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Abstract

Let H(t) = —A+V (t,z) be a time-dependent Schréodinger operator
on L2(R?). We assume that V (¢, ) is 2r—periodic in time and decays
sufficiently rapidly in space. Let U(t,0) be the associated propagator.
For ug belonging to the continuous spectral subspace of L?(R3) for
the Floquet operator U(2w,0), we study the behavior of U(t,0)uq as
t — o0 in the topology of x-weighted spaces, in the form of asymptotic
expansions. Generically the leading term is t~3/2Bjug. Here By is a
finite rank operator mapping functions of x to functions of ¢ and =,
periodic in t. If n € Z is an eigenvalue, or a threshold resonance
of the corresponding Floquet Hamiltonian —id; + H(t), the leading
behavior is t~'/2Bgug. The point spectral subspace for U(2m,0) is
finite dimensional. If U (27, 0)¢; = e~ ¢;, then U (t,0)$; represents
a quasi-periodic solution.
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1 Introduction

In this paper we study the large time behavior of solutions of time-dependent
Schrodinger equations with potentials V (¢, x), which are periodic in time:

i0u = (—A+V(t,x))u, (t,z) € R xR,

u(0, z) = ug(x). (11)

We assume that V (¢, z) satisfies the following assumption. We write T =
R/27Z for the unit circle and (r) = (1 + 22)1/2.

Assumption 1.1. The function V (t, x) is real-valued and is 27-periodic with
respect to t: V(t,x) =V (t + 2w, x). For B > 2 we assume that

||vr|g—2sup | / |azv<t,x>|2dt)é<oo. (12)

j= OacE

We denote by Vg the set of all real-valued functions V' on T x R? which
satisfy (1.2). Vg is a Banach space with the norm ||V|| 3.

Under Assumption 1.1 the operators H(t)u = —Au + V (¢, z)u are self-
adjoint in the Hilbert space H = L*(R3) with the common domain H?(R3),
the Sobolev space of order 2, and the equation (1.1) generates a unique
propagator {U(t,s): — oo < t,s < oo} on H, which satisfies the following
properties (see e.g. [23]):

1. U(t,s) is unitary in H, and (¢, s) — U(t, s) is strongly continuous.
2. U(t,r) =U(t,s)U(s,r), and U(t,t) is the identity operator.
(

3. U(t+2m,s+2m) =Ul(t,s) for t,s € R.

e~

U(t,s)H?(R3) = H*(R3). For ug € H*(R3), U(t, s)ug is an H-valued
Cl-function of (¢, s), and it satisfies the equations

10U (t, s)ug = H(t)U(t, s)ug, i0sU(t, s)ug = —U(t,s)H(s)up.

In particular, the solution to (1.1) in H is given by u(t) = U(t, 0)uo.

If V is t-independent and decays sufficiently rapidly in x, it has long been
known (see e.g. [6], [16]) that for initial data ug(x), which decays sufficiently
rapidly at infinity, the solution of (1.1) admits an asymptotic expansion

= aje g (@) + 72 Byuo(x) + 2 Byug() + - - (1.3)

finite



as t — oo, which is valid locally in space. Here ¢; are eigenfunctions of
H = —A +V with eigenvalues \;, and By = 0, if 0 is neither an eigenvalue
nor a resonance of H, and By may be nonzero otherwise (see Remark 6.6 of
[6]). The B;, j = 0,1,... are finite rank operators. We show in this paper
that, in spite of the possibly complex behavior in intermediate time intervals,
the solution of (1.1) settles down as ¢t — oo to the asymptotic form

u(t,x) =
Z aze”™ig,(t, ) + t_%Bouo(t, x) + t_%Bluo(t, x)+---, (1.4)

finite

as in the autonomous case, where ¢;(t, ) are now 2m-periodic in ¢ and are
eigenfunctions of the Floquet Hamiltonian K = —id; — A + V, defined on
the extended phase space

K = L*(T, *(R")) = L(T) © L*(R?),

with eigenvalues 0 < \; < 1, By = 0, if 0 is neither an eigenvalue nor a
resonance of K in the sense to be defined below, and By may be nonzero
otherwise (see Remark 1.9). Here B; are finite rank operators from the space
of functions of z to those of (¢, x), 2m-periodic in t.

Recall that for the equation (1.1) the wave operators defined by the limits

Wy = tlirin U(t,0)te ™o Hy = —A,

exist and are complete, viz. Ran W, = H,.(U(27,0)), the absolutely contin-
uous subspace of H for U(2m,0), and that the singular continuous spectrum

is absent from U(2w,0) (cf. [21], [5], [10]). Hence the solutions of (1.1) can
be written as a superposition, with \; and ¢;(¢,z) being as in (1.4),

u(t,l‘) = Zaje_it’\jgzﬁj(t,x) +uscat(t7x)7 (15)
and Ugeqs (£, 7) satisfies for some 1) € L*(R3)
[thscar (t, @) — e~ 02 ()] — 0 (1.6)

as t — oo. Thus, our result (1.4) may be considered as a refinement of (1.6).
Notice, however, the topologies defining the convergence in (1.4) and (1.6)
are very different.

We remark that the expansion of the form (1.3) for autonomous systems
is known also for more general equations, including higher order Schrodinger
type equations (cf. [16] and references therein). For the hyperbolic equations,

3



the asymptotic behavior of the local energy can be described by resonance
poles ([13]), and such results have been extended to the time-periodic systems
(cf. [2], [20]). However, to the best knowledge of the authors, an expansion
formula like (1.4) has not been known for Schrédinger equations with time-
periodic potentials. In particular, the threshold resonances are defined and
their role in the large time behavior of the solution is made clear for the first
time in this paper.

To formulate the results we introduce some terminology. The weighted
L? spaces are defined by

M. = LI(R?) = {f € Li,(R?): [[{@)" f|z2 < oo}

loc

We use the extended phase space approach initiated by Howland ([4]) and
implemented for time-periodic systems by the third author ([21], [22]). We
define the one parameter family of operators {{(0): ¢ € R} on K by

Uo))(t) = Ult,t — oyult — o), u=ult,-)€K. (1.7)

The properties of U(t, s) stated above imply that {U(c)} is a strongly con-
tinuous unitary group on K. We denote its infinitesimal generator by K:

U(o)=e % s eR.
K is self-adjoint in I and is given by

K =—i0, — A+ V(t, x),
DIK)={ueK: (—idy — A+ V(t,x))u € K},

where derivatives are in the sense of distributions. We call K the Floquet
Hamiltonian for (1.1). The following properties are well known ([21], [22]):

1. e 2K and I ® U(2m,0) are unitarily equivalent.

2. Eigenfunctions of K are H-valued continuous. A ¢(t,z) € K is an eigen-
function of K with eigenvalue A, if and only if ¢(0, x) is an eigenfunction
of the Floquet operator U(27,0) with eigenvalue e=2™* and

U(t,0)9(0,2) = e "¢(t, x).
3. If E, is the unitary operator defined by E,u(t,z) = e u(t, z), then
E'KE,=K+mn, forallnecZ. (1.8)

In particular, the spectrum of K is invariant under translations by
n € Z.



We denote by K| the corresponding operator for the free Schrodinger equa-
tion: Ko = —i0; — A, D(Ky) = {u € K: (—i0, — A)u € K} = D(K). For
Banach spaces X and Y, we let B(X,Y") denote the Banach space of bounded
operators from X to Y. We write B(X) = B(X,X). For s and § € R, we
denote the Hs-valued Sobolev space of order s over T by

Ki = H*(T,Hs), and Y= B(K:,K:,).

If s = 0or ¢ = 0, we omit the corresponding label. We first improve the results
on the properties of eigenfunctions of K. For a € R we use the notation (a)
to denote any number strictly larger than a, and (a)_ any number strictly
smaller than a. The non-negative (positive) integers are denoted by Ny (N).

Theorem 1.2. Let V € Vg with § > 2. Then the eigenvalues of K are
discrete in R and are of finite multiplicities. Figenvalues of U(2m,0) are
finite in number and are of finite multiplicities. If ¢(t, x) is an eigenfunction
of K with eigenvalue X\, then H(t)*0°¢ € K for 0 < a+b <2, a,b € Ny.
Moreover:

(1) If N € Z, then (x)N H(t)*0°¢ € K for any N and 0 < a+b < 2, a,b € Ny.
(2) If \=n € Z, then (z)2)- H({t)*0bp € K for 0 < a+b < 2. If we assume
B > 5/2, then there exist constants ¢y, ¢z, c3, such that

9]

§Lj
)3 €Ky

Y(t,x) —e™ Z

j=1

T

—~

Remark 1.3. The condition § > 2 is in general necessary for the point
spectral subspace of U(27,0) to be finite dimensional. If V' is ¢-independent
and V(z) < —C|z|™2 for a large C' > 0, it is well known that H = —A+V
has an infinite number of eigenvalues and the point spectral subspace of
U(2m,0) = e >™H is infinite dimensional.

Remark 1.4. It is commonly believed that the eigenvalues are absent for
almost all time-periodic potentials V (¢, z), which are genuinely ¢-dependent.
However, explicit classes of time-periodic potentials are known, for which
K has a finite number of eigenvalues (cf. [15], [3]). In particular, it is easy
to construct finite rank operators V', such that K has any finite number
of eigenvalues. It is an interesting problem to characterize those potentials,
for which K has no eigenvalues. It is actually known that the eigenfunctions
corresponding to non-integral eigenvalues decrease exponentially as |z| — oo,
see [24]. The proof below shows that the eigenfunctions ¢ satisfy H(t)*0°¢ €
K for 0 < a+b < m if sup(z)?||0]V (-, 2)|| z2(r) < o0 for 0 < j < m.



Remark 1.5. If V(t,z) = Vy(x) + pW(z) cost is a perturbation of a sta-
tionary potential Vy(z), then, generically, for sufficiently small p > 0, any
eigenvalue A\ < 0 of H = —A + V4 will turn into a resonance I' with
ImT = Cp* + O(p**h), C < 0, where n is the smallest integer such that
A+ n > 0, and the solution u(t,z) of (1.1) with u(0,z) = ¢(z), ¢ being
the corresponding eigenfunction of H, satisfies (u(t,z),¢) = e + O(u)
uniformly in ¢ as p — 0 (cf. [22], see also [14], [19] and [9] for more recent
works). Again, it is an interesting question to ask how the survival time

L_ behaves, when g is not small (see [3] and the references therein).

" 2ImT
These, however, are not the issues addressed in this paper.

Definition 1.6. (1) n € Z is said to be a threshold resonance of K, if there
exists a solution u(t,z) of

—i0u — Au~+ V(t, z)u = nu(t, z) (1.9)

such that, with a constant C' # 0,
int
u(t,x) = T +uy(t,x), wu €Kk. (1.10)
x
Such a solution is called an n-resonant solution.
(2) We say that V (t,x) is of generic type, if O is neither an eigenvalue nor
a threshold resonance of K. Otherwise, it is said to be of exceptional type.

Remark 1.7. (1) Because of the identity (1.8), n € Z (A+n € R) is a
threshold resonance (or an eigenvalue) of K, if and only if 0 (respectively \)
is a threshold resonance (respectively an eigenvalue) of K.

(2) The resolvent Ry(z) = (Ko — z)™!, considered as a Ys-valued function of
z € C* (the upper or lower complex half plane), § = 3/2, has continuous
boundary values Ri(A) = lim.jo Ro(\ & i), and V is of generic type, if and
only if 1 + RE(n)V is invertible in B(K_s) for some (hence for all) n € Z
(see Section 2). Since Ry (n)V is compact in K_s and depends continuously
on V € Vg, it follows that the set of generic potentials V' is open and dense
in Vg.

(3) We do not know any explicit, genuinely time-dependent, and multiplica-
tive example of V (¢, x), which is of exceptional type. For time-independent
V examples are easily constructed: If V' < 0, AV is of exceptional type if
1€ o(A[V]2(=A)YV]2), and such X always exists, if V # 0 (cf. [6]). Here
and hereafter o(T') denotes the spectrum of the operator T

Now we can state the main result of the paper.



Theorem 1.8. Let V € V3 for § > (B, = max{2k + 1,4}, k € N, and let
{¢;} be an orthonormal basis of eigenfunctions of K corresponding to the
eigenvalues 0 < \; < 1. Set 6 = (/2 and gy = min{1, 252}, We have the
following results.

(1) Suppose V' is of generic type. Then there exist finite rank operators
By, ..., By from Hs to Kb, such that B; = 0, unless j is odd, and such
that, for any ug € Hs and for any e, 0 < e < gg, ast — o0,

U(t,0)ug = ch “ g (t, )+t 2 Byug(t, x) + - - -

ot Brug(t ) + O(t 2 +E_1), (1.11)
where ¢; = 2m(¢;(0), ug)x, and O(t t="2°1) stands for an H_s-valued function
of t such that its norm in H_g is bounded by Ct~"2 ~V|ug||p,, when t > 1.
(2) Suppose V' is of exceptional type, B > [, k 2 2, and {por} C {¢;} is
an orthonormal basis of eigenfunctions of K with eigem)alue 0. Then, there
exist a 0-resonant solution (t,x), finite rank operators By, ..., By_o from
Hs to KLy, such that B; = 0, unless j is odd, and such that, for any ug € Hs
and for any 0 < e < egg ast — o0,

U(t, O)UO - Z Cje_iw\jgbj (tu l‘) + t_% <d0¢(t7 ZL’) + Z d€¢0€(t7 l‘))
Ft 2 Byug(t, ) 4+ -+t 2 ' By_sug(t,z) + Ot~ 2

k2+a 1

), (1.12)

k2+

where ¢; and O(t~ 1 are as in (1), dy = 27(ug,¥(0))y, and dy are
linearly independent functionals of ug.

Remark 1.9. (1) In the statement of Theorem 1.8(2) the terms involving
the resonant function, or the eigenfunctions, are to be omitted, in case n is
not a threshold resonance, or not an eigenvalue. As in the autonomous case
(see Remark 6.6 of [6]), we expect the linear functionals {d,} in (1.12) may
be linearly independent or dependent dependening on V', however, we do not
know any explicit example here (see (3) of Remark 1.7).

(2) The 27 appears in the definition of ¢; because of the normalization of
eigenfunctions: {v/27¢;(0,7)} is the orthonormal basis of eigenfunctions of
U(2m,0), if {¢,(t,z)} is the one for K.

(3) We shall explain how the operators B; in (1.11) (resp. (1.12)) and F;(0)
n (1.16) (resp. (1.20)) below are related at the end of Introduction. In par-
ticular, By in (1.11) is a rank one operator.



The rest of the paper is devoted to the proof of Theorem 1.8. We display
the plan of the paper, explaining the main idea of the proof, when non-
integral eigenvalues are absent, as the latter contribute to (1.11) or (1.12)
only by eigenfunctions and by the remainder terms, and as they can be
easily accommodated by a similar (but simpler) method for treating the
threshold eigenvalues or threshold resonances. We write J: H — K for the
identification operator (Jug)(t,z) = uo(x). We shall prove the theorem by
studying the unitary group e~*¥ via the Fourier transform:

) 1 )
—icK 1 —io\ .
e Jug(t) = 15%1 5 /e R(\ + ig) Jug dA, (1.13)
R(z) = (K — 2)7! being the resolvent of K. This requires a detailed study

of R(z) near the reals. In Section 2 we begin with the study of Ry(z) =
(Ko — z)~! and show that

1. Ry(z) has a C*-extension to c \ Z as a Y:-valued function, s € Ny,
iszOand’y>k+%.

2. Ro(z+ n) has an asymptotic expansion in powers of \/z as z — 0. We
denote the boundary values on the reals by R ()\) = Ro(\ =+ i0).

3. A ¢ Z is an eigenvalue of K, if and only if —1 € o(RZ(\)V), and n € Z
is an eigenvalue or resonance of K if and only if —1 € o(RE(n)V).

We then prove most of Theorem 1.2 in that section. We also show in Section 2
how the n-mode of R(z)Juy, viz. the n-th Fourier component of R(z)Jug with
respect to t, decays as n — 4o0.

In Section 3 we study the behavior of R(z) near and on the real line. The
properties 1. to 3. above and Theorem 1.2 imply that R(z) has boundary
values R()\) = R(\ £i0) away from Z U {eigenvalues of K}, and they are
C* functions with values in yg. In Subsection 3.1 we study R(z) near Z for
generic V. In this case G(z) = (1 + Ro(2)V) ™! exists for z near Z, and we
obtain the following theorem by a straightforward perturbation argument.
We write LU)(z) for the j-th derivative of L(z), and f ® g stands for the
integral operator on T x R with the kernel f(¢,x)g(s,y).

Definition 1.10. Let X and Y be Banach spaces, and let L(z) a B(X,Y)-
valued function defined in U = {z € CT: 0 < |z| < p}, a punched neighbor-
hood of the origin in C*. Letk € Ny and 0 < & < 1. We say L(z) = O(zk;rs),
if L(2) satisfies the following properties:

(i) L(z) € C*(U) and it satisfies

I(d/dzY L()|| < Cilz|"* 9, j=0,1,... k, z€ U (1.14)
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(Hence, L(z) is C*/2(U U {0}), if we set L(0) = 0.)
(ii) For ¢ = [(k+2)/2], there exist ;n > 0 and v > 0 such that, for 0 < h <,
Clhlz,

’ f k is even
LOG 4+ h) — LOG)|dz < . ! 1.15
/_HH W)= LR s, ik s odd (1.15)

For fized (p, 1, 7), we write || L(2)||o((k+e)/2) for the sum of the smallest num-
bers Cy,...,Cx and C, such that (1.14) and (1.15) are satisfied.

Theorem 1.11. Let V € V3 for B > Or = max{2k + 1,4}, k € N. Let

d = /2 and g = min{1, ﬂ;ﬁ’“}. Suppose that V' is of generic type. Then, as

a Yi-valued function of z € C*, s = 0,1, for any 0 < & < &y, we have

R(z+n) =
Fo(n) + VzFi(n) + 2Fy(n) + - - - + 252 F(n) + O(2*+9)/2)  (1.16)

in a neighborhood of z = 0. Here

(1) Fj(n) = E,F;(0)E? for alln € Z and j =0,1, .. ..

(2) If j is odd, F;(0) are operators of finite rank and may be written as a
finite sum 3" aj, @ b;,, where aj,,b;, € KLy

(3) The first few terms are given as

Fy(n) = G (n) Ry (n)(= R*(n)), (1.17)
Fi(n) = G*(n)Dy(n)G™ (n)*, (1.18)
Fy(n) = G™(n) [D2(n) — D1(n)VGT(n)Di(n)] G~ (n)*, (1.19)

where G=(n) = (1 + RE(n)V)™Y, and where D;(n) are the operators defined
in statement (3) of Lemma 2.3.

In Subsection 3.2 we study the same problem in the case that V is of
exceptional type. In this case, —1 € o(RZ(n)V), and the analysis of R(z)
near thresholds is substantially more involved. We apply here the method
developed by Murata ([16]) and prove the following theorem. We shall repeat
some of the arguments of Murata here for the convenience of the readers. Note
that we also could have used the approach introduced in [8]. For Borel sets
I we write Ex(I) for the spectral measure of K.

Theorem 1.12. Let Assumption 1.1 be satisfied with § > By, = 2k+1, k > 2

an integer. Let 6 = (3/2, and 0 < € < g9 = min{l1, ﬂ;ﬁ’“}. Suppose that V is

of exceptional type. Then, as a Vi-valued function of 2 € Ct, s =0,1,

1 1
R(z ) = = Fa(n) + = Foa(n) + Fofn) + -+ (1.20)

o 20D R o (n) + OB
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in a neighborhood of z = 0. Here

(1) Fj(n) = E,F;(0)E forn € Z and j = —2,—1,....

(2) F;(n) is of finite rank, when j is odd, and may be written as a finite sum
> aj, ® by, where aj,, b, € KLy,

(3) Fa(n) = Ex({n}). . .

(4) F_i(n) = Ex({n})VDs(n)V Ex({n}) — 47iQ,, where Q, = (-, )™,

and Y™ is a suitably normalized n-resonant function.

Remark 1.13. In the statement of Theorem 1.12 the terms involving the
resonant function, or the eigenfunctions, are to be omitted, in case n is not
a threshold resonance, or not an eigenvalue.

In Section 4, we apply (1.16) or (1.20) to the expression (1.13) for e=XJ.
Using also the properties that || 75 Ry (A\V R (A)Jugll g1, = O(JA|7*?) and
IRg (MVRF (MV RS (Nuollxr, = O(N?) as [A] — oo (see Lemma 2.5),
which, in physics terminology, represents the fact that the energy spreads
slowly in the resolvent, and which guarantees that the contributions to the
integral of thresholds singularities at n € Z are summable, we then obtain
the asymptotic expansion of e X J as ¢ — 0o. When V is of generic type,
the result is

TS = 0722, (0) + -+ 0TI Z (0) + 0" ) (1.21)

as a B(Hs, Kl ;)-valued function. Here Z;(0) is 2m-periodic in o, Z;(c) = 0
if j is even, and if j is odd, Z;(o) has the form Z;(c) = C; Y., e ™ F;(n)J
where C}; is the universal constant in (4.3). Because F'(n) = E,F;(0)E;
and F;(0) = >, aj, ® bjy, aju,bj, € KLy, by Theorem 1.11(2), the Fourier
inversion formula implies

Zi(o)uo(t,z) = C; ZZ —me g, (t x)/ b (s,y)e” " ug(y)dsdy

TxR3

= 21C} Z aj,(t,x) /RS bj(t — o, y)uo(y)dy. (1.22)

Since K 4 is continuously embedded in C(T, H_s) by the Sobolev embedding
theorem, (1.21) implies that, uniformly with respect to ¢t € T (hence with
respect to t € R by the periodicity), as ¢ — oo,

Ut t — o)ug — =22y (0 )ug(t) — - - -
o ERZ (0 uo(t) s = O™ "+ ug|lpg,. (1.23)

10



We set t = o in (1.23) and replace o by ¢t. We then obtain (1.11) with

Bj(t) =2rC; > a;(t,x) @ b,(0,7). (1.24)

Though the procedure will be a little more involved, as will be shown in
Section 4, to settle the convergence problem at various stages, this basically
proves Theorem 1.8 for generic V. The proof of Theorem 1.8 for the excep-
tional case can be carried out along the same lines, by applying (1.20) instead
of (1.16).

In what follows the adjoints of various bounded operators between func-
tion spaces over T x R? are taken with respect to the coupling

(f.9) :[r - f(t, z)g(t, x)dtdz.

Acknowledgment Part of this work was carried out while AJ was visiting
professor at the Graduate School of Mathematical Sciences, University of
Tokyo. The hospitality of the department is gratefully acknowledged.

2 Limiting absorption principle

In this and next sections we study the resolvent R(z), 2z € C*. In this section,
we begin with studying Ro(z) near the boundary of C* and, then, identify
those points A € R, where the boundary values RE(\) = lim. g R(\ £ ie)
do not exist, with the eigenvalues, or the threshold resonances, of K. We
note that the limiting absorption principle (away from thresholds) has been
proved previously in greater generality, see for example [12], [25], and the
references therein.

We denote by 7(z) = (—=A — 2)~! the resolvent of the free Schrodinger
operator —A in L*(R?), by p,, n € Z, the projection in L*(T) onto the one
dimensional subspace spanned by €™, and by P, = p, ® I the corresponding
operator in K = L*(T) ® H. For v € R, we write X, = B(H.,, H_,). For the
function /z, we always choose the branch such that Im/z > 0.

2.1 The free resolvent

We write ¢l(C) for the closure of C\ [0,00) in the Riemann surface of /.
The following is well known (cf. [1], [11], [6], [7]).

Lemma 2.1. Consider ro(z) as an X,-valued analytic function C\ [0,00)
z —1o(z), where vy >k +1/2, k=0,1,.... Then

11



(1) 7o(2) has an extension to cl(C)\ {0} as an X, -valued C7~1/D+ _function.
(2) When v > 1, it can be extended to cl(C) as an X, -valued continuous
function. We write ri(\) = lim. o ro(A £ ig), A € [0, 00).

(3) ro(2): Hy — H_ is compact for any z € cl(C).

(4) For j =0,...,k, there exist constants C; such that

I(d/dz)'ro(2) |2, < Cilz)~UHD2, [ > 1. (2.1)

The following is a special case of Lemma 2.2 and Lemma 2.5 of [16] where
more general operators are studied. We provide an elementary proof for the
convenience of readers. We use the notation (’)(zk_y) of Definition 1.10 for
functions defined in C* \ {0}. This slight abuse of notation should not cause
any confusion. We let 5, = max{2k + 1,4} as above.

Lemma 2.2. Let vy > (/2 for a k € N. Then:
(1) As an X, -valued function on {z € C*: 0 < |z| < 1}, ro(z) satisfies

k+e

ro(2) = go + Vg1 + -+ 2P+ di(2), di(z) =0(z 7)), (2.2)

for any 0 < e < gy = min{l,vy — %} Here g; are the integral operators

i , - .
gju(z) = Il /(llfr — vy tu(y)dy, j=0,1,....k, (2.3)

and g; are of finite rank, when j is odd.

(2) Suppose k > 2. Let HS be the closed subspace of H, given by HS =
{ueH,: [udx=0}. Then, g; € B(H, H_y41) for j =0,...,k, and ro(z)
satisfies (2.2) as a B(H3, H_11) valued function.

Proof. (1) The integral kernel of r¢(z) admits an expansion

VA G L i1 4y
m—Zm(lﬁ) 2 =yl + di(z 2, y)

=0

with the remainder given by

dip(z;2,y) = (Z%ii(lf__f;l _ /0 (1 — s)kL(eV3e=vl — 1)ds. (2.4)

If j is odd, | — y|/~! is a sum of monomials z%y° |a| + |3| = j — 1, and
gj is of finite rank. We show that the integral operator dj(z) with the kernel

k+e

di(z; x,y) satisfies di(2) = O(2"2 ) as an X,-valued function. Using

0 . s 0 )
(pisVzElr—y| _ 2 Y | pisvElr—yl _
0z (e b 2z 0s (e 1)
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and applying integrating by parts, we have
d

; 1
<_)J \/Ek/ (1 . S)kfl(eis\/z|:tfy| . 1)d5
dz 0
[#5 Jy par(s) (eI~ 1ds, j <k, (2.5)
27E Jep(eVAm — 1) 4 fol Prk(s) (e=VAe—vl — 1)d8} , =k

where pji, j = 0,...,k, are polynomials in s, and ¢, are constants. Using the
obvious estimate |e?VZ*=¥ — 1| < C.|z|3|x — y|°, we then obtain

‘(%)%aamw

for any 0 < e <1 and |2| < 1. Thus di(z) satisfies (1.14) as an X,-valued
function. We next prove (1.15) for di(2). If k is even, £ = (k + 2)/2 and

(el 1) ¢ /1 p(s)(e=VEevl 1)d5} :

_ et
< Cilr — y|k 2]

e .
2 —J
)

j=0,1,...,k

— k-1
10ea = =
< 0
by virtue of (2.5), where the constant ¢ vanishes unless k = 2, and p(s) is a

polynomial. Since |e® — e’| < C.|a — b|¢ for any 0 < € < 1 if Rea,Reb > 0,
we have, uniformly with respect to 0 < s < 1, that

1 . 1 .
isvVz+hlz—y| _ S iszEle—y|
s h(e 1) . (e 1)‘
h , ‘ .
isvzlz—y| 1 isvVzthlz—y| _ _isv/zlz—y|
z(z—l—h)(e )'+’z—|—h(e ‘ )
hle —yl* hele —yI* )
< € + =[T—Y “ay 2 h ’
<\zl—z(z+h)\ |(z+h)(Vz+h+z2) | iz 1)

and, by interchanging the roles of z and z + h, that

—il_ h(ez‘sx/z—i-hlac—yl . 1) l(eis\/g\;v—y\ . 1)‘
z

z

h’x_y’5 hE‘x_yye )
< = + = |z —y|®a5(z, h).
(\z(z—i—h)lg‘ Z(Vz L h+ Vo) |z =yl a3(z, h)

It follows that for 0 < € < g9

~—

» |2+ Rl = /2,

Cai(z,h
49z +n) —d¥ < 1% 2.6
(= + 1) — ) NN

T | Cai(z,h

~—
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The change of variable z — zh instantly implies that

/ aj(z, h)dz + / a5(z, h)dz = C.h5.

|2+h|>h/2 |2+h|<h/2

Thus, di(z) satisfies (1.15) as an X,-valued function when k is even. When
k is odd, d,(f)(z) has the integral kernel

v —yl*!
NE

and we proceed entirely similarly as above. We omit the details (see the proof
of Lemma 2.4 for a similar argument).

For proving (2), we first note that g; € B(HS, H_141), j =0,..., k. This
follows from the expression for u € H7

1
/ p(s)(eisﬁ‘x’y‘ — 1)ds,
0

gru(@) = ¢ / (2 — g~ — 2P )uly)dy

and the obvious inequality ||x — y['~! — |z/~!| < C;(x)?~*(y)? !, which im-
ply |gju(z)| < C(x)?~?||lul, and, hence, ||gjully_ ., < Clulls,. For com-
pleting the proof of (2), it then suffices to show that r¢(z), considered as a
B (Hi;, H_-41)-valued function, has an expansion in powers of y/z up to the

order z¥/2 with the remainder O(z"5"). We choose x € C3°(R?) such that
X(§) = 1 near £ =0 and x(&) =0 if || > 1, and decompose

ro(2) = ro(2)x(D) + ro(2)(1 = x(D)).

Then, as the Fourier transform is an isomorphism between L2(R?) and the
Sobolev space H?(R?) and the multiplication with (£2 — 2)71(1 — x(§)) is
a B(HY(R3))-valued smooth function of z near z = 0, r9(2)(1 — x(D)) is
a B(L2(R?)) valued smooth function of z near z = 0 and has a Taylor
expansion up to any order. For u € H we have @(0) = 0. Choose Y such
that xx = x and define @;(&) by

1 i v €] a)
() =x(©) [ ooea = 1 [T gy

We have x(§)u(€) = Z?Zl £0;(€), or x(D)u = 23:1 Djuj(x), and, by using
Hardy’s inequality and the interpolation theorem, we also have

[ujllzoe + lluglle, - < Cllulls,

14



Then, by integration by parts, we may write rq(z)x(D)u in the form

eiVEleil (g
ro(2)x Z / i)y )y

drlz —y|?

eiVzlT— yl —yj)

+Zf | ., @)

and statement (2) follows by an argument similar to the one used for proving

(1). 0

The Fourier series expansion with respect to the t-variable implies

Ro(2) = 3 @(pm @ ro(z = m)) (2.8)

meZ

on the tensor product K = L*(T)®L?*(R?), where we inserted & to emphasize
that the summands are orthogonal to each other. Since —id/0t commutes
with Ry(z), it may be considered as a Ys-valued function for any s € N
and v > 0. Recall that K2 = H*(T, H,), and Y5 = B(K:, K2 ). Combining
Lemma 2.2 with (2.8), we obtain the following lemma.

Lemma 2.3. Let v > 1/2 and s € Ny. Consider Ro(z) as a Y:-valued
analytic function of = € C*. Then:

(1) Ro(z) can be extended to c \ Z as a C~U/D+ function and, if v > 1,
to C" as a continuous function. We write Ry (\) = lim, o Ro(\ & ig) for the
boundary values on the reals A € R.

(2) For~y > 1 and any z € Ei, Ry(z) is a compact operator from K3 to K2 .
(3) Let v > /2 = max{k + 3,2} for an integer k > 1, { = [(k + 2)/2] and
g0 = min{1,y — %k} Then, for any n € Z, in a neighborhood of 0 in 6+,

Ro(z +n) = R (n) + vzDy(n) 4 - - - + 22 Dy(n) + Rox(n, 2). (2.9)

Here
(a) Dj(n): K3 — K°, are compact operators, and are defined by
d]/Q +
Pn @ g5 + DPm & (n—m), ifj is even,
D;(n) = ’ /2 Z e (2.10)
Pn ® gj, ij 18 odd.

In particular, Dj(n) is of finite rank, if j is odd.
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ky) for any 0 < e < &g, and it has the form

(b) Row(n,z) = O(z

EOk(n,z) = me®ek(z,n—m), (2.11)

meZz
where ex(z,0) = di(z) and e,ij)(z, m) = (d/dz) ex(z,m), m # 0, satisfies
lei (zym) |, < 2 (m)= D2, |2 < 1/2 (2.12)

forr=20,...,k, and

1/2
/ He,(f)(z + h,m) — egf)(z, m)|| x,dz

1/2
I, k>3,
<Clm)y~ D2 8ple, k=2, (2.13)
hz, k=1

Proof. Since —i0d/0t commutes with Ry(z), we have only to prove the case
s =0. We have || > @A, |y, =SUp_.cpeoo [|Anlly, . Hence the statement
(1) follows from (2.8) and the properties in parts 1, 2, and 4 of Lemma 2.1.
The statement (2) follows from (2.8) and the properties in parts 3 and 4 of
Lemma 2.1 (cf. [21]). Note that Ry(z + n) = E,Ro(2)E} by virtue of (1.8),
E,.P,E" = P,i, and the fact that E, is unitary in Kis. Hence it suffices
to prove (3) for n = 0. We expand each summand of (2.8) near z = 0. For
the term with m = 0, we apply (2.2). We expand those with m # 0 as

2 dirg
ro(z —m) = Z = dz? (—m) + ex(z,m). (2.14)
0<i<k/2 )’

Estimate (2.12) and (2.13) follow from Lemma 2.1. (We assumed v > 2
to obtain (2.13) when & = ¢ = 1.) This implies the remainder estimate
Ro(n, z) = O(z"%") for any 0 < € < &y. The compactness of D;(0) is obvious,
as each term is a norm limits in ), of difference quotients of R(z) as z — 0
in ). This completes the proof of the Lemma. O

We remark here that that the adjoint of Ry(z) : K, — K_, is given by
Ry(2)* = Ry(z) and it is bounded from K3 to K for any s € N.
In what follows we often use the following lemma.

k+e )

Lemma 2.4. Let X,Y,Z be Banach spaces, Suppose that L(z) = O(z2
and Ly(z) = O(zkf;a) for k € Ng and 0 < e <1 as B(X,Y) and B(Y,Z)
valued functions, respectively.
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k+e—1

(1) If k > 1, then 2 Y2L1(2) = O(z~ 2 ) and

|72 Li(@) loww-142)/2) < ClL1(Z)loqw+e/2- (2.15)
(2) La(2)L1(z) = O(23°) as a B(X, Z)-valued function and

| La(2) L1(2)|okreys2) < CllL1(2) lo(k+e)/2) |1 L2(2) [ o((kte) 12) - (2.16)

(3) If L3(2) and L4(2) are B(Y,Z) and B(Z Y')-valued smooth functions of
k+e

VZ, respectively, then, Ls(2)L1(z) = O(z"%°) and Ly(2)L(z) = O(z"%) as
B(X, Z) and B(Z, X)-valued functions, respectively.

| Ls(2) L1(2)||o(ere)/2) < CllLs(2)||crrr|| L1(2)[|o(hte)/2) (2.17)
[ L1(2) La(2) lo(rte)/2) < CNLa(2)lemtr [ L1 (2) | o(hre) 12) (2.18)

where we wrote ||u||cr+1 = sup,agy ZkH I(d/dz) (u(z?))]].
(4) If X =Y, then, (14 L1(2))~" emists in a suitable neighborhood of 0 and

(14 Li(2) ' =1+ 0("%).

Proof. (1) It suffices to show that z71/2L,(z) satisfies (1.15) and (1.14) with
k — 1 in place of k. We show (1.15) only as the other is obvious. We write
(= [(k+2)/2] and ¢* = [(k+1)/2]. Since LW (0) = 0,0 < j < £—1, Taylor’s
formula implies

t—j

1
LO(z) = i )/(1—0)£_j_1L(£)(02)d6’, j=0,...,0—1. (2.19)

If kis odd, ¢ = ¢* = (k + 1)/2, and Leibniz formula together with (2.19)
imply

with a suitable constant c;. We write

LOGz+n) LU ALY (z + h) N LY(z4h) — LY (2)
Vz+h Vi (Wt h+V2)eVE+h NE '
Since L (z) = L)(z) satisfies (1.14), we have
I ()
/ hL\(z + h) Hdz Clhls .
(Vz+h+2)Vz2vVz+h
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and
‘L Nz +h) —

/|z|<h \/5

As LY (2) = L¥)(2) also satisfies (1.15), we have

‘d </ ERR I T
|z|<h ‘\/E‘ B '

L(Z) - L(Z) 14e €
/ (Z+h) (Z)’d2§0|h|_%-|h| + §C|h|5,
h<|z|<p \/E
and, combining the last three estimates, we obtain
L@ 1 .
/ th) LG ’ dz < Chs. (2.20)
sl<p!l Vzth vz
Applying (2.20) to L) (z) yields
/ )L(@(H(z +h) LYz ‘ S
|2|<p Vz+h .
. 1 .
It follows that M;(z) = \C—} (1—0)1LO(02)dh, j = 0,...,0—1, satisfy
ZJo

1
/ | M;(z+ h) — M;(2)||dz < C;h3 / (1—0)7719%" dp < C;h5. (2.21)
|z|[<p 0

(2.20) and (2.21) show that z7'/2L(z) satisfies (1.15) with k& — 1 in place of
kand 2 V2L(z) = O(z"2"") when k is odd.
If k is even, £* = ¢ — 1 = k/2. We write

dN\* /L(z) LED (2 g)!-i-1 L)
il = de
(dz) ( vz ) + Z L (6)
and proceed as above: We use ||~V (z + h)|| < C|z + h|2 and obtain
/lt hL(é 1) Z + h
(Vz+h 2Vz+h

using (1.14), we estimate as

1 h do
IO+ 1) - LV < [ 120G < [T
0 0 |Z+9| 2
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from which we obtain

/|Z|<u

LU (z 4 h) — LED(z )’
Vz

h
M<o/ ([ e
|z|<p |Z+0| 2\/_

< B d@: S df = Ch'E .
B /o /R |2 + 9|1‘5\/E
It follows that
L(é—l) h L(é 1)
/ Lth) _ Hdz < Cn'E. (2.22)
|z|<p Vz+h

Then, the same argument as in the case k is odd implies z~Y/2L,(2) =

(’)(zk_éﬁ) also for even k. Similar and simpler proofs for other statements
are left for the readers. O

We need the following lemma in the final part of the paper. Recall that
J is the identification operator (Ju)(t,z) = u(x). We write

Z,=Upez{z€C: |z —n| <c}

for the c-neighborhood of Z in C. We define M(z) = Ry(z)V Ry(z) and
N(z) = Ro(2)V Ry(2)V Ro(2) in the following lemma.

Lemma 2.5. Suppose V€ Vg for 3 > (B, = max{2k + 1,4}, k > 1 being an
integer. Let 6 = 3/2 and g9 = min{1,6 — 2}. Then:

(1) For any ¢ >0 small, s =0,1 and j = 0,1,..., k, there exists C > 0 such
that, for all z € Z.,

H(d/dz)fM(z)Juoum < O(z) ™38 g, (2.23)
1(d/d=) N (=) C(z) ™55} gL, (2.24)

(2) As B(K3, K2 5)-valued functions of z defined in a neighborhood of 0 in C*

and for s = 0,1, we have the expansions

M(z +n) = My(n) + - - - + 2*2 My (n) + My(n, 2), (2.25)

N(z+n) = No(n) + - - - + 2*2N(n) + Ni(n, 2). (2.26)
Here My(n,z) = O(z"5°) and Nip(n,z) = O(z"%) for any 0 < € < &, and,
M;(n) and N;(n), j =0,...,k, satisfy the following estimates for s =0, 1:

1M;(n)

ke, < Cy{n) ™m0 22 g g, (2.27)
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—min{34+4 3
N () Juglics ; < Cn) ™™ 22 gl (2.28)

Moreover, as B(Hs, K® 5)-valued functions of z, s = 0,1,

7 k

1My (12, 2) T o eyy2) < Cny~minli+3:3} (2.29)
N7 k

INe(n, 2) I [loqseyz) < Cny~mnta w33}, (2.30)

Proof. We decompose V' into its Fourier series with respect to t and write

1 )
= S V@)™, V) = - / V(L 2)d (2.31)
= 2 Jr
1/2
We have that sup (z (Z |Vin (2 ) < o0 by the Parseval formula
zeR3
and Assumption 1.1, a fortlorl
sup ()P |V, (z)] < C(m)~2. (2.32)

z€R3
Write R((]a)(z) = (d/dz)*Ro(z) etc. When uy € Hs, we may write

REO(VRY (2)Jug = > €™ @ 7§ (2 = m)Viur (2)uo, (2.33)

m

for z € C' \ Z.. It follows that for such z and a +b = j

() 2

HR(“ ()VRY () Ju H Wit (2o

H_s

SO e —m) ™ m)” {9 ull, < Ol g

and
2

2
HR (2)VRY (= )JUOHIC15 = ZWZ Hmr((]a)(z — m)V,ur (2)ug

H_s

< C Xtz =m0 ™ ul < OO

The last two estimates imply (2.23). We omit the very similar proof for (2.24).
By virtue of (2.9) and (2.11), we have (2.25) and (2.26) with

= ) Da(n)VDy(n),

a+b=j
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Nin)= > 'Da(n)VDb(n)VDc(n),
Mi(zn) = Y V2" Du(n)VDy(n),
a+b>k+1
Ni(z,n) = Z \/Ea+b+CDa(n)VDb(n)VDc(n),
a+b+c>k+1

where we wrote Ri(n) = Do(n) and Ry(n,k,z) = VZ ' Dyaa(n), with a
slight abuse of notation. We also use the shorthand notation a+b > k+1 and
a+b+c > k+1 for the sum over the relevant terms involving the remainders.
We prove (2.27) and (2.29) for large n. If b is odd, then D,(n)V Dy(n)Jug =0
and, if b = 2V’ is even and a is odd

Do(n)V Dy(n)Jug = (1/61)e™ (g Vor (n + i0)uo) (z),

and we obviously have

| Da(n)V Dy(n) & Jlulls. (2.34)

_5=2s_ b
ke, < Cln)~
When n # 0 and a = 2a/,b = 2’ both are even, we have

Do(n)V Dy(n)Jug = €™ g, Vir§” (n + i0)uq
imt (a _ ; (v ;
+ Z (n—m+10)V,ry ' (n + i0)uo,

m#n

and we can estimate as follows for s = 0, 1:

1 Da(n)V Dy(n)
= 27 (n)%|| gaV r(()bl)(n +i0)uol2,
+2m Y (m) > r§) (n = m +i0)Vr§ (0 + i0)ug|3,_,
m#n
C(n)* ol +C Y () Hn —m) == (n) ™ ug|ln,
m#n
< C{n) R g |y, (2.35)

The estimates (2.34) and (2.35) yield (2.27). For proving (2.29), we use the
expression (2.11) for the remainder instead of (2.10) and proceed similarly,
applying (2.12), remainder estimates in (2.2) and (2.13), and Lemma 2.4
in addition. We omit the details of the entirely similar proof of (2.28) and
(2.30). O
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2.2 Eigenvalues and resonances

In this section we assume that V € Vs with § > 2, and set § = (/2 >

1. Then Ry(z)V is compact in K_; for all z € c by Lemma 2.3. Hence
—1 & o(Ro(2)V) for any z € C* by the self-adjointness of K, and from the
resolvent equation R(z) = Ry(z) — Ro(2)V R(z) we have

R(2) = (14 Ro(2)V) ' Ro(2), z¢€ C*.

It follows that if —1 ¢ o(RT(A\)V), then R(z) can be extended to C* U I as
a YVs-valued continuous function, where I is a (small) neighborhood of A on
the real line. We denote the boundary values by R*(\). We then have

REN) = (1 +REWNV)T'RE(N), Nel. (2.36)

We want to identify those A € R with —1 € o(RF(\)V) in K_s. We use the
following lemma, see [1, page 157].

Lemma 2.6. (1) Let ¢ > 0 and s € R. Then there exists C' > 0, such that

’ /)

52 + )\2
(2) Let ¢ > 0 and s > 1/2. Then there exists C' > 0, such that for all X\ > ¢
and f € H*(R?) satisfying f(&)|ie=x = 0, we have

‘ f€)

€2 — )2
Proof. Consider first part (1). If s € Ny, then (2.37) is obvious. For general
s > 0 we use the interpolation theorem, and for negative s the duality.

In order to prove (2) we take ¢ € C§°(R?) such that (&) = 1 for [£] < c/4
and ¢(§) = 0 for [¢| > ¢/2, and set ¢ = 1 — ¢. We have as in (1)

g

< CX7| /]
Hs(R3)

Hs(R3); A>c. (237)

< OIS
Hsfl(RS)

< C)\72HfHHs(R3), A>c. (239)

H(R3)

Take a partition of unity Y x;(§) =1 on & € R?\ {0} where y; € C*(R?\
{0}) is homogeneous of degree zero and is supported in a cone with opening
angle less than /4, and decompose as

0 (&) _ w(©) Zé(ﬁ)xxf)f(&)
S P TP
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where 1 is such that ¢¢» = ¢ and supptp C {€: |¢] > ¢/8}. Then
108 (V)] + X)) | < Car™h,

and (2.38) follows, if we prove

X5 (£)e(€)f(€)

- < COlflasms), A>ec (2.40)

Hs—l(RS)

In order to prove (2.40), we may assume by rotating the coordinates that
X; is supported by the set {{ = (&,¢): [€| < &}. We may then choose
coordinates (|¢[, ') and reduce the estimate (2.40) to

‘ &)

&1 —
for functions f such that f|¢,—y = 0, which is obvious by the Fourier trans-
form. O

< C|f|

Hsfl(R3)

Hs(R3)»

The following lemma partly improves the mapping properties of gy stated
in Lemma 2.2.

Lemma 2.7. (1) Let 6 > 1/2. Then there exists C > 0 such that for all
f € H°(R?) we have

< Ol f s mey-
Hmm{(S 2,(—1/2)_}

I

(2) Let 6 > 3/2. Then there exists C > 0 such that for any f € H°(R3) with
f(0) = 0 we have

< Ol fll s w3

Hmm{5 2,(1/2)_}

[

Here (a)_ stands for any number strictly small than a, and the constants C
above depend on this number and §.

Proof. (1) We may assume 1/2 < § < 3/2. We have H(R?) c L} (R?)
for some p > 3 and f(£)/|€|* is integrable. Then, using the Fourier trans-
form, we see that it suffices to show that the kernel (x)°~2|x — y|~!(y)~ de-
fines a bounded operator on L?(R?). This kernel is dominated by the kernel
|z|°=2|z — y|~y| =%, which defines a bounded operator on L*(R?) by well-

known results on homogeneous kernels, see for example [17], and the first
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part follows.
(2) We may assume 3/2 < § < 5/2. We use the condition f(0) = 0 to replace
|z —y|™' by |z —y| — (1 + |z|)~" in the kernel. We have

(@) (Je = yI7" = L+ 2) 7)) ) < Clal* Pl — g™y,

and the boundedness follows from the results on homogeneous kernels. This
concludes the proof. O

Lemma 2.8. Let V satisfy Assumption 1.1 for some 3 > 2, and let 6 = (3/2.
Assume that K_s > ¢+ # 0 satisfies (1 + RE(\)V)yp* = 0. Then:

(1) If \ & Z, then X is an eigenvalue of K and 1* is an associated eigenfunc-
tion. For any N and a,b € Ny with 0 < a+b < 2 we have (x)N H(t)*0y* €
K. In particular, ¥* is an H*(R?)-valued C* function. Let 0 < ¢ < 1. Then,
for all X\ % with dist(\, Z) > ¢ we have

=) H () ™[l < CllvFlle, 0<a+b<2. (2.41)
(2) Assume 8> 3 and X\ € Z. Then the following results hold.

(a) If (V%) =0, then X is an eigenvalue of K, and 1* is an associated
eigenfunction. We have (x)/2-H(t)*y* € K for 0 < a+b < 2.
(This result actually holds under the assumption 3 > 2.) Furthermore,
we have, with C} = (x;V %) /(877),

o O
pE(tx) — ey ’;‘3] € K. (2.42)
j=1

(b) If (V,4b%) # 0, then X is a threshold resonance, and ¢* associated
resonant functions. We have with C* = (V, 9% /(872) # 0,

Ot
VE(t z) = emm +uy(t,r), uf € IC(Q%L. (2.43)

(3) {\: —1 € a(RE(NV)} is discrete in R\ Z, with possible accumulation
to Z.

Proof. Due to the periodicity we may assume 0 < A < 1. We consider only
the +-case, and write v instead of ¥*. If (1 + Rj(\)V )y = 0, we have, in
the sense of distributions,

(Ko — N)(1+ RNV = (Ko +V = A\)gp = 0.
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We denote the Fourier coefficient of f(t,z) with respect to ¢ by f,(z) as
previously (see (2.31)) such that f(¢t,z) = oo _ ™ f,(x). We have from
(2.8) that

U +rg AN =—m)(V),, =0, meZ. (2.44)

To prove part (1), we fix ¢, 0 < ¢ < 1/2, and consider A with ¢ <A <1 —c.
We prove that for any N we have
||<ZE>N8§¢||K < C||77Z)H’C7 J=0,...,2 (245)

with C' independent of A in the interval considered. The result (2.41) will
then follow from this result since the differentiation of

O (t) = —i(H(t) + A)(t)

implies 024 (t) = —i(H (t) + N0 (t) —i(0,V)p = —(H(t) +N)*Y(t) —i(0,V )y
and 0,V (t,z) is a bounded function. In particular, ¢y € D(K), and 1 is an
eigenfunction of K with eigenvalue . To show (2.45) we apply Lemma 2.6
and the well-known bootstrap argument (see [1]). We have Vi € Ks and
(V) € Hs = L3(R?). Tt follows from (2.44) and (2.37) that for A —m < 0
we have 1, € Hs and

Iy < C(m) (VD )imll2es (2.46)

with a constant C' > 0 independent of m > A. To study the case m < \, we
note that

(Vi) = =(Vib, REAVE) = = ((V)n, 1 (A = m) (VD)) (247)

m

is a real number, as V is real-valued. Since § > 1, the L-trace on the sphere
{&: €] = VA — m} of the Fourier transform (V) exists, and, as a limit of
the Poisson integral, we have for A —m > 0 that

Im((Veh)m, g (A = m)(Ve))m)

== e (V) (§)Pdo(§) = 0,

where do(€) is the surface measure on {£: |£| = VA — m}. It follows that the

trace vanishes:
(V) (©)ligl=ya=m = 0, (2.48)

and, by virtue of (2.38), we obtain that, with a constant independent of m,
Womllrs s < llrg = m)(V)mllrs_, < Clm) 2 (Vi )mllreg.  (2:49)
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It follows by combining (2.46) with (2.49) that

[0l = D _tm)lYmlid, , < CIVYR, < Cllvlk,

m

Notice this constant C' does not depend on A, as long as ¢ < A <1 —c¢. This
result implies that Vi € IC35 | because Assumption 1.2 implies that V' maps
K into K7, 5 for any 0 < s < 2, and the same argument as above yields that
¥ € Kypp5 1) With a corresponding estimate

19l s < Cllllis

1)

with a A-independent constant, ¢ < A < 1—c. We repeat the argument j > 4
times until N < j(2§ — 1) — § for a given N and j/2 > 2, to obtain (2.45).
To prove part (2) it suffices to consider A = 0. Note that

(VYo (0 / (v |£|2 [VOIEFE 4 g,
Thus the argument leading to (2.48) produces

It follows that (2.49) holds for m < 0 and, as above,

3 €M = = 3 ) (Vi) €KY (251)

m#0 m##0

We have (Vi))y € Hs(R?). Suppose first that 1 < § < 3/2 or 2 < 5 < 3.
Then it follows from (2.44) with A = 0 and m = 0, and from Lemma 2.7(1)
that 1y = —(V)5/|¢[2 € H*2(R®) Thus, together with (2.51), we have
that 1 € IC;K %, and hence that Vi) € IC;MQQ. After a few repetition of the
same argument, we conclude that ¢ € K?_, ) and Vip € KF_ ;5 . Thus,

D om0 € Um € K359y, and

o (V) (Vap)gl0) - (Vap)plé) — (V)pl0)
L e B R B &

(2.52)

where the first term can be written as

1 _ (V)
47| x| Rs(V@Z))O(x)dx— 8m2|x|’

and the second term belongs to H(g_2)—(1/2), by Lemma 2.7(2).
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Suppose now that (V;1)x = 0. Then we have that ¢ € K(ﬁ 9)—(1/2), >
and therefore Vi) € IC (25-2)—(1/2), - 1teration of the argument 1mphes that
(NS ICmm{2 (B=2)—(1/2)4.(1/2) After a few further iterations we find that ¢ €
’C?1/2),' To prove the result (2.42), we first note that Y- ey (z) €
ICZ_ (2) and this can be put into the remainder. By Fourier inversion formula

2/+
we have from (2.52) that

o) = 3= [0 (2~ ) o

and the function inside the parenthesis can be expanded as (x - y)|z|™ +
h(z,y), where the remainder satisfies |h(x,y)| < Cly|*|z —y~!||z| 2 for |z|
large. Then the arguments from the proof of Lemma 2.7 prove (2.42) if § > 3.
This proves part (2a).

To proceed with the case (V1) # 0 we need to assume that § > 3. If
actually § > 5, then Lemma 2.7(2) implies that the second term in (2.52)
belongs to H(/?) 2)- (R3), and we are done. Otherwise, we repeat the argument
as in case (a). We omit the details here.

To prove part (3), assume that we have 1; satisfying ¢; + R (A\;)Vp; = 0
with ¢ < A; < 1 — c. Since v; are then eigenfunctions with eigenvalues A;,
we may assume that the set {¢;} is orthonormalized. Then (2.41) implies
that {1;} is a compact subset of K, which means that it is a finite set. This
argument proves the statement (3). O

Remark 2.9. Let us define

Mi’" ={uek_,: (1+Ry(n)V)u=0},
={uekK_,: (1+RF(n)V)u=0,(V,") = 0}.

These spaces do not depend on « for 1/2 < v < /2. Neither do they depend
on the signs +, since (14 RF(A\)V)y® = 0 due to (2.50). Thus we may denote

them by M™ and M", respectively. We obviously have dim(M™ /M ") <1.
We prove the converse of Lemma 2.8.

Lemma 2.10. Let V' satisfy Assumption 1.1 with 3 > 2. Then we have the
following results.

(1) Suppose that X & Z is an eigenvalue of K with eigenfunction 1. Then
Y € K3 for any N, and it satisfies (1 + Ry (\)V ) = 0.

(2) Suppose that X € Z is an eigenvalue of K with eigenfunction 1, and that
B> 3. Then 1 satisfies (V,¢)x = 0 and (1+ R5(\)V)y = 0. It satisfies the
properties in (2a) of Lemma 2.8.
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(3) Suppose that X\ € Z is a threshold resonance of K, 1 is a corresponding
resonant solution, and 3 > 3. Then v satisfies (1+RE(A\)V )y = 0. It satisfies
the properties in (2b) of Lemma 2.8.

Proof. We compare the Fourier coefficients with respect to the ¢ variable of
both sides in Kogtp + Vi) — Ap = 0. We have (n — A — N, + (Vb),, = 0.
Hence away from the zeros of £2 +n — )\ we have

; Vo), (&)

Yu(§) = Enox (2.53)

Suppose first that A\ € Z and p € K. Then V¢ € K3. When n > A, it
obviously follows that

Un(x) = =ro(A = n) (V). (2.54)

Consider now n < \. Since (V). € H?(R?), the L?-trace of (V4);, on the
sphere £2 = X\ — n is well-defined, and by (2.53) it has to vanish. As in the
proof of the previous lemma we have
: Vo) (Ve
G = VRO (VRO
E4+n—A el0 E24+n—NFie

U = 15N = n) (V). (2.55)

The results (2.54) and (2.55) imply (1 + RE(A\)V)y = 0. The first statement
of Lemma 2.8 then implies that ¢ € K% for any N. This proves part (1) of
the lemma.

To prove part (2), it suffices to consider the case A = 0. The argument in
the proof of part (1) shows that 1, = —rF (A —n)(V)), for n # 0. For n = 0
we have —Avg + (V) = 0. Since £2/(£? + i) is bounded by 1 in modulus
and converges to 1 as e — 0, £ # 0, we see that, in L?(R3),

. . E2y(€ _(V)a(e

Here (Vi)5(€) is of class C', since we assume ( > 3. Hence for the right
hand side to converge in L*(R3), —(V),(0) has to vanish and, by virtue
of (2.56), ¥o = —10(0)(V¥))o. Thus we have again (1 + R (0)V)y = 0. The
second statement of Lemma 2.8 then implies that 1) has the properties stated
n (2a) of that lemma.

To prove part (3), it again suffices to consider A = 0. Let ¢ be a 0-
resonant solution to Ku = 0. Then by (1.10) there exists C' # 0 such that
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Y —Clz|™! € K. Thus ¢, € L*(R?) for all n # 0, and (V) € HP~1/2+(R3)
for all n. The argument in the proof of part (1) implies that the trace of
(V4h)(€) on the sphere £ = X\ —n vanishes for all n < \. Hence (2.55) holds
for n # 0. When n = 0, we have that 1(€)—4x|¢|~2 € L2(R?) by assumption.
Thus ¢y € L. .(R?) and (2.56) holds in LL (R?) or ¢y = —r(0)(V4))o. Thus

we have (1 + R (0)V)y = 0 and statement (2) in Lemma 2.8 completes the
proof. O

3 Threshold behavior of R(z)

We denote by A the set of non-integral eigenvalues of K. We will later show
that A U Z is a discrete subset of R, and we proceed, assuming this result.
Then the Vs-valued analytic function R(z) of z € C* has continuous exten-
sions to C \ (AUZ), and the equation

R(z) = (14 Ry(2)V) ' Ry(2) (3.1)

is satisfied for all z € G \ (AUZ). For operators A and B, we write A C B
it A is a restriction of B. Notice that the commutator relation

[Dy, Ro(2)V] C Ry(2) (D:V)

implies that Ry(z)V is also compact in K';, and that —1 € o(Ry(2)V) in
Kl;, when z ¢ AUZ. Since (3.1) is satisfied as an identity in Y; as well, we
obtained the following lemma. We write R*()\) = R() % i0), as above.

Lemma 3.1. Let k > 0 be an integer, and let § > k+1/2. Then for s = 0,1,
the analytic function C* > z — R(2) € V§ can be extended to Ei\(AUZ) as
a CO=(/2+ function. When z € Ci\(AUZ), R*(2): K§ — K*4 are compact.

In the following two subsections, we let k, 3, 6 and £y be as in Theorem 1.8,
viz. we assume 3 > max{2k + 1,4} for an integer £ > 1 and set 6 = [3/2 and
0<e<egy=min{l,0 —k—1/2,6—2}. We then study the behavior of R(z),
when z approaches n € Z. We further assume k > 2 if V is of exceptional
case.

3.1 The generic case

In this subsection we prove Theorem 1.11. We assume that V' is of generic
type. Then Lemmas 2.8 and 2.10 imply that —1 ¢ o(RE(n)V) in K4, s =
0,1, for any integer n € Z. It follows that R(z) can be extended to a neigh-
borhood I of Z as a ) valued continuous function, and that (3.1) holds
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for all z € C* U I. In what follows we concentrate on the +-case and
n = 0, since other cases are either reduced to this case via the identity
R(z +n) = E,R(z)E} or treated entirely analogously.

We omit the variable n = 0 and write by using (2.9) in the form

14+ Ro(2)V = 14+ REV +/zZD1V 4+ -+ 22 DV + Low(2) = L(2) + Lox(2),

where Lop(2) = Ryp(0,2)V = O(zkf;a) as a B(K?4)-valued function in a
neighborhood of 0. Define

GH0) =1+ R (0)V)
which exists by assumption. Then, for small z,
L(z)"' = GH0)(1 + VzDVGH(0) + - -+ + 22 DLVGH(0)) ! (3.2)
also exists and is a B(K?®5)-valued analytic function of v/z near 0. Thus,

(1+ Ro(2)V)™' = (14 L(2) "' Lox(2)) ' L(2) !
= L(z)7' +{(1 + L(2) "' Lor(2)) " — 1} L(2) ™

and, by Lemma 2.4,

k+e

:)

as a power series of

Li(2) = {1+ L(=) " Lou(2)) " — 1} L(2) 7 = Oz

as a B(K?®;)-valued function. Thus, expanding L(z)™!
212, we see that (1 + Ro(z)V)™! can be written as
k+e

2) (3.3)

as a B(K?®;)-valued function. Inserting the expansion (2.9) for Ry(z) and
(3.3) into (3.1) and applying Lemma 2.4, we have, denoting Dy = Ry,

(1+Ro(2)V) ' =Qo + 23Q) 4+ 23Qp + O(z

R(z) = (Qo+ 22 Qu+ -+ 25 Q)

. (3.4)
X (D0+\/ED1+"'+22D]€)+O(Z

kJQra>
as a Y§ valued function. Expanding the product in the right of (3.4) and

putting all the terms with powers higher than z*/2? into the remainder, we
finally obtain

R(z) :F0+\/EF1+ZF2+"'+Zk/2Fk+O(Zk;E)7 (3.5)
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as a )5 valued function. ;jFrom the explicit formula (2.9) and
1-VGHO)RS(0) =1—VRY0) = (1+ VRS (0)™ =G (0),

we obtain the expressions in statement (3) of Theorem 1.11. Note that Fj
are linear combination of the operators of the form

G*T(0)D,,VG*(0)D,V ---G*T(0)D;,_,VGT(0)D;,, i1 +--+i.=3 (3.6)

and, if j is odd, one of 71,..., 7, must be odd. Suppose 7, is odd. Then, we
may write the operator in (3.6) in the form AD; B with

A=G"0)D,V---D;, ,VGT(0), B=VG'(0)D,;, V---VGT(0)D;,

Ta+1

and A € B(K!;) and B € B(K}). Hence Fj is a finite rank operator from Kj
to K1 ;. Moreover, the adjoint

B* = D:GH(0)*V---VD;. G"0)'V € B(K_s)

la+1

is bounded in K! 5 because G*(0)* = (1+V Ry (0))~! is bounded in K}. Since
D;, is of the form Y Chp2* @ yP, it follows that

AD;, B =" Cos(Az®) & (B*y”)

and Az®, B*y” € K!;. This completes the proof of Theorem 1.11.

3.2 The exceptional case

In this subsection we prove Theorem 1.12. Thus, we assume n € Z is a
threshold resonance and/or an eigenvalue and study the behavior of R(z) as

z — n. As above, it suffices to consider the case n = 0 and z € C". The
following is an adaptation of Murata’s argument [16] to the time periodic
systems. We use (2.9) to write as an identity in B(K_s)

14 Ry(2)V =1+ ROV + 22D,V + 2D,V 4+ Ry(2)V (3.7
= 5(2) + Ry(2)V, (3.8)

where we have simplified the notation by omitting the dependence on n =0
and wrote Rys(0,z) = Ry(z). We have Ry(z) = O(z°2) as a YV;-valued
function. The operator S(z) is compact in K', due to Lemma 2.3, and it is
a polynomial in /.
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Lemma 3.2. There exists p > 0, such that S(z) is invertible in B(K_s) for
0 < |z| < p and S(2)~! has a Laurent expansion in B(K_s) of the form

S(z2)7 =Y 82 0<zl<p (3.9)

j=—2

The operators S_s, S_1 are of finite rank, S; are all bounded in K' 5 and (3.9)
is an expansion also in B(K!). The adjoint S} is bounded also in Kj.

Proof. We first show that S(z) is invertible in K_; for some z. Suppose the
contrary. Then, since S(z) — 1 is compact, there exists a sequence u,, € K_s
such that ||un,||x_, = 1 and S(im~')u,, = 0. We have

1=(1—R(V)1+ Re(2)V) = (1 - R()V)(S(z) +0(z)), z¢&R.

1

We set z = ¢m™" in this formula, apply it to u,, and take the norm in both

sides. We have

24¢

1< COm™ 2

- _24e - _&
(L +[IR(Em™ ) ly,) < Cm™ = (1+ | R(im ™)l p) < Cm™2.

This is a contradiction, and S(z) is invertible for some z € C. Thus the
analytic Fredholm theory implies that S(z)~! is meromorphic with respect
to y/z with poles of finite order. Since z = 0 is a pole of S(z)~! by assumption,
S(2)7! exists for all 0 < |z| < p for some p > 0, and it has an expansion
S(z) ' =372, S;29/2 with finite rank operators S_y, ..., S_;. We next show
that £ > —2. We have from (3.8) the identity

S(2)™ = (1 — R(2)V)(1 + Ro(2)VS(2)™). (3.10)

If £ < —2 and Sy # 0, then for some u € K_; with ||ulx_, =1, [|S(z) tul| >
C|z|*?, and the right hand side in (3.10) is bounded by

I(1 = R(:)V)(A + Ra(2)VS(2) ull < C(le] 7" + [ F972), 2] <1,

or C|z|*/? < (|2|7* 4 |2|%*9)/2), which is a contradiction, since ¢ > 0, and
we assume ¢ < —2. Recall that S(z) — 1 is also compact in K';. It follows

> 587777 is also the expansion of S(2)! in B(Kls) and, hence, S; are

bounded in K', j = —2,—1,.... Since (S(2)7!)* = (S(2)*)"!, we have

85 =(S(2)7) = (1+ VR; (0) + 2/*VD; + 2V D,) ™"

j=—2

Here V Ry (0)+ 22V D} +2V Dy is compact in K} and is analytic with respect
to /2. Thus, S7 are bounded in K5, j = =2, —1,.. .. O
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We now show that all coefficients in (3.9) are explicitly computable, and
we then compute a few leading coefficients. We introduce the notation

Lo=1+R{(0)V, Ly=D\V, Ly=D,V,

so that S(z) = Lo+ /zL1 + zLs, see (3.7) and (3.8). The following lemma
implies that S;, j > 1, can be computed from S_; and L;, j =0,1,2.

Lemma 3.3. For 0 < |z| < p, S7(2) satisfies the identity

1
S(z)7t = ~Sa Y28 4+ 5,

— {1 + 21/2 (S()Ll + SflLQ) + ZSOLQ}_I X
X {21/2 (SOL150 + S_lLQSO + SOLQS_l) + ZSOLQSO} . (311)
Proof. Compare coefficients to 27/? on both sides of the identity S(z)S(z)™* =

S(2)71S(z) = I. We obtain, with the convention that S; = 0 for j < —3, and
with the notation 4, for the Kronecker delta, the following identities

L()Sj + LlSj_l + LQSj_Q = (53‘70], (312)
SjLo + Sj_lLl + Sj_QLQ = j70], (313)
for j = —2,—1,0,...,. Hence we have for j = —2,—1,0,.. .,

2

07,050 + 0j+1,05-1 + 042,092 = Z S_r (LoSj+x + L1Sjik-1 + LaSj4r—2)
k=0

— Sj + (S(]Ll + S,1L2>Sj,1 -+ SOL2S]'—2- (314)
Multiply both sides by 27/2 and sum up over j > 1 to obtain

Z Zj/2Sj + Zl/Q(SoLl + S,1L2) Z Zj/2Sj + ZS()LQ Z Zj/QSj = 0,

j=1 j=0 Jj=-1

or

{1 + 21/2(50[/1 + S_lLQ) + ZSOLQ} Z Zj/2Sj

J=1

= — {21/2(50[/150 + S_lLQSO + S()Lgs_l) + ZS()LQSO} s
which implies (3.11). O

The next step is to compute S;, j = —2, —1, 0, explicitly. We write Ex(-)
for the spectral measure of K. We then have the following results.
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Lemma 3.4. We have S_y = —Ex({0})V.

Proof. Set z = is in (3.10), multiply both sides by s, and let s | 0. The
left hand side obviously converges to S_o in B(K_s). The right hand side
converges to —Fk ({0})V in the strong topology of B(K_s), as (is)R(is) —
—Ek({0}) strongly in K. O

Lemma 3.5. We have the following results on the operators S_; and L;,
j=0,1,2.

LoSo+ L1S_1 4+ LaS_o =1, ( )

SoLo+S_1L1+ S 5Ly =1, ( )

S 1Lo=5_9Ly=S5 9Ly =5_1L15¢Ly =0, (3.17)

LoS_1 = LoS_2 =115 5= LySpL15_1 =0, ( )

SoLloS_ o0 =8_9LySy =95 _1L25 5=55Ls51=0. ( )

Proof. The results (3.12) and (3.13) for j = 0 imply (3.15) and (3.16). Setting
j=—21in (3.12) and (3.13), we get LyS_o = 0 and S_sLg = 0. Since

Liu(t,x) = D1Vu = . V(s,y)u(s,y)dsdy, (3.20)

2
81 TxR3

we obtain L1S_9 = S_oL; = 0 by virtue of Lemmas 2.8 and 2.10. Now set
j = —11in (3.12) and (3.13), and use L1S_» = S_3L; = 0 to conclude that
LyS_1 = S_1Lo = 0. We then obtain by multiplying (3.12) and (3.13) by S_»
from the left and the right, respectively,

S_QLQSj = SjLQS_Q = O, j 7é —2, (321)
S,QLQS,Q - S,Q. (322)

Settlng j =0 in (314), we have (S(]Ll + Sfng)Sfl + S()LQS,Q = 0. But
SoL2S_9 = 0 as is shown above. It follows that

S()Lls_l = _S_lLQS_l. (323)

Multiply both side of (3.23) by Lo from the left, and use the fact LoS_; = 0.
Thus LySoL1S_1 = 0 follows. We have S_1L150Ly = 0 similarly. O

We now introduce the notation

po == L(]S(], Pl == Lls,l, P2 - LQS,Q, (324)
Qo = SoLo, Q1 =5-1L1, Q2= 5Ls. (3.25)

Lemma 3.5 then implies the following Lemma. We omit the proof, which
follows from the results in Lemma 3.5 and straightforward calculations.
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Lemma 3.6. The operators P; and Q);, j =0, 1,2 are projections in B(Ks),
which satisfy

p0+P1+P2:[, (328)
Qo+ Q1+ Q=1 (3.29)

Lemma 3.7. We have the following results. We write M = M°, see Re-
mark 2.9.

(1) If 0 is a threshold resonance, then S_y is an operator of rank one. It can
be written in the form —A4mi(-, Vip)ip, where ¢ € M is the resonant function,
which 1s uniquely determined by the conditions

(Voy =1, (DV,Vip) =0, for all ¢ € kerpz(K).

(2) If 0 is not a threshold resonance, then S_q =
(3) For odd j > 1, S; is of finite rank. It can be written in the form

(Sju)(tu l‘) = iju(tu l‘)/ le/(57y)u(57y)d8dy (330)
=1 TxR3
where n; < 0o and pjy,, ¢ € Kty for k=1,...,n;.

Proof. Set 7 = 0 in (3.13), and multiply both sides by S_; from the right.
Then (3.18) and (3.19) imply

Sfl == SoLo;S’,l + S,1L18,1 + S,QLQS,1 == SflLlsfl. (331)

Thus rank S_; < rank L; = 1. Note that we have u = S_1Liu + S_sLou, if
u € M(= kerx_, Ly). Since Ran S_y C M and Ran S_; C M, we have

RanS_;+RanS_ o =M

from Lemma 3.6. Here + denotes (nonorthogonal) direct sum. It follows
from Lemmas 2.8 and 3.4 that rank S_;=1, if 0 is a threshold resonance, and
S_1 = 0 otherwise.

Suppose now that 0 is a threshold resonance. Set Qy = S_; Ry (0). Then
S_1Ly = 0 implies S_; = —Q,V/, and hence rank S_; = rank Q,, and fur-
thermore Qo(1 + VR (0)) = 0. Write

QO = 47T7;w+ (059 wf so that Sfl = —47T7;w+ ® Vw,
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Then LoS_; = 0 implies Ly, = 0, and therefore 1, € M. Also Qq(1 +
VR{(0)) = 0 implies (1 + VR$(0))*_ = (1 + Ry (0)V)b_ = 0, and hence
Y_ € M. Moreover, the identity (3.31) implies

S_1=8 10151 =V, ) (V,_)S_;.
Since S_; # 0, ¥4 are resonance solutions, and
(Vi) (Vi) = 1. (3.32)
Moreover,
PPy =L11S1LEx({0})V =0, and Q2Q1 = Ex({0})VLyS_1L; =0,
respectively, imply
(L2, V) =0, (D3Vo,Vpy) =0 (3.33)

for all ¢ € Ex({0})K. Since rank P, = rank ()3 = dim M — 1, the condition
(3.33) determines 1+ € M* up to scalar factors. However, as the actions of
Ly = DoV and D3V are identical on ¢, since the trace of (V¢), on the sphere
|| = v/—n vanishes, as was seen in the proof of Lemma 2.8. Thus we may
choose 1y = ¢_, and set (V) =1, so that (3.32) is satisfied.

If we write T} = SoL1 + S_1Ls, Ts = SoLa, Ty = SoL1Sy + S_1L2Sy +
SoLsS_1 and Ty = SyLySy. Then (3.11) implies that S;, j > 1 is a linear
combination of

E"'EmTru Zl++2m+7ﬂ:]

Since rank7; < 2 and rank Tl < 3, this shows that rank.S; is finite, if j is
odd. Moreover, by using the concrete expression Liu = ¢(V,u) and Sju =
(u, Vip)1p and the facts that L; and Lf, i = 1,2 and S; and S}, i = —2,—1,0
are bounded in K';, we see that S; is of the form (3.30), if j is odd, as in
the last part of Subsection 3.1. 0

We have now determined S_; and S_, explicitly, and we want to show
how Sy is determined from (3.12). Write X; = P,K_5, j = 0,1,2. Then
Lemma 3.6 implies the direct sum decomposition

IC,(S - X0+X1+X2
As SoPy = SyLaS_5 =0 by (3.24) and (3.19), Sy acts on X, trivially. Recall

(323) S()Pl = —S_lLQS_l. Thus on X1 we define S()U = —S_lLQS_lv, ifu=
Pyv. On Xy, we define Sy as follows. Multiplying (3.16) by Lq from the left,
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we have LySoLo = Lo. Hence Xy = Ran Ly. Moreover, ker SoNRan Ly = {0}
and LySy = I on Ran Ly = Xy, and Sy is the right inverse of L.
We now show that R(z) has the expansion as in (1.20). We write

R(2) = S(2)7' (1 4 Ro(2)VS(2) ™) ™' Ro(2). (3.34)

Since ||Ry(2)VS(2) s ,) = O(|2[7/?), we may expand the second factor
on the right by Neumann series and obtain

ZS 2(2)VS(2) ™) Ro(2)

<Z+ Z) —S(2) ' Ra(2)V)!S(2) ' Ro(z). (3.35)

=0 j=N+1

Here, because Ry(2)V S(2)~!is C¥+ outside z = 0 and it satisfies the esti-
mates (d/dz) Ry(2)VS(2)™' = O(2277), j =0, ..., k, the second sum on the
right will become, if N is taken sufficiently large, a C* function in a neigh-
borhood of z = 0 (including z = 0) with vanishing derivatives at z = 0 up to
the order < k. Thus, we may ignore the second sum from our consideration.

We first show that the summand with j = 0, S(2) ' Ry(z), may be ex-
1

1

panded in the powers of /2 starting from 2~ up to the order 27 as a

Y;-valued function, s = 0, 1, as follows:

S(2) 'Ro(2) = 2 ' Ex({0}) 4+ + 2 2 Wy + Oz 77) (3.36)

To see this, we replace S(z)~! by its expansion (3.9). By virtue of Lemma 2.4
and (2.9), the part (271/25_;+Sy+- - - ) Ro(2) has an expansion of the desired
form starting from a term with 2~!/2. For the part 2z 'S _oRy(z), S_o =
—Ex({0})V, we write Ex({0}) = > ¢;®¢; by using the orthonormal system
of eigenfunctions. We have V¢, € ICﬂ+(1/2) and D (m)[[(V o) mll 1y, 0,0 <

oo by virtue of Theorem 1.2, and, by virtue of Lemma 2.10 (2), the zero mode
of V¢, satisfies [(V¢;)o(x)dx = [V;dadt = 0. It follows, by applying
Lemma 2.2 (2) for the zero mode and Lemma 2.1 for m # 0 modes, that

z S QR() _IZ% V¢])
= ‘IZ% Z miro(z = m)* (Vé;)m)

can be expanded as in (3.36) with —z ' Ex({0})VRE(0) = 27 'Ex({0}) as
the leading term.
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The same argument shows that S(z) 'Ry(2)V and 27 'Ry(2)V Ex({0}),
as B(K? 4)-valued functions, can be expanded in the forms

k—1+4¢

S(2) 'Ry(2)V = 22 Wy + -+ 22 Wiy + O(z
2 'Ry (2)Ex({0}) = Y+ 2T Y + O(z

). (3.37)
). (3.38)

k—

-1
2
We next show that the summand with j = 1, S(2) 'Ry (2)V-S(2) 1 Ry (2),

has an expansion of the following form as a )§-valued function, s = 0, 1:

k—2+4¢

S(z) ' Ry(2)V - S(2) ' Ro(2) = 2 3Y_y 4+ 27 Vi p + Oz 2 ) (3.39)

By virtue of (3.36) and (3.37), it suffices to show that z715(2) ' Ry(2)V -
FEx({0}) has desired expansion. We again replace S(z)~' by (3.9). Then, by
virtue of Lemma 2.4 and (3.38), the part 2~ (27/2S_; + Sy + - - )Ry(2)V -
Ek({0}) has the expansion of the form (3.39) and we have only to examine
2728 9 Ry(2)V Ex({0}), which may be written as

2 Ex({0H)V (Ro(2) — Ry (0) — v/2D1(0) — 2D2(0))V Ex ({0}).
Because eigenfunctions ¢; satisfy the properties mentioned above, Lemma 2.1

and Lemma 2.2 imply that the right hand side may be expanded in the form

2k—3+¢

271/2X71+-~-+Z¥X2k+1+0(2 2 )

The expansion (3.39) follows since 2k — 3 > k — 2 when k > 1.
Lemma 2.4 together with (3.37) and (3.39) implies that for any j > 2

(S(2) " Ra(2)V)' S (2) Ro(2)

i=2 k—2+e

=2 T Y 2 2 Y+ 0(z 7). (3.40)

Combination of (3.36), (3.39) and (3.40) implies that, as a Y§-valued func-
tion, s =0, 1, R(z) has the expansion of the desired form

R(z) = F oz ' + F 27?4+ Fy+---
g B2 R 4 ORI (3.41)

Here, as the computations above show, F} are linear combinations of
SioDiy VS, D3, V.Siy - D3 VS;, D 1y g+ + g1 = J, (3.42)

and if j is odd, one of 4,,0 < r < m + 1 is odd. Since S; and D; are of
finite rank if j is odd, F} is also finite rank if j is odd. Moreover, exactly the
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same argument used for proving (3.30) shows that F; has the expression as
in statement (2), when j is odd.

For reference, we compute the first three terms of (3.41) of the expansions
in Vi, § > 5/2 are given by

F_y = —Ex({0}), (3.43)
Foi = Ex({0})VD3VEg({0}) — 4mi(¢) @ ) (3.44)
FO == S,QDQ + S,1D1 + [SO - S,Q {DgVS,l

+D4VS_5 — (DsVS_5)*} — S_1D3VS_5] R{(0). (3.45)

Here we have used the fact S_oD; = Ex({0})VD; = 0 to eliminate a few
terms, together with the results S_sRd (0) = Ex({0})V RS (0) = —FEx({0})
and S_1Rg (0) = —4mi(v) ® ¢). This completes the proof of Theorem 1.12.

Completion of the proof of Theorem 1.2 The argument above shows,
in particular, that if n is an eigenvalue or threshold resonance of K, then
1 4+ Ro(2)V is invertible, if z is sufficiently close to n in the closed upper
plane. Since this is true including z = n, if 1 + R§ (n)V is invertible, we see
in all cases that there are no eigenvalues of K in a neighborhood of n, except
possibly n itself. As the eigenvalues of K are discrete outside Z, we conclude
that they are discrete in R. This completes the proof of Theorem 1.2.

3.3 R(z) near non-integral eigenvalues

On the behavior of R(z) at non-integral eigenvalue A, we have the following
lemma. Parameters satisfy 6 = 3/2, 8 > 0 = max{2k + 1,4} for k € N,
s =0,1and gy = min{1, 2=

Qﬁ’“ } as previously and we assume V' € V.

Lemma 3.8. Let A € R\ Z be an eigenvalue of K. Then, as a Yi-valued
function of z in a neighborhood of \ in c \ {0}, R(z+ \) has the following
expansion as z — 0 for any 0 < & < ¢

Pr({\ -
R(z+\) = # + REN) + 2RF(N) 4+ -+ 2P RiE(N) + O(27), (3.46)
where O(2¥") is C**¢ and has vanishing derivatives up to the order k at
2 =0, and R(\) = lim,_(z — A\)R(2) is the so-called reduced resolvent.

Proof. We follow the argument in the proof of Theorem 1.12 and we shall
be sketchy here. We set S(z) = 14 Ry (A)V + ZRE (A)V where RE'()) is the

derivative of R3 (\) with respect to A. S(z) — 1 is a compact operator in K° 5,
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s = 0,1 and the argument as in the proof of Lemma 3.2 shows that S(z)~!
has the Laurent expansion of the following form in B(K*):

5(2)7122715714‘5'04‘25’14—'“, 5',1:PV
where P = Ex({\}) is the eigenprojection. We define
Ri(2,)\) = R3 (2 + X\) — Ry (\) — 2R3 (V).

Since || RE(z, /\)VS(Z)AHB(K{(S) < Clz] for small |z|, we may expand (1 +

RE(2,\)VS(2)~1)~! by Neumann series and obtain the following expression
for R(z 4+ \) near z =0, z € C#+:

(1+RE(z + MVV)'RE(N + 2)
= S(2)" M1+ RE(2, \)VS(2) )T RE(\ + 2)

(e 9]

=2+ > ) (—=S(2) ' RE(z, WV)S(2) ' RE(N+2)  (347)

j=0 j=N+1

If NV is taken sufficiently large, the sum Y%, (- - - ) becomes a Yi-valued C**e
(including z = 0) function of z as previously. We have (1 + RE(\)V)P =
P(1+ VRF(X)) = 0. This and the resolvent equation yield

PV(RE(\+2) — Rf(\) = —2PRE(\ + 2). (3.48)

Recall that eigenfunctions decays rapidly at infinity. Differentiating (3.48) by
= and setting z = 0, we have PVRE (\) = —PRF(\). It follows that

2 IS RE(z,\)V = —P(RE(2+ \) — RT(\)V, (3.49)
218 RE(z 4+ \) = —2'P — PRE(2 4 \). (3.50)

Thus the summand with j = 0 in (3.47) has the expansion as in the desired
form (3.46). We next show that all terms in (3.47) with j > 1 have expansions
of the form

Yo+ 2V + -+ 2"V + O(249) (3.51)
with the same meaning for O(2"*) as in (3.46). We define T'(z) = S(z)~"' —
271S_y. Then, T(z) is a B(K?®;)-valued analytic function and (3.49) implies
that S(2)"'Ri (2, \)V = (2715_, +T(2))RE (2, \)V has the expansion in the
form (3.51) as a B(K?;)-valued function (with Yy = 0). Thus, if we show
that the summand with j = 1 has an expansion of the form (3.51), we are
done. To see that this is indeed the case, we write

S(2)'RE(2, VS (2) 'RE(2 4 \)
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= 2725 \RE(2, VS RE(2+ \) 4+ 2 'S RE (2, \VT(2)RE (2 + \)
+ 27 ' T(2)RE(2, )V S_1RE(2 4+ \) + T(2)RE(2, \VT(2)RE (2 + \).

Then, by virtue of (3.49) and the analyticity of T'(z), all terms on the right
except the first may be expanded as in (3.46). We may write the first term
on the right in the following form by using (3.48):

—Pz Y RE(z+ A\) — RE(\)VPVRE (2 + \) = PRE(2 + N PVRE (2 + ))

and this has the desired expansion by virtue of Lemma 2.3. This proved the
Lemma. 0

4 Proof of the main theorems

In this section we prove the main Theorem 1.8 for ¢ > 0. The case t < 0
can be treated similarly. We write V5 = B(K5, K? ) as above, s = 0,1. By
the spectral theorem e ¥ ¢ > 0, can be written in terms of the upper
boundary value of the resolvent:

, 1 N
e Ky =lim lim — / e TR+ ig)udA, (4.1)
€l0 N—oco 271 _N
where the right hand side should be understood as a weak integral.
We let u = Jug, ug € L2(R?). Via the second resolvent equation, we get

R(z) = Ro(2) — M(2) + (1 + Ro(2)V) " 'N(2).

Here we wrote M(z) = Ry(z)V Ro(z) and N(z) = Ro(2)V Ry(2)V Ry(z) as in
Lemma 2.5. Insert this for R(\+i¢) in the right hand side of (4.1) and write
e K Jug as Iy(o)ug + I1(0)ug + Io(0)ug, where

1
In(0)up =lim lim —/ e M Ry(\ +ig) Jug d,

el0 N—oo 271 _N

1N
Li(o)ug = —lim lim —/ e MM (N - dg) Jug d,

€l0 N—oo 271 _N

N
Ly(o)uy = lsifg 1\}1_{1;0 5 /_N e M1+ Ry(A +1ie)V)EN (N + ig) Jug d.
We study Io(o), I1(0), and Iy(o) separately, as they converge for different
reasons. Throughout the proofs always assume at least § = 3/2, 8 > [y =
max{2k + 1,4} and k£ > 1, and we assume V' € Vj.

We use the following two well known results.
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Lemma 4.1. Let x € C°(R) be even, and assume x(\) = 1 near A = 0.
Then forn = —1,0,1,..., and for all N, we have
1

)= 5

/ e NA2AN = Coo™ "2 + 0(0) (4.2)

as o — 00, where

0, form=20,2,4,...,
C, = e 3m/ipll 4.3
% form=—-1,1,3,.... (43)
)T
Here n!! =n(n —2)---1 forn > 1 and odd, and (—1)!! = 1.
Proof. When n is even, integration by parts implies h,,(¢) = O(c™"). When
n is odd, we write

mn/2

L[>~
— / e PN + €
0

hn(o) =

271

/ 610-)\)(()\))\”/2(1)\,

T Jo

make a change of variable A\ — A2, and rewrite in the form

1 A A .
hn(o') = _/ <€—z(7>\2 + 61(7)\2—1—@7771/2) X()\2))\n+1d/\
2m Jr
We first apply integration by parts j = (n + 1)/2 times by using
1 A iig2 +ioA2
e =t 4.4
200N AN ¢ (4.4)
to see that
n!! )
hn R — —w)\ )\2 d\
(9) = 2riioy /R xX(X)
n!!

‘ ioA2+imn/2 )\2 d\+ O -N )
+2m’(—2i0)\)3/Re X(A)dA+0™)

We then use well known results for the Gauss integral to complete the proof.
O

Lemma 4.2. (1) Let X be a Banach space and let f € L'(R, X) satisfy

/Hf (x+h)— f(z)||de <Ch®, 0<h<1

for some 0 < & < 1. Then, ||f(\)|| < CA~¢ for A > 1.
(2) Let f = O(z%) has compact support. Then, || f(X\)
A>1.
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Proof. We have for 0 < h < 1

1
<
- 27

I = 0N < 5| [ et 1) = flaaa| < o

When A > 1, set h = AL, It follows that || f(A)|| < Ch¢/sin(1/2). For proving
(2), we first perform integration by parts ¢ = [(k + 2)/2] times

S e

and then apply part (1). O

The term [y(0). As is well known we have

1 i(z—y)?
(o) Tuae) = o [ €% ol

(2mic
and we immediately obtain by expanding the exponential into power series
Io(o)Jug = o 32Cy Jgrug + - - - + o *+D2¢, O Tgrug + EY)(o)ug,  (4.5)

where €; = 0, when j is even, and €; = 1, when j is odd and

_ k+2+4e€
2

1B ()| 3 k2 ,) < Clo) (4.6)

The term [;(c). For this term we use Lemma 2.5. Choose a partition of
unity of the following form: y € C§°(R), x even, and

. B 1A < 1/4,
> ah—m) =1, x(A)—{O I (47)

n=—oo

Since Ry (A\)V Rg (\)Jug and its derivative satisfy estimates (2.23), (2.27) and

(2.29) of Lemma 2.5, -2 R (A\)V R (X)Juo is absolutely integrable in K ; and

I (0)ug can be written in the form

1 [~ _,d
L (0)ug = prel B AE(R(T(/\)VRJ(/\))JUOd/\

1 = . . d
= ) ™ / e*la*X(A)a(Rg(A+n)VRg(A+n))JuodA. (4.8)
n=—oo R

2ro
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We then insert (2.25) for Rf (A + n)V R§ (X + n) and apply Lemma 4.1. We
obtain

k
Ii(o)ug = Z (Z o~ U 2e=ino o.M (n) Jug + Ej (o, n)) . (4.9)

neZ \j=1

Since JT/[/k(n, z) satisfies (2.29), Lemma 4.2 implies that the remainder

1 —ino —io d —~
El(o,n) = 3ot /Re Ax(/\)aMk(n, A)dA

satisfies || £} (0,n)|| g 0 ) < C(n)~2(0)""3%, n € Z. Thus, for E}(0) =
>, Ei(o,n), we have

k+2+e
2

HEli(O')HB(H(;,ICl_é) < C{o)~ (4.10)

Note also > 37° [ M;(n)Juo|xr, < Clluoll, by (2.27).

We treat I(o) separately for the generic case and for the exceptional
case. We need the following lemma.

Lemma 4.3. Suppose that B = Zjvzl fi®g; € yg is of finite rank and
fing; €KYy, g =1,...,n. Let Z(o)ug = > o e ™ E,BE*Jug, uy € Hs.
Then, Z (o) is an integral operator with the kernel 2w Zjvzl fi(t,z)g;(t—0o,y).
Proof. By the Fourier inversion formula

(e 9]

> e [ ([ oitsnpuntupay )

n=—oo

Z(0)uo =Y fylt.)

=21 Y f;(t, ) /3 9i(t = o, y)uo(y)dy (4.11)
j=1 R
and the lemma follows. O

Completion of the proof, generic case. Assume V is generic and that
non-integral eigenvalues are absent for K. We will comment on the necessary

modifications to accommodate non-integral eigenvalues at the end of the
proof. We write R;(z) = (1 + Ro(2)V) ' N(z). The integral

1 .
Lo)Jug = 7= e R (N) Jugd\ (4.12)

X
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is absolutely convergent in K by virtue of Lemma 2.5, and, using the par-
tition of unity (4.7), we may write as above
1 . .
L(o)Jug = —— § " ion / TP (AR (A + 1) Jugd). (4.13)

2m
nez

We then expand R;(z + n) as z — 0 as in the proof of Theorem 1.11 by
using (2.26) and (3.3). Then, (2.28) and (2.30) implies that Ri(z + n)J may
be written as

Ri(z 4 n)J = Wy(n) + 22Wi(n) + - - - + 2"2Wi(n) + Wi(z,n),
and, as B(Hs, K1 ;)-valued functions, we have

Wil <Cln)~2, j=0,...k [Wilz )o@ < (n)72. (4.14)

We insert this expansion into (4.13), and apply Lemma 4.1 and Lemma 4.2.
The same argument as for I;(o)ug implies that

o) = ZZe_w”U U220, W;(n) + Ei(0), (4.15)

j=1 nez

as ¢ — 0o, where E?(0) satisfies the same estimate as in (4.10) and the sum
converges in B(Hs, K'5) by virtue of (4.14). We combine (4.5) and (4.9) with
(4.15). Since Jg;up = D;(0)Jug, when j is odd, and D;(0)+ M;(0) +W;(0) =
F;(0) for j =0,...,k, we thus obtain

e K Ty, = Za (G+2)/2 (Z e_w”q Ju(]) +O(o k+2+5). (4.16)

neZ

Here, for odd j, F;(0) = Y aj, ® b;, with a;,,b;, € K'5 by Theorem 1.11
and Fj(n) = E,F;(0)E}, and, therefore, Lemma 4.3 implies that
Zi(o) =) e "B, F;(0)E;T (4.17)

neZ

is the integral operator with kernel 27 )" a;,(t, z)bj,(t — 0,y). The Sobolev
embedding theorem implies sup,er [[u(t)||#_, < Cllul[x1 . Hence, we deduce

from (4.16) that

k
sup [U(t,t — oyug — Y €,0" T2 Z5(0) Jug(t) |, < Co™ 2"

teT

J=1
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and, setting t = ¢ and replacing o by ¢,

k
Ut 0)uo = Y et~ 2B, (o, < C

J=1

Here B;(t) is the integral operator with kernel 27" a;,(t,z)b;,(0,y). This
completes the proof of Theorem 1.8 for generic V' if no non-integral eigenval-
ues exist for K.

Completion of the proof, exceptional case. For treating I5(c).Jy when
V' is of exceptional case, we further decompose

Ri(2) = (1+ Ro(2)V) 'N(2) = N(2) — R(2)VN(2)

and Iy(0) = I (0) + (o) accordingly. For studying
1 ) )
I (o) Jug = 5 Z e ' / e NN N (A + n) Jugd\ (4.18)

we insert (2.26) for N(z + n), apply Lemma 4.1 and Lemma 4.2 to the
resulting expression, and argue as in the case for I;(o).J;. We obtain

Ly(o)ug =y (Za (+2)/2¢=inog O NS (n )Ju0> +O0>e™ %) (4.19)

neZ \j=1

where O(o~ k+§+5) satisfies the same estimate as in (4.10). We have

. —1 —ion —ioA . : *
Is(0)Jug = 151%1 oy ; e "“"E, / e XN RN +ie)VN(A + ie) E} JugdA.

(4.20)
If we use (1.20) and (2.26), then, omitting the variable 0, we have

)
7). (4.21)
Since F_y = Ex({0}) = P and F_1V = PVD3sVPV + S_4, we have

k— 2+5

R(z)VN(z)= (=2 "Fot+22F 1+ 422 Fy+0(z
X V(N0+---+25Nk—i—(’)(z

F,QVNO - F,Q, F,QVNl - 0, F,1VNO == F,l

by virtue of (3.17) and (3.18) and Lemma 2.4 implies the expansion

k—2+¢

R(z2)VN(z) = —z'F o+ VPR 4 Ty 4 20D O(z 2 ).
(4.22)
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Note that we may change the order of lim.|y and ) _, by virtue of (2.28)

and (2.30). Since

neZz

. y) 1 [°
li - —ioA X( d\ = — ~ dr = 1 —N
o0 271'2'/6 X+ ic o mx(x) v=1+0"),

the first term of (4.22) contributes to Isy(0)Jug by

(Z e—mEnEK({O})E;JuO) (1+0(c))

neZz

= 27?2@(15, ) ® ¢;(t —o,y) + O(c™™).

The contributions of the other terms in (4.22) may be computed and esti-
mated by using Lemma 4.1 and Lemma 4.2 and the rest of the argument is
exactly same as in the generic case. We omit the repetitive details.

Non-integral eigenvalues. We now show how to modify the argument,
when non-integral eigenvalues { A1, Ao, ..., Ay} C (0,1) are present for K. We
proceed as in the exceptional case. We treat [ as in the previous section,

however, for Iy (o), we use a different partition of unity: We take x;(\) €
CP(R), 7=0,..., N such that

N
Z Z xj(A+n)=1
neZ j=0
and such that x;(A\) = 1 near A = ); and x;(A) = 0 near A\ = X\, k # 7,
where we defined \g = 0. We then further decompose Iy, = Iég) +- 4 IQ(QV)
where I3 (0)J is given by (4.20) with x;(A) in place of x (). Iég)(a)J can be
treated exactly in the same fashion as above and (Iy(0) + I1(0) + Is1(0) +
I{9(0))J gives the desired formula (1.12) except for the terms coming from
non-integral eigenvalues. To see that 1. 2(%) (0)Jug, j # 0, contributes only to the

eigenfunctions and to the remainder, we insert (3.46) for R(z) in R(2)V N(z).
Then, with P = Ex({)\;})
PVN(2)J
=27
/\j —Z

(RO + - (2 = MFReO) + O((2 = L)) ) N(2)J

R(z)VN(z)J

Here the second term on the right is B(H;, K 5)-valued C**¢ on the support
of x; and its norm decays like O((n)~3/2) with its derivatives when translated
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by n by virtue of (2.28) and (2.30). Thus, its contribution to IQ(%)(J)J is
O(07%¢) as a B(Hs,K!;)-valued function and it may be included in the
remainder. If we use the identity (3.50) repeatedly, we see that

(A= 2)"'PVN(2) = (A= 2)"'P+ PRy(z) — PM(2) + PN(z).

Since eigenfunctions ¢, are two times differentiable with respect to ¢ and
hence ||(z)!P(p,®1){(z)|| < (n)~2 the last three terms contributes to I (o).J
by O(c7"7¢) as a B(Hs, K's)-valued function of o again. The first term
contributes by 2me=%7 3 ¢, (t, x) @ ¢, (t — 0, y) as previously. The proof of
Theorem 1.8 is completed.
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