
Concentrated Advanced Course (January 7-8, 1999)
and Workshop (January 11-13, 1999) on

Product Integrals and
Pathwise Integration

Foreword

In the week January 7-13, 1999 a course and a workshop on Product Integrals and Path-
wise Integration was held by MaPhySto at the Department of Mathematical Sciences,
University of Aarhus.

The course and workshop was organized by Ole E. Barndor�-Nielsen (Aarhus, Denmark),
Svend Erik Graversen (Aarhus, Denmark) and Thomas Mikosch (Groningen, The Nether-
lands).

In this leaet we have gathered the program, the list of participants and the workshop
abstracts. The notes for the course appeared as the �rst volume of the MaPhySto Lecture
Notes series and may be fetched from our web-site www.maphysto.dk; hardcopies may
also be ordered.
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1 Course Program

Thursday January 7

9.30-10.30 R. Dudley: How should integrals of Stieltjes type be de�ned? .

Coffee/tea

10.50-11.50 R. Norvaisa: Stochastic integrals .

12.00-12.30 R. Dudley: Lyons' work on obstacles to pathwise Itô integration.

12.30-13.30 Lunch

13.30-14.15 R. Dudley: Di�erentiability with respect to p-variation norms (I).

14.20-15.05 R. Dudley: Di�erentiability with respect to p-variation norms (II).

Coffee/tea

15.20-16.00 R. Norvaisa: Properties of p-variation (I).

16.15-17.00 R. Norvaisa: Properties of p-variation (II).

Friday January 8

9.30-10.30 R. Norvaisa: Stochastic processes and p-variation.

Coffee/tea

10.45-11.45 R. Dudley: Empirical processes and p-variation.

12.00-13.00 Lunch

13.00-14.00 R. Norvaisa: Integration.

14.10-14.40 R. Dudley: Ordinary di�erential equations and product integrals.

Coffee/tea

15.00-16.00 R. Norvaisa: Product integrals.

16.10-16.40 R. Dudley: Other aspects of product integrals.
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2 Workshop Program

Monday January 11

09.30-10.00 Registration and coffee/tea

Chairman: Thomas Mikosch

10.00-10.10
Ole E. Barndor�-Nielsen and Thomas Mikosch:

Introduction.

10.10-11.00
Richard Gill: Product-integration and its applications in survival
analysis.

11.10-12.00
Norbert Hofmann: Optimal Pathwise Approximation of Stochas-
tic Di�erential Equations.

12.00-14.00 Lunch

Chairman: Svend Erik Graversen

14.00-14.30
Esko Valkeila: Some maximal inequalities for fractional Brownian
motions.

14.35-15.25 Richard Dudley: On Terry Lyons's work.

Coffee/tea

16.00-16.50
Rimas Norvai�sa: p-variation and integration of sample functions
of stochastic processes.

17.00-17.50
S�ren Asmussen: Martingales for reected Markov additive pro-
cesses via stochastic integration.

Tuesday January 12

Chairman: J�rgen Ho�mann-J�rgensen

09.00-09.40
Philippe Carmona: Stochastic integration with respect to frac-
tional Brownian motion.

09.45-10.35
Rama Cont: Econometrics without probability: measuring the
pathwise regularity of price trajectories.

Coffee/tea

11.00-11.50
Francesco Russo: Calculus with respect to a �nite quadratic
variation process.

12.00-14.00 Lunch
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Chairman: S�ren Asmussen

14.00-14.50
Pierre Vallois: Stochastic calculus related to general Gaussian
processes and normal martingales.

14.55-15.45
Imme van den Berg: Stochastic di�erence equations, discrete
Fokker-Planck equation and �nite path-integral solutions.

Coffee/tea

16.10-17.00
Rudolf Gr�ubel: Di�erentiability properties of some classical
stochastic models.

17.05-17.45
Donna M. Salopek: When is the stop-loss start gain strategy
self-�nancing?.

17.50-18.30 Discussion

Wednesday January 13

Chairman: Ole E. Barndor�-Nielsen

09.00-09.40
Bo Markussen: Graphical representation of interacting particle
systems.

09.45-10.35 Jan Rosi�nski: Independence of multiple stochastic integrals.

Coffee/tea

11.00-11.50 Zbigniew J. Jurek: In�nite divisibility revisited.

12.00-14.00 Lunch
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3 Combined list of participants to the Course and to

the Workshop

S�ren Asmussen
Department of Mathematical Statistics
University of Lund
Box 118
S-221 00 Lund, Sweden
Email: asmus@maths.lth.se

Ole E. Barndor�-Nielsen
Department of Mathematical Sciences
Theoretical Statistics
University of Aarhus
DK-8000 Aarhus C, Denmark
Email: oebn@imf.au.dk

Jochen Beisser
Chair of Banking
University of Mainz
Jakob Welder-Weg 9
D-55099 Mainz, Germany
Email: beisser@forex.bwl.uni-mainz.de

Fred Espen Benth
Department of Mathematical Sciences
Theoretical Statistics
University of Aarhus
DK-8000 Aarhus C, Denmark
Email: fredb@imf.au.dk

Preben Bl�sild
Department of Mathematical Sciences
Theoretical Statistics
University of Aarhus
DK-8000 Aarhus C, Denmark
Email: preben@imf.au.dk

Philippe Carmona
Laboratoire de Statistique et Probabilit�es
Universit�e Paul Sabatier
118 Route de Narbonne
31062 Toulouse Cedex, France
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Email: carmona@cict.fr

Rama Cont
Centre de Mathematiques Appliquees
CNRS-Ecole Polytechnique
CMAP - Ecole Polytechnique
F-91128 Palaiseau, France
Email: Rama.Cont@polytechnique.fr

Richard M. Dudley
MIT - Department of Mathematics
Room 2-245
Cambridge, MA 02139
U.S.A.
Email: rmd@math.mit.edu

S�ren Fournais
Department of Mathematical Sciences
University of Aarhus
DK-8000 Aarhus C
Denmark
Email: fournais@imf.au.dk

Dario Gasbarra
Rolf Nevanlinna Institute
University of Helsinki PL 4
00014 Helsinki
Finland
Email: dag@rolf.helsinki.�

Richard D. Gill
University of Utrecht
Mathematical Institute
Budapestlaan 6
NL-3584 CD Utrecht, The Netherlands
Email: Richard.Gill@math.ruu.nl

Svend Erik Graversen
Department of Mathematical Sciences
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DK-8000 Aarhus, Denmark
Email: matseg@imf.au.dk
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Rudolf Gr�ubel
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FB Matematik
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S�ren Kold Hansen
Department of Mathematical Sciences
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DK-8000 Aarhus C
Denmark
Email: kold@imf.au.dk

Norbert Hofman
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Universit�at Erlangen-N�urnberg
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Department of Mathematical Sciences
Theoretical Statistics
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DK-8000 Aarhus C, Denmark
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Dept. of Mathematics
Chalmers University of Technology
G�oteborg University
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4 Abstracts

On the following pages you will �nd the (extended) abstracts submitted to the organizers.
The contributions of R. Dudley and R. Norvai�sa can be seen as addendums to their lecture
notes An Introduction to p-variation and Young Integrals, MaPhySto Lecture Notes No. 1,
Aarhus, January 1999.
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MARTINGALES FOR REFLECTED MARKOV

ADDITIVE PROCESSES VIA STOCHASTIC

INTEGRATION

S�REN ASMUSSEN

Let Xt be an additive process on a �nite Markov process Jt and
consider Zt = Xt+Yt where Yt is an adapted process of �nite variation,
say the local time at one or two boundaries. We construct a family
of vector{valued martingales for (Jt; Zt) as certain stochatic integrals
related to the exponential Wald martingales, thereby generalizing a
construction of Kella & Whitt (1992) for L�evy processes.
The applicability of the martingales is demonstrated via a number

of examples, including uid models, a storage model and Markov{
modulated Brownian motion with two reecting boundaries.

Department of Mathematical Statistics, University of Lund, Box

118, S-221 00 Lund, Sweden

E-mail address : asmus@maths.lth.se

This is based on joint work with O�er Kella.
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STOCHASTIC INTEGRATION WITH RESPECT TO
FRACTIONAL BROWNIAN MOTION

PHILIPPE CARMONA AND LAURE COUTIN

Abstract. For a general class of Gaussian processes X, wich con-
tains type II fractional Brownian motion of index H 2 (0; 1) and
fractional Brownian motion of index H 2 (1=2; 1), we de�ne a
stochastic integral Z

a(s)dX(s) = lim

Z
a(s)dXn(s)

which is the limit of classical semi martingale integrals.

Extended Abstract

Fractional Brownian motion was originally de�ned and studied by Kol-
mogorov within a Hilbert space framework. Fractional Brownian
motion of Hurst index H 2 (0; 1) is a centered Gaussian process WH

with covariance

E
�
WH

t W
H
s

�
=

1

2
(t2H + s2H � jt� sj2H) (s; t � 0)

(for H = 1
2 we obtain ordinary Brownian motion).

Fractional Brownian motion has stationary increments

E
�
(WH(t)�WH(s))2

�
= jt� sj2H (s; t � 0);

is H-self similar

(
1

cH
WH(ct) ; t � 0 )

d
=(WH(t) ; t � 0 ) ;

and, for every � 2 (0;H), its sample paths are almost surely H�older
continuous with exponent �.
However, in general (i.e. H 6= 1

2) fractional Brownian motion is not
a semi-martingale (see, e;g;, Decreusefond and Ustunel[1], Rogers ,
Salopek ). Therefore, integration with respect to fractional Brownian
motion cannot be de�ned in the standard way (the semimartingale
approach).

Date: January 21, 1999.
1991 Mathematics Subject Classi�cation. Primary 60G15, 60H07, 60H05 ; Sec-

ondary 60J65, 60F25 .
Key words and phrases. Gaussian processes, Stochastic Integrals, Malliavin Cal-

culus, Numerical Approximation.
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2 P. CARMONA AND L. COUTIN

Existing de�nitions of the integral. We are aware of at least three
ways of de�ning the integral with respect to fractional Brownian mo-
tion. The �rst method amounts to de�ne a pathwise integral by taking
adavantage of the H�older continuity of sample paths of WH. Given
a process a such that almost all sample paths s ! as(!) of a have
bounded p variation on [0; t], for 1

p
+H > 1, the integralZ t

0

a(s)dWH(s)

almost surely exists in the Riemann-Stieltjes sense (see Young ). Let
us recall that the p-variation of a function f over an interval [0; t] is
the least upper bound of sums

P
i jf(xi)� f(xi�1)j

p over all partitions
0 = x0 < x1 < : : : < xn = T which may be �nite or in�nite.
The second method is to de�ne the integral for deterministic processes a
by an L2 isometry (see Norros et al. ). More precisely, if H > 1

2
, thenR

a(s)dWH(s) is de�ned for functions a in L2
�, the space of measurable

functions f such that hhf; fii� < +1, with the inner product de�ned
as

hhf; gii� = H(2H � 1)

Z 1

0

Z 1

0

f(s)g(t)js� tj2H�2 ds dt :

Eventually, the third method is the analysis of the Wiener space of
the fractional Brownian motion (see Decreusefond et Ustunel[1], and
Duncan et al).
On the one hand, the pathwise integral enables us to consider random
integrands. For instance, if H > 1

2
,

Z t

0

WH(s) dWH(s)

almost surely exists in the Riemann-Stieltjes sense.
On the other hand, with the deterministic integral

� We require less regularity from the sample paths of the integrand
a;

� we can compute the expectations

E

�Z 1

0

a(s) dWH(s)

�
= 0 ; E

"�Z 1

0

a(s) dWH(s)

�2
#
= hha; aii� :

The class of integrators considered. The aim of this paper is to
de�ne a stochastic integral that tries to get the best of both worlds, not
only for fractional Brownian motion, but for a general class of Gaussian
process. The starting point of our approach is the construction of
fractional Brownian motion given by Mandelbrot and van Ness [2]:

WH(t) = cH

Z t

�1

((t� u)
H�1=2
+ � (�u)

H�1=2
+ ) dBu ;
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where cH is a normalizing constant, x+ = sup(x; 0) denotes the positive
part, and (Bu; u 2 R) is a Brownian motion on the real line, that is
(Bu; u � 0) and (B�u; u � 0) are two independent standard Brownian
motions.
It is natural to consider the process

Vh(t) =

Z t

0

h(t� u) dBu

where h is locally square integrable. We shall consider more general
processes

WK(t) =

Z t

0

K(t; u) dBu

where the kernel K is measurable and such that

for all t > 0,

Z t

0

K(t; u)2 du < +1 :

It is to be noted that integrating on (0; t) instead of (�1; t) causes no
loss in generality. Indeed, see e.g. Theorem 5.2 of Norros et al , we
can construct in this way fractional Brownian motion. More precisely,
for H > 1

2
, WK is fractional Brownian motion of index H for the choice

K(t; s) = (H �
1

2
)cHs

1=2�H

Z t

s

uH�1=2(u� s)H�3=2 du :

Another process of interest in this class is type II fractional Brownian
motion of index H 2 (0; 1)

V H(t) = c0(H)

Z t

0

(t� u)H�
1

2 dBu (t � 0)

where c0(H) is a normalizing constant such that E
�
(V H(t))2

�
= t2H. It

is a H self similar centered Gaussian process whose almost all sample
paths are H�older continuous of index �, for � 2 (0;H) ; however it has
not stationary increments.

The main idea. Let us explain now the main idea of this paper.
When h is regular enough, then Vh is a semi martingale. Therefore we
can de�ne

R
a(s)dVh(s) as an ordinary semimartingale integral, when a

is a nice adapted process. In some cases we can restrict a to a space of
good integrands and �nd a sequence hn converging to h in such a way
that

R
a(s)dVhn(s) converges in L

2 to a random variable which we noteR
a(s)dVh(s). The space of good integrands will be de�ned by using

the analysis of the Wiener space of the driving Brownian motion B,
and not the Wiener space of the process Vh or WK .
Consequently, our �rst result is to characterize the Vh which are semi-
martingales. To this end we introduce the space Lp

loc(R+) of functions
f which locally of p-th power integrable:



4 P. CARMONA AND L. COUTIN

f 2 Lp
loc(R+) if 8t > 0;

Z t

0

jf(s)jp ds < +1:

From now on h is a locally square integrable function such that h0 exists
almost everywhere.

Theorem 1. The process Vh is a semimartingale if and only if h0 2
L2
loc(R+). When this is the case, its decomposition is

vh(t) = h(0)Bt +

Z t

0

Vh0(s) ds :

We shall now introduce the space of good integrands (the basic de�ni-
tons needed fromMalliavin Calculus can be found in Nualart's book ).
Let I = [0; t] ; given q � 2, we set for a 2 L1;2(I)

nq;t(a) = E

�Z t

0

ja(s)jq ds

�1=q
+ E

�Z t

0

Z t

0

du dv jDua(v)j
q

�1=q
:

The space GIq;t is the set of a 2 L1;2 such that nq;t(a) < +1.

Theorem 2. Let p 2]1; 2[ and let q be the conjugated exponent of p
(1
p
+ 1

q
= 1). Assume that h0 2 Lp

loc(R+) and a 2 GIq;t. Then there

exists a square integrable random variable denoted by
R t

0a(s) dVh(s) such
that for every sequence (hn; n 2 N) of functions verifying

1. for all n, hn and h0n are in L2(0; t),
2. hn(0) 7�!

n!1
h(0) and h0n 7�!

n!1
h0 in Lp(0; t),

we have the convergence in L2

Z t

0

a(s) dVhn(s) 7�!
n!1

Z t

0

a(s) dVh(s) ;

where on the left hand side we have classical semimartingales integrals.

Let us stress the fact that Malliavin Calculus is a powerful tool that
may totally disappear from the results, as show the following Itô's
formula

Theorem 3 (Itô's Formula). Assume that h 2 L2
loc(R+) and that for

a p 2 (0; 1), h0 2 Lp
loc(R+). Then, for every F 2 C2 such that F 0 and
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F 00 are uniformly Lipschitz continuous, we have

F (Vh(t)) = F (0) +

Z t

0

F 0(Vh(s)) dVh(s)

= F (0) +

Z t

0

�Z t

s

h0(u� s)F 0(Vh(u)) du

�
dBs

+

Z t

0

�Z t

s

h0(u� s)h(u� s)F 00(Vh(u)) du

�
ds

+ h(0)

Z t

0

F 0(Vh(s)) dBs

+
1

2
h(0)2

Z t

0

F 00(Vh(s)) ds :

This Theorem needs the following comments

� observe �rst that we can check this Itô's formula by computing
the expectation of both sides

E [F (Vh(t))] =
1

2

Z t

0

F 00(Vh(u))h(u)
2 du :

� Furthermore, we can illustrate this formula by applying it to type
II fractional Brownian motion of index H > 1

2:

(V H(t))2 =

Z t

0

�Z t

s

(u� s)H�3=2(H � 1=2)2V H(u) du

�
dBs + t2H :

The next logical step of our study consists of showing that the integral
we de�ned coincides, for good regular integrands, with the pathwise
integrals. To this end, it is enough to show that it is the L2-limit of
Riemann sums over a re�ning sequence of partitions of (0; t) (for then
we can �nd a subsequence converging almost surely).

Theorem 4. Assume that

� h 2 L2
loc(R+) and that for a p 2 (0; 1), h0 2 Lp

loc(R+).
� n ! �n is a sequence of re�ning partitions of [0; T ] whose mesh

goes to 0.
� a 2 GIq;t is such that nq;t(a�a�n)! 0 where a�n =

P
�n3ti

a(ti)1(ti;ti+1].

Then, we have the convergence in L2

X
�n3ti

a(ti)(Vh(ti+1)� Vh(ti))!

Z t

0

a(s) dVh(s) :

In order to cope with true fractional Brownian motion, we have to
establish the analog of Theorem 2 for processes WK. We assume that
for every t > 0
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Z
K(t; s)2 ds < +1 ;

and that K(t; s) may be written, for a measurable z,

K(t; s) =

Z t

s

z(u; s) du (0 � s < t) :

Eventually we let

kKkp;t = sup
0<u�t

�Z t

u

jz(s; u)jp ds

�1=p

:

Theorem 5. Assume that for a p 2 (0; 1), we have kKkp;t < +1 and

that a 2 GIq;t with
1
p
+ 1

q
= 1.

Then there exists a square integrable random variable denoted by
R t

0
a(s) dWK(s)

such that for every sequence (Kn; n 2 N) of functions verifying

1. for all n, Kn has the representation

Kn(t; s) =

Z t

s

zn(u; s) du (0 � s < t) ;

with zn(s; :) 2 L2(0; s) for every s
2. kK �Knkp;t ! 0.

we have the convergence in L2

Z
a(s) dWKn

(s) 7�!
n!1

Z t

0

a(s) dWK(s) ;

where on the left hand side we have classical semimartingale integrals.
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ECONOMETRICS WITHOUT PROBABILITY:

MEASURING THE PATHWISE REGULARITY OF

PRICE TRAJECTORIES.

RAMA CONT

This talk deals with a pathwise approach to the analysis of properties

of price variations. I use the notion of Holder regularity and p-variation

to study stock price trajectories from an empirical and theoretical point

of view and compare empirical results with theoretical results on Holder

regularity of familiar stochastic processes.

Keywords: Holder regularity, singularity spectrum, wavelet trans-

form, multifractal formalism, multiresolution analysis, Levy process.

Centre de Mathematiques Appliquees, CNRS-Ecole Polytechnique,

CMAP - Ecole Polytechnique, F-91128 Palaiseau, France

E-mail address : Rama.Cont@polytechnique.fr
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PICARD ITERATION AND p-VARIATION: THE WORK OF LYONS
(1994)

RICHARD M. DUDLEY

REVISED 13 JANUARY 1999 - MULTIDIMENSIONAL CASE

Abstract. Lyons (1994) showed that Picard iteration, a classical method in ordinary
di�erential equations soon to be recalled, extends to certain non-linear integral and
di�erential equations in terms of functions of bounded p-variation for p < 2. The
product integral is a special case of Lyons's construction.

1. Classical Picard iteration.

Suppose given a non-linear ordinary di�erential equation

dy=dt = f(y) (1)

where f is a C1 function from R into R with a uniformly bounded derivative, so that f
is globally Lipschitz. Suppose we have an initial value y(0) = a and we are looking for
a solution for t � 0. There is a corresponding integral equation

y(t) = a+
Z t

0
f(y(u))du; t � 0: (2)

Then y(�) is a solution of the integral equation (2) if and only if it is a solution of (1)
with y(0) = a. Consider the sequence of functions yn de�ned by y0 � a and

yn+1(t) := a +
Z t

0
f(yn(u))du: (3)

Then for n = 0; 1; � � � ; yn is a C1 function on [0;1) with yn(0) = a. We would like to
�nd conditions under which yn converges to a solution. Let M := kfkL := sup jf 0j.
Then for n � 1,

j(yn+1 � yn)(t)j �
Z t

0
M j(yn � yn�1)(u)jdu: (4)

Let Yn(t) := sup0�u�t j(yn� yn�1)(u)j: Then Yn+1(t) �
R t
0 MYn(u)du for each t � 0 and

n = 1; 2; � � � . We have Y1(t) � tjf(a)j. Inductively, we get Yn(t) � jf(a)jMn�1tn=n!
for n = 1; 2; � � � . Since the Taylor series of eMt converges absolutely for all t, we get
that yn(t) converges for all t � 0 to some y(t), uniformly on any bounded interval
[0; T ], where y(�) is a solution of (2). Moreover, the solution is unique: let y(�) and
z(�) be two solutions of (2). Then j(y � z)(t)j � s t0M j(y � z)(u)jdu: Let S(t) :=
sup0�u�t j(y�z)(u)j. Then S(t) �MtS(t). Thus for t < 1=M we get S(t) = 0. So we get
y � z successively on [0; 1=(2M)], [1=(2M); 1=M ], [1=M; 3=(2M)]; � � � ; so y(t) = z(t)
for all t � 0. Alternatively, convergence of fyng could be proved as follows: by (4),
Yn+1(t) �MtYn(t), so restricting to 0 � t � 1=(2M), absolute and uniform convergence

1



2 RICHARD M. DUDLEY

follows from a geometric series, and again one can iterate to further intervals of length
1=(2M).

Example. Consider the analytic but not globally Lipschitz function f(y) = y2. Solving
(1) by separation of variables gives dy=y2 = dt, �1=y = t+ c, y = �1=(t+ c). For a > 0,
setting c := �1=a we get a solution y(�) of (1) and (2) for 0 � t < 1=a which goes to
1 as t " 1=a.

2. Lyons's extension and composition.

Let (S; j � j) be a normed vector space. The two main examples in view will be S = R
d

with its usual Euclidean norm j � j and S =Md, the space of d� d real matrices A, with
the matrix norm kAk := supfjAx0j : x 2 R

d ; jxj = 1g where x is a 1� d vector and x0

its transpose, a d� 1 column vector. For a function f from an interval [0; T ] into S and
0 < p <1, the p-variation vp(f) will be de�ned as usual but with j � j denoting the given
norm on S. Thus if S = R

d , f = (f1; � � � ; fd) with fj : [0; T ] 7! R and vp(fj) � vp(f) for
each j. The set of functions f : [0; T ] 7! S with vp(f) <1 will be called Wp([0; T ]; S),

or just Wp if S = R. If H and x(�) map an interval [0; T ] into R
d then

R T
0 H � dx will be

de�ned as
Pd

j=1

R T
0 Hj(t)dxj(t) if the d integrals exist. If instead H maps [0; T ] into Md

and again x(�) maps [0; T ] into Rd then
R T
0 H �dx will be the vector whose ith component

is
Pd

j=1

R T
0 Hij(t)dxj(t) if the d

2 integrals exist.
Lyons (1994) considered an extension of (2) with

z(t) = a+
Z t

0
F (z(u)) � dx(u); 0 � t � T; (5)

where F : R
d 7!Md is a suitable function, a 2 R

d , and x(�) 2 Wp([0; T ]; R
d) for some p,

1 � p < 2. In Lyons's work, since the functions appearing are continuous, the integrals
can be taken in the ordinary Riemann-Stieltjes sense. Note that the integral equations
for the product integral (CAC Sections 7.1, 7.4) have the same form as (5) where F is
the identity function except that here z(�) and x(�) are vector-valued rather than matrix-
valued. Lyons discovered, and it will be proved below, that the equation can be solved
by Picard iteration whenever F has a gradient OF everywhere, satisfying a global H�older
condition of order � where p < 1 + � � 2. The integral will exist by the Love-Young
inequality (CAC, section 4.4) if F � z 2 Wq([0; T ]; R

d) with p�1+ q�1 > 1. Moreover, we
have:

Theorem 1. On an interval [0; T ], if f 2 Wq([0; T ];Md) and g 2 Wp([0; T ]; R
d) with

p�1+q�1 > 1, then for h(x) :=
R x
0 f �dg, the inde�nite integral h(�) is in Wp([0; T ]; R

d),
with khk(p) � �(p�1 + q�1)kfk[q]kgk(p):

Proof. This follows from the proofs in Section 4.4 of CAC, which don't require that f
and g have scalar values. The integrals are in the re�nement-Young-Stieltjes sense, see
CAC sections 2.1, 2.2 and 6.2. �

Previously, we had considered composition operators (f; g) 7! (F + f) � (G+ g) 2 Lp

with f in spaces Wp and G; g 2 Lr, 1 � p < r, and suitable G (CAC, Section 3.3).
Note that for a C1 function G we can have F �G non-regulated for F 2 W1 � Wp for
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all p, speci�cally F := 1[0;1), G(x) := e�1=x sin(1=x), x 6= 0, G(0) := 0. Here we
will consider the Nemitskii operator g 7! F � (G + g) : Wr([0; T ]; R

d) 7! Wr([0; T ]; R
d)

for �xed su�ciently smooth F , as follows. Let (S; j � j) and (U; k � k) be normed vector
spaces. For a subset C � S and 0 < � � 1, H�(C;U) is the space of H�older functions
f : C 7! U with seminorm

kfkf(�)g := sup
x6=y

kf(x)� f(y)k=jx� yj� < 1;

and H�;1 denotes the space of bounded functions in H� with the norm

kfkf�g := kfksup + kfkf(�)g

where the supremum norm is denoted by khksup := supx jh(x)j and the supremum is
over the domain of h for any bounded function h. Let H� := H�(R; R). Recall that
on a bounded interval in R, H� � W1=�. To see that H� is not included in Wp for any
p < 1=� one can consider the lacunary Fourier series examples of L. C. Young, e.g. CAC,
proof of Theorem 4.29.
For function spaces F ;G;H, F � G � H will mean that f � g 2 H for all f 2 F and

g 2 G. The following are then easy to verify:

For any three normed spaces S; U; V , H�(U; V )�H�(S; U) � H��(S; V ) for 0 < �; � �
1;

H� �H� is not � H if  > �� for 0 < �; � � 1: consider g(x) := x�, f(y) := y�,
0 � x; y � 1.

For normed spaces S; U and an interval [0; T ],H�(S; U)�Wp([0; T ]; S) � Wp=�([0; T ]; U),
with kf � gk(p=�) � kfkf(�)gkgk

�
(p) for 0 < � � 1, 1 � p < 1, f 2 H�(S; U),

g 2 Wp([0; T ]; S).

It is known, moreover, that for S = U = R, given 0 < � � 1 and 1 � p <1, f 2 H�

is not only su�cient, but necessary so that ffg �Wp � Wp=�: see Ciemnoczolowski and
Orlicz (1986), Theorem 1, in which we suppose that \� 1 for x" means \< 1 for all
x(�)."
For 0 < � � 1 the space H1+�;d will be de�ned as the set of C1 functions  : R

d 7! R

such that O 2 H�;1(R
d ; Rd). Also, H

(d)
1+�;d will be the set of functions F : Rd 7!Md for

which each entry Fij 2 H1+�;d. The next theorem gives a kind of Lipschitz property of
the Nemitskii operator g 7!  � (G + g): Wr([0; T ]; R

d) 7! Wr([0; T ]; R) under su�cient
assumptions on  ;G. The theorem is not in Lyons's paper and seems to provide a
shorter proof than his, not requiring his new extension of the Love-Young inequality (cf.
CAC, section 7.5) but only the original inequality. We have:

Theorem 2. If 0 < � � 1, 1 � r < 1, g 2 Wr([0; T ]; R
d), and G 2 W�r([0; T ]; R

d),
with  2 H1+�;d; we have  �(G+g) and  �G 2 Wr([0; T ]; R), k �(G+g)� �Gksup �
kO ksupkgksup, and

k � (G+ g)�  �Gk(r) � kO ksupkgk(r) + kgksupkO kf(�)gkGk
�
(�r):

Proof. We have G 2 Wr([0; T ]; R
d) and since  2 H1 we have  � (G+ g) and  �G in

Wr([0; T ]; R) as noted above. The second conclusion is also clear. For a � t < u � b we
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have
j ((G+ g)(u))�  (G(u))�  ((G+ g)(t)) +  (G(t))j � S + T

where
S := j ((G+ g)(u))�  (G(u) + g(t))j � kO ksupjg(u)� g(t)j;

T := j (G(u) + g(t))�  ((G+ g)(t))�  (G(u)) +  (G(t))j:

If g(t) = 0 then T = 0. Otherwise g(t)=jg(t)j is a unit vector and

T =

�����
Z jg(t)j

0

"
O 

 
G(u) + s

g(t)

jg(t)j

!
� O 

 
G(t) + s

g(t)

jg(t)j

!#
�
g(t)

jg(t)j
ds

�����
� jg(t)jkO kf(�)gjG(u)�G(t)j�:

For any partition 0 = x0 < x1 < � � � < xn = T of [0; T ], we apply the above bounds for
S and T to t = xj�1 and u = xj, j = 1; � � � ; n, sum the rth powers over j and apply
Minkowski's inequality, proving Theorem 2. �

The next theorem shows how Picard iteration works under Lyons's conditions. Denote
the set of continuous functions in Wp([0; T ]; R

d) by CWp([0; T ]; R
d).

Theorem 3. (Lyons) Let 0 < � � 1, 1 � p < 1 + � and x(�) 2 CWp([0; T ]; R
d)

for some T > 0. Let F 2 H
(d)
1+�;d. For a 2 R

d let z0(t) � a, and for n = 1; 2; � � � ;

zn(t) := a+
R t
0 F (zn�1(u)) �dx(u). Then zn converges in Wp([0; T ]; R

d) to some z which
is the unique solution of (5) for 0 � t � T .

Proof. Theorem 2 will be applied with r := p=� and where  = Fij for each i; j. Then
r�1+p�1 = p�1(1+�) > 1. We haveWp([0; T ]; R

d) � Wr([0; T ]; R
d) since p < r. Clearly

z0 2 Wp([0; T ]; R
d). It will be shown inductively that zn 2 Wp([0; T ]; R

d) for each n.
Suppose zn�1 2 Wp([0; T ]; R

d). Then F � zn�1 2 Wp([0; T ];Md) � Wr([0; T ];Md) since
F is Lipschitz. Thus by Theorem 1, zn 2 Wp([0; T ]; R

d) as stated.
Let khk[0;t];(p) be the p-variation seminorm of h on [0; t]. For each n = 0; 1; 2; � � � and

t > 0, let An(t) := kzn+1 � znk[0;t];(p). Note that (zn � zn�1)(0) = 0 for all n. Thus
kzn � zn�1ksup � kzn � zn�1k(p) for 1 � p � 1. Then Theorem 2 with g := zn � zn�1

and G := zn�1 gives by the Love-Young inequality in the form of Theorem 1

An(t) � B(2C +DkGk�(p))NtAn�1(t) (6)

where B := �((1 + �)=p); C :=
Pd

i;j=1 kOFijksup, D :=
Pd

i;j=1 kOFijkf(�)g, and
Nt := kxk[0;t];(p). We have

A0(t) = kz1(�)k[0;t];(p) � jF (a)jNt � 1 (7)

for 0 � t � �1 small enough. Take 0 < � � �1 small enough so that

B(2C + 2D)Nt < 1=2 (8)

for 0 � t � �. It will be shown by induction on n that for 0 < t � � and n = 0; 1; 2; � � � ,
both

An+1(t) � An(t)=2 � 2�n�1; (9)

and

kzn(�)k[0;t];(p) � 2� 21�n: (10)
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For n = 0, (10) holds, as does the right inequality in (9) by (7), which also gives (10)
for n = 1. For each n = 0; 1; 2; � � � ; (10) and (8) for n, and (6) for n + 1, imply
the �rst inequality in (9). Thus, inductively, the second inequality also holds. Since
kzn+1k � kznk + An, (10) and (9) for a given n imply (10) and thus (9) for n + 1,
completing the induction step and the proof of (9) and (10) for all n. From (9) it follows
that fzng is a Cauchy sequence for k � k[0;t];(p), so it converges to some z 2 Wp[0; �].
We can repeat the whole process on an interval [�; � + �0] for some �0 > 0. Since

kxk[0;T ];(p) < 1, and B;C;D remain constant, after �nitely many steps we have z
de�ned on the whole interval [0; T ]. By continuity, z(�) satis�es (2).
For uniqueness, suppose y(�) is another solution of (5) on [0; T ]. Let B(t) := ky �

zk[0;t];(p). Then by the proof of (9), B(t) � B(t)=2 for t � �; so B(t) = 0 on [0; �] and by
iteration, y(t) = z(t) on [0; T ]. Theorem 3 is proved. �

REFERENCES

CAC = R. M. Dudley and R. Norvai�sa, An Introduction to p-variation and Young
Integrals. Maphysto, Aarhus, January 1999.
J. Ciemnoczolowski and W. Orlicz, Composing functions of bounded �-variation.

Proc. Amer. Math. Soc. 96 (1986), 431-436.
T. Lyons, Di�erential equations driven by rough signals (I): An extension of an in-

equality of L. C. Young. Math. Research Letters 1 (1994), 451-464.



APPLICATIONS OF PRODUCT-INTEGRATION IN

SURVIVAL ANALYSIS

RICHARD GILL

In the talk I will describe a number of applications of product-
integration in survival analysis. In particular I will focus on

� the Kaplan-Meier estimator (use of the Duhamel equation to study
its properties)

� the Aalen-Johansen estimator of the transition probability ma-
trix of a markov chain based on observations with censoring and
delayed-entry

� the Dabrowska multivariate product-limit estimator.

In each case I will use di�erent probabilistic methods, namely: function-
indexed empirical processes and the van der Laan identity; martingale
methods; and compact-di�erentiability methods respectively.

Please �nd appended my contribution to the Encyclopaedia of Sta-
tistical Science, which serves as a brief introduction and contains useful
references.

Mathematical Institute, University of Utrecht, The Netherlands
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Product-Integration (ESS)

All statisticians are familiar with the sum and product symbols
P

and
Q
, and with the integral symbolR

. Also they are aware that there is a certain analogy between summation and integration; in fact the
integral symbol is nothing else than a stretched-out capital S|the S of summation. Strange therefore that
not many people are aware of the existence of the product-integral , invented by the Italian mathematician
Vito Volterra in 1887, which bears exactly the same relation to the ordinary product as the integral does to
summation.

The mathematical theory of product-integration is not terribly di�cult and not terribly deep, which is
perhaps one of the reasons it was out of fashion again by the time survival analysis* came into being in the
�fties. However it is terribly useful and it is a pity that E.L. Kaplan and P. Meier [10], the inventors (1956)
of the product-limit or Kaplan-Meier* estimator (the nonparametric maximum likelihood estimator of an
unknown distribution function based on a sample of censored survival times), did not make the connection, as
neither did the authors of the classic 1967 and 1974 papers on this estimator by B. Efron [5] and N. Breslow
and J. Crowley [3]. Only with the 1978 paper of O.O. Aalen and S. Johansen [1] was the connection between
the Kaplan-Meier estimator and product-integration made explicit. It took several more years before the
connection was put to use to derive new large sample properties of the Kaplan-Meier estimator (e.g., the
asymptotic normality of the Kaplan-Meier mean) with the 1983 paper of R.D. Gill [8].

Modern treatments of the theory of product-integration with a view toward statistical applications can
be found in [2], [6], and [9].

The Kaplan-Meier estimator is the product-integral of the Nelson-Aalen estimator* (see counting pro-
cesses*) of the cumulative or integrated hazard function*; these two estimators bear the same relation to
one another as the actual survival function* (one minus the distribution function) and the actual cumulative
hazard function. There are many other applications of product-integration in statistics, for instance in the
study of multi-state processes (connected to the theory of Markov processes) as initiated by Aalen and Jo-
hansen [1] and in the theory of partial likelihood (cf. Cox regression model*); see Andersen, Borgan, Gill and
Keiding [2]. Product-integration also turns up in extreme-value theory where again the hazard rate plays an
important role, and in stochastic analysis and martingale* theory (stochastic integration), where it turns up
under the name Dol�eans-Dades exponential martingale.

Properties of integrals are often easily guessed by thinking of them as sums of many, many (usually
very small) terms. Similarly, product-integration generalises the taking of products. This makes properties
of product-integrals easy to guess and to understand.

Let us de�ne product-integration at a just slightly higher level of generality than Volterra's original
de�nition (corresponding to the transition from Lebesgue to Lebesgue-Stieltjes integration). Suppose X(t)
is a p� p matrix-valued function of time t 2 [0;1). Suppose also X (or if you prefer, each component of X)
is right continuous with left hand limits. Let 1 denote the identity matrix. The product-integral of X over
the interval (0; t] is now de�ned as

t

0

�
1+ dX(s)

�
= lim

max jti�ti�1j!0

Y�
1+

�
X(ti)�X(ti�1)

��

where the limit is taken over a sequence of ever �ner partitions 0 = t0 < t1 < : : : < tk = t of the time
interval [0; t]. For the limit to exist, X has to be of bounded variation; equivalently, each component of X
is the di�erence of two increasing functions.

A very obvious property of product-integration is its multiplicativity. De�ning the product-integral over
an arbitrary time interval in the natural way, we have for 0 < s < t

t

0

(1+ dX) =

s

0

(1+ dX)

t

s

(1 + dX):

We can guess (for proofs, see [6] or preferably [9]) many other useful properties of product-integrals by looking
at various simple identities for �nite products. For instance, in deriving asymptotic statistical theory it is
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often important to study the di�erence between two product-integrals. Now if a1,: : : ,ak and b1,: : : ,bk are
two sequences of numbers, we have the identity:Y

(1 + ai)�
Y

(1 + bi) =
X
j

Y
i<j

(1 + ai)(aj � bj)
Y
i>j

(1 + bi):

This can be easily proved by replacing the middle term on the right hand side of the equation, (aj � bj), by
(1 + aj)� (1 + bj). Expanding about this di�erence, the right hand side becomes

X
j

�Y
i�j

(1 + ai)
Y
i>j

(1 + bi) �
Y

i�j�1

(1 + ai)
Y

i>j�1

(1 + bi)

�
:

This is a telescoping sum; writing out the terms one by one the whole expression collapses to the two outside
products, giving the left hand side of the identity. The same manipulations work for matrices. In general it
is therefore no surprise, replacing sums by integrals and products by product-integrals, that

t

0

(1+ dX) �

t

0

(1+ dY ) =

Z t

s=0

s�

0

(1+ dX)(dX(s) � dY (s))

t

s+

(1 + dY ):

This valuable identity is called the Duhamel equation (the name refers to a classical identity for the derivative
with respect to a parameter of the solution of a di�erential equation).

As an example, consider the scalar case (p = 1), let A be a cumulative hazard function and bA the
Nelson-Aalen estimator based on a sample of censored survival times. In more detail, we are considering
the statistical problem of estimating the survival curve S(t) = PrfT � tg given a sample of independently
censored* i.i.d. survival times T1, : : : , Tn. The cumulative hazard rate A(t) is de�ned by

A(t) =

Z t

0

dS(t)

S(t�)
;

A is just the integrated hazard rate in the absoutely continuous case, the cumulative sum of discrete hazards
in the discrete case. Let t1 < t2 < : : : denote the distinct times when deaths are observed; let rj denote the
number of individuals at risk just before time tj and let dj denote the number of observed deaths at time
tj. We estimate the cumulative hazard function A corresponding to S with the Nelson-Aalen estimator

bA(t) = X
tj�t

dj
rj
:

This is a discrete cumulative hazard function, corresponding to the discrete estimated hazard b�(tj) = dj=rj,b�(t) = 0 for t not an observed death time. The product-integral of bA is then

bS(t) =

t

0

(1� d bA) =
Y
tj�t

�
1�

dj
rj

�
;

which is nothing else than the Kaplan-Meier estimator of the true survival function S. The Duhamel equation
now becomes the identity

bS(t) � S(t) =

Z t

s=0

bS(s�)�d bA(s) � dA(s)

�
S(t)

S(s)

which can be exploited to get both small sample and asymptotic results, see Gill [7,8,9], Gill and Johansen [6],
Andersen, Borgan, Gill and Keiding [2]. The same identity pays o� in studying Dabrowska's [4] multivariate
product-limit estimator (see [9], [11]), and in studying Aalen and Johansen's [1] estimator of the transition

2



matrix of an inhomogeneous Markov chain (see [2]). It can be rewritten ([9]) as a so-called van der Laan

[11] identity expressing bS � S as a function-indexed empirical process, evaluated at a random argument,
so that the classical large sample results for Kaplan-Meier (consistency, asymptotic normality) can be got
by a two-line proof: without further calculations simply invoke the modern forms of the Glivenko-Cantelli*
theorem and the Donsker* theorem; i.e., the functional versions of the classical law of large numbers and
the central limit theorem respectively.

Taking Y identically equal to zero in the Duhamel equation yields the formula

t

0

(1+ dX) � 1 =

Z t

s=0

s�

0

(1+ dX)dX(s):

This is the integral version of Kolmogorov's forward di�erential equation from the theory of Markov processes,
and it is the type of equation:

Y (t) = 1+

Z t

0

Y (s�)dX(s)

(in unknown Y , given X), which motivated Volterra to invent product-integration. Y (t) =
t

0
(1 + dX) is

the unique solution of this equation.

References

[1] O.O. Aalen and S. Johansen, (1978), An empirical transition matrix for nonhomogenous Markov chains
based on censored observations, Scandinavian Journal of Statistics 5, 141{150.
Introduced simultaneously counting process theory and product-integration to the study of nonpara-
metric estimation for Markov processes; the relevance to the Kaplan-Meier estimator was noted by the
authors but not noticed by the world!

[2] P.K. Andersen, �. Borgan, R.D. Gill and N. Keiding (1993), Statistical Models Based on Counting
Processes, Springer-Verlag, New York (778 pp.).
Contains a `users' guide' to product-integration in the context of counting processes and generalised
survival analysis.

[3] N. Breslow and J. Crowley (1974), A large sample study of the life table and product limit estimates
under random censorship, Annals of Statistics 2, 437{453.
First rigourous large-sample results for Kaplan-Meier using the then recently developed Billingsley-style
theory of weak convergence.

[4] Dabrowska, D. (1978), Kaplan-Meier estimate on the plane, Annals of Statistics 16, 1475{1489.
Beautiful generalization of the product-limit characterization of the Kaplan-Meier estimator to higher
dimensions. Other characterizations, e.g., nonparametric maximum likelihood, lead to other estimators;
see [9], [11].

[5] Efron, B. (1967), The two sample problem with censored data, pp. 831{853 in: L. LeCam and J. Neyman
(eds.), Proc. 5th Berkeley Symp. Math. Strat. Prob., Univ. Calif. Press.
This classic introduced the redistribute-to-the-right and self-consistency properties of the Kaplan-Meier
estimator and claimed but did not prove weak convergence of the Kaplan-Meier estimator on the whole
line in order to establish asymptotic normality of a new Wilcoxon generalization, results �nally estab-
lished in [7].

[6] Gill, R.D., and Johansen, S. (1990), A survey of product-integration with a view towards application in
survival analysis, Annals of Statistics 18, 1501{1555.
The basic theory, some history, and miscellaneous applications. [9] contains some improvements and
further applications.

3



[7] Gill, R.D. (1980), Censoring and Stochastic Integrals, MC Tract 124, Centre for Mathematics and Com-
puter Science (CWI), Amsterdam.
The author emphasized the counting process approach to survival analysis, using some product-limit
theory from [1] but not highlighting this part of the theory.

[8] Gill, R.D. (1983), Large sample behaviour of the product limit estimator on the whole line, Ann. Statist.
11, 44{58.
Cf. comments to [7].

[9] Gill, R.D. (1994), Lectures on survival analysis. In Lectures on Probability Theory (Ecole d' �Et�e de
Probabilit�es de Saint Flour XXII - 1992), D. Bakry, R.D. Gill and S.A. Molchanov, ed. P. Bernard,
Springer-Verlag (SLNM 1581), Berlin, pp. 115{241.
Perhaps cryptically brief in parts, but a yet more polished treatment of product-integration and its
applications in survival analysis.

[10] Kaplan, E.L., and Meier, P. (1958), Nonparametric estimation from incomplete observations, J. Amer.
Statist. Assoc. 53, 457{481, 562{563.
This classic is actually number 2 in the list of most cited ever papers in mathematics, statistics and
computer science (fourth place is held by Cox, 1972; �rst place by Duncan, 1955, on multiple range tests).
The authors never met but submitted simultaneously their independent inventions of the product-limit
estimator to J. Amer. Statist. Assoc.; the resulting joint paper was the product of postal collaboration.

[11] van der Laan (1996), E�cient and Ine�cient Estimation in Semiparametric Models, CWI Tract 114,
Centre for Mathematics and Computer Science, Amsterdam.
Contains a beautiful identity for the nonparametric maximum likelihood estimator in a missing data
problem: estimator minus estimand equals the empirical process of the optimal inuence curve evaluated
at the estimator, bF �F = 1

n

Pn

i=1 ICopt(Xi; bF ); applications to the bivariate censored data problem as
well as treatment of other estimators for the same problem.
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DIFFERENTIABILITY PROPERTIES OF SOME

CLASSICAL STOCHASTIC MODELS

RUDOLF GR�UBEL

In statistics it is well known that di�erentiability properties of an
estimator can be used to obtain asymptotic normality or to investigate
the validity of bootstrap con�dence regions. Here we concentrate on
the use of di�erentiability in connection with perturbation aspects and
numerical treatment of stochastic models. Our �rst example deals with
the expansion of G/G/1 queues about M/M/1 type models, in the
second we discuss the applicability of Richardson extrapolation for the
computation of perpetuities. In both cases a decomposition of the
functional in question into simpler components has to be achieved. In
the �rst example the general theory of commutative Banach algebras
turns out to be very useful, the analysis in the second example is based
on the investigation of �xed point equations.
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Norbert Hofmann (Universit�at Erlangen-N�urnberg)
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Klaus Ritter (Universit�at Passau)
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1 Global Error in L2-norm

We study the pathwise (strong) approximation of scalar stochastic di�erential equations

with additive noise

dX(t) = a(t; X(t)) dt+ �(t) dW (t); t 2 T; (1)

driven by a one-dimensional Brownian motion W , on the unit interval T = [0; 1].

Di�erent notions of errors for pathwise approximation are studied in the literature

on Stochastic Numerics. See Kloeden and Platen (1995), Milstein (1995), and Talay

(1995) for results and references. Mainly errors of pathwise approximations are de�ned

discretely at a �nite number of points in T . In most of the cases these points coincide

with the discretization of the given method. We follow a new approach by measuring

the pathwise distance between the strong solution X and its approximation X globally

on T in the L2-norm k � k2 and de�ning the overall error of X by

e(X) =
�
E(kX �Xk22)

�1=2
:

We aim at determining (asymptotically) optimal approximation methods. To that end

we consider arbitrary methods Xn, that use observations of the Brownian motion W

at n points. Moreover, a �nite number of function values (or derivative values) of a

and � may be used. We establish sharp lower and upper bounds for the minimal error

1



infXn

e(Xn) that can be obtained by methods of the above type. Note that upper

bounds may be shown by the error analysis of a speci�c method, while lower bounds

must hold for every method Xn. The optimal order is achieved by an Euler scheme

with adaptive step-size control. We state this more precisely in the sequel.

2 Euler Scheme with Adaptive Step-Size Control

For an arbitrary discretization

0 = �0 < � � � < �n = 1 (2)

of the unit interval the Euler scheme bX, applied to equation (1), with initial value X(0)

is de�ned by

bX(�0) = X(0)

and

bX(�k+1) = bX(�k) + a(�k; bX(�k)) � (�k+1 � �k) + �(�k) � (W (�k+1)�W (�k))

where k = 0; : : : ; n�1. The global approximation bX for X on T is de�ned by piecewise

linear interpolation of the data (�k; bX(�k)) with k = 0; : : : ; n. Let

h > 0

be a basic step-size which we choose previously. We introduce the following adaptive

step-size control for the Euler method bX = bXh:

Put �0 = 0 and

�k+1 = �k +min
�
h2=3; h=�(�k)

�
; (3)

as long as the right-hand side does not exceed one. Otherwise put �k+1 = 1.

We study the asymptotic behaviour of the error e( bXh) with h tending to zero,

where X(t) is the unique strong solution of an equation (1). The error analysis based

on the following assumptions on the drift a : T � R ! R and the di�usion coe�cient

� : T ! R
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(A) There exist constants K1; K2; K3 > 0 such that

��a(0;1)(t; x)�� � K1;
��a(0;2)(t; x)�� � K2;

and

ja(t; x)� a(s; x)j � K3 � (1 + jxj) � jt� sj

for all s; t 2 T and x 2 R.

(B) The function � is continuously di�erentiable and satis�es

�(t) > 0

for all t 2 T .
Furthermore we assume

(C) X(0) is independent of W and

EjX(0)j2 � K4

for some constant K4 > 0.

The properties (A) and (C) ensure the existence of a pathwise unique strong solu-

tion of equation (1). We use n(h; �) to denote the total number of steps and write

e(X; a; �;X(0)) instead of e(X). With k � kp we denote the Lp-norm of real-valued

functions on T .

Theorem 1. Assume that (A){(C) hold for equation (1). Then

lim
h!0

n(h; �)1=2 � e( bXh; a; �;X(0)) = 1=
p
6 � k�k1

for the Euler approximation with discretization (3). The Euler approximation bXn with

constant step-size

�k+1 � �k = 1=n (4)

yields

lim
n!1

n1=2 � e( bXn; a; �;X(0)) = 1=
p
6 � k�k2:
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Hence it is not e�cient to discretize equidistantly: taking (3) instead of (4) reduces

the error roughly by the factor k�k1=k�k2 for the same number of steps. Even a much

stronger optimality property holds for the method bXh. This method is asymptotically

optimal for all equations (1) among all methods that use values ofW at a �nite number

of points. See Theorem 2 and Remark 2.

Remark 1. The term h2=3 in (3) only matters if h > �3(�k). For small values of �(�k)

still a reasonably small step-size is needed to get a good approximation. The particular

choice h2=3 based on error estimates on intervals [�k; �k+1].

In the case of arbitrary scalar equations

dX(t) = a(t; X(t)) dt+ �(t; X(t)) dW (t); t 2 T; (5)

we propose the natural generalization of (3), given by

�k+1 = �k +min
�
h2=3; h=�(�k; bXh(�k))

�
; (6)

as an adaptive step-size control. Simulation studies indicate that the discretization (6)

is still superior to an equidistant discretization. The asymptotic analysis of the step-size

control (6) for equations (5) is an open problem.

3 Lower Error Bounds

We present lower bounds that hold for every n-point method. For that purpose we

drop all restrictions on the available information about a and �. We �x a and �,

and we consider the corresponding equation (1). By an n-point method we mean an

arbitrary method Xn, that is based on a realization of the initial value X(0) and on n

observations of a trajectory of W . Such a method is de�ned by measurable mappings

 k : R
k ! T

for k = 1; : : : ; n and

�n : R
n+1 ! L2(T ):

The mapping  k determines the observation point in step k in terms of the previous

evaluations. A pathwise approximation is computed according to

Xn = �n(X(0); Y1; : : : ; Yn);
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where Y1 =W ( 1(X(0))), and

Yk =W ( k(X(0); Y1; : : : ; Yk�1))

is the observation in step k � 2. The quantity

e(n; a; �;X(0)) = inf
Xn

e(Xn; a; �;X(0))

is the minimal error that can be obtained by n-point methods for equation (1).

Theorem 2. Assume that (A){(C) hold for equation (1). Then

lim
n!1

n1=2 � e(n; a; �;X(0)) = 1=
p
6 � k�k1:

Remark 2. Due to Theorem 1 and 2 the Euler approximation with adaptive step-size

control (3) is asymptotically optimal for every equation (1).

Apart from Clark and Cameron (1980), there is a lack of papers dealing with lower

bounds. Clark and Cameron derive lower and upper bounds for n-point methods that

are based on the equidistant discretization (4). Theorem 2 provides for the �rst time a

lower bound for arbitrary methods which use discrete observations of a Brownian path.
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INFINITE DIVISIBILITY REVISITED

ZBIGNIEW J. JUREK

Abstract. For the class ID of all in�nite divisible measures on
a Banach space, we introduce a family of convolution semi-groups
that sum up to the class ID. Each semi-group in question is given
as a class of distributions of some random integrals with respect
to some Levy processes. At the same time, it is de�ned as a class
of limit laws.

The aim of this talk is to show usefulness of random integrals in clas-
sical limit distributions theory. Our integrals will be pathwise integrals
with respect to some L�evy processes , i.e.,Z

(a;b]

f(t)dY (t)
def
= f(t)Y (t)jt=b

t=a �

Z
(a;b]

Y (t�)df(t);(1)

where f is a real-valued function with bounded variation and Y is
a L�evy process (stationary and independent increments) with cadlag
paths. Moreover,Z

(a;1)

f(t)dY (t)
def
= lim

b"1

Z
(a;b]

f(t)dY (t); a:s:

By ID we denote the class of all in�nitely divisible probability mea-
sures. It coincides with laws of Y (1), where Y is an arbitrary L�evy
process . We will de�ne a �ltration of the ID into increasing convolu-
tion semi-groups U�; � 2 R Namely:

DEF1. We say that � 2 U� if there exists a sequence of independent
L�evy processes �j(t); j = 1; 2; : : : ; such that

L( 1
n
(�1 + �2 + : : :+ �n)(n

��)) =) �; as n!1;

i.e., one evaluates the distributions of the arithmetic average at times
(n��).

Theorem 1 (a) For �2 < � � �1,

a symmetric � 2 U� i� � = � � L(

Z
(0;1)

tdY (t�));(2)

where � is symmetric stable measure with exponent (��) and Y is a
unique L�evy process such that E [jjY (1)jj��] <1.

(b) for �1 < � < 0; � 2 U� i� (2) holds with � as strictly stable
measure with exponent (��).
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2 ZBIGNIEW J. JUREK

(c) � 2 U0 i� � = L(
R
(0;1)

)e�sdY (s) = L(�
R
(0;1)

)tdY (ln t)

where Y is a unique L�evy process with E log(1 + jjY (1)jj) <1.

(d) For � > 0; � 2 U� i� � = L(
R
(0;1

)tdY (t)

where Y is an arbitrary L�evy process . [To the L�evy processes in the
above random integrals we refer as the BDLP, i.e., background driving
L�evy processes for the corresponding distributions.]

Remark. 1) If U� has non-degenerate distribution then � � �2.
2) U�2 consist of Gaussian distributions.
3) If �1 � �2 then U�1 � U�2 .
4) Each U� is a closed convolution subsemigroup.
5) U0 = L, where L stands for L�evy class L distributions (also called

self-decomposable distributions).

Corollary. A �ltration of the class ID is:

[
n

U�n = ID

for any sequence �n " +1: [The bar means closure in weak topology].

Examples. (1) Compound Poisson distributions are in ID but they
are not in class U0 = L of selfdecomposable distributions.
(2) Stable laws are in L.
(3) Compound geometric laws (waiting time for the �rst success but

not the moment of the �rst success) are not in L.
(4) Gaussian distributions, Student t-distribution, Fisher F -distribu-

tions, generalized hyperbolic distributions are in L; [3].

For r > 0 let us de�ne the shrinking operation Ur as follows: Urx = 0,
if jjxjj < r and Urx = max(jjxjj � r; 0) x

jjxjj
otherwise. In case of x 2 R,

note that x� Urx = cr(x) is the censoring at the level r > 0. Also, for
x > 0; Urx is the pay-o� function in some �nancial models, but here
we are interested in the following.

DEF2. A measure � is said to be s-selfdecomposable (s here indicates
s-operations Ur), if � is a limit of the following sequence

UrnX1 + UrnX1 + : : :+ UrnXn + xn;

whereX1; X2; : : : are independent and the triangular array UrnXj; j =
1; 2; : : : : n � 1; is the uniformly in�nitesimal.

Theorem 2. � is s-selfdecomposable i� � 2 U1.

In the lecture we will discuss continuity of the random integral map-
pings given via the integrals in Theorem 1.

Remark. From random integrals easily follow characterization in
terms of Fourier transformations. This allows to avoid the method
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of extreme points (Choquet's Theorem) as used by D.Kendall, S. Jo-
hansen or K. Urbanik. It seems that one might argue that random
integral, as a method of describing (limiting) distributions, are more
\natural or probabilistic" than the Fourier transform.

Since the \random integral representations" (as in Theorem 1) were
successfully used for some other classes of limit laws, it led to the fol-
lowing:

Hypothesis. Each class of limit class derived from sequences of inde-

pendent random variables is an image of some subset of ID via same

random integral mapping.
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GRAPHICAL REPRESENTATION FOR INTERACTING

PARTICLE SYSTEMS

BO MARKUSSEN

An Interacting Particle System is a Markov jump-process on the

space X = W
S of con�gurations on an in�nite site-space S, where each

particle takes a state from a phase-space W . The so-called graphical

representation gives an explicit construction as a function of in�nite

many Poisson processes. For this construction to be well-de�ned we

need to impose a condition on the interactions between the particles

such that for every time-point T the site-space splits into �nite regions

which do not interact before time T . The proof of the well-de�nedness

uses the Ito formula for counting process integrals.
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p-variation and integration of sample functions of stochastic

processes

R. Norvai�sa

Institute of Mathematics and Informatics

Akademijos 4, Vilnius 2600, Lithuania

Let h be a real{valued right{continuous function on a closed interval [a; b]. Consider the
re�nement{Riemann{Stieltjes integral equation

F (y) = 1 + (RRS)
Z y

a

F
(a)
� dh; a � y � b; (1)

for a function F . Here and below for a regulated function f on [a; b], we write(
f
(b)
+ (x) := f+(x) := f(x+) := limz#x f(z) if a � x < b; and f

(b)
+ (b) := f(b);

f
(a)
� (x) := f�(x) := f(x�) := limz"x f(z) if a < x � b; and f

(a)
� (a) := f(a):

Let Wp = Wp[a; b] be the set of all functions on [a; b] with bounded p-variation. If h 2 Wp

for some 0 < p < 2 then equation (1) has the unique solution in Wp given by the inde�nite
product integral

Ph(y) = Ph
a (y) :=

y

a

(1 + dh) := lim
�"

nY
i=1

[1 + h(xi)� h(xi�1)];

where the limit exists under re�nements of partitions � = fxi: i = 0; : : : ; ng of [a; y].
Several aspects leading to linear integral equation (1) were discussed in Section 7.4 of [2].

The inde�nite product integral is de�ned with respect to any function h having bounded p-
variation for some 0 < p < 2, while h in (1) is assumed to be right{continuous. Thus one
may ask what integral equation satis�es the inde�nite product integral Ph when h is not
right{continuous? In this case we have that(

�+Ph(y) = Ph(y)�+h(y) if a � y < b
��Ph(y) = Ph(y�)��h(y) if a < y � b

(see Lemmas 5.1 and 5.2 in [1]). The di�erent values of Ph on the right side may look un-
usual, so that above relations should be considered as an evolution on the extended time scale
fa; a+; : : : ; y�; y; y+; : : : ; b�; bg.

Because the (RRS) integral need not exist when jumps of an integrand and integrator
appear at the same point on the same side, we have to replace it by more general integrals
discussed in [2]. For example, consider the re�nement{Young{Stieltjes integral equation

F (y) = 1 + (RY S)
Z y

0
F

(0)
� dh; 0 � y � 2; (2)
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with respect to function h de�ned by

h(x) :=

8><
>:

0 if 0 � x < 1
1=2 if x = 1
1 if 1 < x � 2.

(3)

Then

Ph(x) =

8><
>:

1 if 0 � x < 1
1 + 1=2 if x = 1
2 + 1=4 if 1 < x � 2,

and

1 + (RY S)
Z y

0
(Ph)

(0)
� dh =

(
1 if 0 � x < 1
2 if 1 � x � 2

6= Ph(y) for y � 1.

Thus Ph does not satisfy (2).
Let f and g be regulated functions on [a; b]. De�ne the Left Young integral, or the (LY )

integral, by

(LY )
Z b

a

g df := (RRS)
Z b

a

g
(a)
� df

(b)
+ + [g�+f ](a) +

X
(a;b)

��g�+f

provided the (RRS) integral exists and the sum converges absolutely. We say that g is (LY )
integrable with respect to f on [a; b]. The (LY ) integral was de�ned in [1, Relation (3.44)]
for Banach algebra valued functions to provide a suitable extension of Duhamel's formula for
product integrals. To compare the (LY ) integral with the (RY S) integral we recall the (CY )
integral de�ned by L. C. Young [5] as follows:

(CY )
Z b

a

g df := (RRS)
Z b

a

g
(a)
� df

(b)
+ + [g�+f ](a) +

� X
(a;b)

��g��f
�
+ [��g��f ](b)

provided the (RRS) integral exists and the sum converges absolutely. By Proposition 3.17 of
[1], or by Theorem 6.20 of [2], if the (RY S) integral exists then so does the (CY ) integral, and
the two are equal.

It is instructive to check that the inde�nite product integral with respect to the function h
de�ned by (3) satis�es the Left Young integral equation

1 + (LY )

Z y

0
Ph dh = 1 + (RRS)

Z y

0
(Ph)

(0)
� dh

(y)
+ + [Ph�+h](0) +

X
(0;y)

��Ph�+h = Ph(y)

for 0 � y � 2.
De�ne the Right Young integral, or the (RY ) integral, by

(RY )

Z b

a
g df := (RRS)

Z b

a
g
(b)
+ df

(a)
� �

X
(a;b)

�+g��f + [g��f ](b)

provided the (RRS) integral exists and the sum converges unconditionally. We say that g is
(RY ) integrable with respect to f on [a; b].

Next follows from Theorem on Stieltjes integrability of L. C. Young [5, p. 264].
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Theorem 1. Let g 2 Wp[a; b] and f 2 Wq[a; b] for some p; q > 0 such that 1=p + 1=q > 1.
Then the integrals (LY ) sba g df and (RY ) s ba g df are de�ned.

The following statement is proved in [1, Theorems 5.21 and 5.22] for Banach algebra valued
functions.

Theorem 2. Let f 2 Wp[a; b] with 0 < p < 2. Then the inde�nite product integral

Pf
a (x) :=

x

a

(1 + df); a � x � b;

exists and is the unique solution in Wr[a; b], for any r � p such that 1=p + 1=r > 1, of the
(LY ) integral equation

F (x) = 1 + (LY )

Z x

a

F df; a � x � b:

Similarly, the inde�nite product integral

Pf

b
(y) :=

b

y

(1 + df); a � y � b;

exists and is the unique solution in Wr[a; b], for any r � p such that 1=p + 1=r > 1, of the
(RY ) integral equation

G(y) = 1 + (RY )

Z b

y

Gdf; a � y � b:

A di�erent proof of this statement based on the chain rule formula (Theorem 6 below), is
due to Mikosch and Norvai�sa [3]. In the same manner they also solved the non-homogeneous
linear (LY ) and (RY ) integral equations.

For illustration we formulate several properties of the (LY ) and (RY ) integrals. Their
proofs are given in [4].

Theorem 3. Let g, f be regulated functions on [a; b], and let a � c � b. For A = LY or RY ,

(A) sba g df exists if and only if (A) sca g df and (A) sbc g df both exist, and then

(A)

Z b

a

g df = (A)

Z c

a

g df + (A)

Z b

c

g df:

Next is the integration by parts formula for the LY and RY integrals.

Theorem 4. Let g and f be regulated functions on [a; b]. If either of the two integrals

(LY ) sba g df and (RY ) sba f dg exists then both exist, and

(LY )

Z b

a

g df + (RY )

Z b

a

f dg = f(b)g(b)� f(a)g(a):

De�ne the inde�nite (LY ) and (RY ) integrals by

	(x) := (LY )

Z x

a

g dh and �(y) := (RY )

Z b

y

g dh;

respectively for x; y 2 [a; b]. Next is the substitution rule for the LY and RY integrals.
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Theorem 5. Let h 2 Wp[a; b] and f; g 2 Wq[a; b] for some p; q > 0 with p�1+q�1 > 1. Then g

and fg are (LY ) integrable with respect to h, f is (LY ) integrable with respect to the inde�nite

(LY ) integral 	, and

(LY )

Z b

a

f d	 = (LY )

Z b

a

fg dh :

Similarly, g and fg are (RY ) integrable with respect to h, f is (RY ) integrable with respect to

the inde�nite RY integral �, and

(RY )

Z b

a

f d� = (RY )

Z b

a

fg dh :

Itô's formula gives a stochastic integral representation of a composition of a smooth function
and a Brownian motion. We prove the Left Young integral representation for a composition
��f of a smooth function � and a function f having bounded p-variation with p � 2. Recall
that almost every sample function of a Brownian motion has bounded p-variation for each
p > 2. Besides its applications to sample functions of stochastic processes the chain rule
formula extends Theorem 1 of L. C. Young to the case when 1=p+ 1=q = 1. Notice that this
extension concerns the existence of integrals with integrands of a special form.

Let d be a positive integer and let � be a real-valued function on a d-dimensional cube
[s; t]d := [s; t] � � � � � [s; t]. We write � 2 H1;0([s; t]

d) if � satis�es the condition: (1) � is

di�erentiable on [s; t]d with continuous partial derivatives �0l(u) :=
@�
@ul

(u) for l = 1; : : : ; d. For

each � 2 H1;0([s; t]d), let K0 := 2max1�l�d supf�0l(u): u 2 [s; t]dg. Also, for � 2 (0; 1], we
write � 2 H1;�([s; t]

d) if, in addition to condition (1), � satis�es the condition: (2) there is a
�nite constant K� such that the inequality

max
1�l�d

j�0l(u)� �0l(v)j � K�

dX
k=1

juk � vk j
�

holds for all u = (u1; : : : ; ud); v = (v1; : : : ; vd) 2 [s; t]d.
The following statement provides the (LY ) integral representation of a composition under

the boundedness of p-variation condition.

Theorem 6. For � 2 [0; 1], let f = (f1; : : : ; fd): [a; b] 7! (s; t)d be a vector function with

coordinate functions fl 2 W�
1+�[a; b] for l = 1; : : : ; d, let � 2 H1;�([s; t]d) and let h be a

regulated function on [a; b]. Then the equality

(LY )

Z b

a

h d(��f) =
dX

l=1

(LY )

Z b

a

h(�0l�f) dfl

+
X
(a;b]

h�[�
�(� � f)�

dX
l=1

(�0l�f)��
�fl] +

X
[a;b)

h[�+(� � f)�
dX

l=1

(�0l�f)�
+fl];

holds meaning that all d + 1 integrals exist provided any d integrals exist, and the two sums

converge unconditionally.

We plan to discuss applications of these results to sample functions of stochastic processes.
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INDEPENDENCE OF MULTIPLE STOCHASTIC

INTEGRALS

JAN ROSI�NSKI

The problem of independence of multiple stochastic integrals with
respect to in�nitely divisible random measures is investigated. It is
remarked that multiple Ito-Wiener integrals are independent if and
only if their squares are uncorrelated. This criterion breaks down for
multiple Poisson integrals.

The necessary and su�cient condition for the independence of mul-
tiple integrals of arbitrary (not necessary equal) orders with respect to
a symmetric stable random measure is established. To this aim the
product formula for multiple stochastic integrals is studied through se-
ries representations. The knowledge of the tail asymptotic behavior for
multiple stable integrals and their products plays the crucial role in our
method, its role is similar to Ito's isometry for Ito-Wiener integrals.
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FORWARD AND BACKWARD CALCULUS

WITH RESPECT TO FINITE QUADRATIC VARIATION
PROCESSES

by Francesco RUSSO and Pierre VALLOIS

1 Stochastic integration via regularization

This project which is carried on since 1991 in several papers, see [RV1; RV2;
RV3; RV4; RV5; RV6; ER; ERV], but also in [W1;W2;W3] and [RVW]. It
covers the topic of the following two talks in Aarhus.

� F. Russo: Calculus with respect to a �nite quadratic variation process.

� P. Vallois: Stochastic calculus related to general Gaussian processes
and normal martingales.

The aim of the project was to develop a stochastic calculus which has essen-
tially four features.

1. It belongs to the context of \pathwise" stochastic calculus. To this
extent, one of the basic reference is the article of H. F�ollmer ([F]),
continued for instance in [Be] but also by Dudley and Norvaisa, see
contributions in this volume. F�ollmer's method is based on integrator
discretization, ours works out regularization tools.

2. One aspect of our approach is the particular simplicity. In fact, many
rules are directly derived using �rst year calculus arguments and �nite
Taylor expansions, uniform continuity and so on.

3. Our approach establishes a bridge between anticipating and non-anticipating
integrals, see for instance [NP], [N]. Concerning anticipating calculus,
there are two main techniques at least as far as the integrator is a
Brownian motion: Skorohod integration which is based on functional
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analysis, see for instanse [NP], [N], and enlargement of �ltration (see
e.g. [J]) tools which are based on classical stochastic calculus method.
Our integrals help to relate those two concepts.

4. Our theory should allow to go beyond semimartingales. Our aim was to
understand what could be done when integrators are just Gaussian pro-
cesses, convolution of martingales, as fractional Brownian motions and
Dirichlet type processes (sum a local martingale and a zero-quadratic
variation processes).

All the processes will be supposed to be continuous (for simplicity). Exten-
sions to the jump case are done in [ERV].

Let (Xt)t�0, (Yt)t�0 be (continuous) processes. We setZ t

0
Y d�X = ucp� lim

"!0+

Z t

0
Ys
Xs+" �Xs

"
dsZ t

0
Y d+X = ucp� lim

"!0+

Z t

0
Ys
Xs �X(s�")_0

"
dsZ t

0
Y doX = ucp� lim

"!0+

Z t

0
Ys
Xs+" �X(s�")_0

2"
ds

[X; Y ]t = ucp� lim
"!0+

1

"

Z t

0
(Xs+" �Xs) (Ys+" � Ys) ds

if previous quantities do exist; ucp denotes the uniform convergence in prob-
ability on each compact.R t
0 Y d

�X (resp.
R t
0 Y d

+X;
R t
0 Y d

oX) is called the forward (resp. backward,
symmetric integral) of Y with respect to X provided that those integrals
do exist.

[X; Y ] is called the covariation of X and Y . [X;X] is also called quadratic
variation of X and X.

If [X;X] exists X will be said to be a �nite quadratic variation process.
In this case, it is an increasing processes, being a limit of increasing processes;
therefore it is a classical integrator in the sense of measure theory of IR+.

Let X1; : : : ; Xm be some processes.
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De�nition fX1; : : : ; Xmg are said to have all their mutual brackets if
[X i; Xj] exists 8 1 � i; j � m.
In this case :

[X i +Xj; X i +Xj] = [X i; X i] + 2[X i; Xj] + [Xj; Xj]

and
[X i; Xj] are (locally) with bounded variation:

Properties

We �rst state some elementary properties which directly follow from the
de�nition and ordinary calculus.

1. [X; Y ]t =
Z t

0
Y d+X �

Z t

0
Y d�X.

2.
Z t

0
Y doX =

Z t

0
Y d+X +

Z t

0
Y d�X

2

3. For T > 0 we set X̂t = XT�t. ThenZ t

0
Y d+X = �

Z T

T�t
Ŷ d� X̂

4. Let f; g 2 C1(IR), fX; Y g having all their mutual brackets. Then
ff(X); g(Y )g have the same property and

[f(X); g(Y )]t =
Z t

0
f 0(Xs) g

0(Ys) d[X; Y ]s:

5. Itô formula. Let f 2 C2 and X a �nite quadratic variation process.
Then :

f(Xt) = f(X0) +
Z t

0
f 0(X)d�X �

1

2

Z t

0
f 00(Xs)d[X;X]sZ t

0
f 00(X) d[X;X] = [f 0(X); X]t:
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6. If [X;X] exists, [Y; Y ] = 0 then fX; Y g have all their mutual brackets
and [X; Y ] = 0.

7. Integration by parts.

XtYt = X0Y0 +
Z t

0
Xd�Y +

Z t

0
Y d+X

= X0Y0 +
Z t

0
Xd�Y +

Z t

0
Y d�X + [X; Y ]t

2 Examples

Even if the theory developed until now is very simple, it would be empty, if
we cannot provide a rich enough class of examples.

1. If X has bounded variationZ t

0
Y d�X =

Z t

0
Y d+X =

Z t

0
Y dX

The fact that the �rst and second members equal the third is a conse-
quence of the de�nition of forward and backward integrals, of Fubini
theorem and of the dominated convergence theorem.

2. Let X, Y two semimartingales with respect to some usual �ltration
(Ft); H

i some adapted processes, i = 1; 2. Then [X; Y ] is the usual
bracket of M1 and M2, those processes being the local martingale part

of X and Y . Then
Z t

0
H1d�X coincides with the classical Itô integral

and �Z �

0
H1dM1;

Z �

0
H2dM2

�
t

=
Z t

0
H1H2d[M1;M2]:

We remark that that property will play in the sequel the role of a
de�nition of a "good" �nite quadratic variation process.

3. When X is a Brownian motion B, under suitable assumptions on a
process H, it is possible to relate the Skorohod integral

R �
0H@B with
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the forward and backward integrals
R �
0Hd�B. If H 2 D2;1(L

2([0; T ])),
D2;1 being Wiener-Sobolev spaces of Malliavin-Watanabe type,

DH = (DrHs : (r; s) 2 [0; T ]2) 2 L2(
� [0; T ]2):

then Z t

0
Hd�B =

Z t

0
H�B + Tr�DH(t)

where

Tr�DH(t) = lim
"!0

1

"

Z t

0
dr

Z r

(r�")_0
dsDrHs�Z �

0
H1�B;

Z �

0
H2�B

�
t

=
Z t

0
H1

sH
2
sds:

For this see [RV1, SU, Z].

4. Since the forward integral does not see any �ltration, it also coincides
with any enlargement of �ltration integral. Previous point relates pre-
cisely the integral constructed by enlargement of �ltrations and Skoro-
hod integral.

5. Dirichlet-Fukushima process.

A Dirichlet process (in the pathwise sense) is a process X of the form
X = M + A where M is a (Ft)- local martingale, and A is a zero
quadratic variation (Ft)-adapted process. This concept has been in-
spired by [Fu] who considered functions of a good stationary process
coming out from a Dirichlet form for which he could obtain the above
decomposition. We observe that

� [X;X] = [M;M ]

� If f 2 C1, Y = f(X) is again a Dirichlet process with Y = ~M + ~A
and ~Mt = f(X0) +

R t
0 f

0(X) dM where ~At = f(Xt) � ~Mt. Using
the bilinearity of the covariation, property d) stated in section 1
and example 2 we easily obtain [ ~A; ~A] � 0.

6. Extended Lyons-Zheng processes

This example is treated in details in [RVW]. For simplicity we consider
here only processes indexed by [0; 1].
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� For X = (X(t), t 2 [0; 1]); we set X̂(t) = X(1� t):

� Let F = (Ft)t2[0;1], H = (Ht)t2[0;1] be two �ltrations.

� If Y (t) � Y (0) is F -adapted and Ŷ (t) � Ŷ (0) is H-adapted then
we say that Y is weakly (F ;H)-adapted

De�nition

A continuous weakly (F ;H)-adapted process X is called a (F ;H)- LZ
process if there are M i = (M i(t), t 2 [0; 1]), i = 1; 2, V = (V (t),
t 2 [0; 1]), such that

X =
1

2
(M1 +M2) + V

and the following conditions are satis�ed:

a) M1 is a local F -martingale with

M1(0) = 0:

b) M̂2 is a local H-martingale with

M2(1) = 0:

c) V is a bounded variation process.

d) M1 �M2 is a zero quadratic variation process.

Remark 2.1 Let X be an (F ;H)-LZ process.

1) [X;X] = 1
2
([M1;M1] + [M2;M2]):

2) A time reversible semimartingale is a LZ process with respect to
the natural �ltrations.

3) If Y is a (F ;H)-weakly adapted process then we de�ne the LZ-
symmetric integral byZ t

0
Y � dX =

1

2

Z t

0
Y d�M1 �

1

2

Z 1

1�t
Ŷ d�M̂2 +

Z t

0
Y dV:

If [Y;M1 �M2] = 0 thenZ t

0
Y � dX =

Z t

0
Y d�X
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7. Delayed processes

Let � > 0; (St) a (Ft)-semimartingale and (Xt) a (F(t��)_0)-adapted
process. Then

[X;S] � 0,
Z t

0
Xd�S =

Z t

0
Xd+S =

Z t

0
XdS

8. Convolution of martingales.

This example has been explicitely discussed in [ER]. LetM be a martin-

gale and g be a continuous real function such thatXt =
Z t

0
g(t� s) dMs:

If [g(u � �); g] exists, for any u � 0, then [X;X] exists and can be
explicitely calculated.

9. Substitution formulae.

Let (X(t; x); t � 0; x 2 IRd), (Y (t; x), t � 0, x 2 IRd) semimartin-
gales depending on a parameter x, (H(t; x); t � 0; x 2 IRd) predictable
processes depending on x .

We make assumptions of Garsia-Rudemich-Rumsey type. ThenZ t

0
H(s; Z) d�X(s; Z) =

Z t

0
H(s; x) dX(s; x)

���
x=Z

[X(�; Z); Y (�; Z)] = [X(�; x); Y (�; x)
���
x=Z

Those formulas are useful for proving existence results for SDE's driven
by semimartingales with anticipating initial conditions.

10. Gaussian case.

Let (Xt) be a Gaussian process such that

m(t) = E(Xt);

K(s; t) = Cov(Xs; Xt) = E(XsXt)�m(s)m(t)

Provided [m;m] = 0, it is enough to suppose that X is a mean-zero
process.
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Proposition 2.2 We suppose :

K 2 C1(�+)

where
�+ = f(s; t) : 0 � s � tg

We denote D2K(s; s+) the restriction of D2K on the diagonal.

Then [Y; Y ]t exists, it is deterministic and it equals

a(t) = K(t; t)�K(0; 0)� 2
Z t

0
dsD2K(s; s+):

Particular cases:

- X = B : Brownian motion. K(s; t) = s ^ tZ t

0
dsD2K(s; s+) = 0) a(t) = t:

- Fractional Brownian motion.

K(s; t) = K�(s; t) =
1

2
(jsj� + jtj� � js� tj�)

a(t) = 0 1 < � < 2:

In such a case it is possible to show that the �� variation of such a
process equals t. We recall that a stochastic integral and calculus for
fractional Brownian motion has been for instance developed by [DU]
and [Z1;Z2].

Concerning forward integration, we have the following. Supposing that
K is of class C1 on �+, we set

� A1(f; f)(t) = 2E[
Z Z

1fu�v�tgf(Xu)f(Xv)f�1(u; v)X
2
u+�2(u; v)X

2
v

+�1;2(u; v)XuXv + �(u; v)gdudv,

�1; �2; �1;2 and � being four functions de�ned explicitely through
K.

� A2(f; f)(t) = E[
Z t

O
f 2(Xs)

(
@K

@u
(s; s)�

@K

@v
(s; s)

)
ds.
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� A = A1 + A2.

Theorem 2.3

(a) A(f; f) (t) � 0 8 t � 0, for every continuous and bounded real
function f .

(b) Suppose that A(f; f) < 1 then
Z t

0
f(Xs)

X(s+ ")�X(s)

"
ds,

converges, as "! 0+, in L
2 (to

Z t

O
f(Xs) d

�Xs).

(c) Moreover

E

�
(
Z t

0
f(Xs)d

�Xs)
2
�
= A(f; f) (t)

E

�Z t

0
f(Xs)d[X;X] (s)

�
= A2(f; f) (t)

E

�Z t

0
f(Xs)d

�Xs

�
=
Z t

0
E[f(Xs)Xs]

@K
@u

(s; sr)

K(s; s)
ds:

11. Normal martingales as integrators

The basis for developing forward integration with respect to a normal
martingale has been developed in [RV5].

Suppose M is a normal martingale of it is locally square integrable
martingale and hM;Mi(t); t 8 t � 0, hM;Mi being the dual projection
of the classical bracket [M;M ] (ref. [DMM]).

Let (Xt; t 2 [0; 1]) be a square integrable process, which means

(2:1) E

�Z 1

0
X2

sds

�
<1:

We suppose

(2:2) X(t) =
X
n�0

In(fn(t; �)); 8 t 2 [0; 1]

where In(fn(t; �)) is the n multiple iterated stochastic integral of fn(t; �)
with respect toM . fn(t; �) is a square integrale and symmetric function
de�ned on IRn

+.
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If M has the chaos decomposition property, every square integrable
random variable has such a decomposition. In particular (2.1) implies
that (2.2) holds. We set �(X) the Skorohod integral of X with respect
to M :

�(X) =
X
n�0

In+1( ~fn);

provided the series converges in L2, ~fn denoting the symmetrization of
fn considered as a function of n+ 1 variables.

In the Brownian case,
Z t

0
X d�M is the sum of �(X) plus a trace term.

The proof is based on the following identity :

(2:3) In(f) I1(g) = In+1( gf 
 g) + n In�1

�Z 1

0
f(t; �) g(t) dt

�
:

This property can be generalized to M , namely

In(f) I1(g) = In+1( gf 
 g) + n

Z 1

0
I1n�1(f) (t) g(t) d

�[M;M ] (t)

where (I1n�1(f) (t); t � 0) is the unique element verifying

E

�Z 1

0
I1n�1(f) (t)

2d[M;M ](t)
�

=
�Z 1

0
I1n�1(f) (t) dt

�
= n! kfk2L2(IRn

+
):

Then

(2:4)
Z 1

0
X�dM = �(X) + Tr(X)

Tr(X) =
Z 1

0
d[M;M ] (s)

(X
n

n ~I1n�1(fn(s�; s; �))

)

~I1n�1(fn(s�; s; �) = lim
"!0

1

"

Z s

s�"
I1n�1(fn(t; �)) (s) dt:

if the two series converges in L2(
).
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3 Generalized Itô processes.

For a one-dimensional process X, the existence of the quadratic variation is
equivalent to the validity of Itô formula in the sens of property 4, section 1.
This is illustrated by the following lemma.

Lemma 3.1 Let X be a process. X is a �nite quadratic variation process
if and only if

(3:1)
Z �

0
g(X) d�X exists 8 g 2 C1(IR):

Proof

Let G 2 C2 such that G0 = g. Using Itô formula,Z t

0
g(X)d�X = G(Xt)�G(X0)�

1

2

Z t

0
g0(X) d[X;X]:

Conversely if (3.1) holds,

[g(X); X]t =
Z t

0
g(X) d+X �

Z t

0
g(X) d�X exists:

Taking g(x) = x, X is proven to be a �nite quadratic variation process. 2

This result motivates the n-dimensional case.

Let fX1; : : : ; Xng having all their mutual brackets. (X1; : : : ; Xn) is called
(generalized) Itô process if

(3:2)
Z �

0
g(X)d�X i exists; 8 g 2 C1(IRn):

This means g(X) 2 IX where IX is the class of processes (Zt) such that

(3:3)
Z �

0
Zd�X i exists; 1 � i � n:
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Proposition 3.2 Let X = (X1; : : : ; Xn) an Itô process, ' 2 C2, Y =
'(X). Let (Zt) another process. If Zg(X) 2 IX ; 8 g 2 C1(IRn), then Z 2 IY
and
(3:4)Z t

0
Zd�Y =

Z t

0
Zs

� nX
i=1

@i'(Xs)d
�X i

s

�
�

1

2

Z t

0
Zs

� nX
i;j=1

@2ij'(Xs) d[X
i; Xj]s

�

Remark 3.3

i) If Z = f(X), f 2 C1 then (3.4) can be applied.

ii) (3.4) formally can be expressed as :

(3:5) d�Ys =
nX
i=1

@i'(Xs) d
�X i

s �
1

2

nX
i;j=1

@2ij'(Xs) d[X
i; Xj]s

De�nition A process X = (X1; : : : ; Xn) will be called vector Itô process
if �Z �

0
f(X)d�X i;

Z �

0
g(X)d�Xj

�
t

=
Z t

0
f(Xs)g(Xs)d[X

i; Xj]s:

Remark 3.4 If n = 1, any �nite quadratic variation process is a vector Itô
process.

4 Stochastic di�erential equations

Let (�t)t�0 a �nite quadratic variation process. We are interested by

(4:1) d�Xt = �(Xt) d
��t; X0 = �

� 2 C2
b , � any random variable.
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Remark 4.1 If (�t) is a semimartingale (even for the case � Lipschitz) there
is a solution (Xt)t�0 of

(4:2) Xt = � +
Z t

0
�(Xs) d

��s:

Proof We apply substitution method, see section 2. 2

However a serious uniqueness result was missing. The problem is
probably not well-posed in the (too large) class of all processes for which the
equation makes sense. So we have the following alternative.

a) either we restrict the class of processes X,

b) or we modify a little bit the sens of solution; of course it will be necessary
to include the classical cases.

We have chosen this second solution.

De�nition A process (Xt) is solution of (4.1) if

a) (X; �) is a vector Itô process.

b) For every Zt = '(Xt; �t), ' regular,Z t

0
Zsd

�Xs =
Z t

0
Zs�(Xs) d

��s

Remark 4.2 If (�t) is a semimartingale, then the solution which is obtained
by substitution ful�lls a) and b).

Proposition 4.3 Let (�t) be a �nite quadratic variation process, � 2 C2
b .

There is a unique solution X to problem (4.1).

Proof We give an idea of the uniqueness proof, since the existence involves
very similar arguments.
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We apply here the method developed for classical one-dimensional di�usions
by [Do] and [Su]. We consider the deterministic ow F : IR+ � IR ! IR

solution of 8<:
@F

@r
(r; x) = �(F (r; x))

F (0; x) = x:

9=; :

F is C2 and there is H : IR+ � IR! IR of class C2 such that

(4:3) F (r;H(r; x)) � x; H(r; F (r; x)) � x:

We set
Yt = H(�t; Xt):

By Itô formula we have:

(4:4) Yt = Y0 +
Z t

0

@H

@r
(�s; Xs) d

� �s +
Z t

0

@H

@x
(�s; Xs) d

�Xs +BV

where BV is a bonded variation process.

Through (4.3), we have

@H

@r
(r; x) = ��(x)

@H

@x
(r; x)

(�;X) is a vector Itô process. Using Proposition 3.2 the two stochastic inte-
grals appearing in (4.4) cancel. Then we solve pathwise (4.4) .

Extensions are possible in the following cases:

d�Xt = �(Xt) d
��t + �(t; Xt) d

�St

X0 = �

when

a) (St) semimartingale, � non-anticipating and � is Lipschitz.

b) (St) having bounded variation, � any random variable.

14



5 Extended Itô formulae

A particular class of generalized vector Itô processes is constituted by pro-
cesses X = (Xt)t�0 such that

(5:1) Z�(g) =
Z �

0
g(X)d�X

exist for any g 2 C�(IR):

Proposition 5.1

(5:1)) G(Xt) = G(X0)�
Z t

0
G0(X)d�X � [G0(X); X]t

for any G 2 C1(IR):

Proof (5.1) holds for G 2 C2. Then

(5:2) g !
Z t

0
g(Xs)

Xs+" �Xs

"
ds; g !

Z t

0
g(Xs)

Xs �X(s�")_0

"
ds

are continuous fromC(IR) to the space C(IR) of continuous processes equipped
with the ucp topology. The conclusion follows easily by Banach - Steinaus
theorem and (5.1).

Example: X: time reversible semimartingale.Z t

0
g(X)d+X = �

Z T

T�t
g(X̂)dX̂:

We remark that [G0(X); X] does not need to be of bounded variation.
If X is a Brownian motion B and f 2 Co(IR). Then [G0(X); X] is of bounded
variation if and only if G(X) is a semimartingale. This is only possible if
G is di�erence of convex functions. Therefore fG0(X); Xg have not all the

mutual brackets.

Proposition 5.2 The following properties are equivalent.

1. [Z�(g); Z�(g)] exists for any g 2 C�(IR):

15



2. [[g(X); X]; [g(X); X]] = 0; g 2 C�(IR):

3. [Z+(g); Z+(g)] exists for any g 2 C�(IR):

4. [Z�(g); Z�(g)] =
Z t

0
g2(Xs)d[X;X]s.

5. [Z+(g); Z+(g)] =
Z t

0
g2(Xs)d[X;X]s.

Remark 5.3 Results in this direction have been obtained by [RV4], for
the case of time-reversible semimartingales; [BY] obtained a similar result
for semimartingales where the bracket term is expressed by a generalized
integral involving local time. [FPS] for the case of Brownian motion, [BJ]
for the case of elliptic di�usions and [MN] for non-degenerate martingales,
explore the case of f being in W 1;2

loc .

Remark 5.4 If X =M +A, M being a time reversible semimartingale, then

[g(X); X]; g 2 C�(IR)

exists and it has zero quadratic variation. ThenZ �

0
g(X)d�A

exists and it has zero bracket.

Proposition 5.5 (Generalized Itô-Tanaka formula)

Let X = (Xt)t�0 be a �nite quadratic variation process.

[g(X),X] exists for any increasing continuous function g if and only if
Z �

0
g(X)d�X

exists for any increasing continuous function g.

Then

G(Xt) = G(X0) +
Z t

0
G0(Xs)d

�Xs +
1

2
[G0(X); X]t

for any G 2 C1(IR):

16



Remark 5.6 If (�t) in section 4 has previous properties, it is possible to
relax the assumption under which the equation

d�Xt = �(Xt)d
��t

has a solution.
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smooth nondegenerate martingales. Preprint (1998).

[N] Nualart, D., The Malliavin calculus and related topics. Springer-Verlag
1995.

[RV1] Russo, F., Vallois, P., Forward, backward and symmetric stochastic
integration. Probab. Theory Relat. Fields 97, 403-421 (1993).

[RV2] Russo, F., Vallois, P., The generalized covariation process and Itô
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SOME MAXIMAL INEQUALITIES FOR FRACTIONAL BROWNIAN

MOTIONS

ESKO VALKEILA

Abstract. We give an analogue of the Burkholder-Davis-Gundy inequalities for fractional
Brownian motions. The proof is based on kernel transformations, which transform a frac-
tional Brownian motion to a Gaussian martingale and back. This allows us to use the
martingale version of the Burkholder-Davis-Gundy inequality for the proof.

1. Introduction

1.1. Fractional Brownian motions. We work in probability space (
; F; P ). A real
valued process Z = ZH is a fractional Brownian motion with Hurst index H, if it is a
continuous Gaussian process with stationary increments and has the following properties:

i: Z0 = 0.
ii: EZt = 0 for all t � 0.
iii: EZtZs =

1
2

�
t2H + s2H � js� tj2H

�
for all s; t � 0.

The standard Brownian motion is a fractional Brownian motion with Hurst index H = 1
2
.

The process Z is self-similar and ergodic. It has p-variation index p = 1
H
.

1.2. A maximal inequality. For any process X denote by X� the supremum process:
X�

t = sups�t jXsj.

From the self-similarity it follows for the supremum process Z� that Z�at
d
= aHZ�t . Hence for

any p > 0 we have then the following result using self-similarity:

Theorem 1.1. Let T > 0 be a constant and Z a fractional Brownian motion with Hurst

index H. Then

E (Z�T )
p = K(p;H)T pH;(1.1)

where K(p;H) = E (Z�1 )
p
.

The value of the constant K(p;H) is not at our disposal.

1991 Mathematics Subject Classi�cation. 60H05, 60G15, 60J65.
Key words and phrases. fractional Brownian motions, maximal inequalities.
This is based on joint work with A. Novikov. Supported by the research grant committee of the University
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2 ESKO VALKEILA

1.3. Burkholder-Davis-Gundy inequality for continuous martingales. Let N be a
continuous martingale. Then the Burkholder-Davis-Gundy inequalities are:

Proposition 1.1. For any p > 0 and stopping time � there exists constants cp; Cp > 0 such

that

cpEhN;Nip=2� � E ((N�
� )

p) � CpEhN;Nip=2� :(1.2)

For the proof we refer to [RY, Theorem IV.4.1]. For the special case of standard Brownian
motion W we have

cpE�
p

2 � E[(W �
� )

p] � CpE�
p

2 :(1.3)

2. Transformations

2.1. The Molchan martingale M . We give some recently obtained integral representa-
tion between a fractional Brownian motion Z and the Molchan martingale M . T

The integrals below can be de�ned by integration by parts, where the singularities of the
kernels do not cause problems, due to the Hölder continuity of the fractional Brownian
motion Z (see [NVV, Lemma 2.1]).

Put m(t; s)
:
= c

C
s��(t� s)�� for s 2 (0; t) and m(t; s) = 0 for s > t, where �

:
= H � 1

2
,

C
:
=

s
H�

H � 1
2

�
B(H � 1

2
; 2� 2H)

and

c
:
=

1

B(H + 1
2
; 3
2
�H)

;

where the beta coe�cient B(�; �) for �; � > 0 is de�ned by

B(�; �)
:
=

�(�)�(�)

�(�+ �)
:

Proposition 2.1. For H 2 (0; 1) de�ne M by

Mt =

Z t

0

m(t; s)dZs:(2.1)

Then M is a Gaussian martingale, with FM = F
Z and variance hMit =

C2

4H2(2�2H)
t2�2H .

For the proof we refer to [NVV, Proposition 2.1].
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2.2. From Molchan martingale to fractional Brownian motion. For later use denote
by c2 the constant

c2
:
=

s
C2

4H2 (2� 2H)
:

Put Yt
:
=
R t

0
s

1
2
�HdZs. Then Zs =

R t

0
sH�

1
2dYs. Moreover, by de�nition

Mt =
c

C

Z t

0

(t� s)
1
2
�HdYs;

and by [NVV, Theorem 3.2]

Yt = 2H

Z t

0

(t� s)H�
1
2dMs:(2.2)

3. Burkholder-Davis-Gundy inequality for fractional Brownian motions

3.1. The result. The following generalizes (1.3) for fractional Brownian motions.

Theorem 3.1. Let � be a stopping time. Then for any p > 0 and H 2 [1=2; 1) we have

that

c(p;H)E
�
� pH

�
� E ((Z�� )

p) � C(p;H)E
�
� pH

�
;(3.1)

and for any p > 0 and H 2 (0; 1=2) we have that

c(p;H)E
�
� pH

�
� E ((Z�� )

p) ;(3.2)

where the constants c(p;H); C(p;H) > 0 depend only from parameters p;H.

3.2. Case H > 1
2
, upper bound. We give the proof of the right-hand side inequality in

(3.1).

We have that Zt =
R t

0
sH�

1
2dYs. Use integration by parts to get the upper estimate for Z�:

Z�t � 2t�Y �
t :

For the process Y use the representation (2.2) to get the estimate

Y �
t � 4Ht�M�

t :(3.3)

From these two upper bounds we derive the following upper bound

Zt � 8HM�
t t

2�:(3.4)

Note that (3.4) is valid for any stopping time � :

Z�� � 8HM�
� �

2�:

Hence for any p > 0 we have that

E (Z�� )
p � (8H)pE

�
� 2�p (M�

� )
p� :(3.5)

With Hölder's inequality, (3.5) with q = H
2�

= H
2H�1

> 1, and r = H
1�H

we get

E
�
� 2�p (M�

� )
p� � �

E� 2�qp
�1
q (E (M�

� )
pr)

1
r :(3.6)
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Apply now (1.2) to obtain

E (M�
� )

pr � cp2CpE�
(1�2�)pr

2 = cp2CpE�
pH :(3.7)

To �nish, note that the right hand side inequality in (3.1) forH > 1=2 follows from (3.6), and
(3.7) with constant C

:
= C(p;H) = (8H)p cp2Cp and Cp is the constant in the Burkholder-

Davis-Gundy inequality.

3.3. Remarks. The proof for the lower bound in the case of H < 1
2
is similar to the proof

in subsection 3.2. The proof of the lower bound in the case of H > 1
2
is longer and we refer

to [NV] for the proof.

We do not have an upper bound for the case H < 1
2
.
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STOCHASTIC DIFFERENCE EQUATIONS, DISCRETE

FOKKER-PLANCK EQUATION AND FINITE

PATH-INTEGRALS

IMME VAN DEN BERG

We consider an appropriate discretisation of the Fokker-Planck equa-

tion. Then the Feynman-Ka�c solution takes the form of a �nite path-

integral, along the paths of an associated stochastic di�erence equation.

In some special cases, such as the Black-Scholes equation, the path-

integral becomes a simple or double Riemann-sum. The transition to

continuity is made using a higher-order De Moivre-Laplace theorem,

and the nonstandard notion of shadow.
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