electromagnetic fields penetrate deeper into
the Earth than high frequency fields. Therefore the highest frequencies reveal the conductivity
at the shallowest levels, lower frequencies containin addition information about deeper levels,
although with poorer resolution.

Here we shall consider magnetotellurics only for a layered Earth andquasi-uniforminducing
fields such that the electrical conductivityσ and the electric and magnetic field depend on depth
z only, 0 ≤ z < ∞. We assume a horizontal inducing magnetic field excited inz ≤ 0 and po-
larized iny-direction with harmonic time variationexp(iωt), whereω is the angular frequency.
Then the density of induced currents isJx(z, ω) = σ(z)Ex(z, ω). Electric fieldEx and magnetic
field Hy are connected via Ørsted’s and Faraday’s law by

H ′y(z, ω) = −σ(z)Ex(z, ω), E′x(z, ω) = −iωµ0Hy(z, ω), (1)

leading after elimination ofHy to the ordinary differential equation

E′′x(z, ω) = iωµ0σ(z)Ex(z, ω), 0 ≤ z <∞ (2)

where the primes denote differentiation with respect toz andµ0 = 4π · 10−7 Vs/(Am) is the
induction constant. Eq. (2) is a one-dimensional diffusion equation in the frequency domain.
Of interest are fields diffusing into the conductor such thatE′x(z, ω)→ 0 for z →∞. The data
is the surface impedance

Z(ω) :=
Ex(0, ω)

Hy(0, ω
= −iωµ0Ex(0, ω)

E′x(0, ω)
. (3)

In the sequel it is more convenient to use instead ofZ(ω) the derived transfer function

c(ω) =
Z(ω)

iωµ0

= −Ex(0, ω)

E′x(0, ω)
(4)
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which has the dimension of a length. (Later it will be seen that the depth<(c) is the ‘center
of gravity’ of the induced currents). The inverse problem of 1D magnetotellurics consists in
making inferences about the coefficientσ(z) in the differential equation (2) from the boundary
valuesc(ω), which in practice are available only as an incomplete, inaccurate and inconsistent
data set. Because of its simple structure, this inverse problem is one of the best studied inverse
problems in geophysics with a great variety of approaches.

2. The datac(ω)

Without proof we will enumerate some important properties of the theoretical datac(ω).

a) Analytical properties
c(ω) is a holomorhic function in the wholeω-plane, except on the positive imaginary
axis, where it has either an infinite number of poles or a branch point and a finite number
(which can be nil) of poles according whether the integral∫ zm

0

√
σ(z) dz

is finite or not. Herezm is the maximum thickness of the conductor, which is either infinity
or the depth to a possibly existing perfect conductor (be be excluded in the integral).

b) Spectral representation
c(ω) admits the spectral representation

c(ω) = a0 +

∫ ∞
0

a(λ) dλ

λ + iω
, a0 ≥ 0, a(λ) ≥ 0 (5)

wherea(λ) is a generalized function to include both the continuous and discrete part
of the spectrum (alternatively Steltjes integral notation would be appropriate). - As an
example, the uniform halfspace with conductivityσ yields

c(ω) =
1√

iωµ0σ
=

1

π

∫ ∞
0

dλ√
µ0σλ(λ + iω)

.

c) Existence
For the (pairwise different)M frequenciesωj are given the datacj := c(ωj), j =
1, . . . , M . Then form thek-dimensional Hermitian determinants

Dk := det

{
i(cm − c∗n)

ωm + ωn

}
, Dk := det

{
i(ωcm + ωnc

∗
n)

ωm + ωn

}
, m, n = 1, . . . , k.

For the existence of a 1D conductivity model it is necessary and sufficient that the2M
determinants

Dk, Dk, k = 1, . . . , M

are positive. - As an example takeM = 2 and letcj = gj − ihj. Then the four conditions
to be satisfied are

k = 1 : h1/ω1 > 0, g1 > 0

k = 2 :

∣∣∣∣ c2 − c1

ω2 − ω1

∣∣∣∣2 <
h1h2

ω1ω2

,

∣∣∣∣ω2c2 − ω1c1

ω2 − ω1

∣∣∣∣2 < g1g2

49



The two conditions fork = 1 grant the existence of a model forc1, the additional condi-
tions fork = 2 ensure that a model exists which fits bothc1 andc2. The conditions for
k > 1 define in the complexc-plane lens-shaped compatibility regions of decreasing size
bounded by circular arcs.

d) <c as ‘center of gravity’ of induced currents
g(ω) := <c(ω) admits a simple physical interpretation as

g(ω) =

∫ ∞
0

z<[Jx(z, ω)] dz/

∫ ∞
0

<[Jx(z, ω)] dz,

which in analogy to mechanics can be interpreted ‘center of gravity’ of the induced in-
phase current system. From (5) follows that

g(ω) =

∫ ∞
0

λa(λ) dλ

λ2 + ω2

decreases monotonously with frequency, in accordance with the fact that the distributiion
of fields with depth is controlled by the skin effect.

e) Earth flattening transformation
For a radially symmetric conductivity distributionσ(r) and an inducing spherical har-
monic of degreen the basic equation is instead of (1)

w′′n(r, ω) =

{
n(n + 1)

r2
+ iωµ0σ(r)

}
wn(r, ω). (6)

Let a be the radius of the Earth and let% := r/a andf(%) := [(n+1)%−n +n%n+1]/(2n+
1). Then (6) is transformed via

z̃ := a
%−n − %n+1

(2n + 1)f(%)
, w̃(z̃, ω) :=

wn(r, ω)

f(%)
, σ̃(z̃) := σ(r) · f 4(%)

into a differential equation of type (1), i.e.

w̃′′(z̃, ω) = iωµ0σ̃(z̃)w̃(z̃, ω),

without changing the data,

c(ω) = +
wn(a, ω)

w′n(a, ω)
= − w̃(0, ω)

w̃′(0, ω)
.

Therefore spherical data can first be interpreted by a flat Earth and a uniform field and the
resulting profilẽσ(z̃) is then transformed into the true profile by

σ(r) = f−4(%) · σ̃
(

a
%−n − %n+1

(2n + 1)f(%)

)
.

Such a transformation is possible only ifc(0) ≤ a/(n + 1).
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f) Dispersion relations
Sincec(ω) is analytical in the lower frequency plane, real and imaginary part ofc are
related by Hilbert transforms (dispersion relations). In addition, the spectral presentation
(5) shows thatc(ω) has no zeroes there. Hencelog c(ω) is analytical in=ω < 0 and
dispersion relations exist also betweenlog |c(ω)| and the phase ofc(ω).

Suitable references for this section are Nussenzweig (1972), Parker (1980, 1994), Weidelt
(1972, 1986), and Yee & Paulson (1988a,b).

3. Inversion methods

Tikhonov (1965) has shown that the 1D magnetotelluric inverse problem has in principle a
unique solution. Because of the analyticity ofc(ω), in theory a small frequency interval con-
tains already all information to recover the whole conductivity profile. In practice, however,
incomplete, inaccurate and inconsistent data yield in general very non-unique results.

The 1D magnetotelluric inverse problem has been approached from different directions (e.g.,
Whittall & Oldenburg, 1992). We will not consider unspecific iterative methods like the Mar-
quardt-Levenberg algorithm, genetic algorithms or stochastic approaches and will mention only
a few methods, which are more or less specific for the magnetotelluric problem.

a) Gel’fand-Levitan/Marchenko method
The magnetotelluric inverse problem is an inverse scattering problem, to which we can
adapt after suitable transformations and shortcuts the Gel’fand-Levitan/Marchenko for-
malism (Weidelt, 1972, Whittall & Oldenburg, 1986). The results are not very encour-
aging, because high quality data are required. The difficult step in the solution is the
analytical continuation of the data measured on the real frequency axis in directio to the
sources (poles and branch cut) on the positive-imaginary frequency axis. More stable
alternative methods are discussed by Whittall & Oldenburg (1986).

b) The D+-method of Parker (1980)
This popular method determines the best fitting 1D model to a set of imperfect real data
by first fitting to the data a spectral representation of type (5). ForM given frequencies
ωj, datacj and estimated standard deviationssj, j = 1, . . . , M he minimizes the quadratic
functional

Q(a0, a1, . . . , aN) :=
M∑

j=1

1

s2
j

∣∣∣∣∣a0 +
N∑

n=1

an

λn + iωj
− cj

∣∣∣∣∣
2

subject to the non-negativity constraints

an ≥ 0, n = 0, . . . , N.

The (fine) partitionλn is prescribed and oriented at the given frequency range. This
quadratic programming problem is is efficiently solved by the algorithm NNLS of Lawson
& Hanson (1974).

The resulting ‘cleaned data’

c̃j = a0 +
N∑

n=1

an

λn + iωj

, an ≥ 0, n = 0, . . . , N,
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give the best fitting 1D model. This model belongs to a degenerate conductivity profile
consisting of insulating layers and thin highly conducting layers with the conductanceτk

(= product of thickness and conductivity) atz = hk, k = 1, . . .K with K < N ,

σ(z) =
K∑

k=1

τkδ(z − hk).

A stable algorithm for the determination of(τk, hk) from (an, λn) is given by Parker &
Whaler (1981). This method is of appeal because it determines a unique lower bound on
the misfit, such that all other competing models will show a fit, which is equal or worse.

c) A simple approximate inversion
Rather than applying sophisticated algorithms, a first guess on the underlying conductiv-
ity structure can be obtained without ease (Schmucker, 1970) by using each frequency
separately. Let againc(ω) = g(ω) − ih(ω). Then an estimate forσ(z) at the ‘center of
gravity’ of induced currents,z = g(ω), is

σ̂ =
1

2ωµ0h
2(ω)

, g(ω) ≥ h(ω),

σ̂ =
2g2(ω)

ωµ0|c(ω)|4
, g(ω) ≤ h(ω).

These guesses are obtained by interpreting the complex datumc by simple two-parameter
models, consisting in the first case of an insulating layer over a halfspace and in the sec-
ond case of a thin sheet over a halfspace. Determined is then the conductivityσ̂ of the
halfspace. Under the given conditions, the second parameter (thickness of the insulating
layer or conductance of the surface sheet) is non-negative and negative else. The approx-
imations are excellent if the conductivity increases with depth.
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Peter Weidelt (TU Braunschweig):
Construction of bounds on spatial averages of electrical conductivity.

EXTENDED ABSTRACT

1. Introduction

All methods of geophysical inversion, which try to interpretereal data, are methods of opti-
mization. Whereas traditional approaches search for the model, which minimizes the misfit
between measured and modelled data, more recent approaches pre-assign the misfit and place
emphasis on the construction of the model, that extremizes a model property of geophysical
interest. Prominent representatives of the latter strategy are the minimum structure models (e.g.
Constable et al. 1987, Smith & Booker 1988) or the models leading to maximum depth rules
(e.g. Smith 1959, 1960, Parker 1974, 1975). The actual structure of the a extremal models is
in general of subordinate interest. What is learnt from the inversion is the extremal value of the
model property under investigation, because this number is a bound, which all other competing
- and possibly more realistic - models have to satisfy.

This contribution considers the simplest problem of magnetotellurics, where the electrical con-
ductivity σ depends on depthz only. For any finite set of even accurate data, point estimates of
the electrical conductivity become meaningless, since at a specified depth level one may intro-
duce either a thin highly conducting sheet or a thin insulating layer without changing the fit to
the data. Therefore at the specified depth the conductivity may range between zero and infin-
ity. Of geophysical interest, however, are estimates of the conductivity in a given depthrange
rather than point estimates. If the assigned depth range is sufficiently extended and shallow, the
observed penetration of the longer periods may not allow to fill it completely with the highest
conducting material, or - on the other hand - the observed damping may be inconsistent with
an extended poorly conducting layer. Therefore the average conductivity in the depth range
may be constrained by the data. The possibility of putting constraints on linear averages of the
conductivity is in accord with the fact that the inverse problem for the conductance (= integrated
conductivity) is well-posed (Berdichevskiy & Dmitriev 1992, p. 198-201).

For a given set ofM frequency dependent surface impedances we construct those extremal
models, which maximize or minimize the arithmetic average ofσ in the given depth range
z1 ≤ z ≤ z2. Moreover,σ may be subjected to thea priori constraintsσ− ≤ σ(z) ≤ σ+ with
σ− andσ+ prescribed.

Problems of this kind have been treated previously by Oldenburg (1983) and Dosso & Olden-
burg (1989). After discretizing the conductivity structure, these authors reduce the problem of
determining the bounds to a problem in non-linear programming. Starting with an initial guess
and linearizing the functional, which maps the conductivity on the data, the problem is solved
iteratively by a sequence of linear programming problems.

The special problem of extremizing the conductivity integrated between the surfacez1 = 0 and
the levelz2 for the unconstrained caseσ− = 0, σ+ =∞ has been considered by Weidelt (1985)
by exploring in a fully non-linear treatment the exact structure of the extremal models for a
small number of data. The present contribution extends these results by assuming a depth range
z1 ≤ z ≤ z2 and finitea priori boundsσ− ≥ 0 andσ+ ≤ ∞. A simple structure is obtained
only in the one-frequency case, whereσ(z) is found to flip between the extremesσ− andσ+.
ForM > 1, in addition transitional continuous conductivity variations may occur.
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The methods of Oldenburg (1983) and Dosso & Oldenburg (1989) on one side and those the
present contribution on the other side are complementary: The former approximate approach
is robust, computationally efficient, flexible, and suitable for a big data set, the latter exact ap-
proach is computationally awkward in the case of many frequencies, but sheds a clearer light
on the nature of the underlying problem.

2. Basic equations and necessary extremal conditions

Attention is confined to a one-dimensional conductivity profileσ(z), z positive downwards,
and a uniform inducing magnetic field iny-direction. Assuming a time factoreiωt, ω > 0,
throughout, the field equations in the quasi-static limit are

E′x(z, ω) = −iωµ0Hy(z, ω), H ′y(z, ω) = −σ(z)Ex(z, ω),

where the prime denotes differentiation with respect toz. They lead to the differential equation

f ′′(z, ω) = iωµ0σ(z)f(z, ω) (1)

with
f(z, ω) := −Ex(z, ω)/E′x(0

−, ω),

where the discontinuity ofE′x due to a possible thin conducting surface sheet has been taken
into account. The boundary conditions imposed onf(z) are

f ′(0−) = −1, f ′(∞) = 0. (2)

In the sequel we use Schmucker’s response function (Schmucker 1970, p.69)

c(ω) :=
Ex(0, ω)

iωµ0Hy(0−, ω)
= f(0, ω),

with c = g − ih andg, h > 0.

A set ofM frequenciesωj , j ∈ [1, M ] is considered, with the measured responsescj := c(ωj)
being either exact or corrupted by noise with the standard deviationssj. In addition, letcj [σ] =
f(0, ωj) be the data functional, i.e. the result of solving (1) with the boundary conditions (2) for
the conductivity profileσ(z) and the frequencyωj. Thenσ(z) is an acceptable model if in the
case of exact data

cj = cj[σ], j = 1, ..., M, (3)

or if in the case of noisy data the softχ2-bound

M∑
j=1

|cj − cj[σ]|2/s2
j ≤ B (4)

is satisfied, whereB := χ2
2M ;α is the threshold, which for2M degrees of freedom is exceeded

with probabilityα.

Apart from degenerate data, e.g.

cj =
a

b + iωj
, a > 0, b ≥ 0,
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for which in the case of exact data andM > 1 only a single conductivity model exists, there
will be a whole family of acceptable conductivity profiles. After pre-assigning a depth range
z1 ≤ z ≤ z2 and an a-priori conductivity range

σ− ≤ σ(z) ≤ σ+, 0 ≤ z <∞, (5)

we will try to find that model, which minimizes or maximizes

σ(z1, z2) :=
1

∆

∫ z2

z1

σ(z) dz, ∆ := z2 − z1,

subject to the constraints (3) [or (4)] and (5). The extremal averages areσmin(z1, z2) and
σmax(z1, z2). Hence the objective function to be minimized is

Q[σ] =

∫ ∞
0

w(z)σ(z) dz

with the weight function

w(z) =

 0, z 6∈ (z1, z2)
+1/∆, z ∈ (z1, z2), Q→ +σmin(z1, z2)
−1/∆, z ∈ (z1, z2), Q→ −σmax(z1, z2)

(6)

The constraints (3) to (5) are taken into account by Lagrangian multipliers, see e.g. Avriel
(1976) for a concise treatment. In the case of exact data (3) the Lagrange function is

L[σ] = Q[σ] +<
M∑

j=1

λj{cj [σ]− cj}+

∫ ∞
0

[µ+(z){σ(z)− σ+}+ µ−(z){σ− − σ(z)}] dz, (7)

where< denotes the real part. In the case of noisy data (4) the second RHS term is replaced by

Λ{
M∑

j=1

|cj[σ]− cj|2/s2
j −B}. (8)

Real and imaginary part of the complex ordinary Lagrangian multipliersλj, enforcing equal-
ity constraints, are unrestricted in sign, whereas the generalized Lagrangian multipliersΛ and
µ±(z), accounting for inequality constraints, are sign-restricted and non-negative in the present
definitions. In particular these multipliers are zero, whenever the constraints are inactive and
non-negative if the constraints are binding. Therefore the expressions (8) and

µ±(z)[σ(z)− σ±], 0 ≤ z <∞

always vanish. The Lagrangian multipliersλj andΛ are closely related to the sensitivity of the
minimum valueQ0 of Q[σ] to changes in the data. Letcj =: gj − ihj. Then

<λj = −∂Q0

∂gj

, =λj = −∂Q0

∂hj

, Λ = −∂Q0

∂B
, (9)

where= denotes the imaginary part. The last equation expresses the obvious fact that an in-
crease of the activeχ2-bound leads to a further decrease ofQ0. The functionsµ±(z) describe
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the sensitivity ofQ0 to local changes of the conductivity boundsσ± at positionz: If in a small
rangeδz aroundz the boundsσ± are increased toσ±+σ0, then withδτ±(z) := σ0δz one obtains
in the limit δz → 0

µ±(z) = ∓ ∂Q0

∂τ±(z)
, (10)

i.e, if σ(z) = σ−, implyingµ−(z) ≥ 0, an increase ofσ− will not lead to a deeper minimumQ0,
whereas forσ(z) > σ−, implying µ−(z) = 0, the change of an inactive bound does not affect
Q0. A similar interpretation holds forµ+(z) andσ+. The sensitivity ofQ0 to a global change
of σ± is given by ∫ ∞

0

µ±(z) dz = ∓∂Q0

∂σ±
.

As a necessary extremal condition the first variation of the LagrangianL[σ] with respect to
σ(z) has to vanish. Whereas the first and third RHS term of (7) are linear inσ and pose no
problems, the first variation of the non-linear data functionalcj [σ] has to be expressed in terms
of its Fréchet derivativeFj(z) defined by

δcj[σ] =

∫ ∞
0

Fj(z)δσ(z) dz (11)

with
Fj(z) = −iωjµ0f

2
j (z), (12)

wherefj(z) := f(z, ωj) is the solution of (1) with the boundary conditions (2) [e.g. Parker
1977]. HenceδL[σ] = 0 implies for the exact data case (3)

w(z) + <
M∑

j=1

λjFj(z) + µ+(z)− µ−(z) = 0. (13)

In the case of noisy data,λj in (13) is replaced by

λ̃j := 2Λ(cj[σ]− cj)
∗/s2

j , (14)

where∗ marks the complex conjugate.

In the sequel the necessary condition (13) is used to define the control function

D(z) := w(z) + <
M∑

j=1

λjFj(z) = µ−(z)− µ+(z), (15)

which states that

D(z) ≥ 0, whereσ(z) = σ−

D(z) = 0, whereσ− < σ(z) < σ+ (16)

D(z) ≤ 0, whereσ(z) = σ+.

It is stressed that - in exceptional situations - only the weak conditionD(z) = 0 rather than strict
positivity or negativity can be achieved in some depth interval, where a conductivity constraint
is active.
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The process of model construction therefore consists in selecting a model within the class of
models satisfying the data in the sense of (3) or (4), for which there exists a linear combination
D(z) of its Fréchet derivatives, which according to (16) is non-negative (non-positive), where
σ(z) attains its lower (upper) bound.

The problems with this prescription are at least three-fold:

a) It does not lead to an immediate model construction, since in generalσ(z) has to be
determined iteratively on the basis of the information onσ(z) obtained from the sign
changes ofD(z).

b) There might be more models satisfying this necessary condition. In order to single out
the extremal model one has to be sure to know all these admissible models.

c) The structure of possible extremal models is not known at the outset: Does it consist only
of discrete layers or do in addition continuous conductivity variations occur? How many
layers are required?

Despite these complications, satisfactory model constructions are possible in many cases, since
it turns out that in most instances the conductivity only flips between the extremesσ− andσ+.
This particularly holds for the modest one-frequency case. Moreover, it is often easy to find the
pertinent extremal model for smallz1 andz2. By gradually deforming this solution and moni-
toring the change ofD(z), it is possible to decide for which parameter combination (z1, z2) the
type of the model has to change, e.g. where a conducting layer at the surface or atz1 emerges or
disappears, where two conducting layers coalesce, or where a continuous conductivity variation
is required in some section of the model. These changes, of course, reflect the full non-linearity,
which we take into account.

Rather than presenting detailed results, we shall show only the kind of reasoning which can be
applied. We shall prove that one-frequency extremal models have the property thatσ(z) only
attains the valuesσ− andσ+ (provided thatσ− andσ+ are suitably chosen such that feasible
models exist at all). This is proved by contradiction on assuming that there exists a depth inter-
val (a, b) completely inside or outside(z1, z2) such thatσ− < σ(z) < σ+ for z ∈ (a, b). Then,
according to (16),D(z) and all its derivatives vanish identically forz ∈ (a, b). Dropping in the
caseM = 1 consistently the subscriptj identifying the frequency and using the fact thatw(z)
is piecewise constant, the first and second derivative ofD(z) yield with reference to (15)

<[λF ′(z)] = 0, <[λF ′′(z)] = 0.

These two homogeneous linear equations forλ have to satisfy the compatibility condition

=[F ′′(z)/F ′(z)] = 0.

However, from (12) and (1) follows that

=[F ′′(z)/F ′(z)] = −=[iωµ0σ(z)c(z) + 1/c(z)] = −[ωµ0σ(z)g(z) + h(z)/|c(z)|2] < 0,

sinceg(z) andh(z) are positive as real part and negative imaginary part of the response function
c at levelz,

c(z) = −f(z)/f ′(z) = g(z)− ih(z).
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Hence the compatibility condition cannot be satisfied and no continuous conductivity section
exists.
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Université Paris-Nord
Avenue J.-B. Cl´ement
F-93430 Villetaneuse, France
Email: guillot@math.univ-paris13.fr

Mats Gustafsson
Department of Electromagnetic Theory
Lund University
P.O. BOX 118
S-221 00 Lund, Sweden
Email: mats@teorel.lth.se

Lektor Martin Bøgsted Hansen
Department of Mathematics
Aalborg University
Fredrik Bajers Vej 7E
DK-9220 Aalborg Ø, Denmark
Email: mbh@math.auc.dk

62



Irene Gonzalez Hernandez
Queen Mary and Westfield College
Mile End Road
London E1 4NS
England
Email: I.Gonzalez@qmw.ac.uk

Michael Hitrik
Centre for Mathematical Sciences
Lund University
P.O. BOX 118
S-221 00 Lund, Sweden
Email: mike@maths.lth.se
WWW: http://www.maths.lth.se/matematiklth/personal/mike/index.html

Lektor Bo Holm Jacobsen
Department of Earth Sciences
University of Aarhus
Finlandsgade 8
DK-8200 Aarhus N, Denmark
Email: geofbhj@aau.dk

Professor Arne Jensen
Department of Mathematics
Aalborg University
Fredrik Bajers Vej 7E
DK-9220 Aalborg Ø, Denmark
Email: matarne@math.auc.dk

Professor Jens Ledet Jensen
Department of Mathematical Sciences
Theoretical Statistics
University of Aarhus
DK-8000 Aarhus C, Denmark
Email: jlj@imf.au.dk

Jesper Munk Jensen
Department of Earth Sciences
University of Aarhus
Fnlandsgade 8
DK-8200 Aarhus N, Denmark
Email: munk@geo.aau.dk

63



Jon Johnsen
Department of Mathematics
Aalborg University
Fredrik Bajers Vej 7E
DK-9220 Aalborg Ø, Denmark
Email: jjohnsen@math.auc.dk

Wolf Jung
Institut für Reine und Angewandte Mathematik
RWTH Aachen
Templergraben 55
D-52062 Aachen, Germany
Email: jung@iram.rwth-aachen.de
WWW: http://www.iram.rwth-aachen.de/˜jung/

Kim Knudsen
Department of Mathematics
Aalborg University
Fredrik Bajers Vej 7E
DK-9220 Aalborg Ø, Denmark
Email: kim@math.auc.dk

Michael Melgaard
Department of Mathematics
Aalborg University
Fredrik Bajers Vej 7E
DK-9220 Aalborg Ø, Denmark
Email: mm@math.auc.dk

Sari Mäenpää
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