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Abstract

We show that a Galilean invariant version of uid dynamics can be derived by the methods

of statistical dynamics using Maxwell's balance equations. The basic equation is non-local, and

might replace the Boltzmann equation if the latter turns out not to have global smooth solutions

in general. As an approximation, a local form of the equations of motion is derived. It turns out

to be a version of the Navier-Stokes system, obeying the Stokes relation, and with the viscosity

coeÆcient rising as �1=2 with temperature �. The new feature is the presence of the Dufour

e�ect for a gas of a single component. This ensures that the principal symbol of the parabolic

system is non-singular.

1 Introduction

A central problem for mathematical uid dynamics is the derivation of the Navier-Stokes equa-
tions (N-S) starting from a reversible dynamical theory such as classical hard spheres or quantum
mechanics. To achieve this, it seems essential to know that the N-S equations themselves possess
smooth solutions for all times, for a large enough class of smooth initial values for the �elds. Hence
the latter problem is revealed as the key question, for one version of which a Clay Millenium prizes
is o�ered. The prize version describes an incompressible liquid under isothermal conditions. Nash
[31, 32] had shown that, given smooth initial conditions, there exists a unique smooth solution for a
small enough time. The question of smooth global-in-time solutions remains open except for small
initial conditions. To model driven systems such as B�enard convection, the isothermal condition
must be relaxed; recent numerical studies [20] show qualitative agreement with experiment. In [20],
the condition of incompressiblitiy, divu=0 is maintained, and the energy equation is modi�ed by
the addition of a bouyancy condition. This is expressed by requiring that the liquid in hot regions
is less dense than in cold regions, a rather ad hoc procedure. We shall argue in Sect. (2) that N-S is
at the boundary of a more regular class of models. In N-S, the pressure is in�nite, but its place is
taken by a surrogate pressure determined by the requirement of self-consistency. Thus in N-S, the
pressure is a balancing item like petty cash, much beloved by accountants, which can be adjusted
to cancel errors made elsewhere in the calculation.

In this paper, C-N-S-T will denote the system of �ve coupled non-linear partial di�erential
equations known [27] as `compressible Navier-Stokes with temperature'. This might or might not
be an easier problem than N-S, but it is certainly more widely applicable. A diÆculty with C-N-

S-T is that the symbol of the elliptic operator is singular. To derive N-S, some authors divide the
problem into two parts [6]; �rst, to show that reversible dynamics is well represented in some limit
by a stochastic process; then to show that the Fokker-Planck equations of this process gives rise
to the N-S equations. The latter is only partially achieved in [6]. Other authors start with some
version of stochastic dynamics [39, 28, 40], and prove things; this approach will be adopted here,
as it avoids the much harder �rst part. We shall adapt information geometry [21, 4, 25] to the
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dynamics of a rare gas. Thus, the state of the system is not a point in phase space, but a measure
� on it, and the dynamics is a path in the space � of measures. In the usual treatment [3] the
currents of the conserved variables are given exactly by expressions involving higher moments of
the same random �elds; the time derivatives of these higher moments involve yet higher moments.
The whole system goes on for ever, and is called the BBGKY hierarchy. Inasmuch as the system is
equivalent to classical mechanics, it is reversible and shows no dissipation. Artfulness is needed to
`close' the system in terms of the slow �elds; that is, to write the time-derivatives of the slow �elds
in terms of themselves, by truncating the system. It has proved possible to get a variety of kinetic
equations from the hierarchy, by taking a limit appropriate to the physical situation [3]. These
limiting systems exhibit dissipation. It then remains to show that the solutions to the limiting
system are limits of solutions to the BBGKY hierarchy. This programme has proved to be diÆcult
to complete.

Information dynamics o�ers an alternative. In the case studied here, where the potential be-
tween the particles is zero outside the hard core, the states in local thermodynamic equilibrium,

LTE can be computed. The LTE states are products over the lattice; the state at a site x is of the
form

�(!x) = Nxp(x; k);

where p is Maxwellian. The set of such states make up the information manifold, M. Any state
� 2 �, having �nite means for the slow variables, has a reduced description, denoted �Q; here Q
is the the non-linear projection onto M, acting on the right, which maps � to the state inM with
the same means for the slow variables as �. The Gibbs principle [23, 22] states that �Q is the state
of maximum entropy having these means. In the original formulation of information dynamics [21],
in the time interval (0; t) the state � evolves under the reversible dynamics of classical mechanics,
to �(t) say. This state has a much simpler description by the LTE state �(t)Q, which cannot be
distinguished from �(t) by measuring the slow variables. The orbit f�(t)Q : t � 0g in M was
intended as the thermodynamic evolution. It is clear that the entropy of �(t)Q is not less than that
of �; there is a transfer of information into inaccessible degrees of freedom by the reversible motion
[5]. It is not always true that entropy increases along the orbit, as is seen if the classical motion were
periodic. Another version of information dynamics was adopted in [4]; there, the reversible motion
took place for a very small time t, and the reduced description �(t)Q was used, instead of �(t),
as the initial state of the next step. This gives a discrete-time semigroup, with increasing entropy;
however the time-step cannot be taken to zero, without sending the rate of entropy production to
zero as well [25, 4]. It is necessary to keep the time-step positive; it represents the relaxation time,
and the map Q implements the thermalisation of the state �(t). The challenge is to do this in a
way that is invariant under the Galilean group (denoted by G below).

Information dynamics has been extended [36] to allow stochastic dynamics; then the time-step
can go to zero, still giving a non-zero rate of entropy production. Another idea is to allow state-
dependent transition rates [1]. With these changes, one may call the theory statistical dynamics. It
is designed to obey both the �rst and the second laws of thermodynamics, but otherwise puts few
constraints on the form of the dynamical equations. The choice made for the dynamics determines
the nature of the system under discussion. At �rst sight, statistical dynamics has too much noise;
a simple application is shown [37] to lead to mass di�usion and the Soret e�ect for an inert gas at
rest, contrary to the literature [5]. Indeed, without a velocity �eld, the theory `has not got o� the
ground' [26]. Truesdell [38] ironically says \results of this kind are described by kinetic theorists as
`corrections to hydrodynamics' ".

In this paper, we apply statistical dynamics to the case of an inert gas of a single type. We
arrive at C-N-S-T, but with one extra term, a Dufour e�ect. Thus the intuitively attractive `method
of Maxwell', [29] in which we compute the gain and loss of particles in a small time interval at
each point x, is successful. The new idea is to postulate that in the state �, some but not all the
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particles are thermalised; those that are, are described by the LTE state �. However, this state is
NOT equal to �Q! By construction, our model is the the continuum limit of a non-linear Markov
process on a lattice, with a bistochastic transition matrix. This might be a possible starting point
for a proof that smooth solutions exist. The method of Maxwell is treated in [14], p 93, and in
Balian [5], but it is abandoned as too primitive, in favour of the Boltzmann equation. This might
have been too hasty, especially if the BE turns out not to have smooth global solutions.

In Sect. (2) we study a discrete model of hard spheres, for which the equilibrium state exactly
factorises. Sect. (3) contains a discussion of the idea that the true state � should be distinguished
from its thermalised part, �, using the analogy of aircraft in an airfreight company. The hopping
rules of the nonlinear Markov chain are presented, and related to the mean free time. We also
suggest a G-invariant collision function. From this, we get an explicit formula (40) for the mean
free time, t`. In Sect (4) we start with the fundamental relation (44) expressing the full state as
a non-local integral of the thermalised state. The dynamics is expressed in terms of the BBGKY
hierarchy. We obtain the Euler equations as the zeroth approximation, and obtain a useful short
version of these. In Sect. (5) we �nd the di�erences of the means of the slow variables in the
states � and �, and show how the method can be extended to other variables. This enables us to
compute the BBGKY moments in terms of the means in the full state and thus arrive at a version
of C-N-S-T. This exhibits the Dufour e�ect, contrary to the literature [5].

2 The Thermostatics of an Inert Gas

We take space to be � � (aZ)3, and suppose the length a, representing the diameter of a molecule,
to be so small compared with the variation of the macroscopic �elds that we can replace all sums
over � by integrals. The possible con�gurations of the uid are the points in the product sample
space


 =
Y
x2�


x;

so a con�guration is speci�ed by the collection f!xgx2�. For each x,


x =
n
;; (�Z)3

o
:

Here, � is a small parameter having the dimension of momentum; for example, we could take a� = h,
the semi-classical division of the phase-space of a particle into cubes of volume h3. If the system
is in a con�guration !, such that !x = ;, then we say that the site x is empty. If !x = k, we
say that the site x is occupied, by a particle of momentum k. This simple exclusion of more than
one particle on each site incorporates the hard-core repulsion between the particles, which are thus
hard spheres sitting at some of the points of �. The �eld point of view enables us to avoid the
Gibbs paradox.

The state of the system is a probability on 
, denoted by �. We denote the set of states by �.
The `slow variables' of our model are the 5 extensive conserved random �elds

Nx(!) =

(
0 if !x = ;
1 if !x = k

(1)

Ex(!) =

(
0 if !x = ;
k � k=2m+�(x) if !x = k

(2)

Px(!) =

(
0 if !x = ;
k if !x = k

(3)
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Here, �(x) is the external potential energy per particle. The variables appearing in the C-N-S-T
equations are simply related to the mean �elds in the state �:

Nx = E�[Nx]; Ex = E�[Ex]; �x = E�[Px]: (4)

In information geometry, the speci�cation of the slow variables determines the information man-

ifold M, which in the context of uid dynamics consists of states in LTE (local thermodynamic
equilibrium). Such a state is speci�ed by �ve canonical �elds, dual to the mean �elds: �x; �x; �x,
and has the form

�(!) =
Y
x2�

��1x exp f��xNx(!)� �xEx(!)� �x � Px(!)g : (5)

In �nding the partition function

�x = 1 + ��3
�
2�m

�x

�3=2

exp f��x � �x�(x) +m �x � �x=2�xg (6)

we have replaced the sum over the momentum lattice of size � by a Gaussian integral. The product
structure of an LTE state means that an observable at a point of � is independent of an observable
at any other. The state � can be written in Maxwell form

� = Nxp(x; k) = NxZ
�1 exp f��x�(x)� �xk � k=(2m) � �x � kg ; (7)

where

Zx = ��3
�
2�m

�x

�3=2
exp

�
��x�(x) +

m�x � �x
2�x

�
: (8)

We note the identity for each x

� = 1 + e��Z:

The external potential does not inuence the local velocity distribution, as it is cancelled out by
the partition function. The mean �elds (4) are related to the canonical �elds by

Ex = �
@

@�x
log �x = N(x)

�
�(x) +

3

2�x
+
m�x � �x
2�2x

�
(9)

Nx = �
@

@�x
log �x =

�x � 1

�x
=

Ze��x

1 + Ze��x
(10)

�i
x = �

@

@�i
log �x = �

mNx�
i
x

�x
: (11)

The formalism breaks down if � is zero or in�nity, or if N vanishes, but the case of a uid at rest,
� = 0, is within the information manifold,M.

Historically, the intensive variables used in the N-S equations were the chemical potential ��=�,
the velocity �eld u = ��=� and the temperature � = (k

B
�)�1. We shall eliminate � in favour of

the mass-density � = a�3mN using (10), which leads to

e��x = Z�1x Nx= (1�Nx) : (12)

The mean occupation per site Nx obeys 0 < Nx < 1. The (von Neumann) entropy of any state �
is

S(�) := �k
B

X
!

�(!) log �(!): (13)
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Gibbs knew that the state of maximum entropy, among all states with the given means of the total
energy and number of particles, is the exponential state that he called the grand canonical state
[23, 22, 25]. This is a simple exercise in Lagrange multipliers. If the mean �elds depend on x, then
the state of maximum entropy has the same form, in which the canonical �elds �; � and � now
depend on x.

In this section we study the system in equilibrium, and denote by E;N and � the total values
of the energy, number and momentum; then (13) gives for the entropy

�S(�) = E + k
B
��N � u ��+ k

B
� log �: (14)

Compare this with the thermostatic formula

�S = E + k
B
��N � u ��+ PV (15)

(note that the term u � � is omitted in [27], eq. (1.17)), where P is the pressure and V is the
volume; we see that

P = k
B

j�j

V
� log � = k

B
�a�3 log �: (16)

If there are N =
P
xNx particles, and V0 is the smallest volume they can occupy (one per site),

then V0 = a3N and Nx = V0=V . Also,

�x = (1�Nx)
�1 = 1 + V0=(V � V0):

Thus at equilibrium, we have the equation of state

P =
k
B
�

V0
N log

�
1 +

V0
V � V0

�
: (17)

For small V0=V this is close to the van der Waals gas

(P +A=V 2)(V � V0) = Nk
B
� (18)

with A = 0. Unlike the case A > 0, this model shows no failure in convexity in its isothermals.

3 The Statistical Dynamics of the Gas

3.1 An Airfreight Model

Consider a gas of free particles in a box with reecting walls, in equilibrium; then u, � and � do not
depend on x. There is still a lot going on. In a volume d3x around x, a particle of momentum k,
which is present with probability Np(k), moves in the direction of the unit vector k̂, to be replaced
in time t by a particle with the same k arriving from the point x� kt=m. This replacement
was present with exactly the same probability. The larger k is, the further away is the source of
the replacement. In this picture, equilibrium is described by a huge game of musical chairs; only
the indistinguishability of the particles prevents this from being detected. Now look at the same
mechanism, but where �, � and � depend on x. That is, we now consider the Knudsen gas. There
is no longer exact replacement of the lost particles at x; the parameters � : : : change with time. It
might seem that the system gets closer to equilibrium, since the parameters start to become more
and more nearly constant. Of course, the entropy is constant in time, as the system is Hamiltonian,
(free, even). The apparent increase in entropy associated with the slow variables is exactly matched
by a reduction of entropy in inaccessible observables [4, 5]. Thus, taking the initial state to be in
LTE, the random variables N : : : had independent values at every point. But after some time,
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the free motion introduces correlations between very far points; if x at time t has a particle with
momentum k, then x� kt=m must have had a particle of momentum k at time 0; so it did not
have a particle of momentum k0 6= k. Thus x+(k0�k)t=m has no particle of momentum k0 at time
t, a statement correlated with the assumption, above, about x at time t. Correlations like these
might at any time show up in behaviour quite unlike that of a system near equilibrium. For spin
systems, the spin-echo e�ect is such an example [5]. In a real gas, we do not expect any surprises
such as the spin-echo e�ect. This is due to the interactions, idealised by collisions, which remove
correlations between distant points, and also help to redistribute energy and momentum. Collisions
do not contribute to transport; on the contrary, they inhibit the free ow: the di�usion constant is
inversely proportional to the collision cross-section.

The concept of whether a system is thermalised or not is independent of the Galilean frame
of reference used in the description. This is expressed mathematically by the fact that the set of
equilibrium states is mapped to itself by the group G. The set M of states in LTE is also mapped
to itself by G, which we interpret as saying that the concept of partially thermalised systems is also
invariant under G. Physically, a gas consists of some (most) particles that are thermalised, and
are described by an LTE state with means equal to the averages over the thermalised particles.
A smaller number are not well described in this way; in particular, their correlations with other
particles are underestimated by assuming LTE. Moreover, a particle that is thermalised at time t
will move under its free motion to regions at di�erent density and temperature, and so after some
time (how short depends on the gradients) it will not be well described as being thermalised. On
the other hand, particles left out of the count of thermalised particles make collisions during their
relaxation time, and return to the thermal state. The mass, energy and momentum will on average
be conserved, but a particle can leave the LTE state at one point, and another can return at another
point, so the microscopic currents describing all particles may di�er slightly from the currents of
thermalised particles as described by the LTE state. This division of the state into thermalised
particles and the rest di�ers from the division presented e.g. in [3], p. 160, where the LTE part of
the state gives the same expectation values as the true state. On the contrary, in our division, the
state � does not give the same means as the true state �. A di�erent division can be found in [18],
p 229, where nF �

1 is taken to be `the density of particles that are not undergoing collisions at the
given instant'. From now on, the variables N;E;�, etc., refer to the full state, and written with
bars, they refer to the LTE state of the thermalised particles.

The dynamics of a classical gas of hard spheres is similar to that of an airfreight company,
whose planes y between airstrips arranged in a lattice �. In calculating the overall transport of
goods, the company uses statistical methods; they have records only of the local averages, at each
airstrip, of the number of planes, their velocities, and their kinetic energies, at time t = 0. Every
plane is instructed to select a velocity from the Maxwell distribution at its airstrip, and to y with
this velocity until it meets another plane in its airspace. Both planes must then land very briey,
and record their presence, momentum and energy to the local computer. This recalculates the
updated values of N;�; E for this strip, and instructs them to take o� with new velocities drawn
from the updated Maxwellian. The problem is to �nd a theory which can predict the average
transport of goods, N ;P ; E , without reading the local computers. To account for the transport
of N;�; E, we must introduce accounting system non-local in space and time: we know that just
after a landing and take-o�, the distribution of velocities is Maxwellian. This simple fact leads us
to the fundamental equation (44).

We want the dynamics to satisfy the second law of thermodynamics. This is ensured in a
Markov chain if the transition matrix is bistochastic. Physically, if the gas has no velocity u, the
transition rate from x to y by a particle of momentum k is the same as the rate from y to x by a
particle of momentum �k. This expresses time-reversal invariance of the transition matrix. That
is, if � : ! 7! !� is the time-reversal map on the sample space, we say a transition matrix T obeys
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time reversal symmetry if

T (!j!0) = T (!0� j!�) for all !; !0 2 
: (19)

We note the following lemma, whose proof is simple:

Lemma 1 Let T be a stochastic map obeying (19); then T is bistochastic.

Our model dynamics will be given by a stochastic map obeying (19), and so, by the lemma, will
be bistochastic, and so entropy-increasing.

3.2 The Hopping Rules

In this section, we give hopping rules for the case of zero external �eld, � = 0. The dynamics will
be invariant under G. We start with a model in discrete space-time. The discrete dynamics will
be given by specifying a hopping probability in one time-step. In the classical hard-sphere model,
it is to be expected that on average, particles of di�erent speed travel through the same amount
of material before thermalising. Let `(x; k) denote the average distance travelled by a particle
starting at x with momentum k; to begin with, assume that k lies along one of the basis vectors
of the lattice. ` is called the mean free path, and it generalises an idea going back to Clausius [16];
it is going to be the mean of a random distance r, the free path between collisions. We assume,
as part of the model, that the particle thermalises on its �rst collision. The relaxation time t of a
particular particle depends on its speed; for a particle travelling the free path r, t is the time taken,
rm=jkj. We therefore cannot choose a unique time-interval for the time step of all processes, and
it seems diÆcult to construct a discrete-time stochastic process. We overcome this complication
by noting the rate jkj=(rm) at which the process transfers mass, energy and momentum; we can
then move to a continuous time process with the same rate. We shall work with t and its mean,
t`, rather than with the free path r and its mean, `; t` has the advantage of being the same in all
inertial frames.

The dynamics must be such as to conserve the totals

N :=
X
x2�

Nx; E :=
X
x2�

Ex; P :=
X
x2�

Px:

These random variables divide 
 into simultaneous level sets, the mass-shells, energy-shells, and
momentum shells, thus:


N;E;� :=

(
! 2 
 : N (!) = E; E(!) = E;P(!) = �

)
:

Clearly,

 =

G

N;E;�:

The dynamics, the Markov matrix T , must be chosen so that a point ! jumps to another point in
the same shell. We cannot expect this to be given by a symmetric Markov transition matrix: the
inverse process involves a change of sign for k; however, we shall be able to construct a suitable
bistochastic map. In fact, our Markov transition matrix T will be a convex mixture of permutations
that move a con�guration !1 to !2, where in !1 there is a particle at x and a hole at y, and in !2
the opposite holds, with the mass, energy and momentum that was at x transported to y. This
move is only possible if all the points between x and y are empty. Moreover, to ensure that at
the end of the ight the particle returns to the thermalised fold, the site one place past y must
be occupied. We postulate that a particle moves in a straight line along empty sites until it meets
a �lled site; it then thermalises at the last empty site, y say, and dumps its mass, energy and
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momentum there, which joins the mass, energy and momentum of the state �y. We postulate one
such jump for each r = sa, where s is an integer, and for each momentum k at x, and then for
each x.

Suppose that the site x is occupied, with momentum pointing in the direction of one of the basis
vectors of the lattice, say k = jkje. The probability that the sites x+ s0ae be empty, 1 � s0 � s,
and the site x+ (s+ 1)ae occupied, is

sY
s0=0

(1�Nx+s0ae)Nx+(s+1)ae (20)

One can check that e.g. if Ny > 0 is independent of y for large enough jx� yj, then

X
s

sY
s0=0

(1�Nx+s0ae)Nx+(s+1)ae = 1: (21)

This just expresses that with probability one, the number of holes adjacent to x on the line joining
x to in�nity along the direction e must be some integer. The product in (20) is a marginal
probability of the state �, and so is linear in �; however, it is a polynomial of inde�nite degree in
the variables Nx, in terms of which the equations of motion are to be written. In discussing the
ow of mass, energy and momentum at the point x, it is convenient to include this factor in the
hopping probability, rather than in the initial state. We then get a Markov chain on the probability
space of the two points at the ends of the path,


x � 
y; (22)

the transition probability depends on the state �, but otherwise obeys the properties of a bistochas-
tic map. This allows the continuum limit of (20) to be taken without leaving elementary probability
theory. In this limit, we de�ne the densities

�(x) := ma�3Nx; $ := a�3�x;

and get a damped exponential

sY
s0=0

�
1�Nx+ s0ae

�
� exp

(
�
a2

m

Z r

0
�(x+ r0e)dr0

)
; a! 0:

We shall use an identity similar to (21) to �nd the mean free time, subject to two re�nements.
First we require that the site x+ sak̂ be empty at the time t(s0) that this point is reached by our
travelling particle. By the same argument, the free path is r = sa if the site x + a(s + 1)e is
occupied at the time at which the arriving particle reaches it. This re�nement leads to a transition
rate is non-local in the time; it will turn out that in the model we construct, we can replace these
intermediate times by the current time with error of second order. With this done, the transition
probability is invariant under time-reversal. It then follows from Lemma 1 that, by adjusting the
stay-put probability so that the rows add up to one, we get a bistochastic map on the two-point
sample space.

The second re�nement comes from the requirement of G-invariance in the continuum limit.
We claim that the `thermalised part' of a state should be a G-invariant concept, and this will be
achieved by (45). The Euler dynamics, which is close to the true dynamics, brings the state � out
of LTE in any time interval. The part of the state not thermalised soon becomes thermalised by
collisions, and it is this thermalisation that is involved in the dissipative part of the dynamics. It is
thus essential that the non-thermalised part of the state should not be assumed to carry zero means

8



for the slow variables, since then their thermalisation would not cause any change in these means,
and the dynamics would be non-dissipative. There is some ambiguity in the choice of splitting,
because all the particles leaving x seem to be instantly dethermalised unless � is at equilibrium.
However, inasmuch as the gradients are small, some part of the thermal state at time t0 might
remain thermalised at time dt0 later. How do we decide on how much? It is easy to agree about
the rate at which particles thermalise at x at time t0. We include those particles arriving at x
having a momentum k and a relaxation time t, and originating at x�kt=m. The rate at which they
transfer mass, momentum and energy is 1=t times the mass, momentum and energy they carry.

We note that the concept of thermalisation at a point x over a time-interval (0; t) is not a
G-invariant concept. For suppose that in the inertial frame O, various particles thermalise at x
at times 0 < t1 < : : : < tn < t; then in an inertial frame O0, moving relative to O with velocity
V , they will thermalise (at the same times) at the points x + V ti. We therefore must consider
the thermalisation (and dethermalisation) that occurs at t in a time-interval (t; t + dt), for an
in�nitesimal dt; this has an invariant meaning. The number thermalising in any time interval of
length dt is dt times the rate at which the thermalisation occurs.

The continuum analogue of (20) is a function w(x; k; t0; t) which is the probability density that
a particle at x with momentum k will travel exactly a distance r = jkjt=m and then thermalise at
y = x+kt=m in the time interval (t0+ t; t0+ t+ dt). Let W denote the probability density that a
particle at x with momentum k has had no collision up to the point y, and let C(y; k; t+ t0) (for
collisions) be the probability density that a particle at y with momentum k at time t0 + t will be
thermalised in the tube of diameter a and length dr = jkjdt=m. Then we have

w(x; k; t0; t) =W (x; k; t0; t)C(x+ kt=m; t0 + t): (23)

Then the analogue of (21) is Z
1

0
w(x; k; t0; t)dt = 1 (24)

for all x; k and t0. The mean relaxation time is de�ned to beZ
1

0
w(x; k; t0; t)t dt = t`(x; k; t0): (25)

We note that (24) Z
1

0
W (x; k; t0; t)C(x+ kt=m;k; t0 + t)dt = 1 (26)

can be solved in terms of C:

W (x; k; t0; t) = exp

�
�
Z t

0
C(x+ kt1=m;k; t0 + t1)dt1

�
: (27)

To see (27), di�erentiate to get
@W

@t
= �WC;

and this is just minus the integrand in (26). Then one veri�es (26):Z
1

0
W (x; k; t0; t)C(x; k; t0 + t) = �

Z
1

0

@W

@t
dt = �(W (1)�W (0)) = 1

assuming that � is bounded away from zero along the line x+ kt=m; this is enough to ensure that
the mean free path is �nite. By construction, w = �@tW and another form for the mean free time
is

t`(x; k; t0) =

Z
1

0
W (x; k; t0; t) dt: (28)
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3.3 The Collision Function

We now �nd the collision function C appropriate for a hard-core gas. In the dynamics of the lattice
model, particles hop from site to site with various rates. To implement invariance under G , we
extend the �elds �; E; $ from � to its convex hull R3 as continuous piecewise linear functions,
and consider a particle at x with momentum k not necessarily lying along a basis vector. Although
the path of such a particle might not intersect �, we must assign a rotated version of w as the
probability of a free time t, such that (24) holds. We can assume that the particle hops to the
nearest site of � to x+kt=m. The continuum limit then makes sense, with densities replacing
probabilities. Now divide the event, `the free time is t' into the subevents `the free time is t, and
A collides with a particle B of momentum q'. Let w(x; k; q; t) be the probability density for this.
Then

w(x; k; t) =

Z
d3q w(x; k; q; t): (29)

If t increases to t+dt, then the free path r increases to r+dr, where dt = mdr=jkj: The probability
that A meets B must be independent of the Galilean frame of reference. Consider the frame O0 in
which B is at rest. Let

(x; t) 7! (x0; t0) = (x+ qt=m; t)

k 7! k � q (30)

be the Galilean transformation, and denote by �0;u0;�0; p0 the C-N-S-T variables and the probability
as observed in O0. Then

�0(x0; t0) = �(x; t) (31)

�0(x0; t0) = �(x; t) (32)

u0(x0; t0) = u(x; t)� q=m (33)

p0(y0; q0; t0) = p(y; q; t): (34)

Then A has momentum k � q and in time dt (which is the same in all Galilean frames) A sweeps
out a region of volume dV = �jk � qjdt=m, where � is the cross-section. It meets a particle in this
volume having momentum 0 with probability

m�1dV �0(y0; t)p0(y0;0; t):

By invariance, this is also the probability of collision in the original frame, which is therefore

�jk � qj(dt=m2)�0(y0; t0)p0(y0;0; t0) = �jk � qj(dt=m2)�(y; t)p(y; q; t); (35)

by (31) and (34). This suggests the choice of collision term

C(y; k; t0 + t) =
�

m2

Z
d3qjk � qj�(y; t+ t0)p(y; q; t0 + t): (36)

Note that we include collisions in which the particle A is hit from behind by the particle B.

3.4 The mean free time

Our formula (36) for C gives for the mean free time

t`(x; k) =

Z
1

0
dt exp

�
�

�

m2

Z t

0
dt1�(x+ kt1=m; t1)Z

d3qjk � qjp(x+ kt1=m; q; t1)

�
: (37)
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Comparing this with the the identity

t` =

Z
1

0
dt e�t=t` ;

we see that if the integrand in the exponential in (37) had been independent of t1, then we could
have identi�ed t` as

t` =
m2

�

�
�(x)

Z
d3qjk � qjp(x; q)

�
�1

: (38)

Since e�16 � 10�7, only values of t less than 16t` contribute signi�cantly to the integral
R
:::dt in

(37). By the mean-value theorem, we may write the argument of the exponential in (37) as �t=t2,
where t2 is the expression (38) evaluated at x+ kt3=m for the intermediate value t3 < 16t`. Then
(given that @t` = O(t`)) the correction to (38) is O(t2` ), and so (38) can be taken as the mean free
time. Now, p = p+O(t`), so we may put p = p in (38). Let

R =

Z
d3qjk � qjp(x; q)=p(x; k)

In the ratio R, the partition function cancels. The exponent in the Maxwellians is

�
�

2m
q � q � q � � +

�

2m
k � k + k � � =

�
�

2m
(q � k) � (q � k) � (q � k) � ((�=m)k + �):

We change the variables of integration to q � k, rewritten q, to get

R =

Z
d3qjqj exp

�
�
�q � q

2m
� q �

�
�

m
k + �

��
:

Put

� =

�
m

�

�1=2 � �

m
k + �

�
= c�1

�
k

m
� u

�
; (39)

thus, c� is the peculiar velocity [14], p. 27. Let q0 = (�=m)1=2q. Then

jqjd3q = (m=�)2jq0j d3q0:

Dropping the dash, and choosing the q3 axis along �, we get

R =

Z
d3qjqj

m2

�2
exp

�
�
1

2
q2 � q � �

�

=

Z
1

0
q3dq

Z �

0
sin � d�

Z 2�

0
d'

m2

�2
exp

�
�
1

2
q2 � q� cos �

�

= 2�

Z
1

0
q3 dq

m2

�2
e�1=2q

2

(q�)�1
�
eq� � e�q�

�
:

Thus,

R =
2�m2

�2�
e1=2�

2

(I2(��)� I2(�))

where we use the functions In [17]

In(�) =

Z
1

0
e�1=2(q+�)

2

qndq:
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According to [17],

In(��)� In(�) =
1

21=2(12 )!
y1(�)

where

y1(�) = �+
1

3!
(n� 1)�3 +

1

5!
(n� 1)(n� 3)�5 : : : :

Put

F (�) = �21=2(
1

2
)! expf�

1

2
�2g (y1(�))

�1 :

Then the mean free time is given by

�pt` =
�2

2��
F (�): (40)

3.5 Galilean invariance

We now show that the total transition probability rate is invariant under G. We have split up the
time evolution into sub-processes, in one of which particle A at x with momentum k has a free
path of length r = sa, and then collides with particle B of momentum q between r and r+dr. The
rate of this process was taken to be the same as that of a process in which B was brought to rest
by a change of inertial frame, and makes a collision between r0 and r0+dr0, the positions as viewed
by the observer moving with B. This is obviously necessary if the theory is to be G- invariant. We
now show that it is also suÆcient: the rate of the one physical process, as viewed in two relatively
moving frames, will be shown to be the same. The key is to remark that the time interval dt in
which A collides with B after its free path is the same in all inertial frames, in contrast to the
distance gone, the free path r and its increment dr, which depend on the speed of A.

Suppose that O;O0 are two inertial observers, with O0 moving with velocity �v relative to O,
such that t0 = t and

x0 = x+ vt: (41)

The �eld variables as viewed by O0 are p0; �0 = ma�3N 0; k0; q0, where

p0(x0;k0; t) = p(x;k; t)

N 0(x0;k0; t) = N(x; k; t); (42)

but along a path of a moving particle, the probability densities w and w0 must satisfy

w(x; k; q; r)dr = w0(x0;k0; q0; r0)dr0: (43)

Here,
k0 = k �mv q0 = q �mv:

The point x+ k̂r1 = x+ kt1=m on the free path, is assigned the coordinate x+k0t1=m by O0. The
righthand side of (43) is calculated by O0 using (36) and (27) to be

exp

8<
:�m�1�

Z x0+k̂
0

r0

x0

�0(x0(t1); t1)p
0(x0(t1); q

0; t1)jk
0 � q0j

dr01
jk0j

9=
;

N 0(x0; 0)p0(x0;k0; 0)��0
�
x0 + k̂

0

r0; t)
�
jk0 � q0j p0

�
x0(t); q0; t

� dr0

mjkj0
:

Here, r01 = jk0jt1=m. Then, by using (42) and the remark that

dr01
jk0j

=
dt1
m

=
dr1
jkj

; 0 � r1 � r;

we see that O0 and O assign the same probability to every event, so the integrals over k; q are also
the same.

12



4 Compressible Navier-Stokes with Temperature

4.1 The Fundamental Relation

The number of particles, thermalised plus unthermalised, is conserved locally; that is, in any region,
however small, the loss in particles is the same as the integral of the current over the boundary.
This local conservation law does not apply to the thermalised subset of particles. A particle can
cease to be thermalised at x and collide at y, thereby returning to the fold after a time in the
unthermalised state. We now show how the total probability � is related to the thermalised part,
�. At time t0, any particle at x of momentum k must have been from a thermalised sample at
some earlier time, t0� t, at the point x� kt=m, and remained unthermalised at x, which it passes
at time t0. The probability of thermalising exactly at x is zero. It must thermalise at some later
time, say after it has travelled for a free time � = t0. Then t0 > t must hold. We �rst compute the
probability arising from a hop of �xed size r0 = jkjt0=m. The rate at which this occurs is

(1=t0)w(x� kt=m;k; t0 � t; t0):

In the interval of time from t to t + dt, the number of hops is rate � dt, so the probability of a
particle being at x at time t0 with momentum k, and having free time t0, is, at time t0,

P (t0) := Prob�
�
! : Nx(!) = 1 \Px = kj� = t0

	
=

=

Z t0

0
dt(t0)�1N(x� kt=m; t0 � t)p(x� kt=m;k; t0 � t)

w(x� kt=m;k; t0 � t; t0):

Now, w is a density of probability (of collision) as a function of free path size t0, so the total
contribution to � due to hops from one side of x to the other along the line of k is

N(x; t0)p(x; k; t0) =

Z
1

0
P (t0)dt0

=

Z
1

0

dt0

t0

Z t0

0
dtN(x� kt=m; t0 � t)p(x� kt=m;k; t0 � t)

w(x� kt=m;k; t0 � t; t0): (44)

This is the fundamental relation. The logarithmic divergence at t0 = 0 is only apparent, if the
functions entering the integral are smooth enough. If so we can expand in Taylor series in t0 up to
O(t`) around the point x; k; t0, at which the functions are evaluated:

Np =

Z
1

0

dt0

t0

Z t0

0
dt
n
Npw(t0)� t(k � @=m+ @0)

�
Npw(t0)

�o

= Np�
1

2

�
k � @

m
+ @0

�
Npt` (45)

because of (24) and (25). Here, @0 means @=@t0. This is a G-invariant splitting; for, the equation
shows that Np and Np di�er by a quantity of order t` in smallness, so Np transforms correctly
up to �rst order. But t` is G-invariant, and k � @=m+ @0 is a G-invariant operator (on �elds that
transform correctly), so Np transforms correctly up to O(t2` ); and so on.

The second term in (45) is responsible for the dissipation. Putting in (40) for t`, we see that
the density cancels; so the conductivity and viscosity of a gas are independent of the density. This
is Maxwell's famous result.

Taking the expectation values of � = N ;P or E gives us the relation between the mean of the
thermalised particles and the true means of all the particles. In this, we need to evaluate @0 applied
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to the thermalised variables. Here we can assume that these obey Euler's equations, since these
hold up to �rst order, and the operator @0 acts only on small quantities. The integral over w in
(44) acts as a smoothing operator, so we expect � to be more regular than �.

4.2 The Euler equations

The current of the conserved variable � is

j� :=

Z
d3kNp��; where � = P=m: (46)

This gives us the dynamics

dh�i

dt
= �@j

Z
d3k�(k)N(x)p(x; k)

kj
m

= �@jh�
kj
m
i: (47)

These equations, for � running over the slow variables m, k and k � k=2, can replace C-N-S-T for
dilute inert gases. Putting � = m gives the usual `equation of continuity'

d�

dt
+ @j(uj�) = 0; (48)

which is exact. We shall show how to compute the other equations up to order t` for our choice of
C. Our strategy is to use (45) in (47), allowing us to evaluate the righthand side in terms of the
means in �; we then use (45) again to rewrite this in terms of the true means.

The zeroth order approximation to (45), namely Np = Np, can be put in (47) and computed
exactly: we get the Euler equations; this is shown very smoothly by using the cumulant generating
function, logZ.

For the momentum, put � = Pi
x. Then we have for each x,

@(Nui)

@t
= �@j

�
NEp[�

i�j]
�

= �@j
�
N(h�i�jiT + uiuj)

�
Since

hPiPjiT =
@2 logZ

@�i@�j
= mk

B
�Æij ;

we get the Euler equation for momentum conservation:

@

@t
(�ui) + @j(�u

iuj) + @i(�kB�=m) = 0: (49)

Finally, for the energy, put � = Ex = k � k=(2m) in (47), which then becomes

_E = �div
�
m�1NEp[EP]

�
: (50)

Now, for each x,

Ep[EP
j ] = hEPjiT + hEihPji

=
@2 logZ

@�@�j
+NEmuj

= �
m�j
�2

+mNuj
�
k
B
�+

1

2
u � u

�

14



from (8). Since
�j = ��uj and E = N(3k

B
�+mu � u)=2

we can collect terms to get the Euler equation for energy conservation:

@

@t
(�(3k

B
�=m+ u � u)) =2 + div (�u(5k

B
�=m+ u � u)=2) = 0: (51)

The pressure appearing in the usual form of Euler's equations is here replaced by �k
B
�=m, the

pressure for a perfect gas. This di�ers from the static pressure (17) by terms which vanish in the
low density limit. We shall use the Euler equations, which are �rst-order PDE in space and time,
to relate @0 to a �rst-order gradient. Let D := u � @ + @0 be the Lagrange material derivative.
Then we have

Lemma 2 The Euler equations (48), (49) and (51) imply the short Eulers:

D� = ��@ju
j (52)

Dui = �k
B
��1@i (��=m) (53)

D� = �
2

3
�@ju

j: (54)

Proof. `It does not seem necessary to reproduce the details of this proof; the mathematician will
be able to construct them for himself, while the physicist will probably not wish to be detained
over them' [24].
The G-invariance of this form is obvious.

4.3 Calculations

It is the full state �, rather than the thermalised part, �, that is usually measured in experiments.
For example, a measurement of density can be made by noting the absorption of a laser passing
through the gas. The scattering of photons with particles makes no distinction between thermalised
and non-thermalised particles. Again, one can measure the temperature by a probing thermometer,
which would tend to thermalise any particles that struck it, whether they were thermalised before
or not. However, the means in the thermalised state are much easier to calculate; the state p is
Gaussian, and the �elds are independent at di�erent points (at the same time, say t0). This enables
us to relate the extensive to the intensive variables. For �, the intensive variables have not even
been de�ned yet.

In the Boltzmann equation, authors write the phase-space density as a product N(x)f(x; k)
with some hesitation, as N and P are not independent random variables, even in the Maxwellian.
Not to worry. For the general state � we de�ne

N(x) = Prob� f! : N (x) = 1g ; (55)

and p(x; k) is the conditional probability

p(x; k) = Prob� fPx = kjN (x) = 1g : (56)

By Bayes's de�nition,
�x(!x) = N(x)p(x; k): (57)

Then we may de�ne � = mN=a3. The momentum density also has a de�nition in terms of �, which
does not assume that p is Maxwellian, by

$ = �=a3 = E�[P ]=a3:
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We can then de�ne the velocity �eld, without recourse to information geometry, by

u =$=�;

provided that the density never vanishes. This is indeed so, as we see from the basic equation (44).
Finally, we de�ne the thermal energy per unit mass, e, to be given in terms of a `temperature' �
at each x by

e =
3

2m
k
B
� := m�1Ep[Ex]�

1

2
u � u: (58)

This de�nition of temperature is G-invariant, as it can also be written as mEp[(ki=m� ui)(ki=m�
ui)=2] or mc2�i�i=2.

Suppose that we know the �elds �;� and u, at time=t0, and thus also their space gradients. We
can use (45) and the short Eulers to �nd the barred parameters of the Maxwellian p, to �rst order
in t`. When any expression is multiplied by t`, we are able to replace any thermalised parameters
by the above unbarred parameters, or vice versa, with only a second order error. So the analysis
reduces to linear algebra.

For any local random variable �, slow or not, let

h�i :=
Z
d3km�1�(x)p(x; k)�(k) h�i :=

Z
d3k �(x)p(x; k)�(k):

To help in the evaluation of various derivatives of integrals that occur here, we note that while
F (�) is a complicated function of u and �, the integrals arising can be evaluated if we change the
variable of integration from k to �, given in (39). We do this for each x, and it is valid provided that
we keep the derivatives @ and @0 to the left of the expression. We note that d3k = (m=�)3=2 d3�.
Then using (45) and (40) we have to order t`:

h�i = h�i �
1

4��

Z
d3k

�
k � @

m
+ @0

�
F (�)�2�(k)

= h�i �
1

4��
(u � @ + @0)

Z
d3k �2�(k)�

1

4��

Z
d3k� � @c�2�(k)

= h�i �
m

4��

�
m

k
B

�1=2
D��1=2

Z
d3�F (�)�[m(c� + u)]

�
m

4��
@i

Z
d3��iF (�)�[m(c� + u)]: (59)

Let us put

�n :=
m

�

�
m

k
B

�1=2 Z 1

0
�2nF (�)d�; n = 1; 2; 3: (60)

On putting � = m, the second small term is zero, as it is odd in �, and we get

� = �� �1mD��1=2: (61)

We now put � =k, and �̂ = (sin � cos'; sin � sin'; cos'). In the following calculations, we use thatZ
sin � d� d' �̂i�̂j =

4�

3
Æij : (62)

Then (59) gives

$i = $i �
m2

4��

Z
1

0
F (�)�2d�

�
m

k
B

�1=2
��1=2ui

Z
sin � d� d'

�
m2

4��

�
k
B

m

�1=2
@j

Z
�4F (�)d�

Z
sin � d� d' �̂i�̂j�

1=2

= $i �m�1D
�
ui�

�1=2
�
�
k
B

3
�2@i�

1=2: (63)
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We now put � = k � k=(2m); we get

E = E �
m2

8��

�
m

k
B

�1=2
D

Z
F (�)d3���1=2 (c�j + uj) (c�j + uj)

�
m2

8��
@i

Z
d3��iF (�) (c�j + uj) (c�j + uj) ; so

E �E = �
k
B

2
�2D�1=2 �

m

2
�1D

�
��1=2u � u

�
�
k
B

3
�2@j

�
uj�

1=2
�
: (64)

We can use these results to relate h�i and h�i for any polynomial. Let

Æ� = h�i � h�i: (65)

Then up to O(t`), Æ is a derivation, and we have for example,

Æ(�u � u) = 2ujÆ(�uj)� u � uÆ�: (66)

Lemma 3 We have the relation

Æ(��) = �
2

9
m�2�

1=2@juj �
1

3
m�2D�1=2 = �

m�2
9

�1=2@juj =
m�2
3

D�1=2: (67)

Proof.

3

2
k
B
Æ(��=m) =

3

2

k
B

m
(��� ��)

= ÆE � uiÆ$i + uiuiÆ�=2

= �
k
B
�2
2

D�1=2 �
m�1
2

D
�
��1=2uiui

�
�
k
B
�2
3

@i
�
ui�

1=2
�

+ uim�1D
�
ui�

�1=2
�
+
mk

B
�2

3
ui@i�

1=2 �
m�1
2

uiuiD��1=2

= �
1

2
k
B
�2D�1=2 �

k
B
�2
3

�1=2@iui;

making use of (61), (63) and (64). This gives the result, using Lemma (2).

4.4 Equations of Motion

The equations of motion express the rate of change of the slow variables (the conserved quantities)
in terms of the mean of their microscopic currents; we use (47).

4.4.1 Viscosity Terms

The choice � = ki in (47) gives, from (59),

d$i

dt
= �@j

Z
d3k

kikj
m

�p

= F i +
m2

4��
@jD��1=2

�
m

k
B

�1=2 Z
(c�i + ui) (c�j + uj)F (�) d

3�

+
m2

4��
@j@k

Z
d3��kF (�) (c�i + ui) (c�j + uj) ;
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where
F i = �@j (�uiuj)� @i

�
�k

B
�=m

�
(68)

is the righthand side of the (free) Euler equation in terms of �. Noting that odd powers of �
integrate to zero, this reduces to

d$i

dt
= F i +

k
B

3
�2@iD�1=2 +m�1@jD

�
��1=2uiuj

�

+
k
B

3
�2@j

�
@iuj�

1=2 + @jui�
1=2
�
:

Note that derivatives act on all functions to their right. We get a special case of the Navier-Stokes
equation by relating F i to Fi:

F i � Fi = @jujÆ($i) + @juiÆ($j)� @j (uiujÆ�) �
2

9
k
B
�2@i�

1=2@juj �
k
B

3
�2@iD�1=2

= @j

�
uj

�
�m�1D(��1=2ui)�

k
B

3
�2@i�

1=2
��

+ @j

�
ui

�
�m�1D(��1=2uj)�

k
B

3
�2@j�

1=2
��

+ @j
h
uiujm�1D��1=2

i
�
2k

B

9
�2@i

�
�1=2@juj

�
�
k
B

3
�2@iD�1=2

We can now get the �nal form for the equation of motion:

d$i

dt
= Fi �m�1@j

h
ujD

�
��1=2ui

�i
�
k
B

3
�2@j
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Here, � = k
B
�2=3 and � = �2k

B
�2=9 in the notation of [15], except that we have the extra factor

�1=2. The relation �+ 2�=3 = 0 holds, [35], so we get a very special case of the general equations,
at the edge of possible values. It is believed that the Stokes relation only occurs when, as here,
there is no interaction whatsoever between the particles outside the hard core.

It is interesting that �1 does not occur in the answer, and that all the terms in D cancel out
without recourse to the short Euler equations, Lemma (2). The viscosity coeÆcient increases as
�1=2 with temperature, like Enskog's and Chapman's prediction from Boltzmann's equation.

4.4.2 Equation of motion for the energy

Putting � = kiki=(2m) in (47) gives

dE

dt
= F

E
+ @jD[A] + @j@`[B]; (70)
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and F
E
is the Euler term
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Collecting up A, B, and �ÆF
E
, using the same method of proof as in Lemma (2), the heat equation

reduces to
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The coeÆcient of the Fourier term is positive, since

5

2
�
5

4
�2 +

1

4
�4 > 0:

The new term involves the logarithmic derivative of the density, whose presence in a gas of a single
component is denied in the literature. It means that a gradient in the density contributes to the
heat current. This is the Dufour e�ect, also called the di�usive thermal e�ect. The sign of the
term does not need to be de�nite. Some authors invoke Onsager symmetry to eliminate this term
without having to evaluate it, since its Onsager dual, the Soret e�ect in the continuity equation
for the mass, is absent. However Onsager duality is not true here, because the state p is not in
LTE and the transition rate depends on x. The present work does suggest that the e�ect should
be looked for experimentally, in say Helium, but this is quite delicate since the Dufour e�ect is
transitory, and becomes less pronounced, and is masked by heat conduction and convection, as time
goes by. The other terms have appeared in the literature [15]. One can check that the system of
equations is invariant under G: `in the tradition of British applied mathematics, it is not considered
gentlemanly to press a colleague for a proof' (G. Pistone).
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5 Conclusions

We have shown that the `method of Maxwell' [29] can be made G-invariant, and gives C-N-S-T
with a Dufour term. The uid equations we get are the following:

d�

dt
= �@j(�uj) (75)
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The transport coeÆcients are independent of density, as found by Maxwell. Our starting point is
not the Boltzmann equation, but a non-local integral equation, (44). The presence of coeÆcient �5
is at variance with the results of Chapman and Cowling [14]. The Boltzmann equation su�ers from
the Hilbert paradox [5], II, p. 348. Namely, the state in Boltzmann's equation is parametrized
by the initial distribution f , which is a general integrable function of six variables, whereas the
hydrodynamic solutions are parametrized by �ve functions of three variables; the set of hydrody-
namic solutions cannot describe the most general solution. To show that they nevertheless provide
a good approximate solution is an extra burden if one uses the Boltzmann equation as the starting
point. In [14] this question is discussed but not solved on p 120; the authors refer the reader to
[18]. Chapman himself has said that reading his book is like `chewing glass' [13]. The fact is that
the Boltzmann distribution f is too detailed a description for an easy move to thermodynamical
variables. Hilbert's paradox also shows up as follows. If the initial state happens to be in LTE,
then the collision term in BE is zero, and (at that instant) the thermodynamic variables follow the
Euler equation, and the instantaneous rate of entropy production is zero. However, uids following
the equations supposedly derived from the BE do not at any instant follow the Euler equations, or
possess a zero rate of entropy production, except in the special states with � and u independent
of x. This paradox lasts a very brief time, after which the stirring due to the Euler convection
spoils LTE. For consistency between the BE and the uid equations, we are not allowed to choose
an arbitrary initial state for the BE; the small deviations from LTE must be related to the uxes
of the theory [3], p. 160. Our approach avoids the paradox: an initial state � can be LTE, and
then we would modify (44) in the obvious way.

The point of view of the present paper di�ers from the usual one, such as [33]. We assume
that just after a collision, which we prefer to call a thermalisation, the particle is well described
as being in LTE, and almost independent of its neighbours. This is a good time `to carve Nature
at it joints' [2], p 341. It is during the free propagation that the state loses its LTE property,
since then particles from regions of di�erent density and temperature come together. They are
likely to be independent because `they have a di�erent history' [34]. Concerning the other phase
of the dynamics, our collision term involves the density at di�erent space-time points, whereas the
Boltzmann kernel is local. In the models in [33], several collisions are needed before a particle is
close to thermalised. In the present model, a particle thermalised after one collision. Our result
shows that the details of how many collisions are needed does not a�ect the qualitative results,
though it changes the relationship between geometric cross-section and mean free path. It is diÆcult
to believe that the simpli�cation made here is responsible for the Dufour e�ect.

Our equations (77) are less singular than C-N-S-T since the presence of the Dufour term means
that the symmetrised part of the operator @0 has a principal symbol of full rank, at least in general
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position. It might be that C-N-S-T has no global smooth solutions, or, even if it has some, it might
be too hard for anyone to prove it. Whatever the case, it might be easier to show that (77) has
smooth global solutions.

We can generalise in various ways. If there is an external potential, �, it does not a�ect the
local state, because it cancels out in ��; however, it does a�ect the hopping rates, and thus appears
in the equations of motion. In a paper [19] we �nd the equations of motion for a uid moving in
a potential, in a non-galilean model. The same method can be applied to the present model. It is
possible to extend both models to the case of inter-particle potentials by following a suggestion of
Biler and collaborators [7, 8, 9, 10, 11, 12, 30]. This gives a macroscopic dynamics in which the
rate of change of energy at a point x is governed by the mean �eld of all the other particles. It
seems unlikely that making the model more realistic by including interactions will exactly cancel
out the prediction of the Dufour e�ect; thus this should be looked for in Helium or Argon.
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