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Abstract

In this paper we continue our studies, initiated in [BT1],[BT2] and [BT3], of the con-
nections between the classes of infinitely divisible probability measures in classical and in
free probability. We show that the free cumulant transform of any freely infinitely divisible
probability measure equals the classical cumulant transform of a certain classically infinitely
divisible probability measure, and we give several characterizations of the latter measure,
including an interpretation in terms of stochastic integration. We find, furthermore, an al-
ternative definition of the Bercovici-Pata bijection, which passes directly from the classical
to the free cumulant transform, without passing through the Lévy-Khintchine representa-
tions (classical and free, respectively). As a byproduct, of some independent interest,
the derivation in the final section establishes the existence of a one-to-one mapping
of the class of Levy measures into a subset of that class, whose elements have den-
sities, the restrictions to ]−∞, 0[ and ]0,∞[ of which are representable as Laplace
transforms.

1 Introduction.

The classes ID(∗) and ID(�) of probability distributions on R that are infinitely divisible
in the classical and the free sense, respectively, are connected by a bijective mapping - the
Bercovici-Pata bijection Λ : ID(∗) → ID(�). This mapping has several useful algebraic
and topological properties and preserves the properties of stability and selfdecompos-
ability. Moreover, by suitable definition of the free cumulant transform, the connection
between the free and classical Lévy-Khintchine representations of a probability law µ in
ID(∗) and its counterpart Λ(µ) in ID(�) is determined simply by µ and Λ(µ) having
the same characteristic triplet (classical and free, respectively). These properties can be
used to define free Lévy processes and integration with respect to such processes. See
[BT1],[BT2],[BT3] and references given there.
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The present note establishes a further connection between free and classical infinite divis-
ibility. We show that there exists a one-to-one mapping Υ : ID(∗) → ID(∗) such that, for
any µ in ID(∗), the free cumulant transform CΛ(µ)(z) (defined as indicated above) of Λ(µ)
is equal to the classical cumulant transform CΥ(µ)(ζ) of Υ(µ), when z = iζ and ζ ≤ 0. The
mapping Υ has algebraic and topological properties similar to those of Λ but, remarkably,
Υ(ID(∗)) is a proper subset of ID(∗). Furthermore, the law Υ(µ) is identifiable as that
of a certain stochastic integral with respect to the (classical) Lévy process (Yt) for which
the law of Y1 is equal to µ. We establish, further, a formula (see formula (4.1)) linking
the classical cumulant transform Cµ of µ directly with the free cumulant transform CΛ(µ)

of Λ(µ). This formula provides, thus, an alternative definition of Λ, which by-passes the
intermediate step of the Lévy-Khintchine representations (classical and free, respectively).

Section 2 provides background material on infinite divisibility in free probability. In
Section 3 the mapping Υ is introduced, and in Section 4 its relation to free infinite
divisibility is established. In Section 5 we derive some algebraic properties of Υ, similar
to those of Λ, and we note, as immediate consequences, that Υ preserves the notions of
stability and selfdecomposability. Section 6 derives the stochastic integral interpretation
of Υ, based on some initial considerations on stochastic integration w.r.t. (classical) Lévy
processes. In the final Section 7, we establish that the Lévy measure for any probability
measure in the range of Υ is absolutely continuous w.r.t. Lebesgue measure, and we give
an explicit formula for the density. Furthermore, we use this formula to calculate some
examples. The results in Section 7 do not, in fact, involve any notions from free probability
and concern a Laplace-like one-to-one transformation of arbitrary Lévy measures to Lévy
measures that, in particular, are absolutely continuous w.r.t. Lebesgue measure.

2 Background.

In this section we review briefly, for the readers convenience, the basic definitions from
the theory of infinite divisibility in free probability. For a more detailed account of that
theory we refer to [BT1] or [BT2].

AW ∗-probability space is a pair (A, τ) where A is a von Neumann algebra (acting on some
Hilbert space H) and τ is a faithful normal tracial state on A. Suppose a is a (possibly
unbounded) selfadjoint operator in H. Then a is affiliated with A if f(a) ∈ A for any
bounded Borel function f : R → R (here f(a) is defined in terms of spectral calculus).

Suppose a is a selfadjoint operator affiliated with A. Then, by the Riesz representation
theorem, there exists a unique probability measure µa on (R,B), satisfying that∫

R

f(t) µa(dt) = τ(f(a)), (2.1)

for any bounded Borel function f : R → R. We refer to the measure µa as the (spectral)
distribution of a w.r.t. τ , and we denote it also by L{a} (the law of a).

In the early 1980’s, D.V. Voiculescu introduced the notion of free independence among
non-commutative random variables:
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2.1 Definition. Let a1, a2, . . . , ar be selfadjoint operators affiliated with aW ∗-probability
space (A, τ). We say then that a1, a2, . . . , ar are freely independent w.r.t. τ , if

τ
{
[f1(ai1)− τ(f1(ai1))][f2(ai2)− τ(f2(ai2))] · · · [fp(aip)− τ(fp(aip))]

}
= 0,

for any p in N, any bounded Borel functions f1, f2, . . . , fp : R → R and any indices
i1, i2, . . . , ip in {1, 2, . . . , r} satisfying that i1 6= i2, i2 6= i3, . . . , ip−1 6= ip.

If a1 and a2 are two freely independent operators affiliated with (A, τ), then their sum
is again a selfadjoint operator affiliated with (A, τ), and the distribution L{a1 + a2} of
a1 + a2 is uniquely determined by the marginals L{a1} and L{a2} (cf. [BV]). Hence, one
may define the free convolution L{a1} � L{a2} of L{a1} and L{a2} to be L{a1 + a2}.
Furthermore, any given probability measures µ and ν on R can be realized as the marginals
L{a1} and L{a2} for two freely independent selfadjoint operators a1 and a2 affiliated with
a suitable W ∗-probability space. Thus, free (additive) convolution � is a well-defined
binary operation on the class of all Borel probability measures on R. Having defined free
convolution, we may subsequently define free infinite divisibility exactly as in the classical
case:

2.2 Definition. A probability measure µ on R is infinitely divisible w.r.t. free convolution
(or just �-infinitely divisible), if there exists, for any n ∈ N, a probability measure µn on
R, such that

µ = µn � µn � · · ·� µn︸ ︷︷ ︸
n terms

.

We denote by ID(�) the class of �-infinitely divisible probability measures on R.

In a similar fashion, one may introduce the classes of stable and selfdecomposable prob-
ability measures in free probability, simply by replacing classical convolution ∗ by free
convolution � in the classical definitions of these concepts. Thus, a probability mea-
sure µ on R belongs to the class S(�) of freely stable probability measures, if the set
{ψ(µ) | ψ : R → R increasing affine function} of increasing affine transformations of µ is
closed under �. Similarly, µ belongs to the class L(�) of freely selfdecomposable proba-
bility measures if there exists, for any c in ]0, 1[, a probability measure µc on R, such that
µ = Dcµ � µc. Here, Dc denotes dilation by c, i.e., Dcµ(B) = µ(c−1B) for any Borel set
B in R.

If µ is a probability measure on R, we denote by Cµ the (classical) cumulant transform of
µ, i.e., Cµ = log(fµ), where fµ denotes the characteristic function (or Fourier transform)
of µ. Recall that µ is infinitely divisible in the classical sense if and only if Cµ has the
Lévy-Khintchine representation:

Cµ(u) = iηu− 1
2
au2 +

∫
R

(
eiut − 1− iut1[−1,1](t)

)
ρ(dt), (u ∈ R),

where η ∈ R, a ≥ 0 and ρ is a Lévy measure on R, i.e.,

ρ({0}) = 0 and

∫
R

min{1, x2} ρ(dx) <∞.
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The triplet (a, ρ, η) is uniquely determined, and it is called the generating triplet for µ.

The free analog of the cumulant transform, the so-called R-transform, was introduced by
Voiculescu in [Vo]. Its main property is that it linearizes free convolution, just as the
classical cumulant transform linearizes classical convolution. Furthermore, a probabil-
ity measure is uniquely determined by its R-transform, and the free infinitely divisible
measures can be characterized as those measures for which the R-transform has a cer-
tain representation, the free Lévy-Khintchine representation (cf. [BV]). We prefer, in this
note, to work with a slight modification of the R-transform, which we refer to as the
free cumulant transform. For the exact definitions of the R-transform and free cumulant
transform we refer to [BT1] or [BT2]. In terms of the free cumulant transform, the free
Lévy-Khintchine representation, mentioned above, takes the following form:

2.3 Theorem. A probability measure ν on R is �-infinitely divisible if and only if there
exist a non-negative number a, a real number η and a Lévy measure ρ, such that the free
cumulant transform Cν has the representation:

Cν(z) = ηz + az2 +

∫
R

( 1

1− tz
− 1− tz1[−1,1](t)

)
ρ(dt), (z ∈ C, Im(z) < 0). (2.2)

In that case, the triplet (a, ρ, η) is uniquely determined and is called the free generating
triplet for ν.

The following bijection was introduced and studied by Bercovici and Pata in [BP]. The
definition, we give below, is in terms of the generating triplets (classical and free, respec-
tively), in contrast to the original definition given in [BP].

2.4 Definition. The Bercovici-Pata bijection is the mapping Λ: ID(∗) → ID(�) defined
in the following way: Suppose µ is in ID(∗) and has generating triplet (a, ρ, η). Then
Λ(µ) is the measure in ID(�) with free generating triplet (a, ρ, η).

At a first glance, the Bercovici-Pata bijection might seem as a very formal correspondence.
The following result, however, shows that it is of a deeper nature:

2.5 Theorem. ([BT1]) The Bercovici-Pata bijection Λ: ID(∗) → ID(�), satisfies:

(i) If µ1, µ2 ∈ ID(∗), then Λ(µ1 ∗ µ2) = Λ(µ1) � Λ(µ2).

(ii) If µ ∈ ID(∗) and c ∈ R, then Λ(Dcµ) = DcΛ(µ).

(iii) For any c in R, Λ(δc) = δc, where δc denotes the Dirac measure at c.

(iv) Λ is a homeomorphism w.r.t. weak convergence.

For proofs of the statements (i)-(iv) above, we refer to [BT1].
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3 The mapping Υ: ID(∗) → ID(∗).
Recall that for any measure µ on R and any positive constant c, we denote by Dcµ the
dilation of µ by c, i.e. the measure on R given by:

Dcµ(B) = µ(c−1B),

for any Borel set B in R.

3.1 Definition. For any µ in ID(∗), with generating triplet (a, ρ, η), we take (µ) to be
the element of ID(∗) whose generating triplet is (2a, ρ̃, η̃) where

η̃ = η +

∫ ∞

0

(∫
R

t
(
1[−1,1](t)− 1[−x,x](t)

)
Dxρ(dt)

)
e−x dx (3.1)

and

ρ̃ =

∫ ∞

0

(Dxρ)e
−xdx. (3.2)

In a series of lemmas, we verify, next, that the above definition is meaningful, i.e., that
the integral in (3.1) is well-defined and the measure ρ̃ is a Lévy measure.

3.2 Lemma. Let ρ be a Lévy measure on R and consider the Markov kernel (Dxρ)x∈]0,∞[.
Then the mixed measure

ρ̃ =

∫ ∞

0

(Dxρ)e
−x dx,

is again a Lévy measure.

Proof. We show first that
∫

R\[−1,1]
1 ρ̃(dt) <∞. Note for this that

∫
R\[−1,1]

1 ρ(dt) = ρ̃(R \ [−1, 1]) =

∫ ∞

0

Dxρ(R \ [−1, 1])e−x dx

=

∫ ∞

0

ρ(R \ [−x−1, x−1])e−x dx.

If 0 < x ≤ 1, then

ρ(R \ [−x−1, x−1]) ≤ ρ(R \ [−1, 1]) ≤
∫

R

min{1, t2} ρ(dt),

and if x > 1,

ρ(R \ [−x−1, x−1]) ≤
∫

[−1,1]\[−x−1,x−1]

x2t2 ρ(dt) +

∫
R\[−1,1]

1 ρ(dt) ≤ x2

∫
R

min{1, t2} ρ(dt).
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We conclude, thus, that∫
R\[−1,1]

1 ρ̃(dt)

≤
∫ 1

0

(∫
R

min{1, t2} ρ(dt)
)
e−x dx+

∫ ∞

1

x2
(∫

R

min{1, t2} ρ(dt)
)
e−x dx

=

∫
R

min{1, t2} ρ(dt)
∫

R

max{1, x2}e−x dx <∞.

(3.3)

We show next that
∫ 1

−1
t2 ρ̃(dt) <∞. Note that

∫ 1

−1

t2 ρ̃(dt) =

∫ ∞

0

(∫ 1

−1

t2Dxρ(dt)
)
e−x dx

=

∫ ∞

0

(∫
R

x2t21[x−1,x−1](t)ρ(dt)
)
e−x dx.

If x ≥ 1, we find that

∫
R

x2t21[−x−1,x−1](t) ρ(dt) ≤ x2

∫
R

t21[−1,1](t) ρ(dt) ≤ x2

∫
R

min{1, t2} ρ(dt),

and, if 0 < x < 1,

∫
R

x2t21[−x−1,x−1](t) ρ(dt) = x2

∫ 1

−1

t2 ρ(dt) + x2

∫
R

t21[−x−1,x−1]\[−1,1](t) ρ(dt)

≤ x2

∫ 1

−1

t2 ρ(dt) + x2

∫
R

x−21[−x−1,x−1]\[−1,1](t) ρ(dt)

≤
∫ 1

−1

t2 ρ(dt) +

∫
R

1R\[−1,1](t) ρ(dt)

=

∫
R

min{1, t2} ρ(dt).

We conclude, thus, that

∫ 1

−1

t2 ρ̃(dt) =

∫ 1

0

(∫
R

min{1, t2} ρ(dt)
)
e−x dx+

∫ ∞

1

x2
(∫

R

min{1, t2} ρ(dt)
)
e−x dx

=

∫
R

min{1, t2} ρ(dt)
∫

R

max{1, x2}e−x dx <∞.

(3.4)

Combining (3.3) and (3.4), it follows that ρ̃ is a Lévy measure. �
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3.3 Lemma. Let ρ be a Lévy measure on R. Then for any x in ]0,∞[, we have that

∫
R

∣∣ux · (1[−1,1](ux)− 1[−x,x](ux)
)∣∣ ρ(du) <∞.

Furthermore,

∫ ∞

0

(∫
R

∣∣ux · (1[−1,1](ux)− 1[−x,x](ux)
)∣∣ ρ(du))e−x dx <∞.

Proof. Note first that for any x in ]0,∞[ we have

∫
R

∣∣ux · (1[−1,1](ux)− 1[−x,x](ux)
)∣∣ ρ(du)

=

∫
R

∣∣ux · (1[−x−1,x−1](u)− 1[−1,1](u)
)∣∣ ρ(du)

=



x

∫
R
|u| · 1[−x−1,x−1]\[−1,1](u) ρ(du), if x ≤ 1,

x
∫

R
|u| · 1[−1,1]\[−x−1,x−1](u) ρ(du), if x > 1.

Note then that whenever 0 < ε < K, we have

|u| · 1[−K,K]\[−ε,ε](u) ≤ min{K, u2

ε
} ≤ max{K, ε−1}min{u2, 1},

for any u in R. Hence, if 0 < x ≤ 1, we find that

x

∫
R

∣∣u · (1[−x−1,x−1](ux)− 1[−1,1](u)
)∣∣ ρ(du) ≤ xmax{x−1, 1}

∫
R

min{u2, 1} ρ(du)

=

∫
R

min{u2, 1} ρ(du) <∞,

since ρ is a Lévy measure. Similarly, if x ≥ 1,

x

∫
R

∣∣u · (1[−1,1](ux)− 1[−x−1,x−1](ux)
)∣∣ ρ(du) ≤ xmax{1, x}

∫
R

min{u2, 1} ρ(du)

= x2

∫
R

min{u2, 1} ρ(du) <∞.

Altogether, we find that

∫ ∞

0

(∫
R

∣∣ux · (1[−1,1](ux)− 1[−x,x](ux)
)∣∣ ρ(du))e−x dx

≤
∫

R

min{u2, 1} ρ(du) ·
(∫ 1

0

e−x dx+

∫ ∞

1

x2e−x dx
)
<∞,

as asserted. �
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3.4 Remark. In connection with (3.1), note that it follows from Lemma 3.3 above that
the integral ∫ ∞

0

(∫
R

u
(
1[−1,1](u)− 1[−x,x](u)

)
Dxρ(du)

)
e−x dx,

is well-defined. Indeed,

∫ ∞

0

(∫
R

∣∣u(1[−1,1](u)− 1[−x,x](u)
)∣∣Dxρ(du)

)
e−x dx

=

∫ ∞

0

(∫
R

∣∣ux(1[−1,1](ux)− 1[−x,x](ux)
)∣∣ ρ(du))e−x dx.

4 Relation to free probability.

The purpose of this section is to prove the following

4.1 Theorem. For any µ ∈ ID(∗) we have

CΥ(µ)(ζ) = CΛ(µ)(iζ) =

∫ ∞

0

Cµ(ζx)e−x dx, (ζ ∈ ]−∞, 0[). (4.1)

In particular, any free cumulant function of an element in ID(�) is, in fact, identical to a
classical cumulant function of an element of ID(∗). Furthermore, the second equality in
(4.1) provides an alternative, more direct, way of passing from the measure µ to its free
counterpart, Λ(µ), without passing through the Lévy-Khintchine representations. This
way is often quite effective, when it comes to calculating Λ(µ) for specific examples of µ.

In order to prove Theorem 4.1, we first need the following technical result:

4.2 Lemma. Let ρ be a Lévy measure on R. Then for any number ζ in ] −∞, 0[, we
have that ∫ ∞

0

(∫
R

∣∣eiζtx − 1− iζtx1[−1,1](t)
∣∣ ρ(dt))e−x dx <∞.

Proof. Let ζ from ]−∞, 0[ and x in [0,∞[ be given. Note first that

∫
R\[−1,1]

∣∣eiζtx − 1− iζtx1[−1,1](t)
∣∣ ρ(dt) =

∫
R\[−1,1]

∣∣eiζtx − 1
∣∣ ρ(dt)

≤ 2

∫
R\[−1,1]

min{1, t2}ρ(dt)

≤ 2

∫
R

min{1, t2}ρ(dt).

8



To estimate
∫ 1

−1
|eiζtx−1− iζtx| ρ(dt), note that for any real number t, we have by second

order Taylor expansion that

eiζtx − 1− iζtx = (cos(ζtx)− 1) + i(sin(ζtx)− ζtx)

= −1

2
cos(ξ1)(ζtx)

2 − 1

2
i sin(ξ2)(ζtx)

2

= −1

2

[
cos(ξ1) + i sin(ξ2)

]
(ζtx)2,

for suitable numbers ξ1 and ξ2 in the interval between 0 and ζtx. In particular, it follows
that ∣∣eiζtx − 1− iζtx

∣∣ ≤ 1

2

(
12 + 12

)1/2
(ζtx)2 =

1√
2
(ζtx)2,

for any real number t, and hence∫ 1

−1

∣∣eiζtx − 1− iζtx
∣∣ ρ(dt) ≤ 1√

2
(ζx)2

∫ 1

−1

t2 ρ(dt) ≤ 1√
2
(ζx)2

∫
R

min{1, t2} ρ(dt).

Altogether, we find that for any number x in [0,∞[,∫
R

∣∣eiζtx − 1− iζtx1[−1,1](t)
∣∣ ρ(dt) ≤ (

2 +
1√
2
(ζx)2

)∫
R

min{1, t2} ρ(dt),

and therefore ∫ ∞

0

(∫
R

∣∣eiζtx − 1− iζtx1[−1,1](t)
∣∣ ρ(dt))e−x dx

≤
∫

R

min{1, t2} ρ(dt)
∫ ∞

0

(
2 +

1√
2
(ζx)2

)
e−x dx <∞,

as desired. �

We are now ready to prove the key property of the mapping Υ.

Proof of Theorem 4.1. Recall first that for any z ∈ C with Rez < 1 we have

1

1− z
=

∫ ∞

0

ezxe−xdx

implying that for ζ real with ζ ≤ 0

1

1− iζt
− 1− iζt1[−1,1](t) =

∫ ∞

0

(
eiζtx − 1− iζtx1[−1,1](t)

)
e−xdx (4.2)

Now, let µ from ID(∗) be given and let (a, ρ, η) be the generating triplet for µ. Then by
the definition of Λ and (4.2) above, we find for ζ in ]−∞, 0[ that

CΛ(µ)(iζ) = −aζ2 + iηζ +

∫
R

( 1

1− iζt
− 1− iζt1[−1,1](t)

)
ρ(dt)

= −aζ2 + iηζ +

∫
R

∫ ∞

0

(
eiζtx − 1− iζtx1[−1,1](t)

)
e−xdxρ(dt)

= −aζ2 + iηζ +

∫ ∞

0

e−x

∫
R

(
eiζtx − 1− iζtx1[−1,1](t)

)
ρ(dt)dx,

(4.3)
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where we have changed the order of integration in accordance with Lemma 4.2.

We first establish the second equation in (4.1). Recalling the formula

n! =

∫ ∞

0

xne−x dx, (n ∈ N).

and using this for n = 1 and n = 2, we find that

CΛ(µ)(iζ) =

∫ ∞

0

e−x
(
− 1

2
aζ2x2 + iηζx+

∫
R

(
eiζtx − 1− iζtx1[−1,1](t)

)
ρ(dt)

)
dx,

=

∫ ∞

0

e−xCµ(ζx)dx,

which proves the second equation in (4.1).

To prove the first equation in (4.1), we continue the calculation in (4.3) in another way:

CΛ(µ)(iζ) = −aζ2 + iηζ +

∫ ∞

0

(∫
R

(
eiζtx − 1− iζtx1[−1,1](t)

)
ρ(dt)

)
e−x dx,

= −aζ2 + iηζ +

∫ ∞

0

(∫
R

(
eiζtx − 1− iζtx1[−x,x](tx)

)
ρ(dt)

)
e−x dx,

= −aζ2 + iηζ +

∫ ∞

0

(∫
R

(
eiζu − 1− iζu1[−x,x](u)

)
Dxρ(du)

)
e−xdx

= −aζ2 + iηζ +

∫ ∞

0

(∫
R

(
eiζu − 1− iζu1[−1,1](u)

)
Dxρ(du)

)
e−xdx

+ iζ
[ ∫ ∞

0

(∫
R

u
(
1[−1,1](u)− 1[−x,x](u)

)
Dxρ(du)

)
e−x dx

]

= −aζ2 + iη̃ζ +

∫
R

(
eiζu − 1− iζu1[−1,1](u)

)
ρ̃(du),

where (cf. Remark 3.4)

η̃ = η +

∫ ∞

0

(∫
R

t
(
1[−1,1](t)− 1[−x,x](t)

)
Dxρ(dt)

)
e−x dx

and

ρ̃ =

∫ ∞

0

(Dxρ)e
−xdx.

Comparing with Definition 3.1, the calculation above shows that CΛ(µ)(iζ) = CΥ(µ)(ζ).
This concludes the proof. �

5 Properties of the mapping Υ.

The following proposition lists a number of properties of the mapping Υ. These properties
are all consequences of the corresponding properties for Λ (cf. Theorem 2.5) together with
the key property (4.1) of Υ.
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5.1 Proposition. The mapping Υ: ID(∗) → ID(∗) has the following properties:

(i) Υ is injective.

(ii) For any measures µ, ν in ID(∗), Υ(µ ∗ ν) = Υ(µ) ∗Υ(ν).

(iii) For any measure µ in ID(∗) and any constant c in R, Υ(Dcµ) = DcΥ(µ).

(iv) For any constant c in R, Υ(δc) = δc.

(v) Υ is continuous w.r.t. weak convergence.

Proof. (i) Assume that µ, ν ∈ ID(∗) and that Υ(µ) = Υ(ν). Then, by (4.1), CΛ(µ) = CΛ(ν),
and hence Λ(µ) = Λ(ν) (cf. Section 2). Since Λ is one-to-one (cf. Section 2), this implies
that µ = ν, as desired.

(ii) Consider measures µ, ν from ID(∗). Then for any negative number ζ ,

CΥ(µ∗ν)(ζ) = CΛ(µ∗ν)(iζ) = CΛ(µ)�Λ(ν)(iζ) = CΛ(µ)(iζ) + CΛ(ν)(iζ)

= CΥ(µ)(ζ) + CΥ(ν)(ζ) = CΥ(µ)∗Υ(ν)(ζ),

and hence, denoting by fσ the characteristic function of a probability measure σ,

fΥ(µ∗ν)(ζ) = exp(CΥ(µ∗ν)(ζ)) = exp(CΥ(µ)∗Υ(ν)(ζ)) = fΥ(µ)∗Υ(ν)(ζ).

If ζ > 0, then

fΥ(µ∗ν)(ζ) = fΥ(µ∗ν)(−ζ) = fΥ(µ)∗Υ(ν)(−ζ) = fΥ(µ)∗Υ(ν)(ζ).

Thus, the characteristic functions fΥ(µ∗ν) and fΥ(µ)∗Υ(ν) coincide on R\{0}, and, of course,
also at 0. This implies that Υ(µ ∗ ν) = Υ(µ) ∗Υ(ν), as desired.

(iii) Consider a measure µ in ID(∗) and a constant c in R. Then for any negative number
ζ ,

CΥ(Dcµ)(ζ) = CΛ(Dcµ)(iζ) = CDcΛ(µ)(iζ) = CΛ(µ)(icζ) = CΥ(µ)(cζ) = CDcΥ(µ)(ζ).

Arguing now exactly as in the proof of (ii), we may conclude that Υ(Dcµ) = DcΥ(µ), as
desired.

(iv) Let c be a real constant. Then δc has generating triplet (0, 0, c), and it follows
immediately from the definition of Υ, that Υ(δc) has generating triplet (0, 0, c) too. Hence
Υ(δc) = δc.

(v) Let µ, µ1, µ2, µ3, . . ., be probability measures in ID(∗), such that µn
w→ µ, as n→∞.

We need to show that Υ(µn)
w→ Υ(µ) as n → ∞. Since Λ is continuous w.r.t. weak

convergence, Λ(µn)
w→ Λ(µ), as n → ∞, and this implies that CΛ(µn)(iζ) → CΛ(µ)(iζ), as

n→∞, for any ζ in ]−∞, 0[ (cf. e.g. [BT1, Theorem 3.8]). Thus,

CΥ(µn)(ζ) = CΛ(µn)(iζ) −→
n→∞

Cµ(iζ) = CΥ(µ)(ζ),

11



for any negative number ζ , and hence also fΥ(µn)(ζ) = exp(CΥ(µn)(ζ)) → exp(CΥ(µ)(ζ)) =
fΥ(µ)(ζ), as n → ∞, for such ζ . Applying now complex conjugation, as in the proof of
(ii), it follows that fΥ(µn)(ζ) → fΥ(µ)(ζ), as n→∞, for any (non-zero) ζ , and this means

that Υ(µn)
w→ Υ(µ), as n→∞. �

5.2 Corollary. The mapping Υ: ID(∗) → ID(∗) preserves stability and selfdecompos-
ability. In other words, if S(∗) and L(∗) denote, respectively, the classes of stable and of
selfdecomposable probability measures on R (in the classical sense), then

Υ(S(∗)) ⊆ S(∗) and Υ(L(∗)) ⊆ L(∗).

Proof. Suppose µ ∈ S(∗) and that c, c′ > 0 and d, d′ ∈ R. Then

(Dcµ ∗ δd) ∗ (Dc′µ ∗ δd′) = Dc′′µ ∗ δd′′ ,
for suitable c′′ in ]0,∞[ and d′′ in R. Using now (ii)-(iv) of Proposition 5.1, we find that(

DcΥ(µ) ∗ δd
) ∗ (

Dc′Υ(µ) ∗ δd′
)

=
(
Υ(Dcµ) ∗Υ(δd)

) ∗ (
Υ(Dc′µ) ∗Υ(δd′)

)
= Υ(Dcµ ∗ δd) ∗Υ(Dc′µ ∗ δd′)
= Υ

(
(Dcµ ∗ δd) ∗ (Dc′µ ∗ δd′)

)
= Υ

(
Dc′′µ ∗ δd′′)

)
= Dc′′Υ(µ) ∗ δd′′ ,

which shows that Υ(µ) ∈ S(∗).
Assume next that µ ∈ L(∗). Then for any c in R, there exists a measure µc in ID(∗),
such that µ = Dcµ ∗ µc. Using now (ii)-(iii) of Proposition 5.1, we find that

Υ(µ) = Υ(Dcµ ∗ µc) = Υ(Dcµ) ∗Υ(µc) = DcΥ(µ) ∗Υ(µc),

which shows that Υ(µ) ∈ L(∗). �

5.3 Remark. The mapping Υ: ID(∗) → ID(∗) is not surjective. For example, the (clas-
sical) Poisson distributions are not in the image of Υ. Indeed, the generating triplet for
the Poisson distribution with mean c > 0 is (0, cδ1, c), so it suffices to verify that δ1 cannot
appear as the Lévy measure for any distribution in the image of Υ. This can easily be
seen directly, but it follows also immediately from Section 7 below, where we show, in
particular, that the Lévy measure of a distribution in the image of Υ is always absolutely
continuous w.r.t. Lebesgue measure, with a C∞ density on R \ {0}.

6 Stochastic interpretation of Υ.

The purpose of this section is to show that for any measure µ in ID(∗), the measure
Υ(µ) can be realized as the distribution of a canonical stochastic integral w.r.t. to the
(classical) Lévy process corresponding to µ.
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We start with a general discussion of the existence of stochastic integrals w.r.t. (classical)
Lévy processes, and their associated cumulant functions. Some related results are given
in [CS] and [Sa2], but they do not fully cover the situation considered below.

Throughout this section, we shall use the notation C{u ‡ X} to denote the (classical)
cumulant function of (the distribution of) the random variable X, evaluated at the real
number u.

6.1 Lemma. Let (Xn,m)n,m∈N be a family of random variables indexed by N×N and all
defined on the same probability space (Ω,F, P ). Assume that

∀u ∈ R :

∫
R

eitu L{Xn,m}(dt) → 1, as n,m→∞. (6.1)

Then Xn,m
p→ 0, as n,m→∞, in the sense that

∀ε > 0: P (|Xn,m| > ε) → 0, as n,m→∞. (6.2)

Proof. This is, of course, a variant of the usual continuity theorem for characteristic
functions. For completeness, we include a proof.

To prove (6.2), it suffices, by a standard argument, to prove that L{Xn,m} w→ δ0, as
n,m→∞, i.e. that

∀f ∈ Cb(R) :

∫
R

f(t)L{Xn,m}(dt) −→
∫

R

f(t) δ0(dt) = f(0), as n,m→∞, (6.3)

where Cb(R) denotes the space of continuous bounded functions f : R → R.

So assume that (6.3) is not satisfied. Then we may choose f in Cb(R) and ε in ]0,∞[ such
that

∀N ∈ N ∃n,m ≥ N :
∣∣∣
∫

R

f(t)L{Xn,m}(dt)− f(0)
∣∣∣ ≥ ε.

By an inductive argument, we may choose a sequence n1 < n2 < n3 < · · · , of positive
integers, such that

∀k ∈ N :
∣∣∣
∫

R

f(t)L{Xn2k,n2k−1
}(dt)− f(0)

∣∣∣ ≥ ε. (6.4)

On the other hand, it follows from (6.1) that

∀u ∈ R :

∫
R

eitu L{Xn2k ,n2k−1
}(dt) → 1, as k →∞,

so by the usual continuity theorem for characteristic functions, L{Xn2k,n2k−1
} w→ δ0. But

this contradicts (6.4). �

6.2 Lemma. Assume that 0 ≤ a < b < ∞, and let f : [a, b] → R be a continuous
function. Let, further, (Xt)t≥0 be a (classical) Lévy process, and put µ = L{X1}. Then
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the stochastic integral
∫ b

a
f(t) dXt exists as the limit, in probability, of approximating

Riemann sums. Furthermore, L{∫ b

a
f(t) dXt} ∈ ID(∗), and

C
{
u ‡ ∫ b

a
f(t) dXt

}
=

∫ b

a

Cµ(uf(t)) dt,

for all u in R.

Proof. This is essentially well-known, but, for completeness, we sketch the proof: By
definition (cf. [Lu2]),

∫ b

a
f(t) dXt is the limit in probability of the Riemann sums:

Rn :=
n∑

j=1

f(t
(n)
j )

(
X

t
(n)
j
−X

t
(n)
j−1

)
,

where, for each n, a = t
(n)
0 < t

(n)
1 < · · · < t

(n)
n = b is a subdivision of [a, b], such

that maxj=1,2,...,n(t
(n)
j − t

(n)
j−1) → 0 as n → ∞. Since (Xt) has stationary, independent

increments, it follows that for any u in R,

C{u ‡ Rn} =

n∑
j=1

C
{
f(t

(n)
j )u ‡ (

X
t
(n)
j
−X

t
(n)
j−1

)}
=

n∑
j=1

C
{
f(t

(n)
j )u ‡ X

t
(n)
j −t

(n)
j−1

}

=

n∑
j=1

Cµ

(
f(t

(n)
j )u

) · (t(n)
j − t

(n)
j−1),

where, in the last equality, we used [Sa1, Theorem 7.10]. Since Cµ and f are both
continuous, it follows that

C
{
u ‡ ∫ b

a
f(t) dXt

}
= lim

n→∞

n∑
j=1

Cµ

(
f(t

(n)
j )u

) · (t(n)
j − t

(n)
j−1) =

∫ b

a

Cµ(f(t)u) dt,

for any u in R. �

The following result extends Lemma 6.2 to continuous functions f : ]a, b[→ R, where
0 ≤ a < b ≤ ∞. In particular, we no longer require that f be bounded at the endpoints
a and b. Moreover, b is allowed to equal ∞.

6.3 Proposition. Assume that 0 ≤ a < b ≤ ∞, and let f : ]a, b[→ R be a continuous
function. Let, further, (Xt)t≥0 be a classical Lévy process, and put µ = L{X1}. Assume
that

∀u ∈ R :

∫ b

a

∣∣Cµ(uf(t))
∣∣dt <∞.

Then the stochastic integral
∫ b

a
f(t) dXt exists as the limit, in probability, of the sequence

(
∫ bn

an
f(t) dXt)n∈N, where (an) and (bn) are arbitrary sequences in ]a, b[ such that an ≤ bn

for all n and an ↘ a and bn ↗ b as n→∞.
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Furthermore, L{∫ b

a
f(t) dXt} ∈ ID(∗) and

C
{
u ‡ ∫ b

a
f(t) dXt

}
=

∫ b

a

Cµ(uf(t)) dt, (6.5)

for all u in R.

Proof. Let (an) and (bn) be arbitrary sequences in ]a, b[, such that an ≤ bn for all n
and an ↘ a and bn ↗ b as n → ∞. Then, for each n, consider the stochastic integral∫ bn

an
f(t) dXt. Since the topology corresponding to convergence in probability is complete

(cf. [BT1]), the convergence of the sequence (
∫ bn

an
f(t) dXt)n∈N will follow, once we have

verified that it is a Cauchy sequence. Towards this end, note that whenever n > m we
have that

∫ bn

an

f(t) dXt −
∫ bm

am

f(t) dXt =

∫ am

an

f(t) dXt +

∫ bn

bm

f(t) dXt,

so it suffices to show that

∫ am

an

f(t) dXt
p−→ 0 and

∫ bn

bm

f(t) dXt
p−→ 0, as n,m→∞.

By Lemma 6.1, this, in turn, will follow if we prove that

∀u ∈ R : C
{
u ‡ ∫ am

an
f(t) dXt

} −→ 0, as n,m→∞, (6.6)

and
∀u ∈ R : C

{
u ‡ ∫ bn

bm
f(t) dXt

} −→ 0, as n,m→∞. (6.7)

But for n,m in N, m < n, it follows from Lemma 6.2 that

∣∣C{
u ‡ ∫ am

an
f(t) dXt

}∣∣ ≤
∫ am

an

∣∣Cµ(uf(t))
∣∣dt, (6.8)

and since
∫ a

a
|Cµ(uf(t))| dt < ∞, the right hand side of (6.8) tends to 0 as n,m → ∞.

Statement (6.7) follows similarly.

To prove that limn→∞
∫ bn

an
f(t) dXt does not depend on the choice of sequences (an) and

(bn), let (a′n) and (b′n) be sequences in ]a, b[, also satisfying that a′n ≤ b′n for all n, and
that a′n ↘ a and b′n ↗ b as n → ∞. We may then, by an inductive argument, choose
sequences n1 < n2 < n3 < · · · and m1 < m2 < m3 · · · of positive integers, such that

an1 > a′m1
> an2 > a′m2

> · · · , and bn1 < b′m1
< bn2 < b′m2

< · · · .

Consider then the sequences (a′′k) and (b′′k) given by:

a′′2k−1 = ank
, a′′2k = a′mk

, and b′′2k−1 = bnk
, b′′2k = b′mk

, (k ∈ N).
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Then a′′k ≤ b′′k for all k, and a′′k ↘ a and b′′k ↗ b as k →∞. Thus, by the argument given
above, all of the following limits exist (in probability), and, by “sub-sequence considera-
tions”, they have to be equal:

lim
n→∞

∫ bn

an

f(t) dXt = lim
k→∞

∫ bnk

ank

f(t) dXt = lim
k→∞

∫ b′′2k−1

a′′2k−1

f(t) dXt

= lim
k→∞

∫ b′′k

a′′k

f(t) dXt = lim
k→∞

∫ b′′2k

a′′2k

f(t) dXt = lim
k→∞

∫ b′mk

a′mk

f(t) dXt

= lim
n→∞

∫ b′n

a′n
f(t) dXt,

as desired.

To verify, finally, the last statements of the proposition, let (an) and (bn) be sequences

as above, so that, by definition,
∫ b

a
f(t) dXt = limn→∞

∫ bn

an
f(t) dXt in probability. Since

ID(∗) is closed under weak convergence, this implies that L{∫ b

a
f(t) dXt} ∈ ID(∗). To

prove (6.5), we use Gnedenko’s theorem (cf. [GK, §19, Theorem 1]), which expresses
weak convergence of measures in ID(∗) in terms of their generating triplets1. This result
implies, in particular, that weak convergence of measures in ID(∗) implies point-wise
convergence of their cumulant transforms. Combining the latter result with Lemma 6.2,
we find that

C
{
u ‡ ∫ b

a
f(t) dXt

}
= lim

n→∞
C

{
u ‡ ∫ bn

an
f(t) dXt

}

= lim
n→∞

∫ bn

an

Cµ(uf(t)) dt =

∫ b

a

Cµ(uf(t)) dt,

for any u in R, and where the last equality follows from the assumption that
∫ b

a
|Cµ(uf(t))| dt <

∞. This concludes the proof. �

6.4 Theorem. Let µ be an arbitrary measure in ID(∗), and let (Xt) be a (classical) Lévy
process (in law), such that L{X1} = µ. Then the stochastic integral

Z =

∫ 1

0

− log(1− t) dXt

exists, as the limit in probability, of the stochastic integrals
∫ 1−1/n

0
− log(1 − t) dXt, as

n→∞. Furthermore, the distribution of Z is exactly Υ(µ).

Proof. The existence of the stochastic integral
∫ 1

0
− log(1− t) dXt follows from Proposi-

tion 6.3, once we have verified that
∫ 1

0
|Cµ(−u log(1− t))| dt <∞, for any u in R. Using

the change of variable: t = 1− e−x, x ∈ R, we find that∫ 1

0

∣∣Cµ(−u log(1− t))
∣∣ dt =

∫ ∞

0

∣∣Cµ(ux)
∣∣e−x dx,

1[GK, §19, Theorem 1] is formulated in terms of generating pairs rather than generating triplets.
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and here the right hand side is finite, according to Lemma 4.2.

Combining, next, Proposition 6.3 and Theorem 4.1, we find for any u in R that

CL{Z}(u) =

∫ 1

0

Cµ(−u log(1− t)) dt =

∫ ∞

0

Cµ(ux)e
−x dx = CΥ(µ)(u),

which implies that L{Z} = Υ(µ), as desired. �

Theorem 6.4 together with Theorem 4.1 show that for any measure µ in ID(∗), the free
cumulant transform of the measure Λ(µ) is, up to multiplication of the variable by i, equal

to the classical cumulant transform of the stochastic integral
∫ 1

0
− log(1 − t) dXt, where

(Xt) is a classical Lévy process (in law), such that L{X1} = µ.

7 Laplace transform characterisation of the Lévy mea-

sure for Υ(µ).

We proceed to show that for any Lévy measure ρ of a distribution µ in ID(∗) the Lévy
measure ρ̃ of Υ(µ) is absolutely continuous with a density r̃, which is a C∞-function on
R \ {0}. We prove, in fact, that the restrictions r̃| ]−∞,0[ and r̃| ]0,∞[ can be represented
as the Laplace transforms of measures concentrated on ]−∞, 0[ and ]0,∞[, respectively
(cf. Theorem 7.2 below). The proof we give does not involve concepts of free infinite
divisibility and the result is of some independent interest as it establishes an injective
transform of Lévy measures to Lévy measures, which has smoothing properties akin to
those of the ordinary Laplace transform.

Throughout this section we consider a Lévy measure ρ on R, and, as before, we put

ρ̃ =

∫ ∞

0

(Dxρ)e
−x dx. (7.1)

Furthermore, we let α denote the transformation of ρ by the mapping x 7→ x−1 : R\{0} →
R \ {0} (recall that ρ({0}) = 0). Note that α satisfies the properties:

α({0}) = 0 and

∫
R

min{1, s−2}α(ds) <∞. (7.2)

7.1 Proposition. With the notation introduced above, we have

ρ̃([t,∞[) =

∫ ∞

0

e−ts α(ds), (t ∈ ]0,∞[), (7.3)

and

ρ̃(]−∞, t]) =

∫ 0

−∞
e−ts α(ds), (t ∈ ]−∞, 0[). (7.4)
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Proof. Let t in ]0,∞[ be given. Using the change of variables x = ts, s > 0, we find then
that

ρ̃([t,∞[) =

∫ ∞

0

Dxρ([t,∞[)e−x dx =

∫ ∞

0

ρ([x−1t,∞[)e−x dx

= t

∫ ∞

0

ρ([s−1,∞[)e−ts ds = t

∫ ∞

0

α(]0, s])e−ts ds.

Next, using partial integration for Stieltjes integrals, we obtain

ρ̃([t,∞[) =
[
− α(]0, s])e−ts

]∞
0

+

∫ ∞

0

e−ts α(ds). (7.5)

Note here that

α(]0, s])e−ts = e−
1
2
ts

∫
]0,s]

e−
1
2
tsα(du) ≤ e−

1
2
ts

∫
]0,s]

e−
1
2
tuα(du) −→ 0, as s→∞,

since
∫
]0,∞[

e−
1
2
tuα(du) <∞ (cf. (7.2)). Note also that

α(]0, s])e−ts ≤ α(]0, s]) −→ 0, as s→ 0,

since α(]0, 1]) < ∞. Altogether, [−α(]0, s])e−ts]∞0 = 0, and inserting this in (7.5), we
obtain (7.3). Formula (7.4) can be proved similarly or by applying (7.3) to the Lévy
measure D−1ρ. �

7.2 Theorem. For any Lévy measure ρ on R, the Lévy measure ρ̃, given by (7.1), is
absolutely continuous w.r.t. Lebesgue measure. The density r̃ is the C∞-function on
R \ {0} given by

r̃(t) =




∫ ∞
0
se−ts α(ds), if t > 0,∫ 0

−∞−se−ts α(ds), if t < 0,

where α is the transformation of ρ by the mapping x 7→ x−1 : R \ {0} → R \ {0}.

Proof. Since ρ̃ is σ-finite, being a Lévy measure, it suffices to prove, for example, that

ρ̃([t1, t2[) =

∫ t2

t1

r̃(s) ds, (7.6)

for any t1, t2 in R, satisfying either that 0 < t1 < t2 or that t1 < t2 < 0. Note next that
it follows from (7.2) that

∫ ∞

0

spe−ts α(ds) <∞ and

∫ 0

−∞
|s|pets α(ds) <∞,

for any t in ]0,∞[ and any p ∈ N. Thus, by the well-known theorem on differentiation
under the integral sign, the functions (cf. Proposition 7.1)

t 7→ ρ̃([t,∞[) =

∫ ∞

0

e−ts α(ds), (t ∈ ]0,∞[),
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and

t 7→ ρ̃(]−∞, t]) =

∫ 0

−∞
e−ts α(ds), (t ∈ ]−∞, 0[),

are both C∞-functions with first derivatives −r̃(t) and r̃(t), respectively. Now, if t1 <
t2 < 0, we find that

∫ t2

t1

r̃(t) dt =

∫ t2

t1

d

dt
ρ̃(]−∞, t]) dt = ρ̃(]−∞, t2])− ρ̃(]−∞, t1]) = ρ̃(]t1, t2]). (7.7)

Since
∫ t2

t1
r̃(t) dt is continuous in t1 and t2, it follows from (7.7) that (7.6) holds too. If

0 < t1 < t2, formula (7.6) can be established similarly. �

7.3 Corollary. Suppose ρ is a Lévy measure on R with density r w.r.t. Lebesgue measure.
Then the Lévy measure ρ̃, given by (7.1), has density r̃(t) given by

r̃(t) =




∫∞
0
s−1r(s−1)e−ts ds, if t > 0,∫ 0

−∞−s−1r(s−1)e−ts ds, if t < 0.

Proof. This follows immediately from Theorem 7.2 together with the fact that the measure
α has density

s 7→ s−2r(s−1), (s ∈ R \ {0}),
w.r.t. Lebesgue measure. �

7.4 Example. Suppose ρ is concentrated on the positive half-line ]0,∞[, and that it has
the following density w.r.t. Lebesgue measure:

r(s) = s−1−αe−βs, (s > 0),

where 0 ≤ α < 2 and 0 ≤ β. For the moment, let both α and β be positive. Then the
density of ρ̃ is

r̃(t) = 2t−
1+α

2 β
1+α

2 K1+α(2
√
βt),

where Kv denotes a Bessel function. Since, for ν > 0,

Kν(x) ∼



Γ(ν)2ν−1x−ν , for x↘ 0,√
π
2
x−1/2e−x, for x→∞,

we find that

r̃(t) ∼



Γ(1+α
2

)t−1−α, for βt↘ 0,
√
πβ

1+2α
4 t−

3+2α
4 e−

√
βt, for βt→∞.

Furthermore, if α > 0 and β = 0, then

r̃(t) = Γ
(1 + α

2

)
t−1−α,
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while, if α = 0 and β > 0,
r̃(t) = 2t−

1
2β

1
2K1(2

√
βt).

Thus, in particular, Υ maps any of the positive α-stable laws to a positive α-stable law.

An immediate extension of the arguments given above shows, furthermore, that if ρ is the
Lévy measure of a general α-stable law, then so is ρ̃.
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