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OLE E. BARNDORFF-NIELSEN (MAPHYSTO, AARHUS)

oebn@imf.au.dk

Superposition of Ornstein-Uhlenbeck type processes.

Superposition of independent Gaussian Ornstein-Uhlenbeck (OU) pro-
cesses has been considered in connection with a model of neural re-
sponse (Walsh, 1981) and also from a pure mathematics point of view
(Cséki, Csorgod, Lin and Révész, 1991; Lin, 1995). Superposition of
other, that is non-Gaussian, types of OU processes were introduced in
turbulence (Barndorff-Nielsen, Jensenand Sgrensen, 1990, 1993, 1998)
and, more recently, in mathematical finance (Barndorff-Nielsen, 1998;
Barndorff-Nielsen and Shephard, 1998a,b) in order to model distribu-
tional behaviour and timewise dependence structures typically found
in observational series of, respectively, velocity differences and log as-
set returns. Existence and properties of OU processes with given one-
dimensional marginal laws are discussed in some detail and for the case
where the law is either inverse Gaussian or normal inverse Gaussian the
precise nature of the innovation process, also termed the background
driving Lévy process (BDLP), is derived. The latter two types of OU
processes are shown to yield flexible and analytically tractable models.
A rigorous approach to the definition of superposition of a continuum
of independent OU processes is outlined.
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FrED EsPEN BENTH (MAPHYSTO, AARHUS)

fredb@imf.au.dk

The Malliavin derivative for random distributions.

We extend the Malliavin derivative to random distributions which does
not admit a chaos expansion with square integrable kernels. The space
of Hida distributions is considered, were the random distributions have
a formal expansion with kernels belonging to the tempered distribu-
tions. We define the Malliavin derivative for Hida distributions and
discuss some properties of it.

As an example we calculate the Malliavin derivative of white noise,
the time derivative of Brownian motion.

JORGEN HOFFMANN-JQRGENSEN (AARHUS)

hoff@imf.au.dk

Optimal stopping times.

Let Xy,..., Xy be the return sequence in a finite or infinite number d
of games which are adapted the filter F; C ... C F;. In the theory of
optimal stopping we are confronted with the problem of integrability of
X, when 7 is a stopping time. In the literature this problem is usually
dealt with by considering stopping times 7 satisfying F|X,| < oo or
EX- < oo or 7 is bounded. In the talk, I shall show how the use of
lower and upper (conditional) expectations can be used to overcome the
problem without making any integrability restrictions on the stopping
times 7 or on the returns (X,) (the returns may even take the values
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+oo with positive probability, which is convenient in some examples).
The main stream in the literature has been the study of optimality and
computability of the global Snell stopping time. In the talk I shall turn
the view upside down and consider a given stopping time and study its
optimality properties. In particular, I shall consider

e passage times; i.e. the first time that (X,) exceeds a given se-
quence (I',) of random variables (for instance, solutions to the
backwards equations: ', = X, V E,(T'p11|Fn) a.8.)

o risk averse Snell stopping times; i.e. the optimal stopping problem
for a restricted class of “permissible” stopping times (for instance,
the set of stopping times 7 such that your loss X~ is not too
excessive at any time p < 1)

e admissible kernels; which is a powerful method of improving the
performance of a given stopping time

e unimodal stopping times; i.e. stopping times 7 such that (X,)
“increases” up to time 7 and “decreases” after time 7

e randomization of stopping times; which is a powerful method of
removing redundant information from the filter (F,)

e simple stopping times; i.e. the first time that (X,,) exceeds a given
sequence (c,) of (extended) real numbers.

MARTIN JACOBSEN (COPENHAGEN)

martin@math.ku.dk

Discretely observed diffusions:
Classes of estimating functions and criteria for choosing
good ones.

The problem considered is that of estimating the parameters of a dis-
cretely observed, ergodic homogeneous diffusion. Since the maximum
likelihood estimator (MLE) is only available in exceptional cases, var-
ious classes of estimating functions (ef’s) have been studied, including
martingale ef’s (Bibby and Sgrensen) and simple, explicit ef’s (Kessler).
In the talk some new classes are proposed, including the explicit, tran-
sition dependent ef’s. These classes are derived using ideas involving
time reversal. Further, the asymptotic theory of the estimators ob-
tained from general ef’s is surveyed and then used to discuss optimality
criteria involving the properties of the estimators when the observations
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are either close in time or very far apart, using suitable interpolations
for the in-between cases. This approach, which leads to easily verifi-
able conditions, is suggested since the more standard method of e.g.
minimizing the asymptotic variance within a class of estimators will
prove impractical for theoretical and/or numerical reasons.

THOMAS MIKOSCH (GRONINGEN)
T.Mikosch@math.rug.nl

The extremes of the periodogram.

This talk is about joint work with R.A. Davis, P. Kokoszka, G. Samorod-
nitsky and S.I. Resnick.

In the literature one can often find the vague statement that the
periodogram ordinates I, z(A;) of an iid sequence (Z;) when evaluated
at the Fourier frequencies \; = 27j/n, j =1,...,[n/2] “behave like an
iid exponential sequence”. If the underlying iid sequence is Gaussian
the I, z(\;)’s are iid exponential. But does this statement remain valid,
if we have non-Gaussian data?

In the course of the talk we consider various functions of the I, z(A;)’s.
This includes their maximum, the upper order statistics and the point
process constructed from those ordinates. Using a large deviation re-
sult by U. Einmahl (1989), one can show that these functions have
the same limit behaviour as if one replaced the I,, z(A;)’s with an iid
exponential sample. If EZ? < oo, the empirical distribution function
of the I, (\;)’s satisfies a Glivenko—Cantelli result with exponential
limit (this was proved by Freedman and Lane (1981), we have a differ-
ent proof based on Hermann Weyl’s (1916) theorem about the uniform
distribution of a sequence of real numbers), but the central limit the-
orem does not seem to work for the corresponding empirical process
since higher-order moment characteristics seem to play a role. We also
mention that weighted sums of the I, z()\;)’s (such as the empirical
spectral distribution function, MLE- and Whittle-type estimates of
the parameters of ARMA processes) depend on the higher—order mo-
ment structure of the Z,’s, so that the analogy with an iid exponential
sequence may fail.
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One has a totally different asymptotic behaviour for functions of the
I,,7(X;)’s when the Z,’s have infinite variance. An indication of this
fact is that a finite number of the I, z(\;)’s converges to a function
of an infinite variance stable process, the empirical distribution based
on the I, z();)’s converges to a random measure (this is a result by
Freedman and Lane (1980)) and the extremes have some non—standard
limit behaviour as well.

GORAN PESKIR (AARHUS)

goran@imf .au.dk

On Brownian motion in a force field.

With a view to applications in financial mathematics, we consider the
problem of Brownian motion under influence of an external force field.
In this context we discuss contributions by Einstein, Smoluchowski,
Langevin, Ornstein, Uhlenbeck, Doob, Nelson, etc.

ALBERT N. SHIRYAEV (MoOscow)

On the laws of the “downfalls” in Brownian motion.
This talk is about joint work with R. Douady and M. Yor.

For a standard Brownian motion B = (B;);<1 we consider the fol-
lowing functionals:

D = max (B;— By)
0<t<t'<1

(i.e. maximal value of the downfalls),
D1 = Bo’ — min Bt’

o<t'<1
(i.e. value of the downfall from absolute maximum B, = maxo<;<1 B
to the partial minimum min, <y < By),

Dy, = sup B; — B,

0<t<o’
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(i.e. value of the downfall from the partial maximum maxo<;<, B to
the absolute minimum B, = ming<y<; By).

Our aim is to describe probability laws of the D, D, D,. We prove,
for example, that

D' sup |By
0<t<1

and the probability density fp,(x) of D is given by the formula

o) = /230
k=1

We also show that
ED =

ED, = \/gan (= 1.1061..).
™

3

|

(=1.2533..)

and



