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Abstract. We consider the American put with the finite time
horizon, T , assuming that under a chosen equivalent martingale
measure stock returns follow a regular Lévy process of exponen-
tial type. We formulate the free boundary value problem for the
price of the American put, and develop the non-Gaussian analog of
the method of lines and Carr’s randomization method used in the
Gaussian option pricing theory. The result is the (discretized) early
exercise boundary and prices of the American put for all strikes and
maturities from 0 to T . In the case of exponential jump-diffusion
processes, a simple efficient pricing scheme is constructed.
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1. Introduction

Consider a market of a riskless bond and a stock whose returns follow
a non-Gaussian process; then the market is typically incomplete. Ac-
cording to the modern martingale approach to option pricing (see [18]
and the bibliography therein), arbitrage-free prices can be obtained as
expectations under any equivalent martingale measure (EMM), which
is absolutely continuous w.r.t. the historic measure. Let the riskless
rate r > 0 be fixed, let S = {St}t≥0, St = exp Xt, be the price process
of the stock, which pays no dividend, and let Q be an EMM chosen
by the market. We assume that under Q, X is a regular Lévy process
of exponential type (RLPE); this general class contains essentially all
classes of Lévy processes used in empirical studies of financial markets,
jump-diffusions with exponentially distributed jump sizes in particular.
The class of RLPE can be loosely characterized as a class of Lévy pro-
cesses with the Lévy measures exponentially decaying at infinity and
having polynomial singularity at the origin. It was introduced in [8]-
[9], under a misleading name Generalized Truncated Lévy Processes.
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The name RLPE was suggested in [5], and in [10]-[12] and the present
paper, we use the new name.

Consider the American option, with the terminal payoff g and the
expiry date T . In [9, 10], the pricing problem for perpetual Ameri-
can options is solved by using the Wiener-Hopf factorization method,
and the same method is used here (notice that we use the Wiener-
Hopf factorization method in the form different from [22]). In the case
of the American put with a finite time horizon, explicit formulas are
not available even in the Brownian motion (BM) case, and so approxi-
mate methods have to be used. We start with the reformulation of the
pricing problem as a free boundary value problem, then discretize the
time derivative, as in [14] and [13] in the Gaussian case (the analyti-
cal method of lines and Carr’s randomization method; both methods
lead to the same computational procedure). The derivation of pricing
procedure for the time-discretized free boundary problem is different
from the one in the Gaussian case, and its implementation relies on
the formulas for the factors in the Wiener-Hopf factorization formula.
Here approximate formulas for the factors obtained in [10] and [12] can
be useful; in some cases, for jump-diffusions in particular, the explicit
formulas for the factors can be derived. A general form of the pricing
procedure for American put was developed in Chapter 6 of [12]. In
this paper, we make the procedure more detailed, and in the case of
jump-diffusions, derive an explicit simple efficient algorithm. Numeri-
cal examples are provided to demonstrate the dependence of the shape
of the early exercise boundary and American put price on positive and
negative jumps.

For other methods of pricing of American options in the Gaussian
case, see e.g. [36], [32], [25], [23], [27], [16] and the bibliography therein.

The rest of the paper is organized as follows. In Section 2, the model
classes of RLPE are described, and the general definition of RLPE is
introduced. In Section 3, explicit formulas for the factors in the Wiener-
Hopf factorization formula, with examples, are provided. In Section 4,
we formulate the free boundary problem for the American put, under a
general RLPE, consider the time discretization of the problem, recall a
general pricing scheme from Section 6.2 of [12], and analyze it further.
In Section 5, we consider the case of jump-diffusions, and construct an
explicit simple pricing procedure. In Section 6, we provide a detailed
algorithm for a general RLPE. Section 7 concludes.



PRICING OF AMERICAN PUT 3

2. Regular Lévy processes of exponential type

2.1. General definitions. Recall that a Lévy process is a process
with stationary independent increments (for general definitions, see
e.g. [34]). It may have a Gaussian component and/or pure jump com-
ponent. The latter is characterized by the density of jumps, which
is called the Lévy density. We denote it by F (dx). A Lévy process
can be completely specified by its characteristic exponent, ψ, defin-
able from the equality E[eiξX(t)] = e−tψ(ξ) (we confine ourselves to the
one-dimensional case). If the jump component is a compound Poisson
process then the characteristic exponent is given by

ψ(ξ) = −ibξ +
σ2

2
ξ2 +

∫ +∞

−∞
(1− eiξy)F (dy), (2.1)

where σ2 and b are the variance and drift coefficient of the Gaussian
component, and F (dy) satisfies∫

R\{0}
min{1, |y|}F (dy) < +∞.

Equation (2.1) is a special case of the Lévy-Khintchine formula; for the
general case, see e.g. [34].

Let λ− < 0 < λ+ and ν ∈ (0, 2]. A Lévy process is called a Regu-
lar Lévy Process of exponential type [λ−, λ+] and order ν > 0 if the
following two conditions are satisfied:

a) the characteristic exponent admits a representation

ψ(ξ) = −iµξ + φ(ξ), (2.2)

where φ is holomorphic1 in the strip =ξ ∈ (λ−, λ+), continuous up to
the boundary of the strip, and admits a representation

φ(ξ) = c|ξ|ν + O(|ξ|ν1), (2.3)

as ξ →∞ in the strip =ξ ∈ [λ−, λ+], where ν1 < ν;
b) there exist ν2 < ν and C such that the derivative of φ in (2.2)

admits a bound

|φ′(ξ)| ≤ C(1 + |ξ|)ν2 , =ξ ∈ [λ−, λ+]. (2.4)

One can easily generalize this definition by using c± ≥ 0 in (2.3), as
<ξ → ±∞.

1A function f is said to be holomorphic, or analytic, on an open subset U of the
complex plane C, iff f ′(ξ) exists for all ξ ∈ U .



4 S. LEVENDORSKǏI

2.2. Examples. Wide families of jump-diffusion processes used in the
theoretical and empirical studies of financial markets are RLPE of order
2.

Example 2.1. Let X be a Lévy process with the Lévy density

F (dx) = c+λ+eλ+x1(−∞,0)(x)dx + c−(−λ−)eλ−x1(0,+∞)(x)dx, (2.5)

where λ+ > 0, λ− < −1 and c± > 0. Then

ψ(ξ) =
σ2

2
ξ2 − ibξ +

ic+ξ

λ+ + iξ
+

ic−ξ

λ− + iξ
, (2.6)

where σ2 > 0 and b ∈ R are the variance and drift of the Gaussian
component. The ψ(ξ) is holomorphic in the strip =ξ ∈ (λ−, λ+).

The following classes of Lévy processes without the gaussian com-
ponent and with exponentially decaying tails of probability densities
have been widely used to describe the behavior of stock prices in real
financial markets, and almost all of them are RLPE’s:

Variance Gamma Processes have been used by Madan and co-authors
in a series of papers during 90th (see [28] and the bibliography there);

Hyperbolic Processes were constructed and used by Eberlein and
co-authors [19], [20], [21]; hyperbolic distributions were constructed in
[2];

Normal Inverse Gaussian processes (NIG) were constructed in [3]
and used to model German stocks in [4]; generalization of the class
NIG, namely, the class of Normal Tempered Stable Lévy Processes,
was constructed in [5] and [6].

Example 2.2. The characteristic exponent of a NIG is of the form

ψ(ξ) = −iµξ + δ[(α2 − (β + iξ)2)1/2 − (α2 − β2)1/2], (2.7)

where ν ∈ (0, 2), δ > 0, and α > |β|; it is holomorphic in the strip
=ξ ∈ (−α − β, α − β), and (2.2)-(2.4) are satisfied in this strip, with
ν = 1.

Truncated Lévy Processes (TLP) constructed by Koponen[24] were
used for modeling in real financial markets in [7], [17] and [31]; a gen-
eralization of this family was constructed in [8], [9]. Later, this gen-
eralization was used in [15] under the name CGMY-model. As A.N.
Shiryaev remarked, the name TLP was misleading, and so starting with
[10]-[11] we call this family of processes KoBoL family.

Example 2.3. The characteristic exponent of a process of KoBoL
family is of the form

ψ(ξ) = −iµξ + cΓ(−ν)[λν
+− (λ+ + iξ)ν +(−λ−)ν− (−λ−− iξ)ν ], (2.8)

where ν ∈ (0, 2), ν 6= 1, c > 0, λ− < 0 < λ+, and µ ∈ R; it is holomor-
phic in a strip =ξ ∈ (λ−, λ+), and (2.2)-(2.3) are satisfied in this strip.
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For ν ∈ (0, 1), the equation (2.8) is obtained from (2.1) with

F (dx) = cλ+eλ+x1(−∞,0)(x)|x|−ν−1dx + c(−λ−)eλ−x1(0,+∞)(x)x−ν−1dx,

and σ = 0 (that is, there is no Gaussian component). In the case
ν ∈ (1, 2), instead of (2.1), the general form of the Lévy-Khintchine
formula is needed (see [12]).

Earlier, non-infinitely divisible truncations of stable Lévy distribu-
tions had been constructed and used to model the behavior of the
Standard & Poor 500 Index by Mantegna and Stanley [29], [30].

Notice that BM, HP, NIG, NTS Lévy processes are RLPE, and any
finite mixture of independent BM, NIG, HP and TLP are RLPE. Vari-
ance Gamma Processes (VGP) are excluded, since they need special
treatment at many places; in particular, the explicit formulas for the
factors in the Wiener-Hopf factorization formula, which is used here,
need regularization in the case of VGP.

2.3. The infinitesimal generator of a Lévy process. If X is a
Lévy process on R, with the characteristic exponent given by (2.1),
then its infinitesimal generator, denote it L, is an integro-differential
operator which acts as follows:

Lu(x) =
σ2

2
u′′(x) + bu′(x) +

∫ +∞

−∞
(u(x + y)− u(x))F (dy); (2.9)

for the formula in the general case, see e.g. [34, 12]. The generator
of a Lévy process in Rn with the characteristic exponent ψ can be
represented in the form L = −ψ(D), that is, in the form of a pseudo-
differential operator (PDO) with the symbol −ψ (See e.g. [10]-[12]).
Recall that a pdo A = a(D) acts as follows:

Au(x) = (2π)−n

∫
Rn

ei〈x,ξ〉a(ξ)û(ξ)dξ,

where û is the Fourier transform of a function u:

û(ξ) =

∫
Rn

e−i〈x,ξ〉u(x)dx.

3. Wiener-Hopf factorization

3.1. General Lévy processes. Let (Ω,F ,P) be a probability space,
on which a one-dimensional Lévy process X is defined, and let Ω0

be a subset of Ω such that for each ω ∈ Ω0, the trajectory X·(ω)
is right-continuous with left limits. On Ω0, define Mt = sup0≤s≤t Xs

and Nt = inf0≤s≤t Xs. On Ω \ Ω0, both Mt and Nt are set to be 0.
M = {Mt} and N = {Nt} are called the supremum process and the
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infimum process, respectively. The Laplace transform (in t) of the
distribution of Xt, or more precisely,

qEx

[∫ ∞

0

e−qteiξXtdt

]
= q(q + ψ(ξ))−1,

can be factorized by using the Laplace transforms (in t) of the distri-
butions of the supremum and infimum processes. Namely, let T be the
exponentially distributed random variable on [0, +∞) with the mean
q−1. Introduce functions

φ+
q (ξ) = E

[
eiξMT

]
, φ−q (ξ) = E

[
eiξNT

]
. (3.1)

Among many factorization identities, we will use only the simplest one
(see e.g. [33], p.89, or [34], Theorems 45.2 and 45.5; for more detailed
exposition, see [34], Section 45).

Theorem 3.1. (i) Let q > 0. Then φ±q (ξ) are the Fourier transforms
of infinitely divisible distributions P+

q and P−
q supported on (−∞, 0]

and [0, +∞), respectively:

φ+
q (ξ) =

∫ +∞

−∞
e−ixξP+

q (dx) =

∫ 0

−∞
e−ixξP+

q (dx), (3.2)

φ−q (ξ) =

∫ +∞

−∞
e−ixξP−

q (dx) =

∫ +∞

0

e−ixξP−
q (dx); (3.3)

(ii) the following factorization identity holds:

q(q + ψ(ξ))−1 = φ+
q (ξ)φ−q (ξ), ξ ∈ R. (3.4)

Notice that φ+
q (ξ) (resp., φ−q (ξ)) admits the analytic continuation

into the upper half-plane =ξ > 0 (resp., lower half-plane =ξ < 0) and
does not vanish there. Thus, (3.4) is a special case of the Wiener-Hopf
factorization introduced in solving integral equations by Wiener and
Hopf in 1931 [35], and widely used in Queuing theory and Insurance.
In [22] and Chapter 11 in [12], it is applied to problems of endogenous
default.

Formulas (3.1) are by no means explicit though very convenient for
theoretical considerations. There are also general formulas, which are
rather involved (see e.g. [34], Theorem 45.2). Simple explicit analytical
formulas can be obtained for special cases only.

3.2. Lévy processes of exponential type. We fix a branch of ln by
the requirement ln a ∈ R for a > 0. The following theorem is a special
case of Theorem 3.2 in [12].
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Theorem 3.2. Let X be an RLPE, and let there exist c1 > 0 and
ω− < 0 < ω+ such that

<ψ(ξ) ≥ c1, =ξ ∈ [ω−, ω+]. (3.5)

Then
a) φ+

q (ξ) admits the analytic continuation into a half-plane =ξ > ω−
and can be calculated as follows:

φ+
q (ξ) = exp

[
(2πi)−1

∫ +∞+iω−

−∞+iω−

ψ′(η)

q + ψ(η)
ln

η − ξ

η
dη

]
(3.6)

= exp

[
(2πi)−1

∫ +∞+iω−

−∞+iω−

ξ ln(q + ψ(η))

η(ξ − η)
dη

]
; (3.7)

b) φ−q (ξ) admits the analytic continuation into a half-plane =ξ < ω+

and can be calculated as follows:

φ−q (ξ) = exp

[
−(2πi)−1

∫ +∞+iω+

−∞+iω+

ψ′(η)

q + ψ(η)
ln

η − ξ

η
dη

]
(3.8)

= exp

[
−(2πi)−1

∫ +∞+iω+

−∞+iω+

ξ ln(q + ψ(η))

η(ξ − η)
dη

]
. (3.9)

By using formulas (3.6)-(3.9), it is possible to calculate the factors in
the Wiener-Hopf factorization numerically. In some cases, for KoBoL
and NIG in particular, the numerical procedure can be made fairly effi-
cient by reducing the integration to an appropriate cut in the complex
plane (this reduction was used in [10] and Chapters 5 and 12 of [12]).

3.3. Jump-diffusion case. The most simple formulas can be obtained
in the case of a rational ψ, an example being the jump-diffusion process
given by (2.6). By using general formulas and the residue theorem,
it is straightforward to conclude that the factors φ±q (ξ) are rational
functions of ξ (for details, see e.g. Chapter 13 in [12]). Hence, the
factorization of a(ξ) = q + ψ(ξ) can be obtained as follows:

(i) represent a in the form a = P/Q, where P and Q are polynomials;
(ii) notice that both P and Q have no roots on the real line, and find

the sets of roots of P , {−iβ+
j (q)} and {−iβ−j (q)}, in the lower

and upper complex plane, respectively, and the sets of roots of Q,
{−iλ+

l } and {−iλ−l }, in the same half-planes;
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(iii) set

φ+
q (ξ) =

∏
j

β+
j (q)

β+
j (q)− iξ

∏
l

λ+
l − iξ

λ+
l

; (3.10)

φ−q (ξ) =
∏

j

β−j (q)

β−j (q)− iξ

∏
l

λ−l − iξ

λ−l
. (3.11)

Example 3.1. Consider the jump-diffusion process in Example 2.1. Set
ξ = −iβ and

M(β) := ψ(−iβ) = −bβ − σ2

2
β2 +

c+β

λ+ + β
+

c−β

λ− + β
.

From (2.6), the equation

q + ψ(ξ) = 0 (3.12)

assumes the form

q + M(β) = 0. (3.13)

Since a polynomial of degree 4 has 4 roots in the complex plane,
equation (3.13) has 4 real roots at most. The real-valued function
q+M(·) : R\{−λ+,−λ−} → R is continuous on intervals (−∞,−λ+),
(−λ+, 0), (0,−λ−) and (−λ−, +∞), and it changes sign on each of these
intervals, since q > 0, M(0) = 0, M(−λ− − 0) = M(−λ+ + 0) = −∞,
M(±∞) = −∞, and M(−λ− + 0) = M(−λ+ − 0) = +∞. Hence
equation (3.13) has at least one root on each of these intervals. The
number of the intervals being 4, there exists exactly one root on each
interval; we call these roots β−1 = β−1 (q), β−0 = β−0 (q), β+

0 = β+
0 (q), and

β+
1 = β+

1 (q), respectively. Thus, (3.10) and (3.11) become

φ+
q (ξ) =

−λ− − iξ

−λ−

∏
j=0,1

β+
j

β+
j − iξ

, (3.14)

φ−q (ξ) =
λ+ + iξ

λ+

∏
j=0,1

−β−j
−β−j + iξ

. (3.15)

For a generalization to the multi-jump case, see Section 5.

3.4. Factors φ±q (ξ) and related operators. Notice that in the case
of an RLPE, the distributions P±

q (dx) have densities:

P±
q (dx) = k±q (x)dx
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(see [10, 12]), and introduce operators φ±q (D) by

φ+
q (D)u(x) =

∫ 0

−∞
u(x− y)P+

q (dy) (3.16)

=

∫ +∞

x

u(y)k+
q (x− y)dy,

φ−q (D)u(x) =

∫ +∞

0

u(x− y)P−
q (dy) (3.17)

=

∫ x

−∞
u(y)k−q (x− y)dy.

In the jump-diffusion case, the k±q are exponential polynomials, and so
the formulas (3.16)-(3.17) are quite easy to apply (see Section 5); in
the case of more general RLPE, the densities k±q can be found by using
the formulas for the factors φ±q and the Fourier inversion:

k±q (x) = (2π)−1

∫ +∞+iω∓

−∞+iω∓
eixξφ±q (ξ)dξ, ±x < 0.

(Here ω− < 0 < ω+ are from Theorem 3.2). Notice that the action on
exponents is calculated quite easily for any RLPE: if −iβ belongs to
the half-plane, where φ±q is defined, then

φ±q (D)eβx = φ±q (−iβ)eβx.

In particular, φ±q (D)1 = 1.

4. Approximate pricing of the American put

4.1. The free boundary value problem. We consider the American
put on a stock which pays no dividends; the generalization to the case
of a dividend-paying stock and the American call is straightforward.
Let Q be an EMM chosen by the market, and let L = LQ be the infin-
itesimal generator of X under Q. Assume that the optimal stopping
time is of the form τ ′B ∧ T , where τ ′B is the hitting time of a closed set

B ⊂ R × (−∞, T ] by the two-dimensional process X̂t = (Xt, t). Set
C = R× [0, T ) \B (this is the region, where the option remains alive),
and consider the following boundary value problem

(∂t + L− r)V (x, t) = 0, (x, t) ∈ C; (4.1)

V (x, t) = K − ex, (x, t) ∈ B or t = T ; (4.2)

V (x, t) ≥ (K − ex)+, t ≤ T, x ∈ R; (4.3)

(∂t + L− r)V (x, t) ≤ 0, t < T, (x, t) 6∈ C̄. (4.4)
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Under certain regularity conditions (see Theorem 6.1 in [12]), the con-
tinuous bounded solution to the free boundary problem (4.1)-(4.4) gives
the optimal early exercise region, B, and the rational option price, V∗.

4.2. Analytical method of lines. Carr and Faguet [14] suggested to
use the time discretization in the Black-Scholes equation, and obtained
semi-explicit analytical formulas for the early exercise boundary and
put price. The same formulas can be derived by Carr’s randomization
procedure [13]. In [14] and [13], the Brownian motion case was studied
and the time derivative in the Black-Scholes equation was discretized;
in the non-Gaussian situation, we discretize the derivative ∂t in the
generalized Black-Scholes equation (4.1). In the Gaussian case, it is
possible to use the smooth pasting principle to replace the optimality
conditions (4.3)-(4.4). In [10] (see also Chapter 5 in [12]), it is shown
in the case of perpetual American put that the smooth pasting princi-
ple may fail in the non-Gaussian case, therefore for the American put
with the finite time horizon, the optimal discretized boundary should
be found by the other means similar to the ones used in [10], in the
perpetual American option case.

Below, we recall the pricing procedure developed in Section 6.2.2 of
[12]. Divide [0, T ] into n subperiods by points tj = j∆, j = 0, 1, . . . , n,
where ∆ = T/n, and denote by vj(x) the approximation to V (x, tj); hj

denotes the approximation to the early exercise boundary at time tj.
Then vn(x) = max{K − ex, 0}, and by discretizing the derivative ∂t in
(4.1), we obtain, for j = n− 1, n− 2, . . . , 0,

∆−1(vj+1(x)− vj(x))− (r − L)vj(x) = 0, x > hj,

or
(1 + ∆(r − L))vj(x) = vj+1(x), x > hj. (4.5)

Equation (4.2) assumes the form

vj(x) = K − ex, x ≤ hj. (4.6)

Set q = ∆−1+r, and factorize q+ψ(ξ) (see (3.4)). By using the Wiener-
Hopf factorization method, it is possible to find the unique bounded
continuous solution to the problem (4.5)-(4.6):

vj(x) = K − ex + (1 + r∆)−1φ−q (D)1[hj ,+∞)wj(x), (4.7)

where
wj = φ+

q (D)[vj+1 + ex − (1 + r∆)K]. (4.8)

Lemma 4.1. ([12], Lemma 6.1.) For j = n− 1, . . . , 0, the function wj

is increasing, and it changes the sign.

From Lemma 4.1, wj has the only zero, call it hj.
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Theorem 4.2. ([12], Theorem 6.2). The optimal exercise boundary at
time tj is hj, j = n− 1, n− 2, . . . , 0.

To sum up: the algorithm for the discrete time approximation to the
optimal exercise boundary and rational put price is as follows:

1. Set hn = ln K, vn(x) = max{K − ex, 0};
2. for j = n− 1, n− 2, . . ., define wj by (4.8);
3. find hj as the unique solution to the equation

wj(x) = 0; (4.9)

4. for x > hj, define vj(x) by (4.7).

This general scheme was derived in [12], p.158.

4.3. Further analysis of the scheme. For any ∆ > 0, q + ψ(0) =
q > 0, and q + ψ(−i) = ∆−1 + r + ψ(−i) = ∆−1 > 0, therefore
<(q + ψ(ξ)) > 0 in the strip =ξ ∈ [−1, 0] (see the proof of Lemma 3.5
in [12]). By applying Lemma 3.2, we conclude that φ+

q is holomorphic
in a half-plane =ξ > ω−, for some ω− < −1, and hence, φ+

q (D)ex =
φ+

q (−i)ex and φ+
q (D)1 = 1 are well-defined. Thus, we can rewrite (4.8)

as

wj(x) = wj1(x) + φ+
q (−i)ex − (1 + r∆)K, (4.10)

where wj1(x) := (φ+
q (D)vj+1)(x). We know from Theorem 3.1 that

φ+
q (ξ) (resp., φ−q (ξ)) is the Fourier transform of an infinitely divisible

distribution P+
q (resp., P−

q ) supported on (−∞, 0] (resp., [0, +∞)), and
in the case of an RLPE, P±

q has the density: P±
q (dx) = k±q (x)dx, where

k±q (x) = 0, ∀ ± x > 0. It can be shown that vj+1(x) → 0 as x → +∞
(recall that vj+1(x) is an approximation to the put price at t = tj+1

and the spot price of the underlying S(t) = ex), therefore

wj1(x) =

∫ +∞

x

k+
q (x− y)vj+1(y)dy. (4.11)

Similarly, we can rewrite (4.7) as

vj(x) = K − ex + (1 + r∆)−1vj1(x), (4.12)

where for x ≤ hj, vj1(x) = 0, and for x > hj,

vj1(x) =

∫ x

hj

k−q (x− y)wj(y)dy. (4.13)

In the next Section, we consider the calculation of the integrals in
(4.11)-(4.13) in the case of jump-diffusions, when the procedure is es-
pecially simple.
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5. Jump-diffusion case

5.1. Preliminary analysis for the two-jump case. Consider the
process in Example 2.1 with c± > 0; the factors in the Wiener-Hopf
factorization formulas are calculated in Example 3.1. Represent φ±q (ξ)
in (3.14) and (3.15) as sums of simple fractions

φ+
q (ξ) =

∑
j=0,1

B+
j (q)

β+
j − iξ

, (5.1)

φ−q (ξ) =
∑
j=0,1

B−
j (q)

−β−j + iξ
, (5.2)

where

B+
j (q) =

β+
j β+

k (λ− + β+
j )

λ−(β+
k − β+

j )
, B−

j (q) =
−β−j β−k (λ+ + β−j )

λ+(β−k − β−j )
, (5.3)

and k ∈ {0, 1} is determined by k 6= j. For a > 0, functions 1/(a− iξ)
and 1/(a + iξ) are Fourier transforms of functions eax1(−∞,0](x) and
e−ax1[0,+∞)(x), respectively. This means that R+

a := (a − iD)−1 and
R−

a := (a + iD)−1 are convolution operators with kernels eax1(−∞,0](x)
and e−ax1[0,+∞)(x):

R+
a u(x) =

∫ 0

−∞
eayu(x− y)dy =

∫ +∞

x

ea(x−y)u(y)dy,

R−
a u(x) =

∫ +∞

0

e−ayu(x− y)dy =

∫ x

−∞
e−a(x−y)u(y)dy.

By using (5.1) and (5.2), we can write (4.11) as

wj1(x) =
∑
l=0,1

B+
l (q)

∫ +∞

x

eβ+
l (x−y)vj+1(y)dy, (5.4)

and (4.13) as

vj1(x) =
∑
l=0,1

B−
l (q)

∫ x

hj

eβ−l (x−y)wj(y)dy. (5.5)

Notice that (4.13), hence, (5.5) are applied for x > hj only.
The following consideration shows that since the terminal payoff

vn(x) = (K − ex)+ is a piece-wise exponential polynomial, the inte-
grals in (5.4) and (5.5) are easy to compute, and they define piece-wise
exponential polynomials. (An exponential polynomial is a function of
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the form

u(x) =
m∑

l=0

clx
leγlx,

where cl and γl are constants.) Clearly, for any h ≤ +∞, a ∈ R, and
any exponential polynomial u, the formula

R+
a u(x) =

∫ h

x

ea(x−y)u(y)dy, x < h,

defines an exponential polynomial on (−∞, h) (in the case h = +∞, a
must be greater than any γl). Similarly, for any h > −∞, a ∈ R, and
any exponential polynomial u,

R−
a u(x) =

∫ x

h

e−a(x−y)u(y)dy, x > h,

defines an exponential polynomial on (h, +∞). In each case, the coef-
ficients and exponents can easily be calculated by using the method of
indeterminate coefficients.

These two observations are implicitly used in the textbooks on linear
ODE, of the first order, and the following interpretation of (5.4) and
(5.5) may put the reader into a familiar picture:

wj1(x) =
∑
l=0,1

B+
l (q)wj1l(x), (5.6)

vj1(x) =
∑
l=0,1

B−
l (q)vj1l(x), (5.7)

where

• wj1l is the solution to ODE

w′(x) = β+
l w(x) + vj+1(x), s.t. w(+∞) = 0;

• vj1l is the solution to ODE

v′(x) = β−l v(x) + wj(x), x > hj, s.t. v(hj) = 0.

Since the initial datum vn is given by exponential polynomials on two
(semi-infinite) intervals (−∞, hn] and [hn, +∞), namely, vn(x) = 0, x ≥
0, and vn(x) = 1− ex, x ≤ 0, we conclude that wn−1,1,l, l = 0, 1, hence,
wn−1, are defined by exponential polynomials on the same intervals,
and the early exercise boundary hn−1 is the unique zero of wn−1 on the
left interval. Similarly, vn−1,1,l, l = 0, 1, hence, vn−1, are given by expo-
nential polynomials on intervals (−∞, hn−1], [hn−1, hn], [hn, +∞). By
iterating, we conclude that for j = n− 1, n− 2, . . ., wj,1,l, l = 0, 1, and
wj are given by exponential polynomials on (−∞, hj+1], [hj+1, hj+3],
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. . . , [hn−1, hn], [hn, +∞), and vj,1,l, l = 0, 1, and vj are given by ex-
ponential polynomials on (−∞, hj], [hj, hj+1], . . . , [hn−1, hn], [hn, +∞).

Notice that only exponentials eβ±α x (α = 0, 1), ex and e0 are involved,
and the orders of polynomials on each step and interval can be com-
puted quite easily. In particular, the exponential polynomials with
factors ex and e0 are always of order 0, and the orders of exponential
polynomials with factors eβ±x (α = 0, 1) grow not faster than by 1
on each time step (more accurate description of the orders can easily
be made for each interval and time step). Further, on [hn, +∞), vj

and wj,1,l are given by exponential polynomials with negative factors
in exponents, and on (−∞, hj], vj(x) = K−ex. Therefore it is straight-
forward to write a program which computes coefficients of exponential
polynomials wj,1,l, l = 0, 1, and wj on each interval (given coefficients
of vj+1 on the same intervals), and coefficients of exponential polyno-
mials vj,1,l, l = 0, 1, and vj on each interval (given coefficients of wj

on the same intervals). For wj, first, the coefficients are calculated for
the restriction on the rightmost interval [hn, +∞), and then we move
step by step to the left using the method of indeterminate coefficients
and the continuity of wj,1,l, l = 0, 1, at hn, hn−1, . . . , hj+1. When the
coefficients of the restriction of wj on (−∞, hj+1] are found, we solve
the equation wj(x) = 0 on this interval (wj changes the sign there),
and denote the root by hj. After that we define vj(x) = K − ex on
(−∞, hj], compute coefficients of (the restrictions of) vj,1,l, l = 0, 1,
and vj on [hj, hj+1] by using the method of indeterminate coefficients
and the continuity condition at hn−j, and move step by step to the
right.

The recurrent procedure of the calculation of coefficients of exponen-
tial polynomials is purely algebraic one: the method of indeterminate
coefficients involves only the solution of linear systems of a simple struc-
ture, and it requires neither truncation of integrals nor discretization
of the state space and numerical integration; in addition, on each step,
the unique solution of an increasing function must be found, which
can be done with the help of a simple numerical procedure. It can
be shown that the total number of the coefficients of the exponential
polynomials vs

j , j = n− 1, n− 2, . . . , 0, s = j + 1, j + 2, . . . , n + 1, is of

order 2n3/3, and so their number and time of calculation is not large
even for n = 100, say. To be specific, the number of the coefficients of
vn+1

j (resp., vs
j , s ≤ n) is 2(n− j) (resp, 4(s− j)), and the total number

is

2
n−1∑
j=0

(n− j) + 4
n−1∑
j=0

n∑
s=j+1

(s− j) =
2n3 + 9n2 + 7n

3
.
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5.2. Semi-explicit pricing procedure. At j = n, n−1, . . . , we know
optimal boundary points hj < hj+1 < · · · < hn = ln K, and vj. On
[hn, +∞), vj coincides with an exponential polynomial of the form

vn+1
j (x) =

∑
α=0,1

eβ−α xP n+1
j,−,α(x) (5.8)

(for j = n, it is zero); on (−∞, hj], vj coincides with vj
j (x) = K − ex,

and on [hs−1, hs], s = j+1, j+2, . . . , n, with an exponential polynomial
of the form

vs
j (x) = vs,0

j + vs,1
j ex +

∑
α=0,1

eβ−α xP n+1
j,−,α(x) +

∑
α=0,1

eβ+
α xP n+1

j,+,α(x). (5.9)

The recursive procedure for the calculation of the coefficients of vs
j is

as follows. For j = n, n− 1, . . .:
Step 1. Find functions wn+1

j−1,1,γ , γ = 0, 1, in the form (5.8), by applying
the method of indeterminate coefficients to an ODE

w′ − β+
γ w = vn+1

j , s.t. w(+∞) = 0,

and then set

wn+1
j−1 (x) =

∑
γ=0,1

B+
γ (q)ws

j−1,1,γ(x) + φ+
q (−i)ex − (1 + r∆)K.

Step 2. For s = n, n − 1, . . . , j, find ws
j−1,1,γ , γ = 0, 1, as a solution to

the ODE

w′ − β+
γ w = vs

j ,

s.t.

w(hs) = ws+1
j−1,1,γ(hs). (5.10)

By using the method of the indeterminate coefficients, one can find all
the coefficients of the exponential polynomial

ws
j−1,1,γ(x) = ws,0

j−1,1,γ + ws,1
j−1,1,γe

x

+
∑

α=0,1

eβ−α xQs
j,−,γ,α(x) +

∑
α=0,1

eβ+
α xQs

j,+,γ,α(x),

except for the zero-order term of Qs
j,+,γ,γ, which is to be found af-

terwards, from the continuity condition (5.10). The coefficients of
ws

j−1,1,γ , γ = 0, 1, being found, one calculates the coefficients of

ws
j−1(x) =

∑
γ=0,1

B+
γ (q)wj−1,1γ(x) + φ+

q (−i)ex − (1 + r∆)K. (5.11)

Step 3. Find the unique root of the equation ws
j−1(x) = 0 on (−∞, hj],

and denote it by hj−1.
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Step 4. Define vj−1
j−1, the restriction of vj−1 on (−∞, hj−1], as K − ex,

and set vj−1
j−1,1,γ = 0, γ = 0, 1.

Step 5. For s = j, j + 1, . . . , n + 1, find vs
j−1,1,γ , γ = 0, 1, as a solution

to the ODE
v′ − β−γ v = ws

j−1,

s.t.

v(hs−1) = vs−1
j−1,1,γ(hs−1). (5.12)

By using the method of the indeterminate coefficients, one can find all
the coefficients of the exponential polynomial

vs
j−1,1,γ(x) = vs,0

j−1,1,γ + vs,1
j−1,1,γe

x

+
∑

α=0,1

eβ−α xP s
j,−,γ,α(x) +

∑
α=0,1

eβ+
α xP s

j,+,γ,α(x),

except for the zero-order term of P s
j,−,γ,γ , which is to be found af-

terwards, from the continuity condition (5.12). The coefficients of
vs

j−1,1,γ , γ = 0, 1, being found, one calculates the coefficients of

vs
j−1(x) = K − ex + (1 + r∆)−1

∑
γ=0,1

B−
γ (q)vs

j−1,1,γ(x). (5.13)

Step 6. In the formula for vn+1
j−1 , set all the coefficients at the exponential

polynomials with non-negative exponents equal to 0 (if all the numeri-
cal calculation were exact, these coefficients would have been zero but
due to computational errors, they may be non-zero albeit small).

Thus, we have found vj−1 and hj−1, and can repeat the steps above
with j − 1 instead of j, etc.

5.3. Numerical examples. In the first example shown on Figure 1,
we take K = T = 1, and n = 20. We fix the instantaneous variance
m2 = ψ′′(0) = 0.3, r = 0.05, T = 1, and c± = 1, λ− = −20, and study
how the discretized early exercise boundary depends on λ+. Recall that
λ+ characterizes the relative intensity of large negative jumps, and that
the last parameter, b, is determined from the condition r + ψ(−i) = 0.
The smaller the λ+ is (and hence, the larger the relative intensity of
big negative jumps w.r.t. small ones), the higher the early exercise
boundary is. This seemingly counterintuitive result agrees with optimal
exercise prices h∗ = 0.2061, 0.1736, 0.1646 for the perpetual put, and
shows that among processes with the same instantaneous variance, the
ones with large negative jumps may lead to higher early exercise price.
The next example shown on Figure 2 demonstrates that if we keep the
volatility of the Gaussian component and positive jump component
fixed and increase the intensity of negative jumps then the optimal
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exercise prise decreases as one should expect; the optimal exercise price
for the perpetual put also decreases: h∗ = 0.2419, 0.2290, 0.2091.

5.4. Brownian motion case and one-jump case. The modification
of the algorithm for the case when one or both of the c± in (2.5) are
zero is evident: if both c± = 0, then there are only two roots β±(q),
and in (5.4) and (5.5), there is only one term on the RHS. If one of the
c± is 0, and the other is not, then there exist 3 roots, and two terms in
(5.4) or (5.5).

5.5. Multi-jump case. Consider the multi-jump generalization of (2.5):

F (dx) =
K∑

k=1

ck,+λk,+eλk,+x1(−∞,0)(x)dx−
L∑

l=1

cl,−λl,−eλl,−x1(0,+∞)(x)dx,

(5.14)
where λk,+ > 0, λl,− < −1 and cj,± > 0. Then

ψ(ξ) =
σ2

2
ξ2 − ibξ +

K∑
k=1

ick,+ξ

λk,+ + iξ
+

L∑
l=1

icl,−ξ

λl,− + iξ
, (5.15)

where σ2 > 0 and b ∈ R are the variance and drift of the Gaussian
component. To factorize 1 + ∆(r + ψ(ξ)), it suffices to find the roots
of equation (3.12). In terms of the variable β = iξ, equation (3.12)
assumes the form

q − bβ − σ2

2
β2 +

K∑
k=1

ck,+β

λk,+ + β
+

L∑
l=1

cl,−β

λl,− + β
= 0. (5.16)

Equation (5.16) has 1 + L positive roots β+
l = β+

l (q), l = 0, . . . , L, and
1+K negative roots β−k = β−k (q), k = 0, . . . , K, which are separated by
0 and the poles −λ±,j; hence, they can be calculated easily with high
precision. By using (3.10) and (3.11), we obtain

φ+
q (ξ) =

L∏
l=0

β+
l

β+
l − iξ

L∏
l=1

−λl,− − iξ

−λl,−
, (5.17)

φ−q (ξ) =
K∏

k=0

−β−k
−β−k + iξ

K∏
k=1

λk,+ + iξ

λk,+

. (5.18)

Represent φ±q (ξ) as sums of simple fractions

φ+
q (ξ) =

L∑
l=0

B+
l (q)

β+
l − iξ

, φ−q (ξ) =
K∑

k=0

B−
k (q)

−β−k + iξ
, (5.19)
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Figure 1. Early exercise boundary: instantaneous vari-
ance is fixed. Parameters: K = 1, T = 1, n = 20, r =
0.05,m2 = 0.3, c+ = c− = 1, λ− = −20.
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Figure 2. Early exercise boundary: volatility of the
Gaussian component is fixed. Parameters: K = 1, T =
1, n = 20, r = 0.05, σ2 = 0.3, c− = 1, λ+ = 10, λ− = −20.
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where

B+
m(q) = β+

m

∏
l=0,...,L,l 6=m

β+
l

β+
l − β+

m

∏
l=1,...,L

−λl,− − β+
m

−λl,−
,

B−
m(q) = −β−m

∏
k=0,...,K,k 6=m

β−k
β−k − β−m

∏
k=1,...,K

−λk,+ − β−m
−λk,+

.

By using (5.19), we can write (4.11) and (4.13) as

wj1(x) =
L∑

l=0

B+
l (q)

∫ +∞

x

eβ+
l (x−y)vj+1(y)dy,

vj1(x) =
K∑

k=0

B−
k (q)

∫ x

hj

eβ−k (x−y)wj(y)dy. (5.20)

(Recall that (4.13), hence, (5.20) is applied for x > hj only). Now
we can proceed further exactly as in the two-jump case, and obtain a
pricing procedure, which takes as much time as calculation of solutions
to (2 + L + K)n first-order linear ODE with constant coefficients and
exponential polynomials as free terms.

6. Detailed algorithm, the case of a general RLPE

6.1. General analysis. In general case, we have to calculate the den-
sities k±q for xl from a sufficiently fine grid (after ∆ > 0 is chosen).
Next, the equations (4.10) and (4.11) can be used to calculate values
wj(x) on an appropriate grid provided we know how to truncate the
upper limit of the integration in (4.11), call it A; and the same limit
determines the interval [hj, A], on which values of vj1 and vj need to be
computed. The A can be found with the help of the following lemma,
which shows that vj(x) exponentially decays as x → +∞, and gives the
rate of the decay. Without loss of generality, we normalize the strike
price to one: K = 1.

Lemma 6.1. Let ω+ > 0 be from estimate (3.5). Then for any ω ∈
(0, ω+), and j = n, n− 1, . . ., there exists Cω,j such that

vj(x) ≤ Cω,je
−ωx, ∀ x. (6.1)

Proof. For simplicity, we assume that ω+ is greater than 1 and so large
that r+ψ(iω+) < 0; then ω ∈ (1, ω+) can be chosen so that r+ψ(iω) <
0 as well, and we make such a choice. The general case can be treated
similarly only the formulas for the Cω,j below become more complex.
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We prove (6.1) by induction. For j = n, vn(x) = (1 − ex)+, and
hence, (6.1) holds with Cω,n = 1. Suppose that (6.1) has been proven
for j = n, n− 1, . . . ,m + 1. By using (4.12) and (4.8), we obtain

vm = 1− ex + (1 + r∆)−1φ−q (D)1[hm,+∞)wm

= 1− ex + (1 + r∆)−1φ−q (D)1[hm,+∞)(φ
+
q (−i)ex − (1 + r∆))

+(1 + r∆)−1φ−q (D)1[hm,+∞)φ
+
q (D)vm+1

= 1− ex + (1 + r∆)−1φ−q (D)(φ+
q (−i)ex − (1 + r∆))

−(1 + r∆)−1φ−q (D)1(−∞,hm](φ
+
q (−i)ex − (1 + r∆))

+(1 + r∆)−1φ−q (D)1[hm,+∞)φ
+
q (D)vm+1.

Since

(1+r∆)−1φ−q (−i)φ+
q (−i) = (1+r∆)−1(1+∆(r+ψ(−i)))−1(1+r∆) = 1,

the first three terms on the RHS of the formula for vm cancel out, and
we obtain

vm = (1 + r∆)−1φ−q (D)wm2,

where

wm2 = ((1 + r∆)− φ+
q (−i)ex)1(−∞,hm] + 1[hm,+∞)φ

+
q (D)vm+1.

Since hm < ln 1 = 0, and

eωxφ±q (D)e−ωx = φ±q (D + iω), (6.2)

we have

eωx|wm2(x)| ≤ max{(1 + r∆), φ+
q (−i), (φ+

q (D + iω)eω·vm+1)(x)}
≤ max{(1 + r∆), φ+

q (−i), Cω,m+1φ
+
q (iω)}

(the last estimate follows from (6.1) with j = m + 1). By using (6.2)
with the ‘-’ sign, we continue:

eωxvm(x) = (1 + r∆)−1φ−q (D + iω)eωxwm2(x)

≤ (1 + r∆)−1φ−q (iω) max{(1 + r∆), φ+
q (−i), Cω,m+1φ

+
q (iω)}.

Since

(1 + r∆)−1φ−q (iω)φ+
q (iω) = (1 + ∆(r + ψ(iω)))−1,

we conclude that for j = m, (6.1) holds with

Cω,m ≤ max

{
φ−q (iω),

φ−q (iω)φ+
q (−i)

1 + r∆
,

Cω,m+1

1 + ∆(r + ψ(iω))

}
.

¤



PRICING OF AMERICAN PUT 21

To apply estimate (6.1), it is desirable that the constant in the RHS
be independent of j, and under assumption r + ψ(iω) < 0, this can
be achieved easily. Since Cω,n = 1, we can simplify formula for Cω,j,
j ≤ n− 1:

Cω,j = (1 + ∆(r + ψ(iω)))−n+j+1C0
ω(∆), (6.3)

where

C0
ω(∆) = max{φ−q (iω), (1+r∆)−1φ−q (iω)φ+

q (−i), (1+∆(r+ψ(iω)))−1}.
(6.4)

Since n = T/∆, and r + ψ(iω) < 0, we have

(1 + ∆(r + ψ(iω)))−n+j+1 < e−T (r+ψ(iω)),

therefore (6.1) simplifies:

vj(x) ≤ C0
ω(∆)e−T (r+ψ(iω))e−ωx, ∀ x. (6.5)

Finally, from (6.4), it is easy to deduce that for ω fixed, C0
ω(∆) → 1 as

∆ → 0, therefore for small ∆, the following simpler estimate may be
used:

vj(x) ≤ e−T (r+ψ(iω))e−ωx, ∀ x. (6.6)

6.2. Control of the truncation error for fixed n. In many em-
pirical studies, the left tail is not very fat, that is, λ+ is large; then
typically, r + ψ(i(λ+ − 0)) < 0. Further, from (3.5), it is easily seen
that ω+ = ω+(∆) → λ+ as ∆ → 0, therefore if ∆ is small enough, then
we can take ω = λ+ − 1, and apply estimate (6.6) (or more accurate
estimate (6.5)). If we truncate the upper limit in integrals (4.11):

wj1(x) =

∫ A

x

k+
q (x− y)vj+1(y)dy, (6.7)

then each integration may yield an error e−T (r+ψ(iω))e−ωA. We have
to calculate n integrals (4.11), therefore the cumulative error of the
truncation is ne−T (r+ψ(iω))e−ωA, and if we wish that the cumulative
truncation error be less than ε > 0, we can find A from the following
condition:

A > −ω−1[ln[ε/n] + T (r + ψ(iω))]. (6.8)

More accurate estimate is

A > −ω−1[ln[ε/(nC0
ω(∆))] + T (r + ψ(iω))]. (6.9)
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6.3. Algorithm. We normalize K = 1, fix n, the number of subinter-
vals of [0, T ], and ε, the truncation error, and assume that ω and A can
be chosen as indicated above. Assume that A > 0; this is always the
case if ε is small. Fix δ > 0, the step for a grid in the state space, choose
an integer N1 ≥ A/δ, and construct xl = (N1 − l)δ, l = 0, 1, . . . , N ,
where N will be chosen below. For small ∆ and x in a neighborhood
of 0, the probability density p∆(x) of an RLPE of order ν behaves like
the one of the stable Lévy process of index ν. Therefore on the basis of
scaling considerations, for large n, it is advisable to choose δ of order
∆1/ν . Otherwise δ should be chosen to make the error of numerical
integration below as small as desired. After that we

1. calculate q = ∆−1 + r and φ±q (−i);
2. compute h∗ = ln[φ−r (−i)], the optimal exercise log-price of the

perpetual American put (see [9, 10] and Chapter 5 in [12]), and choose
an integer N so that N ≥ N1 − h∗/δ;

3. for s = 0, 1, . . . , N , calculate and store values es = exp[(N1− s)δ],
and

k+
q,s := k+

q (−sδ) = (2π)−1

∫ +∞

−∞
e−isδξφ+

q (ξ)dξ,

k−q,s := k−q (sδ) = (2π)−1

∫ +∞

−∞
eisδξφ−q (ξ)dξ.

In the case of jump-diffusions, we can calculate k−q,s explicitly; in the
general case, the Fast Fourier Transform can be used;

4. for j = n, set hj = 0, and define vn,l = 0, l = 0, 1, . . . , N1 − 1, and
ln = N1;

5. in the loop for j = n− 1, n− 2, . . . , 0,
a) by applying a numerical integration procedure to (4.11) (say, the

trapezoid rule or Simpson’s rule), calculate approximations wj1,l to
wj1((N1− l)δ), l = 0, 1, . . .. Here the stored values k+

q,s, s = 0, 1, . . . , N ,
and vj+1,s, s = 0, 1, . . . , lj − 1, should be used, and when vj+1,s for
s ≥ lj are needed, one uses formula vj+1,s = 1− es. Then set

wj,l = wj1,l + φ+
q (−i)el − (1 + r∆).

When wj,l ≤ 0, set lj = l, stop the loop in l, and find hj by linear
interpolation:

hj = δ[N1 − lj + wj,lj/(wj,lj − wj,lj−1)]

(higher order interpolation can be used as well);
b) by applying a numerical integration procedure to (4.13), calculate

approximations vj1,l to vj1(A − lδ), l = lj − 1, . . . , 0. Here the stored
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values k−q,l−s, s = 0, 1, . . . , N , and wj,s = wj((N1−s)δ), s = 0, 1, . . . , lj−
1, wj(hj) = 0 have to be used. Then set

vj,l = 1− el + (1 + r∆)−1vj1,l

as an approximation for the put price vj((N1 − l)δ), l < lj.
Remark. Near the early exercise boundary, derivatives of the put

price, of order 3 and higher, are large, and therefore, the integrals over
a small neighborhood of the boundary should be integrated by using
the trapezoid rule; farther from the boundary, the Simpson rule can be
used.

7. Conclusion

We considered the pricing problem for the American put with a
finite time horizon, for wide classes of Lévy processes. By using time
discretization (method of lines or equivalently, Carr’s randomization),
we reduced the problem to a series of free boundary problems on the
line. We solved these problem by using the Wiener-Hopf factorization,
and derived explicit pricing procedure, which gives the early exercise
boundary and option prices for all strikes and time to maturity from
interval [0, T ]. In the case of jump-diffusions with K jump components,
the procedure is simplified further, and the result is the pricing scheme,
which involves the recurrent integration of (2 + K)n linear ODE of
the first order with constant coefficient, and piece-wise exponential
polynomials as free terms (the method of indeterminate coefficients),
and finding zeroes of some of these polynomials on intervals, where
the zero exists and is unique. The coefficients of the polynomials and
zeroes can be calculated easily, and with the high precision. The zeroes
define the discretized early exercise boundary, and the coefficients can
be used to compute the rational put price. The pricing procedure
can be made faster by means of Richardson extrapolation scheme, as
in the Gaussian case (see [13]). Numerical results are presented to
demonstrate the dependence of the early exercise boundary and prices
on the jump component.
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