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1 Introduction

The real options approach to investment under uncertainty has provided many
insights into capital budgeting decision-making. However, the most popular
models in the theory of real options are either borrowed from continuous time
Finance or set in discrete time and discrete state space. Continuous time mod-
els require too stringent and unrealistic assumptions concerning the underlying
stochastic processes. We believe that discrete time models are more relevant for
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real options theory, because investment decisions are not made every instant,
and the firm’s manager contemplating new investment has in mind commodity
prices aggregated over certain time periods rather than continuously changing
prices, which are relevant for financial markets. In addition, in discrete time
models, it is easier to fit a process from a chosen family to empirical data. On
the other hand, discrete state space models are less tractable analytically, hence
it is better to use continuous state space.

In this paper, we present a discrete time model of irreversible investment
under uncertainty, with a continuous state space (the method of the present
article admits a modification for the discrete-space models; the corresponding
result will be published elsewhere). We consider a risk-neutral, competitive firm,
which chooses the investment strategy in order to maximize its present value net
of installation cost of capital. We assume that all uncertainty is on the demand
side, i.e., the price of a unit of the firm’s output, P , is stochastic; the method can
be applied when both the price and cost depend on the same factor, similarly to
the results in Boyarchenko and Levendorskǐi (2002a,b,c) for general perpetual
American options in discrete and continuous time. A standard assumption on
P = {Pt}, a process for the price, is that it is log-normal: Pt = exp Xt, where
X = {Xt} is a Gaussian process; more general Itô processes are also applied.
See Øksendal (2000) for a continuous time model under Markov processes with
continuous trajectories. It is well documented, though (see, for example Yang
and Brorsen (1992) or Deaton and Laroque (1992)), that Gaussian models do not
give very good fit to empirical data since the latter exhibit significant skewness
and kurtosis, nothing to say about apparent fat tails of probability distribution
functions.

Here we make fairly weak assumptions on the process P . We assume that
the log-price follows the random walk but we do not suppose that the transition
density is infinitely divisible so that it is possible to pass to the continuous time
limit.

We find the optimal investment threshold and value of the firm. The ma-
jor result of the existing models of irreversible investment under uncertainty is
that irreversibility increases the hurdle that projects must clear in order to be
profitably undertaken. The formula obtained in the paper shows that the in-
vestment threshold exceeds the one computed under the naive net present value
(NPV) rule by a factor which is the ratio of two expected present values of the
average revenue: the one in the numerator is calculated for the original price
process, and the value in the denominator is computed for the infimum price
process P t = min0≤s≤t Ps. The aforementioned factor incorporates the effect of
cumulative losses, which are caused by the downward movements of the price
and irreversibility of investment. Upward movements are not so important be-
cause the capital can be increased when necessary. In the result, the higher
level of price is needed to trigger new investment in order to compensate for
possible negative movements. A similar result is well-known in the continuous-
time Gaussian model of investment (see Dixit and Pindyck (1996)), though the
meaning of the correction factor is not clear.

The value of the firm is the sum of the value calculated under the naive NPV
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rule and the option value of investment opportunities. Similar decomposition
was made in Abel et al. (1996) for a two-period model of partially reversible
investment. In the paper, we factor out the contributions of the infimum pro-
cess P t and supremum process P̄t = max0≤s≤t Ps to the marginal option value
of capital. The marginal option value increases in downward uncertainty and
decreases in upward uncertainty. The overall effect of uncertainty is ambiguous.

The method of this paper is straightforward and can be summarized as fol-
lows. As it is standard in the literature on investment under uncertainty and
endogenous default (see Dixit and Pindyck (1996) and Hilberink and Rogers
(2002), respectively), we assume that the optimal strategy is of the form: in-
vest if the price crosses certain threshold. We fix a prospective candidate for
the investment threshold and notice that the Bellman equation in the model is
the Wiener-Hopf equation. The latter can be solved by the Wiener-Hopf factor-
ization method; and the central point of the Wiener-Hopf method in the form
suggested in the paper is that virtually each step of the solution of the problem
and the final answer can be interpreted as the calculation of the expected present
value of a certain stream of payoffs; expectations are taken under assumption
that the price follows either the supremum process or infumum process (depend-
ing on the step of the proof). We believe that this technique is much simpler
and more natural for Economics than the Itô calculus which is routinely used in
continuous time models of real options.

The explicit formula for the solution having been obtained, we notice that
the value function must satisfy a certain property, which leads to an equation for
the threshold. This equation has a unique solution. We check that the solution
satisfies the sufficient optimality condition. Finally, an explicit analytic formula
for the investment threshold is obtained. Under additional assumptions on the
firm’s production function, we also derive an analytical formula for the option
value of investment opportunity and value of the firm.

By using essentially the same Wiener-Hopf factorization technique but in a
more technically involved form, we calculated the optimal exercise prices of the
perpetual Bermudan options (Boyarchenko and Levendorskǐi (2002c)), and of
the perpetual American options (Boyarchenko and Levendorskǐi (2000, 2002a)),
as well as the investment threshold in a continuous time model of investment
(Boyarchenko (2001)) for wide classes of Lévy processes (see also the mono-
graph Boyarchenko and Levendorskǐi (2002b)). The Wiener-Hopf method can
be used in several analytical and stochastic forms. Unlike in the aforementioned
papers, where mainly the analytical version was used, here we use a hybrid of
the analytical and stochastic version, in a simple form natural for Economics.
Purely analytical tools are used in the very end, when it becomes necessary to
calculate the answer explicitly. Notice that Hilberink and Rogers (2002) used
an essentially different version of the Wiener-Hopf method to solve a model of
endogenous default.

The rest of the paper is organized as follows. In Section 2, we specify the
model, and present the main results. In Section 3, the Wiener-Hopf method is
described and applied to find the solution to the Wiener-Hopf equation. The
solution is used to obtain the investment threshold and calculate the marginal
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option value of investment opportunity. In Section 4, the value of the firm
is computed under additional technical assumptions on the firm’s production
function. In Section 5, we consider a simple example, when the probability
density is modelled as an exponential polynomial and the production function
is a Cobb-Douglas one. In this case, all the calculations can be made explicitly.
Section 6 concludes, and in the appendix, technical results are presented.

2 Model specification and main results

2.1 Process specification

We consider only processes such that the price can move both up and down
with positive probability. If the price process is non-decreasing almost surely,
then irreversibility does not matter, and the firm’s manager may follow the net
present value rule also known as the Marshallian law. This rule prescribes to
invest as long the NPV is non-negative (for a discussion of irreversibility and
uncertainty issues, see Dixit and Pindyck (1996)). If the price process is non-
increasing almost surely, then the firm, which is already on the market, will
never increase the capital stock further since the current market conditions can
only deteriorate.

Let tk, k = 0, 1, . . . , be the dates when investment can be made. We assume
these dates to be equally spaced: ∆ ≡ tj+1 − tj is independent of j. Parameter
∆ is normalized to 1. Let q ∈ (0, 1) be a (fixed) discount factor. Assume that
ln(P1/P0), ln(P2/P1), . . . , ln(Pt+1/Pt), . . . are independently and identically dis-
tributed random variables on the probability space Ω. We impose the following
restriction on the price process:

ρ ≡ qE[P1/P0] < 1. (2.1)

The intuition behind the last condition is as follows. Let K be the current capital
stock of the firm. For K constant, the expected revenues grow each period by
the factor E[P1/P0], and they are discounted back by the factor q. Hence, at the
initial price level P0 and the capital stock K, the expected discounted revenue
is given by

P0G(K)
∞∑

t=0

ρt =
P0G(K)

1− ρ
, (2.2)

where G(K) is the production function of the firm. For the series on the LHS
of (2.2) to converge, it is necessary and sufficient that (2.1) holds. It follows
automatically from (2.1) that

E[P1/P0] < ∞. (2.3)

2.2 Firm’s problem

We assume that G(K) is differentiable, concave, and satisfies the Inada condi-
tions. At each time period t, the firm receives PtG(Kt) from the sales of its
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product and suffers the installation cost C · (Kt+1 −Kt), should it decide to in-
crease the capital stock. The firm’s objective is to chose an optimal investment
strategy K = {Kt+1(Kt, Pt)}t≥1,K0 = K,P0 = P , which maximizes the NPV
of the firm:

V (K,P ) = sup
K

E


∑

t≥0

qt(PtG(Kt)− C(Kt+1 −Kt))|P0 = P


 . (2.4)

Here we treat the current price P and capital stock K as state variables, and K
as a sequence of control variables. Due to irreversibility of investment, Kt+1 ≥
Kt, ∀t.

In order that firm’s value (2.4) be bounded, we impose a resource constraint:
there exists K̄ < ∞, such that Kt ≤ K̄, ∀t. The resource constraint, condition
(2.1), and properties of the production function ensure that the value function
(2.4) is well defined.

Following the tradition in the literature, we are going to view the space of
state variables as a (disjoint) union of two regions: inaction and action ones.
For all pairs (K,P ) belonging to the inaction region, it is optimal to keep the
capital stock unchanged. In the action region, investment becomes optimal. We
may assume that the inaction region is closed. Denote by Γ the boundary of
the inaction region. Then the investment strategy defined by the choice of the
inaction region can be viewed as follows:

(i) do not invest as long as Pt ≤ H(K), where H(K) is defined by (K,H(K)) ∈
Γ;

(ii) invest when Pt > H(K), and increase the capital stock up to the level
Φ(Pt) defined by (Φ(Pt), Pt) ∈ Γ.

Denote the set of H satisfying (i) and (ii) by H. Every H ∈ H uniquely
defines the boundary of the inaction region, call it Γ, by (Φ(P ), P ) ∈ Γ ⇔
∃ K : P ∈ [H(K− 0),H(K)]; and Γ together with the rules (i) and (ii) uniquely
define the strategy.

Let V (K,P ;H) be the NPV of the firm when H ∈ H is chosen to define the
boundary Γ of the inaction region, that is

V (K,P ;H) = E


∑

t≥0

qt(PtG(Kt)− C · (Kt+1 −Kt)) | P0 = P


 .

Then we can restate the original firm’s problem in an equivalent way: find the
optimal investment threshold H∗ ∈ H, which is characterized by

V (K,P ;H∗) ≥ V (K,P ;H), ∀ P and H ∈ H,

and V (K,P ;H∗) = V (K,P ), where V (K,P ) is defined by (2.4).
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2.3 Optimal investment rule and shadow value of capital

Here we present the main results of the paper in terms of the processes P =
{P t}t≥0 and P̄ = {P̄t}t≥0, where P t = min0≤s≤t Ps and P̄t = max0≤s≤t Ps

We will call P and P̄ the infimum and supremum supremum price processes
respectively as their analogs in continuous time.

Theorem 2.1 Let (2.1)-(2.3) hold. Then the investment threshold H∗(K) is
the solution to

G′(K)E

[ ∞∑
t=1

qtP t | P0 = H

]
= C. (2.5)

The LHS in (2.5) is the expected present value of the marginal revenue product
(MRP) of capital with the original price process Pt being replaced by the infimum
price process P t (recall that in discrete time models, a unit of capital installed
today starts working only tomorrow). Equivalently, (2.5) can be written as

G′(K)H(K)E

[ ∞∑
t=1

qtP t | P0 = 1

]
= C. (2.6)

Equation (2.6) is by no means computationally effective, so we provide an ana-
lytical formula for the investment threshold in Section 3.

If there is no uncertainty and investment is reversible, then the investment
threshold is given by

G′(K)H
∞∑

t=1

qt = C. (2.7)

The strategy defined by (2.7) prescribes to invest when the discounted MRP
equals the cost of a unit of capital. If one tries to introduce uncertainty in a
naive way, then the natural generalization of (2.7) is

G′(K)E

[ ∞∑
t=1

qtPt | P0 = H

]
= C. (2.8)

The counterparts of (2.7) and (2.8) in continuous time define investment thresh-
olds which are known as the Jorgensonian and Marshallian thresholds respec-
tively.

Let H∗(K) be the trigger price of investment in our model, and HM (K) be
the price which triggers new investment according to the Marshallian rule. To
compare these two prices, introduce

κ =
H∗(K)
HM (K)

=
∑∞

t=1 qtE[Pt | P0 = 1]∑∞
t=1 qtE[P t | P0 = 1]

.

The Marshallian prescription (2.8) does not take into consideration the option-
like nature of investment opportunities. The firm can increase capital stock later,
therefore it has an option similar to the call option. The trigger price H∗(K)
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computed for the case when the option to delay the investment, irreversibility,
and uncertainty are taken into account properly exceeds the Marshallian invest-
ment threshold HM (K) by a factor κ. The factor κ is the ratio of two expected
present values of the average revenue: the one in the numerator is calculated
for the original price process, and the value in the denominator is computed for
the infimum price process. Clearly, Pt ≥ P t for all realizations of the process,
and if X is not non-decreasing, then E[P t|P0 = 1] < E[Pt|P0 = 1], hence κ > 1.
The factor κ incorporates the effect of cumulative losses, which are caused by
the downward movements of the price and irreversibility of investment. Upward
movements are not so important because the capital can be increased when
necessary. In the result, the higher level of price is needed to trigger new invest-
ment in order to compensate for possible negative movements. A similar result is
well-known in the continuous-time Gaussian model of investment (see Dixit and
Pindyck (1996)). In that model, κ = β/(β−1), where β > 1 is a positive root to
the characteristic equation k(k−1)σ2/2+αk−r = 0, and α, σ2 are the drift and
diffusion coefficient of the underlying Gaussian process for P . For the analog in
the continuous time model under non-Gaussian shocks, see Boyarchenko (2001)
and the monograph Boyarchenko and Levendorskǐi (2002b).

Our next result is the formula for the marginal (or shadow) value of capital.
Suppose that the investment threshold is chosen according to (2.1). Let T be an
exponentially distributed random variable independent of {ln(Pt+1/Pt)}, with
the mean q(1− q)−1. Then the shadow value of capital is given by

VK(K + 0, P ) =
PG′(K)
1− ρ

+ V opt
K (K + 0, P ), (2.9)

where VK(K + 0, P ) is the right derivative of the value function w.r.t. its first
argument (the existence of this derivative will be proved later on); and

V opt
K (K + 0, P ) = −ρG′(K)

∞∑
t=1

qtE[P t | P0 = 1] (2.10)

×E
[
(P̄T −H∗(K))+ | P0 = P

]
,

where (P̄T −H∗(K))+ ≡ max{(P̄T −H∗(K)), 0}. Notice that the shadow value
of capital is proportional to Tobin’s marginal q ≡ VK(K + 0, P )/C. Equation
(2.9) separates the marginal value of capital into two components. The first one
is the expected present value of the marginal returns to capital given the capital
stock remains constant at the level K in the future. The second component is
the marginal option value of the future investment opportunities. This value is
negative because investing extinguishes the option. Similar result was obtained
by Abel et al. (1996) for a two-period model of partially reversible investment.

Formula (2.10) factors out contributions of the infimum and supremum price
processes to the marginal option value of capital. The marginal option value
(in absolute terms) is a product of three factors. The first factor, ρG′(K), is
the expected present value of the marginal returns to the current capital stock,
K, in a period from now, deflated by the current price. The second factor in
(2.10) is the expected present value of the average revenue calculated under
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the assumption that prices follow the infimum process, and the initial price is
normalized to one. This factor decreases if the probability of downward jumps in
prices increases. The third factor is the price of the European call option on P̄T

with the exercise price H∗(K) and random date of expiry T . The price of this
option increases as the probability of upward jumps in prices increases. Hence the
marginal option value of capital increases in downward uncertainty and decreases
in upward uncertainty. The overall effect of uncertainty is ambiguous.

3 Proof of the main results

If one works with (geometric) Gaussian processes, the argument can be made
equally easily by using differential equations on the half-line (the state space for
the price processes) or on the line (the state space for the log-price process). In
discrete time (and in the continuous time, if the process is non-Gaussian), the
choice of the half-line unnecessarily complicates the technique. So, instead of
characterizing the state by the pair (K,P ) as in the previous sections, we use
(K,x) (x = lnP ∈ R) as a generic state variable, and h(K) = lnH(K) as the
investment threshold. The boundary which separates the action and inaction
regions in the (K,x)-space is denoted by γ. Let W (K,x;h) = V (K,P ;H). We
are looking for an h∗ satisfying

W (K,x;h∗) ≥ W (K,x;h), ∀ x and h. (3.1)

To find h∗, we fix h, a prospective candidate for the investment threshold, and
derive the formula for W (K,x;h) in several steps. First, we write the Bellman
equation

W (K,x;h) = max
K′≥K

[G(K)ex − C(K ′ −K) + qE[W (K ′,X1;h) | X0 = x], (3.2)

next, we reduce the Bellman equation to the Wiener-Hopf equation, and solve the
latter. Then, by using a solution to the Wiener-Hopf equation for different h, and
a natural hypothesis about the optimal threshold, we conjecture the formula for
h∗. Finally, we verify (3.1), and obtain the firm’s value W (K,x;h∗) = W (K,x).
Now we are going to describe each of the steps in details.

3.1 Reduction to the Wiener-Hopf equation

It follows from (i) and (ii), that h is non-decreasing and continuous a. e. with
each point of discontinuity of the first kind, and h(K + 0) = h(K), ∀K. Hence,
h′(K) exists for almost all K. Fix h, and establish some properties of the value
function W (K,x;h).

Lemma 3.1 Let h′(K) exist. Then WK(K +0, x;h(K)), the right derivative of
W w.r.t. the first argument, exists for any x.

Proof Consider (K,x) and (K1, x) in the action region. From the Bellman equa-
tion,

W (K1, x;h)−W (K,x;h) = (G(K ′)−G(K))ex + C(K1 −K),
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therefore the derivative WK(K,x;h) exists, and

WK(K,x;h) = G′(K)ex + C, x > h(K). (3.3)

Notice that (3.3) is just the envelope condition. The case x ≤ h(K) will be con-
sidered in the appendix. Below we consider only K such that h′(K) exists, and
derive an analytic expression for h(K). We will see that this analytic expression
defines a differentiable function, hence it defines h(K) for all K. We conclude
that h is differentiable everywhere, and the result will be valid for all K.

Suppose that a pair (K,x) belongs to the inaction region. Then

W (K,x;h) = G(K)ex + qE[W (K,X1;h) | X0 = x], x ≤ h(K). (3.4)

We differentiate (3.4) w.r.t. K, in the region x ≤ h(K):

WK(K + 0, x;h) = exG′(K) + qE[WK(K + 0,X1;h) | X0 = x]. (3.5)

Set

u(x) ≡ WK(K + 0, x + h(K);h)−G′(K)ex+h(K) − C, (3.6)
g(x) = ρG′(K)ex+h(K) − (1− q)C. (3.7)

Thus, u and g depends not only on x but on K and h(K) as well; the latter
couple is fixed in this section. We see that (3.3) and (3.5) become

u(x) = 0, x > 0, (3.8)
u(x)− qE[u(X1) | X0 = x] = g(x), x ≤ 0. (3.9)

(We have used the equality E[1] = 1). Similarly to the proof of Lemma 3.1 (see
the appendix), it is possible to show that WK(K,x) is bounded on (−∞, h(K)),
hence it suffices to look for a solution of the problem (3.8)-(3.9) in L∞(R).
Since only the values of g on R− matter, we may define g on R+ by arbitrary
expression, say, g(x) = 0 for all x > 0. Then g ∈ L∞(R), too.

For t = 0, 1, . . ., define an operator Pt in L∞(R) by Ptu(x) = E[u(Xt) | X0 =
x], and set P = P1. Clearly, all these operators have the norm 1: ||Pt|| = 1, and
since Yj are i.i.d., the law of iterated expectations gives Pt = P t. Rewrite (3.9)
as

u(x)− q(Pu)(x) = g(x), x ≤ 0. (3.10)

Equation (3.10) subject to (3.8) is called the Wiener-Hopf equation.

3.2 Expected present value and resolvent

If (3.10) had been an equation on the whole axis, it could have been solved easily,
by using the inverse to I − qP :

(I − qP )−1 = I + qP + (qP )2 + · · · . (3.11)

9



The series converges since ||qP || = q||P || = q ∈ (0, 1), and applying (3.11) to
equation (3.10) on the whole axis, we would have obtained

u = (I − qP )−1f =
∞∑

t=0

(qP )tf.

Since P tf(x) = Ptf(x) = E[f(Xt) | X0 = x], we can rewrite the last equation
as

u = Uq
Xg, (3.12)

where Uq
X is the resolvent operator (another name: potential operator) of the

process X, defined by

(Uq
Xg)(x) ≡ E

[ ∞∑
t=0

qtg(Xt) | X0 = x

]
=

∞∑
t=0

qtE[g(Xt) | X0 = x].

Thus, the reader may regard the resolvent operator applied to g as the operation
of calculation of the expected present value of the stochastic stream g(Xt), and
the name expected present value (EPV) operator seems to be natural in appli-
cations to Economics. The argument above shows that for the random walk
X,

Uq
X(I − qP ) = (I − qP )Uq

X = I (3.13)

or
(I − qP )−1 = Uq

X , (Uq
X)−1 = I − qP. (3.14)

Therefore, to calculate the EPV u(x) = (Uq
Xg)(x) of the stream g(Xt) it suffices

to solve equation (3.10) on the whole axis, and vice versa.

3.3 Infimum and supremum processes and the Wiener-
Hopf factorization

Unfortunately, in our case, equation (3.10) holds on the half-axis only, and so
(3.12) does not help. Nevertheless, the solution can be written in terms of
resolvents: not of the random walk X but of the processes Nt = min0≤s≤t Xs and
Mt = max0≤s≤t Xs. The Wiener-Hopf factorization theorem (see the appendix)
allows one to factorize Uq

X into the product of the resolvents of M and N :

(1− q)−1Uq
X = Uq

MUq
N = Uq

NUq
M . (3.15)

By using the symbol 0 to denote the trivial process, we can write (3.15) in the
form

Uq
0 Uq

X = Uq
MUq

N = Uq
NUq

M .

Factorization formula (3.15) allows one to solve the Wiener-Hopf equation. If
u ∈ L∞(R) vanishes on R±, we write u ∈ L∞(R∓). Clearly, L∞(R∓) ⊂ L(R)
is a subspace. Let 1(−∞,0] be the indicator function of the interval (−∞, 0].
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Theorem 3.2 For any g ∈ L∞(R−), the Wiener-Hopf equation (3.10) has a
unique solution u ∈ L∞(R−). The solution is given by

u = (1− q)Uq
M1(−∞,0]U

q
Ng. (3.16)

Let M ′ denote the process M killed on first leaving the interval (−∞, 0]. Then
(3.16) can be reexpressed in the form

u = (1− q)Uq
M ′U

q
Ng. (3.17)

Equation (3.17) says that u can be calculated in three steps: first, starting
with the stochastic stream g(Xt), we replace Xt with the infimum process, and
calculate the EPV of g(Xt). Next, we regard the result of the first step, Uq

Ng,
as a new stochastic stream, replace the process with M ′, and compute the EPV
of the stream Uq

Ng(M ′
t). Finally, we multiply the last value by 1− q.

3.4 Solution of the Wiener-Hopf equation

Problem (3.8), (3.10) is equivalent to the following problem: find u ∈ L∞(R−)
and g1 ∈ L∞(R+) which satisfy the equation

(I − qP )u = g + g1. (3.18)

By using (3.14) and (3.15), we can rewrite (3.18) as

(Uq
N )−1(Uq

M )−1u = (1− q)(g + g1). (3.19)

Notice that to justify (3.19), we need to know that Uq
M and Uq

N are invertible.
We prove the boundedness of the inverses to Uq

M and Uq
N as follows: first, I−qP

is bounded. Second, Uq
M and Uq

N are bounded (it suffices to notice that |E[f(x+
Mt)]| ≤ ||f ||, hence the norm of Uq

M is bounded by 1 + q + q2 + · · · = (1− q)−1,
and the same holds with N instead of M), and finally, on the strength of (3.15),
the inverses

(U q
M )−1 = (1− q)(I − qP )Uq

N

and
(Uq

N )−1 = (1− q)(I − qP )Uq
M

are bounded as well. For the next step, we need the following lemma.

Lemma 3.3 Let q ∈ (0, 1). Then

a) For any f ∈ L∞(R−), we have Uq
Mf ∈ L∞(R−), and moreover,

Uq
M : L∞(R−) → L∞(R−) is invertible;

b) For any f ∈ L∞(R+), we have Uq
Nf ∈ L∞(R+), and moreover,

Uq
N : L∞(R+) → L∞(R+) is invertible.

11



Proof a) Let x > 0. Then for each t, and each realization Mt(ω), ω ∈ Ω, of Mt

we have f(x + Mt(ω)) = 0, and hence E[f(x + Mt)] = 0. Thus, Uq
Mf(x) = 0.

To prove that (U q
M )−1f(x) = 0 as well, a more detailed study of the structure

of Uq
M is needed (see the appendix).
b) is proved similarly. Now we can solve (3.19). We have g1 ∈ L∞(R+),

hence by applying U q
N to (3.19), we get

(Uq
M )−1u = (1− q)Uq

Ng + g2, (3.20)

where g2 ∈ L∞(R+). By (3.8), u ∈ L∞(R−), and on the strength of Lemma 3.3,
the LHS in (3.20) belongs to L∞(R−). Hence, multiplying (3.20) by 1(−∞,0],
we get

(U q
M )−1u = 1(−∞,0](1− q)Uq

Ng,

and then applying Uq
M , we obtain (3.16).

By Lemma 3.3, 1(−∞,0](1−q)Uq
Ng is independent of values of g on R+, hence

u in (3.16) is, and we may define g(x) by (3.7) for all x. Set

y(K;x) ≡ (1− q)Uq
N (ρG′(K)e· − (1− q)C)(x), (3.21)

and make the change of variables x → x− h(K) in (3.6) and (3.7) to obtain the
marginal value of capital in the inaction region:

WK(K + 0, x;h) = (Uq
M1(−∞,h]y)(K;x) + G′(K)ex + C. (3.22)

Notice that (3.22) holds for x > h(K), too (the first summand on the RHS of
(3.22) vanishes there).

3.5 Optimal threshold and marginal value of capital

In this subsection, the investment threshold is obtained by “guess and verify”
method, and the formula for the marginal option value of investment opportunity
is derived. By using equations (2.2), (3.15), and the equality (1 − q)Uq

M1 = 1,
we obtain

(U q
My)(K,x) = ρG′(K) (Uq

M (1− q)Uq
Ne·) (x)− C

=
ρG′(K)ex

1− ρ
− C.

Now we can rewrite (3.22) as

WK(K + 0, x;h) =
(
(Uq

M − Uq
M1[h,+∞))y

)
(K,x) + G′(K)ex + C

=
G′(K)ex

1− ρ
− (Uq

M1[h,+∞)y)(K,x). (3.23)

The first term on the RHS is the expected present value of the marginal re-
turns to capital given the capital stock remains constant in the future, and
the second term, −(Uq

M1[h,+∞)y)(K,x), is the marginal option value of the fu-
ture investment opportunities given the chosen investment threshold, h. If the
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choice is optimal, this value must be non-positive because investing extinguishes
the option. Hence, the optimal h∗ must be chosen so that (Uq

M1[h,+∞)y)(K, ·) is
non-negative. Since the resolvent maps non-negative functions into non-negative
ones, the natural guess is: h∗ is the minimal one such that y(K,x) is positive
for all x > h∗. To show that such an h∗ exists and find it, we need to rewrite
(3.21).

Since (1− q)Uq
N1 = 1, and

(1− q)(Uq
Ne·)(x) = (1− q)

∞∑
t=1

qtE[eNt | N0 = x]

= (1− q)
∞∑

t=0

qtE[eNt+x | N0 = 0]

= (1− q)ex
∞∑

t=0

qtE[eNt | N0 = 0]

= φ−(q,−i)ex,

where φ−(q,−i) ≡ (1− q)(Uq
Ne·)|x=0 is a positive constant (for the explanation

of the notation φ−(q,−i), see (A.6)), we obtain

y(K;x) ≡ (1− q)(ρG′(K)(Uq
Ne·)(x)− C) (3.24)

= φ−(q,−i)ρG′(K)ex − (1− q)C. (3.25)

From (3.24)-(3.25), we see that y(K,x) is positive for x > h∗, and negative for
x < h∗, where h∗ = h∗(K) is the solution to the equation

ρG′(K)(Uq
Ne·)(h)− C = 0,

or equivalently,

ρG′(K)eh
∞∑

t=0

qtE[eNt | N0 = 0]− C = 0. (3.26)

Now we check that the solution to (3.26) satisfies the optimality condition (3.1).
Since so far only the formula for the marginal value of capital is available, we
formulate a sufficient condition in terms of WK .

Lemma 3.4 Let h∗ satisfy the following property:

WK(K + 0, x;h∗) ≤ WK(K + 0, x;h), ∀ h, (3.27)

for all x and K such that WK(K + 0, x;h∗) and WK(K + 0, x;h) exist.
Then h∗ = h∗(K) is the investment threshold.

Proof Fix h and x. Since WK(K +0, x;h∗) and WK(K +0, x;h) exist for almost
all K, we have

W (K,x;h) = −
∫ K̄

K

WK(K ′ + 0, x;h)dK ′

≤ −
∫ K̄

K

WK(K ′ + 0, x;h∗)dK ′ = W (K,x;h∗).

13



By using (3.22), we obtain for any h

WK(K + 0, ·;h∗)−WK(K + 0, ·;h) = Uq
M

{
1(−∞,h∗] − 1(−∞,h]

}
y(K; ·).

The function y(K;x) is negative for x < h∗, and positive for x > h∗. Hence, if
h 6= h∗, then the function

{
1(−∞,h∗] − 1(−∞,h]

}
y(K; ·) is non-positive. Since the

resolvent Uq
M maps non-positive functions into non-positive ones, (3.27) holds,

and therefore, h∗ = h∗(K) is the investment threshold. It is obvious, that (3.26)
is equivalent to (2.5) presented in Section 2; this completes the proof of the first
main result.

To calculate the marginal option value of investment opportunity, we use
(3.26) to write

y(K,x) = ρG′(K)(ex − eh∗)(1− q)
∞∑

t=0

qtE[eNt | N0 = 0].

Substituting the last formula into (3.23) and using the definition of Uq
M , we

arrive at

WK(K + 0, x) =
G′(K)ex

1− ρ
− ρG′(K)

∞∑
t=0

qtE[eNt | N0 = 0]

×(1− q)
∞∑

t=0

qtE[(eMt − eh∗)+ | M0 = x].

It suffices to rewrite the last equation in terms of prices (as opposed to log-prices)
to get (2.9) and (2.10). Thus the second main result obtains.

3.6 Explicit formulas

From (3.26), we obtain the formula for the investment threshold

H∗(K) =
(1− q)C

φ−(q,−i)ρG′(K)
(3.28)

(for general analytical formulas for φ−(q,−i), see (A.6) and Section 5). Formulas
for firm’s NPV and the option value of possible capital expansion will be obtained
in Sections 4 and 5, under additional conditions on the production function.

3.7 The failure of the “smooth pasting condition”, and the
“continuous pasting” principle

Notice that to obtain the candidate for the investment threshold, h, we never
resorted to the “smooth pasting condition”. In fact, it fails here. (We are
grateful to Avinash Dixit for pointing out to us that this principle may not
hold in a discrete time model.) Let µ(dx) be the probability distribution of
ln(P1/P0). Suppose that µ̂ ∈ L1(R) (here µ̂ is the Fourier transform of µ),
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then WK(K + 0, x) is not smooth w.r.t. x at the investment threshold. Instead
of the smooth pasting condition we have a continuous pasting condition: the
investment threshold, h, is determined by the requirement that WK(K + 0, ·)
is continuous at h. This can be proved as similar results in continuous time
non-Gaussian Lévy models - see Boyarchenko and Levendorskǐi (2000, 2002a,b).

4 The option value and the value of the firm

Let the investment threshold h∗ = h∗(K) be determined from (3.26). We fix
x < h∗(K), and use (2.9) to calculate the value of the firm W (K,x):

W (K + 0, x) =
G(K)ex

1− ρ
+ W opt(K,x), (4.1)

where

W opt(K,x) = −
∫ K̄

K

W opt
K (K ′ + 0, x)dK ′ (4.2)

is the option value of investment opportunity. To obtain an explicit for-
mula for the integrand, we need the representation (1 − q)Uq

M = φ+(q,D);
here φ+(q,D) denotes the pseudo-differential operator (PDO) with the sym-
bol φ+(q, ξ) = E[eiξMT ], and i =

√−1 (see the appendix). The PDO φ+(q,D)
acts as follows:

φ+(q,D)u(x) = (2π)−1

∫ +∞+iω−

−∞+iω−
eixξφ+(q, ξ)û(ξ)dξ,

where û is the Fourier transform of u:

û(ξ) =
∫ +∞

−∞
e−ixξu(x)dx,

and the line of integration =ξ = ω− is chosen so that the integral converges.
Set y1(x) = 1(0,+∞)(x)(ex − 1). By using (3.28), we rewrite (3.23) as

W opt
K (K ′ + 0, x) =

G′(K ′)ex

1− ρ
+ W opt

K (K ′ + 0, x),

where

W opt
K (K ′ + 0, x) = −(Uq

M1[h,+∞)y)(K ′, x)
≡ −C(1− q)(Uq

My1)(x− h∗(K ′))
= −C(φ+(q,D)y1)(x− h∗(K ′)). (4.3)

The Fourier transform of y1 is well-defined in the half-space =ξ < −1:

ŷ1(ξ) =
1

(−iξ)(1− iξ)
.
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Suppose that φ+(q, ξ) is well-defined and differentiable w.r.t. ξ = σ + iτ in
a half-plane τ = =ξ > σ−, where σ− < −1 (for sufficient conditions, see the
appendix). Take ω− ∈ (σ−,−1), and use the definition of PDO to make (4.3)
explicit:

W opt
K (K ′ + 0, x) = − C

2π

∫ +∞+iω−

−∞+iω−

ei(x−h∗(K′))ξφ+(q, ξ)
(−iξ)(1− iξ)

dξ. (4.4)

Use (3.26) once again to compute

eih∗(K)ξ−ih∗(K′)ξ = (G′(K ′)/G′(K))iξ,

and substitute into (4.4):

W opt
K (K ′ + 0, x) = − C

2π

∫ +∞+iω−

−∞+iω−

(
G′(K ′)
G′(K)

)iξ
ei(x−h∗(K))ξφ+(q, ξ)

−iξ(1− iξ)
dξ. (4.5)

Even though we derived the investment threshold under the resource constraint
assumption K ≤ K̄ < +∞, the threshold is independent of K̄. Assume that
K̄ is very large indeed, and notice that under an additional condition imposed
below on the firm’s production function, the integral in (4.5) over a very large
finite interval [K, K̄] can be approximated by the integral over a semi-infinite
interval. In other words, we want to use the formula

W opt(K,x) = −
∫ +∞

K

W opt
K (K ′, x)dK ′,

and to ensure that the firm’s value is finite, we assume that there exists γ >
1/(−σ−) such that for K ′ > K,

G′(K ′)
G′(K)

≤
(

K ′

K

)−γ

. (4.6)

Since γσ− < −1 and ω− ∈ (σ−,−1) is arbitrary, we can choose ω− so that
γω− < −1. Then the inequality (4.6) implies that for any K, the integral

Φ(K, ξ) ≡
∫ +∞

K

(
G′(K ′)
G′(K)

)iξ

dK ′ (4.7)

converges absolutely and uniformly w.r.t. ξ in the half-space =ξ ≤ ω−; hence,
Φ(K, ξ) is well-defined and uniformly bounded w.r.t. ξ in this half-space. There-
fore, for any K,x,

W opt(K,x) =
C

2π

∫ +∞+iω−

−∞+iω−
Φ(K, ξ)

ei(x−h∗(K))ξφ+(q, ξ)
−iξ(1− iξ)

dξ. (4.8)

In the case of a Cobb-Douglas production function, G(K) = AKθ, A > 0, θ ∈
(0, 1), we have G′(K) = AθKθ−1, therefore if we assume that 1 − θ > −1/σ−,
then (4.6) holds,

Φ(K, ξ) =
K

(1− θ)iξ − 1
,
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and (4.8) simplifies to

W opt(K,x) =
CK

2π

∫ +∞+iω−

−∞+iω−

ei(x−h∗(K))ξφ+(q, ξ)
((1− θ)iξ − 1)(−iξ)(1− iξ)

dξ. (4.9)

In the next Section, we show how to calculate the option value when the prob-
ability density of µ(dx) is given by exponential polynomials on each half-axis.

5 Example: the case of exponential polynomials

The discrete time model admits an approximation of the empirical probability
density so that the factors φ±(q, ξ) in the Wiener-Hopf factorization formula
can be computed relatively easily. Here we consider the simplest approxima-
tion by exponential polynomials (for more sophisticated approximation, see the
appendix). Let

p±(x) =
∓λ∓

2
1R±(x)eλ∓x,

where λ− < −1 < 0 < λ+. First, we compute for η in the half-plane =η < λ+

p̂−(−η) =
1
2
λ+

∫ 0

−∞
eixη+λ+xdx =

λ+

2(λ+ + iη)
,

and for η in the half-plane =η > λ−,

p̂+(−η) =
1
2
λ+

∫ +∞

0

eixη+λ−xdx =
−λ−

2(−λ− − iη)
.

Next, we obtain

1− qµ̂(−η) = 1− q

2

[ −λ−
−λ− − iη

+
λ+

λ+ + iη

]

=
−2(1− q)λ−λ+ − (2− q)(λ+ + λ−)iη + 2η2

2(λ+ + iη)(−λ− − iη)
.

Denote by −iβ− (respectively, −iβ+) the root of the numerator in the upper
half-plane (respectively, lower half-plane). Then

φ−(q, ξ) =
(λ+ + iξ)(−β−)
λ+(−β− + iξ)

, φ+(q, ξ) =
(λ− + iξ)(−β+)
λ−(−β+ + iξ)

.

Now we can explicitly calculate φ−(q,−i), and find the optimal investment
threshold from (3.28):

H∗(K) =
(1− q)λ+(1− β−)

G′(K)(λ+ + 1)(−β−)
.

Similar but lengthier calculations (the residue theorem is needed) allow one to
derive the option value from (4.9):

W opt(K, ln P ) = CK

(
P

H∗(K)

)β+ λ− + β+

((1− θ)β+ − 1)(β+ − 1)λ−
.
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Notice that to obtain the analytical value for the investment threshold and firm’s
value function, one has only to solve a quadratic equation for −iβ±, and find
β± = [(1 − q/2)(λ+ + λ−) ±√D]/2, where D ≡ (1 − q/2)2(λ+ + λ−)2 − 4(1 −
q)λ+λ−.

For generic p, the computation of the factors φ±(q, ξ) is a non-trivial com-
putational task. However, for many families of probability distributions used in
empricial studies (for instance, normal inverse gaussian distributions), it is possi-
ble to obtain efficient approximate formulas – see Boyarchenko and Levendorskǐi
(2002c).

6 Conclusion

We have constructed a discrete time model of irreversible investment under un-
certainty. The main tool employed in the paper is the Wiener-Hopf method. We
present the method and the formulas for the threshold and the value of the firm
in the form meaningful from the point of view of Economics. We believe that
this form is suitable for applications in different fields of Economics.

One of the straightforward applications of the model presented in the paper
is effective capital budgeting which is important for corporate survival. Current
real option models are not widely used in corporate decision making. Among one
of the primary reasons for that, Lander and Pinches (1999) point out that many
of the required modeling assumptions are often violated in practical real options
applications. In particular, this concerns the choice of the stochastic process for
the underlying variable. As we already mentioned it in the Introduction, even
though the normality of the process is rejected by empirical evidence, Gaussian
processes are often used in the investment literature. The model presented in
the paper is much more realistic and flexible.

The second reason for theoretical models being rarely used by practitioners
is technical involvement of the models. The task of fitting the parameters of a
model process to the data by no means makes life easier. The model presented
in the paper can be used for practical purposes. One of the advantages of dis-
crete time setting is that the probability distribution can be approximated by
exponential polynomials with desired accuracy and simplicity (although there is
certainly a tradeoff between these two). After that, to obtain the analytical ex-
pression for the investment threshold one has only to find roots of a polynomial -
a task easy for any practitioner. In cases when a simple exponential-polynomial
approximation fits the data poorly, efficient approximate numerical procedures
can be developed for the calculation of the factors in the Wiener-Hopf factoriza-
tion formula, hence, of the investment threshold and value of the firm.
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A Technicalities

A.1 Proof of Lemma 3.1, cont-d

Let x < h(K) and K1 > K. Denote by τ(a) the first entrance time of Xt into
(a,+∞): τ(a) ≡ min{t | Xt > a}, and set τ = τ(h(K)), τ1 = τ(h(K1)). Clearly,
if {Kt} is the strategy which is determined by h and the initial state (K,x),
and {K1

t } is the strategy determined by h and the initial state (K1, x), then
K1

t = Kt for all t ≥ τ1. Hence,

W (K1, x;h)−W (K,x;h) = E

[
τ−1∑
t=0

qteXt(G(K1)−G(K))|X0 = x

]

+E

[
τ1−1∑
t=τ

qt(eXt(G(K1)−G(Kt))− C(Kt+1 −Kt))|X0 = x

]
.

Denote the terms on the RHS by W 1(K1,K, x) and W 2(K1,K, x), with the
usual convention that the last term, W 2(K1,K, x), is zero if τ = τ1. Since G is
differentiable, the limit

lim
K1↓K

W 1(K1,K, x)
K1 −K

= E

[
τ−1∑
t=0

qteXtG′(K) | X0 = x

]

exists, and it is finite. To show that the same limit with W 2 in place of W 1

exists (and equals zero, in fact), we first notice that the expression under the
expectation sign in the formula for W 2 is O(K1 −K), hence after we divide by
K1 −K under the E sign, we obtain an estimate

W 1(K1,K, x)
K1 −K

≤ C1(K1)eh(K1)E

[∑
t

qt1[h(K),h(K1)](Xt) | X0 = x

]
,

where C1(K1) > 0 is a constant. It remains to show that

Uq
X1[h(K),h(K1)] → 0. (A.1)

Since h′(K) exists, we have h(K1) − h(K) ∼ h′(K)(K1 −K) → 0, as K1 ↓ K,
and since µ(dx) is absolutely continuous, we conclude that (A.1) holds. Lemma
3.1 has been proved.

A.2 The Wiener-Hopf factorization

Let z ∈ (0, 1), let Y1, Y2, · · · be i.i.d. random variables with the probability
distribution µ(dx). Let Xt = X0 + Y1 + · · · + Yt be the random walk started
at 0: X0 = 0, and denote by µt(dx) the probability distribution of Xt. Let T
be a random variable independent of X and taking values in {0, 1, . . .}, with
P (T = t) = (1− z)zt. Consider the random variable XT .
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Theorem A.1 (Spitzer (1964))

E
[
eiξXT

]
= E

[
eiξMT

]
E

[
eiξNT

]
. (A.2)

Moreover, we have the Spitzer identities

E
[
eiξMT

]
= exp

[ ∞∑
t=1

zt

t

∫ ∞

0

(eixξ − 1)µt(dx)

]
, (A.3)

and

E
[
eiξNT

]
= exp

[ ∞∑
t=1

zt

t

∫ 0

−∞
(eixξ − 1)µt(dx)

]
. (A.4)

Set

φ+(z, ξ) ≡ E
[
eiξMT

] ≡ (1− z)Uz
M (eixξ)|x=0, (A.5)

φ−(z, ξ) ≡ E
[
eiξNT

] ≡ (1− z)Uz
N (eixξ)|x=0. (A.6)

Denote by µ̂(ξ) the Fourier transform of µ(dx):

µ̂(ξ) =
∫ +∞

−∞
e−ixξµ(dx).

By using (A.5) and (A.6), one can rewrite (A.2) as

(1− z)/[1− zµ̂(−ξ)] = φ+(z, ξ)φ−(z, ξ). (A.7)

Fix z ∈ (0, 1), and allow ξ = σ + iτ to be a complex number. It is easily seen
that the expression Φ+(z, ξ) under the exponent sign in (A.3) is well-defined and
bounded in the half-plane τ = =ξ > 0 and continuous up to the boundary of the
half-plane. The derivative of Φ+(z, ξ) w.r.t. ξ is defined in the open half-plane
as well (one says that Φ+(z, ξ) is analytic in the half-plane =ξ > 0). Hence,
φ+(z, ξ) and 1/φ+(z, ξ) are analytic and bounded in the half-plane =ξ > 0, and
continuous up to the boundary. Similarly, φ−(z, ξ) and 1/φ−(z, ξ) its are analytic
and bounded in the half-plane =ξ < 0, and continuous up to the boundary.

For the explicit calculation of the value of the firm, it is convenient to know
that φ+(z, ξ) is analytic in a wider half-plane, and we show this as follows. From
(2.1), we conclude that

µ̂(−ξ) =
∫ +∞

−∞
eiξxµ(dx) =

∫ +∞

−∞
e(−τ+iσ)xµ(dx)

is analytic in the strip =ξ ∈ (−1, 0) and continuous up to the boundary of
the strip. Moreover, the real part of 1 − zµ̂(−ξ) is positive in the closed strip
=ξ ∈ [−1, 0] (the proof is the same as of equation (2.8) in Boyarchenko and
Levendorskǐi (2002a)). Assume that µ̂(−ξ) is analytic in a wider strip (λ−, 0),
where λ− < −1. Then by continuity, there exists σ− ∈ (λ−,−1) such that the
real part of 1−zµ̂(−ξ) is positive in the closed strip =ξ ∈ [σ−, 0]. Hence, φ+(z, ξ)
can be extended into this strip by using (A.7):

φ+(z, ξ) = (1− z)(1− zµ̂(−ξ))−1φ−(z, ξ)−1. (A.8)
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A.3 Resolvents as PDO

Let u be a sufficiently regular function, say, u ∈ S(R) (that is, u(x) and each
of its derivatives decay at infinity faster than any power of x). By the Fourier
inversion formula,

u(x) = (2π)−1

∫ +∞

−∞
eixξû(ξ)dξ, (A.9)

therefore

(Uz
Xu)(x) = E

[ ∞∑
t=0

ztu(Xt) | X0 = x

]

= E

[ ∞∑
t=0

zt(2π)−1

∫ +∞

−∞
eiXtξû(ξ)dξ | X0 = x

]

= (2π)−1

∫ +∞

−∞
eixξ

∞∑
t=0

ztE[eiXtξ]û(ξ)dξ

= (2π)−1

∫ +∞

−∞
eixξ

∞∑
t=0

ztµ̂(−ξ)tû(ξ)dξ

= (2π)−1

∫ +∞

−∞
eixξ(1− zµ̂(−ξ))−1û(ξ)dξ.

Let an operator A be defined by

Au(x) = (2π)−1

∫ +∞

−∞
eixξa(ξ)û(ξ)dξ.

Then one says that A is a pseudo-differential operator (PDO) with the symbol
a and writes A = a(D) (in some cases, the integration along a different line
=ξ = σ in the complex plane must be used). Thus, the resolvent Uz

X is a PDO
with the symbol (1− zµ̂(−ξ))−1:

Uz
X = (1− zµ̂(−D))−1.

By using (A.5) and (A.6), we similarly conclude that

(1− z)Uq
M = φ+(z,D), (1− z)Uq

N = φ−(z,D). (A.10)

A.4 Proof of (3.15)

Now we can rewrite (A.7) as

(1− z)(1− zµ̂(−D))−1 = φ+(z,D)φ−(z,D),

or equivalently,
(1− z)Uz

X = (1− z)Uz
M (1− z)Uz

N .

This gives (3.15).
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A.5 Proof of Lemma 3.3, cont-d

To finish the proof for Uq
M , we have to show that for any f ∈ L∞(R−) and any

g ∈ C∞0 ((0,+∞)),

((Uz
M )−1f, g) ≡

∫ +∞

−∞
(Uz

M )−1f(x)g(x)dx = 0.

Let −M be the infimum process for the dual process −X; then∫ +∞

−∞
((Uz

M )−1f)(x)g(x)dx =
∫ +∞

−∞
f(x)((Uz

−M )−1g)(x),

therefore it suffices to show that for any x < 0,

(1− z)−1((Uz
−M )−1g)(x) ≡ (φ̃−(z,D)−1g)(x) = 0,

where φ̃− is the minus-factor in the Wiener-Hopf factorization formula for the
resolvent of the process −X. By using the definition of PDO, we have

φ̃−(z,D)−1g(x) = (2π)−1

∫ +∞+iσ

−∞+iσ

eixξφ̃−(z, ξ)−1ĝ(ξ)dξ, (A.11)

where σ = 0. Since g ∈ C∞0 ((0,+∞)), its Fourier transform admits the analytic
continuation into the half-space =ξ < 0, and in the closed half-plane, it satisfies
an estimate

|ĝ(ξ)| ≤ CN (1 + |ξ|)−N , (A.12)

for any N , where CN depends on N but not on ξ. But φ̃−(z, ξ)−1 is bounded in
the same closed half-plane, therefore the integrand in (A.11) admits the estimate
(A.12). By the Cauchy theorem, we may push the line of integration in (A.11)
down: σ → −∞; in the limit, the integral (A.11) vanishes, and we are done.

A.6 Analytical formulas for the factors

The Spitzer identities (A.3)-(A.4) are by no means computationally effective.
More convenient formulas can be obtained under additional conditions on µ(dx).
For instance, if µ̂ ∈ L1(R), then for ξ in the half-plane =ξ > 0,

φ+(q, ξ) = exp
[
(2πi)−1

∫ +∞

−∞

ξ ln(1− zµ̂(−η))
η(ξ − η)

dη

]
,

and for ξ in the lower half-plane,

φ−(q, ξ) = exp
[
−(2πi)−1

∫ +∞

−∞

ξ ln(1− zµ̂(−η))
η(ξ − η)

dη

]

(the proof is essentially the same as of similar formulas in the continuous
time model - see equations (3.10) and (3.12) in Boyarchenko and Levendorskǐi
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(2002a)). Simpler still is the calculation of the factors φ±(z, ξ) if µ(dx) is abso-
lutely continuous: µ(dx) = p(x)dx, and p± = 1R±p are exponential polynomials:

p−(x) =
m+∑
j=0

c+
j eλ+x|x|j1R−(x), (A.13)

where m+ is a non-negative integer, λ+ > 0 and c+
j ∈ R, and

p+(x) =
m−∑
j=0

c−j eλ−xxj1R+(x), (A.14)

where m− is a non-negative integer, and λ− < 0 and c−j ∈ R. In this case, both
1−zµ̂(−ξ) and φ±(z, ξ) are rational functions (see e.g. Borovkov (1976), p. 106-
107), and so the formulas for φ±(z, ξ) can easily be guessed from the formula
for 1− zµ̂(−ξ). Direct calculations show that 1− zµ̂(−ξ) = P (z, ξ)/Q(ξ), where
Q(ξ) = (λ+ + iξ)m++1(−λ− − iξ)m−+1 and P (z, ξ) is a polynomial in ξ. By
factorizing P (z, ξ) (Q(ξ) is already factorized), and picking factors which do not
vanish in the lower half-plane, we obtain the following formula for φ−(z, ξ):

φ−(z, ξ) =
(

λ+ + iξ

λ+

)m++1 ∏
j

−β−j
−β−j + iξ

, (A.15)

where {−iβ−j } are all the zeroes of P in the upper half-plane. Additional con-
stant factors are needed in order to satisfy the normalization φ−(z, 0) = 1.
Similarly, the formula for φ+(z, ξ) obtains. Now we find the optimal investment
threshold from (3.28):

H∗(K) =
(1− q)C
ρG′(K)

(
λ+

λ+ + 1

)m++1 ∏
j

1− β−j
−β−j

.
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