An addendum to ’An Introduction to Malliavin
Calculus with Applications to Economics’

- Exercises with solutions and miscellaneous notes -

Fred Espen Benth

1 Introduction

In May 1998 professor Bernt (Dksendal gave an advanced course in Malliavin
Calculus with applications to economics at the Centre for Mathematical Physics
and Stochastics (MaPhySto). The course consisted of lectures and tutorial
classes.

This note contains the exercises with suggested solutions discussed in the
classes. Notation and necessary theoretical background to understand the ex-
ercises can be found in the Lecture Notes, [@]. Also included is a section with
some remarks and theoretical results discussed in the lectures, but not treated

in [D].

2 Exercises

The “chapters” below refer to the Lecture Notes [Q].

Chapter 1 The Wiener-Ito chaos expansion

Exercise 1. Ezercises 1.1-1.3 in the Lecture Notes.

Exercise 2. Find the chaos expansion of

/0 "W ) (s)

and calculate its variance.

Exercise 3. Find the chaos expansion of

exp (W(t) - %t)

Exercise 4. Calculate the L2(Q)-norm of

exp (W(t) - %t)



Exercise 5. Find the chaos expansion to the solution X; of the stochastic dif-
ferential equation

dX; = /LXtdt + O'Xtth, t>0
XO =T

¢From its chaos expansion, calculate E[X;] and E[X?].

Chapter 2 The Skorohod integral

Exercise 1. Ezercise 2.1 in the notes.

Exercise 2. Use the definition of the Skorohod integral to calculate
T 1
/ (VO3 gy (1)
0

Exercise 3. Give conditions on g;(-) € L*([0,T]) such that

T T
X; =exp </0 9¢(8)dW (s) — %/0 gf(s)ds)

is Fy-adapted.

Chapter 4 Differentiation

Exercise 1. FEzercise 4.1-4.3 in the Lecture Notes.

Exercise 2. Find the Malliavin derivative of X;, where X; solves the stochastic
differential equations

a) dXy = pXpdt + 0 XypdWy, Xo=1z
b) dX; = pXydt + odW,, Xo==zx

Exercise 3. Consider the Ornstein-Uhlenbeck process
t t
X; :a:+u/ Xudu+/ dW (u)
0 0

Apply the Malliavin derivative Dy directly to this equation to derive that

0 ifs>t
D, X; = { eu(t—s) ZfS <t

Exercise 4. Consider the solution X; of the stochastic differential equation
t t
X, =2+ / b(Xo)du + o / AW (u)
0 0

Find D; Xy for s € [0,T]. (You can assume that b is continuously differentiable)



Exercise 5. Let ug be a stochastic process. Show that

T T
Dt/ usOW(s) = uy +/ Dyus6W(s)
0 0

You can assume that all the objects involved are well-defined.

Exercise 6. Find the Malliavin derivative DX, where X; is the solution of
t
X;==x +/ o (Xy)dW (u)
0

You can assume that o is continuously differentiable. (Hint: Make use of exer-
cise § above.)

Apply your result to the case o(x) = ox and o(x) = 0. (Check your results
with exercise 2).

Chapter 5 The Clark-Ocone formula and its generalization

Exercise 1. Ezxercises 5.1-5.4 in the Lecture Notes.

3 Solutions to exercises

Chapter 1 The Wiener-Ito Chaos Expansion
Exercise 1:

Solutions to the exercises can be found in the Lecture Notes.

Exercise 2:

Writing W (s) = [, dW (t1) we get

T T to
/OW(s)dW(s)z/O /0 AW (12)dW (t)
= Jao(f)

where f(t1,t2) = 1. f is obviously symmetric. Using the identity n!J,(f,) =
I, (fn) for n = 2, we have the chaos representation

| weave =ni)

Since the expectation is zero the variance is given by the L2(P)-norm of
fOT W (s)dW (s). But by the Chaos Representation Theorem we have

T
1
|| W @l = 215 o

1
=2.2.77
4
= Ly
2



Exercise 3:

Using Exercise 1.1.d in the Lecture Notes we have
1 2, ¢n/2 W(t)
= (ro-3)- 25 ()
o0 T tn to
= Z/ / / Lio,(t1) - - Lo, (tn)dW (t1) - - - AW (t5,)
n=0"0 0 0

In the second equality we have used equation (1.14) in the Lecture Notes with
9(s) = 1jo,4(s). Let
falte, o tn) =1 g(t) -+ 1o g(tn) = 157 (tr, - )

The function f, is symmetric. Thus

NE

exp (W(t) - %t) =3 Tu(f)

0

3
Il

Il
NE
S|~

Ta(fa)
18
n!

Recall from Exercise 3 above that exp(W (t) — t/2) has chaos expansion

oo 1®n
exp (W(t) - %t) = ZIn (%)

n=0

3
Il
<}

M

3
Il
<

Exercise 4:

The Chaos Representation Theorem gives us the L?(P)-norm of this object:

Rn
LAY S 1| Mo
n=0 L2([0,T]")
= 1 ®n (|12
= Iz go,mm)
n=0
Since ||1‘[§8’i] 132 (jo,7]~) is the volume of the n-dimensional cube in IR" with edges

of length t, we get

1 =1,
lewp (W00 = 5t) ey = 3 oyt =<

n=0

Exercise 5:

We recognize the stochastic differential equation as geometric Brownian motion,

X, = pexp ((u - %#)t + aW(t))
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Write X; like

2

Use g(s) = gljp4(s) in Exercise 1.1. ¢ in the notes to derive

exp(aw( ) ZIIQII" ( gl))

1/2

loll = ( [ t sds) = avi

> ontn/? W(t))
X = t I,
’ mexp(u)g m ( 7

o] 1®n
= zexp(ut) Z oI, ( Sit]>

n=0

Z (m exp ut —1 [0§]>

1
X = zexp(ut) exp (aW(t) — —02t>

But

Hence,

In the second equality we have made use of Exercise 3 above.
To calculate the expectation of X; note that all the I,,’s have zero expectation
except Iy. Thus
E[Xi] = Io (xvexp(ut)) = zexp(ut)
The L2(P)-norm of X; is calculated by applying the Chaos Representation The-
orem again:

EX?] = 1 Xell72(p) = Zn'llwexp ut) 1oz omm)

& Pep(ut)
n=0

o0

1
= 2? exp(2put) Z m(azt)"

n=0
= 2% exp(2ut + o*t)

Chapter 2 The Skorohod Integral

Exercise 1:

Solutions to the exercises can be found in the Lecture Notes.

Exercise 2:

(From previous exercises we have seen that exp(W (t)—t/2) has chaos expansion,

o (wo-3) -5 ()



Put )
falts, ... ,tnst) = 51%”;](151,... ,tn)

We calculate the symmetrization f,, of fy:

1
fn(tl;--- Jtn+1) = n—+1 (f"(tla ,tn;tn+1) +... +f71(t17 sti-1,ti1, .- Jtn+1;ti)+
+fn(t2, ,tn+1,t1))

where

alte, oot tign, oo s tagst) = Lo (1) - - 1jo, (ti-1) L0, (Big1) - - - Ljo,g (Brg1)

=1, iff [T 7 P 7 PR AR #
Note that for a given tuple ¢i,... ,t,41 we can always find a ¢; such that ¢; >
tl, .- 7t‘i—17ti+17 .- ,tn+1, namely ti = max1§j5n+1 tj. Thus
- 1

Tty o stng1) = CES]

We use the definition of the Skorohod integral to obtain

T 1 21 . 1
A €Xp (W(t) - §t) SW(t) = T;) HIn-‘rl (fa) = Z mfn-i-l (1)

n=0

— exp (W(t) _ %t) 1

Exercise 3:

i From the exercises in chapter 1 we know the chaos expansion of X,
= (9"
x=3 5 (%)
n=0
The adaptedness of X; can be characterized via its chaos functions by Lemma
2.5 in the notes:
1 .
X; adapted & mgfb”(tl, ceytn) =0, ift < lréljaécnti
But this is equivalent of saying that

gt(tl) . 'gt(tn) =0, ift < lréljgnti

which again is equivalent to
(3.1) 9:t(s) =0, ifs>t

Thus, to ensure adaptedness of X; we need to impose the condition (3.1).



Chapter 4 Differentiation

Exercise 1:

Solutions to the exercises can be found in the Lecture Notes.

Exercise 2:

a) The solution of the stochastic differential equation is the geometric Brownian
motion,

1
X(t) = zexp ((,u - Eaz)t + aW(t))
Applying the Malliavin derivative Dy to X (t) gives,
1
D,X(t) = zexp((u — 502)15) - Dsexp(aW (t))

= 2 exp((u — 50 )t) exp(oW (1) D, W (1)
=0X(t) - 19,4(s)

We see that the Malliavin derivative is

oX(t), s<t
DsX(t):{O ® s>t

b) The solution X (t) is the Ornstein-Uhlenbeck process:
¢
X (t) = exp(ut) (:L' + a/ exp(—pu)dW(u))
0
For our purposes it is convenient to rewrite this as
T
X (1) = exp(ut) <a: +o [ o exp(—uu)dW(w)
0

Application of the Malliavin derivative yields,

T
DX (t) = exp(ut) <aDs | toaw exp(—uu)dmu))

= exp(ut)olj,q(s) exp(—us)
= g exp(u(t — ))10,4(s)

Note that the Malliavin derivative is deterministic in the case of an Ornstein-
Uhlenbeck process, while it is stochastic for the geometric Brownian motion.

Exercise 3:

By using the rules of the Malliavin derivative we get,

t T
DX (t) = Dsx + u/ DX (u)du + Dy / 10,4 (u)dW (u)
0 0

t
= H/ D X (u)du + 119 4(s)
0



Consider the case when s > t: We prove that D, X (t) = 0 (confer Corollary 5.7
in the notes for a general statement). The equation becomes

¢
=/,¢/ D X (u)du
0

Let ps(t) = Ds;X (t) for t € [0,s). It is easily seen that p,(t) satisfies the linear
differential equation
dps(t)

= hes()
with initial condition p,(0) = 0. This implies
ps(t) =0, for all ¢ € [0, s)

and we conclude
D, X(t)=0,s>1

Consider now the case s < t: The equation for the Malliavin derivative becomes

DSX()_1+M/DX w)du

—1+/DX

by using that D;X(u) = 0 whenever s > u. Introduce again the function
ps(t) = DX (t), but this time for ¢ > s. We see that ps(t) is the solution of the
differential equation

dps(t)

g = Hes(t)t>s

with initial condition ps(s) = 1. The solution of this differential equation is
known to be

ps(t) = exp(u(t — s))
which gives
DsX(t) = eXp(p’(t - S))at >s

Exercise 4:

First of all note that since X (¢) is adapted, Ds;X (t) is zero when s > ¢ by
Corollary 5.7 in the notes. Consider s < ¢ and apply the Malliavin derivative
directly to the stochastic differential equation:

D,X(t D:c+/b’ W) D, X (u )du+D/ 0.(w)odW ()

- / V(X () Do X (w)du + 010,4(s)
Define
ps(t) = D X(2)
It is easily seen that ps(s) = o and

dps(t)
dt

=b(X(1)ps(t), t>s



This differential equation has the solution

¢
) =oexp ([ VCx )
Thus we have proved that the Malliavin derivative D, X (t) is
¢
_ [ oexp(f, V(X (u)du) , s<t
DsX(t)_{O , s>t

Exercise 5:

The proof of the result can be found in the Lecture Notes, Theorem 5.12. The
following argument is, however, a direct calculation showing the relation: Let

(From the definition of the Malliavin derivative and the Skorohod integral, we
have

T [e]
D, / usW(s) = Dy | Y Tna (iin)
0 n=0

= 3" 0+ DIl 1)
n=0
= 1
— nz:%(n + 1), (n T l{un(tl, cestnt) oo ug(to, . ,tn,t;tl)})
= i In(un(,t)) + i[n (i un(tt, Ce ,f,', Ce ,tn,t;tz’)>
n=0 n=0 =1
= ug + inIn(symm Un (-, 1))

n=0

where the notation #; means that ¢; is removed and symm wu,(-,t;-) is the sym-
metrization of the function u, (t1,. .. ,t,—1,t;t,) for fixed t. Consider fOT DyugdW(s):

/0 s (s) = /0 '

n=0

o]

nl, 1(uy(-,t; s))) oW (s)

n=0

which proves the relation.

Exercise 6:

Corollary 5.7 gives that D, X (t) = 0 whenever s > ¢ since X (¢) is adapted.
Consider the case s < t. Applying the Malliavin derivative directly to the



stochastic differential equation and then using the relation from exercise 5 above,
we get

DX (t) = Dsz + D, /0 ' 10,1 (u)o (X (u))dW (u)
= o(X ()0 (s) + | "Dy (110 o (X @) 6 ()
= o(x(e) + | 0! (X)) Dy X ()oTW (u)
= o(X(s)) + / " o (X (u)) D X ()W ()

By corollary 5.7 again, we know that D,X (u) is adapted with respect to the
variable u. Thus

D, X(t) =o(X(s)) + / o' (X (u))Ds X (u)dW (u)

We observe that the equation for DX (t) is a linear stochastic differential equa-
tion with a stochastic coefficient and initial variable. Moreover, o(X(s)) is
independent of W (u) when u > s. Hence we get

1

D, X(t) =0(X(s))exp (—5 /St o' (X (u))?du + /st 0'(X(u))dW(u))

Letting o(z) = oz or o(z) = o we reobtain the results from exercise 2 above.

Chapter 5 The Clark-Ocone Formula and its Generalization
Exercise 1:

Solutions to the exercises can be found in the Lecture Notes.

4 Miscellaneous Results and Remarks presented
in the lectures

Proof of Ito’s identity between n-fold Wiener integrals and
Hermite polynomials (eq. (1.14) in the Lecture Notes.)

The following argument was suggested by F. Oertel from University of Bonn,
Germany.
Define the “normalized” Hermite polynomial

H,(z,)) := \"2h, <%)

(From the series representation
[ee) t"

exp(tz — tA?/2) = Z mHn(m,)\)

n=0

10



we derive the following properties:

0
%Hn(m,)\) =nH,_1(z,\)
0? 0

The proof of the identity

T
L(g®") = Ha / 9()dW (3), lg]>)
goes by induction on n:

Ing1(g®2™ ) = (n + 1)Wnp1 (92" Spt1)
T
= (n+1) / 9(8) L (¢®™)dW (s)
0

where we have restricted the I, inside the integral to [0, s]”. Using the Induction
Assumption, we have

T S
L1 (g®")) = (n + 1)/ g(s)Hn(/ g(w)dW (), 91220, AW ()
T 5 ° 0 2
_/0 %HH-H(/O g(u)dW(u)7||g||L2([0’S]))dW(8)
T
- ”+1(/0 9(s)dW (), [lg]1*)

In the last equality we have used the Itos Formula and the second property of
H,, stated above.

Remark to the chaos representation theorem

In the Chaos Representation Theorem it was proved that every ¢ € L2(P) has
a representation

¢ = Z In(fn)
n=0

where f,(-) € L2([0,T]"). We here prove that this representation is unique:

Proof. Let ¢ = 27 In(g9n) be another expansion of ¢. Then by linearity of
the n-fold Wiener integrals we have

0= Z L.(fn — gn)
n=0

But this expansion will have L2(P)-norm equal to

o0

0= Z nl||fn — gn||2L2([0,T]")

n=0

Hence, f, = g, a.e. O

11



How to calculate the functions in the chaos expansion

The following characterization of the chaos functions is taken from Ustunel, [U]:
Let ¢ € L?*(P) have the chaos representation ¢ = Y- | I,(f»). Then

Faltrs. . o) = %E[Dtl .-Dy. 4]

D; denotes the Malliavin Derivative.

On the adjointness of Malliavin differentiation and Skoro-
hod integration

The Malliavin derivative transforms random variables into stochastic processes,
while the Skorohod integral maps stochastic processes into random variables,
D :L*(Q) = L*([0,T] x Q)
§:L*([0,T] x Q) — L*(Q)
(we suppress the domain of definition to illustrate the action of the two oper-

ators). We have the following adjointness relation (see e.g. Nualart, [N]): If
F € Dy and u; € Dom(d),

E[Fé(u)] = E [(D¢F,ut) 120,10

where (-,-)£2(jo,17) is the inner product of L*([0,T7]).

Generalization of the Clark-Ocone Formula

The following extension of the Clark-Ocone Formula has been proved by Aase,
Oksendal and Ubge, [AaQU]:

Define the spaces Gy for A € IR as the set of random variables F' € L?(Q)
where

o0
IFI3 5 == D nle® || fullZao,17)

n=0

The f,’s are the chaos functions of F'. Defining
G :=NMx>00x

and
G* :=Ux>0G-x

we have the following triplet of smooth and generalized random variables:

G Cc L*u) CG*

Note that G and G* are dual spaces, where G is equipped with the projective
limit topology and G* the inductive limit topology.

The Malliavin derivative is extended to the space G* such that the following
holds:

D;® = i TLInfl((I)n('J t))

n=1

12



whenever D;® € G*. In the sense of random distributions, the Clark-Ocone
formula is proved for Malliavin differentiable elements in G*:

T
d = E[®] + / E[D;®|F,)dW (t)
0

The formula also has a multi-dimensional analogue. Conditional expectation
and Wiener integration can be defined for distributions in G*. We refer to
[Aa@U] for details.

More information about the spaces G and G* can be found in [PT].

References

[Aa@U] K. Aase, B. Oksendal and J. Ubge: White Noise Generalizations of the
Clark-Ocone Formula. Manuscript, University of Oslo, Norway, 1998.

[N] D. Nualart: “The Malliavin Calculus and Related Topics”. Springer-Verlag,
1995.

[A] B. Oksendal: An Introduction to Malliavin Calculus with Applications to
Economics. Working Paper No. 3/96, Norwegian School of Economics,
Bergen, Norway, 1996. (Lecture Notes).

[PT] J. Potthoff and M. Timpel: On a Dual Pair of Spaces of Smooth and
Generalized Random Variables. Potential Analysis, 4, 1995. pp. 637-654.

[U] A. S. Ustunel: “An Introduction to Analysis on Wiener Space”. Lecture
Notes in Mathematics 1610, Springer-Verlag, 1995.

13



