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Abstract

Estimation of parameters in di�usion models is usually based on obser-

vations of the process at discrete time points. Here we investigate estima-

tion when a sample of discrete observations is not available, but, instead,

observations of a running integral of the process with respect to some

weight function. This type of observations is, for example, obtained when

a realization of the process is observed after passage through an electronic

�lter. Another example is provided by the ice-core data on oxygen isotopes

used to investigate paleo-temperatures. Finally, such data play a role in

connection with the stochastic volatility models of �nance. The integrated

process is no longer a Markov process which render the use of martingale

estimating functions diÆcult. Therefore, a generalization of the martingale

estimating functions, namely the prediction-based estimating functions, is

applied to estimate parameters in the underlying di�usion process. The

estimators are shown to be consistent and asymptotically normal. The

method is applied to inference based on integrated data from Ornstein-

Uhlenbeck processes and from the CIR-model for both of which an explicit

estimating function can be found.

Key words: asymptotic normality, CIR-model, consistency, estimating

equation, ice-core data, non-Markovian process, Ornstein-Uhlenbeck pro-

cess, prediction based estimating functions, stochastic di�erential equation,

quasi-likelihood.

1



1 Introduction 2

1 Introduction

In the present paper we study statistical inference for observations of integrated
di�usions. In several cases, a sample of observations at discrete time points of a
di�usion process is not available, but, for example, a realization of the process has
been observed after passage through an electronic �lter. Another example is pro-
vided by the ice-core records from Greenland. The isotope ratio 18O=16O in the
ice, measured as an average in pieces of ice, each piece representing a time interval
with time increasing as a function of the depth, is a proxy for paleo-temperatures.
The variation of the paleo-temperature can be modelled by a stochastic di�eren-
tial equation, and it is natural to model the ice-core data as an integrated di�u-
sion process, see Ditlevsen, Ditlevsen and Andersen (2002). Integrated processes
also play an important role in connection with the so-called realized stochastic
volatility in �nance, see Andersen and Bollerslev (1998), Genon-Catalot et al.
(1999), Gloter (1999b), S�rensen (2000), Barndor�-Nielsen and Shepard (2001)
and Andersen, Bollerslev, Diebold and Labys (2001).

Martingale estimating functions are a useful tool for statistical inference based
on discretely sampled di�usions, see e.g. Bibby and S�rensen (1995, 1997, 2001),
Pedersen (2000), and S�rensen (1997) and references therein. However, inte-
grated di�usion processes are not Markov processes, for which reason there are
no natural or easily calculated martingales on which to base a class of estimat-
ing functions. Therefore we will apply the prediction-based estimating functions
that were introduced in S�rensen (2000) as a tool for drawing statistical infer-
ence about non-Markovian models and in other situations where no martingale is
readily available. These estimating functions are generalizations of the martingale
estimating functions. It is shown that the method of prediction-based estimating
functions under mild regularity conditions provides a satisfactory solution to the
inference problem investigated here. The conditions ensure existence, consistency
and asymptotic normality of the estimators.

Other approaches to inference for integrated di�usions were presented in
Gloter (1998, 1999a). The �rst paper considers the integrated Ornstein-Uhlenbeck
process, and compare the Whittle estimator, which in this case is eÆcient, to
the estimator obtained from Ryd�en's split data maximum pseudo-likelihood es-
timator, see Ryd�en (1994). In Gloter (1999a) minimum contrast estimators are
considered that are consistent when the length of the sampling interval goes to
zero as the number of observations goes to in�nity.

In Section 2 the model of integrated di�usions is presented, and prediction-
based estimating functions are briey presented and applied to solve the inference
problem. A way of �nding the necessary moments of the integrated process is
derived, and as examples prediction-based estimating functions are found for the
integrated Ornstein-Uhlenbeck process and for the integrated CIR-model.

In Section 3 the optimal prediction-based estimating function is derived, and
we �nd a way of deriving moments of order �, � being a non-negative integer,
provided that these moments exist. A formula is given so that if we know an
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analytic expression or can simulate the moments in the underlying process, the
calculation of the moments needed in order to �nd the optimal prediction-based
estimating function is easily programmable. The optimal prediction-based esti-
mating functions in the previous examples are discussed. This yields, in both
examples, explicit estimating functions.

In Section 4 asymptotic results about the estimating functions and their es-
timators are proved under weak regularity conditions using the properties of the
underlying process.

2 Integrated di�usions and prediction-based es-

timating functions

Consider the one-dimensional di�usion

dXt = b(Xt; �)dt+ �(Xt; �)dWt ; X0 � ��

where � is an unknown p-dimensional parameter belonging to the parameter space
� � R

p andW is a one-dimensional standard Wiener process. We assume thatX0

is independent of W , that the stochastic di�erential equation has a unique weak
solution, and that X is an ergodic, stationary di�usion with invariant measure
��.

Suppose that a sample of observations at discrete time points is not available,
but, instead, a running integral of the process with respect to some weight func-
tion. Speci�cally, suppose the interval of observation [0; T ] is subdivided into n
smaller intervals of length � = T=n, and let � be a probability measure on the
interval [0;�]. We shall consider observations of the form

Yi =

Z �

0

X(i�1)�+s d�(s) ; i = 1; : : : ; n: (2.1)

Typically, � will have a density ' with respect to the Lebesgue measure on [0;�],
in which case

Yi =

Z i�

(i�1)�

Xs'(s� (i� 1)�)ds ; i = 1; : : : ; n: (2.2)

If our observations are obtained by integrating uniformly over the time axis, �
is simply the uniform distribution on [0;�] with ' = 1=�, and we get the more
simple observations

Yi =
1

�

Z i�

(i�1)�

Xs ds:
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Note that since X is stationary, the distribution of Xt is the same for all intervals
[0;�); : : : ; [(n� 1)�; n�), and thus fYig is stationary.

We solve the problem of estimating the parameter � in the underlying process
X by applying the method of prediction-based estimating functions introduced in
S�rensen (2000). In the following we will briey outline the method of prediction-
based estimating functions. Assume that fj; j = 1; : : : ; N , are one-dimensional
functions such that E�(fj(Yi)

2) < 1 for all � 2 �. We denote the expectation
when � is the true parameter value by E�(�). Let hjk; j = 1; : : : ; N; k = 1; : : : ; qj
be functions from R

r into R, and de�ne (for i � r+1) random variables by Z
(i�1)
jk

= hjk(Yi�1; Yi�2; : : : ; Yi�r). We assume that E�((Z
(i�1)
jk )2) <1 for all � 2 �, and

let Pi�1;j denote the subspace of the space of square integrable random variables

spanned by 1; Z
(i�1)
j1 ; : : : ; Z

(i�1)
jqj

. Finally, we make the natural assumption that

1; Z(r)
j1 ; : : : ; Z

(r)
jqj

are linearly independent. The space Pi�1;j can be interpreted as a
set of predictors of fj(Yi) based on Yi�r; : : : ; Yi�1. We write the elements of Pi�1;j

in the form a0+a
TZ

(i�1)
j ; where aT= (a1; : : : ; aqj) and Z

(i�1)
j = (Z

(i�1)
j1 ; : : : ; Z

(i�1)
jqj

)T

are qj-dimensional vectors. We denote transposition by T . We will study the
estimating function

Gn(�) =
nX

i=r+1

NX
j=1

�
(i�1)
j (�)

h
fj(Yi)� �̂

(i�1)
j (�)

i
(2.3)

where Yi is of the form (2.2), �
(i�1)
j (�) is a p-dimensional stochastic vector, the

coordinates of which belong to Pi�1;j, and �̂
(i�1)
j (�) is the minimum mean square

error predictor of fj(Yi) in Pi�1;j.
When � is the true parameter value, we de�ne Cj(�) as the covariance matrix

of Z
(r)
j and bj(�) =

�
Cov�(Z

(r)
j1 ; fj(Yr+1)); : : : ;Cov�(Z

(r)
jqj
; fj(Yr+1))

�T
.

Then we have

�̂
(i�1)
j (�) = âj0(�) + âj(�)

TZ
(i�1)
j

where
âj(�) = Cj(�)

�1bj(�) (2.4)

and
âj0(�) = E�(fj(Y1))� âj(�)

TE�(Z
(r)
j ): (2.5)

If, for instance, we take fj(y) = ymj and Z
(i�1)
jk = Y

mj

i�k, k = 1; : : : ; r, for some

positive integer mj, we need to calculate the moments E�(Y
mj

1 ) and E�((Y1Yk)
mj )

for k = 1; : : : ; r. Once we have these moments, the coeÆcients âj0; : : : ; âjr can
easily be found by means of the Durbin-Levinson algorithm, see Brockwell and
Davis (1991). For many di�usions there exist K > 0 and � > 0 such that��Cov�(Y m

1 ; Y
m
r+1)

�� � Ke��(r�1), see Section 4. Therefore r will usually not need
to be chosen particularly large.
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Presumably f1(y) = y and f2(y) = y2 with Z
(i�1)
jk = Yi�k, k = 1; : : : ; r; j = 1; 2

and Z
(i�1)
2k = Y 2

i+r�k, k = r+1; : : : ; 2r, will in many cases be a reasonable choice.
In this case the minimum mean square error predictor of f1(Yi) can be found
as described above, while the predictor of f2(Yi) can be found by applying the
two-dimensional Durbin-Levinson algorithm to the process (Yi; Y

2
i ).

The necessary moments can in all these cases be found from the mixed mo-
ments of the process X. First we assume that E�(jX0jm) <1. Then

E�(Y
m
1 ) = E�

��Z �

0

Xs'(s)ds

�m�
= E�

�Z �

0

� � �
Z �

0

Xs1 � � �Xsm'(s1) � � �'(sm)ds1 � � �dsm
�

=

Z �

0

� � �
Z �

0

E�(Xs1 � � �Xsm)'(s1) � � �'(sm)ds1 � � �dsm;

where we have used Fubini's theorem. Speci�cally we get

E�(Y1) =

Z �

0

E�(Xs)'(s)ds = E�(X0)

Z �

0

'(s)ds = E�(X0):

When '(t) is a constant, we see that

E�(Y
m
1 ) =

m!

�m

Z �

0

Z s1

0

� � �
Z sm�1

0

E�(Xs1 � � �Xsm)dsm � � �ds2ds1:

Here we have used that E�(Xs1 � � �Xsm) does not depend on the ordering of
s1; : : : ; sm so that it is enough to integrate over the region where 0 � sm �
� � � � s1 � �. The factor m! appears because s1; : : : ; sm can be ordered in m!
di�erent ways. In a similar way we obtain that when E�(jX0jm1+m2) <1,

E� (Y
m1
1 Y m2

k ) =

Z �

0

� � �
Z �

0

E�

�
Xs1 � � �Xsm1

X((k�1)�+s(m1+1)) � � �X((k�1)�+s(m1+m2)
)

�
� '(s1) � � �'(s(m1+m2))ds1 � � �ds(m1+m2):

Example 2.1 For di�usion models where the eigenfunctions of the generator
are polynomials it is possible to �nd all moments of type E(Xt1 � � �Xtm), see e.g.
S�rensen (2000).

Consider the Ornstein-Uhlenbeck process given by

dXt = ��Xtdt+ �dWt:

This process is ergodic, and its stationary distribution is the normal distribution
with expectation 0 and variance �2=(2�), provided that � > 0. We have that

E�(XtjX0 = x0) = x0e
��t;
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and

E�(X0Xt) = �2(2�)�1e��t:

This implies that

E�(Y
2
1 ) = �2��3��2(��� 1 + e���)

and

E�(Y1Yk) = 1
2�

2��3��2(1� e��)2e�k��

for k > 1.
For f1(y) = y and Z

(i�1)
1 = Yi�1 (i.e. q1 = 1; r = 1), we get

�̂
(i�1)
1 (�) =

(1� e���)2

2(��� 1 + e���)
Yi�1:

Note that in this case the predictor �̂
(i�1)
1 (�) depends on � only. This is also true

for r > 1 when f1(y) = y. Thus � cannot be estimated by means of a linear
estimating function; we would need for instance the function f2(y) = y2 and to

include the squared observations Y 2
i�k in Z

(i�1)
2 .

Example 2.2 Another particular example is the model given by

dXt = ��(Xt � �)dt+ �
p
Xt dWt:

This process is ergodic and its stationary distribution is the Gamma distri-
bution with shape parameter 2����2 and scale parameter 2���2 provided that
� > 0, � > 0, � > 0, and 2�� � �2. The process has many applications. It
is, for instance, used in mathematical �nance to model short term interest rates,
see Cox, Ingersoll and Ross (1985), and Feller (1951) proposed it as a model for
population growth. Recently it was used to model nitrous oxide emission from
soil by Pedersen (2000).

All moments of the type E(Xt1 � � �Xtm) can be calculated by means of for-
mulae in S�rensen (2000). In particular, E(X0) = �;E(X2

0 ) = �(� + �2=(2�)),
and

E(X0Xt) = �2 + ��2(2�)�1e��t:

Thus

E(Y 2
1 ) = �2 + ��2��3��2(e��� � 1 + ��)

and

E(Y1Yk) = �2 +
1

2
��2��3��2(e�� � 1)2e�k��

for k > 1. It is therefore possible to calculate explicitly the prediction-based
estimating functions discussed above.
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3 The optimal prediction-based inference for in-

tegrated di�usions

In this section we derive the optimal choice of the weight �(i�1)(�) in (2.3) using
the results and notation in S�rensen (2000). Optimality is in the sense of the
theory of estimating functions, see Godambe and Heyde (1988) and Heyde (1997).
The optimal member of a class of estimating functions is the one that provides
the most eÆcient estimator. This estimator is sometimes called a quasi-likelihood
estimator.

In S�rensen (2000) it was shown that the optimal estimating function of the
type (2.3) is given by

G�

n(�) = A�n(�)
nX

i=r+1

H(i)(�); (3.1)

where

H(i)(�) =

0BBBBBBBBBBBBBBBBBBBBBBB@

�
f1(Yi)� �̂

(i�1)
1 (�)

�
Z
(i�1)
11

�
f1(Yi)� �̂

(i�1)
1 (�)

�
...

Z
(i�1)
1q1

�
f1(Yi)� �̂

(i�1)
1 (�)

�
...
...�

fN (Yi)� �̂
(i�1)
N (�)

�
Z
(i�1)
N1

�
fN(Yi)� �̂

(i�1)
N (�)

�
...

Z
(i�1)
NqN

�
fN(Yi)� �̂

(i�1)
N (�)

�

1CCCCCCCCCCCCCCCCCCCCCCCA

; (3.2)

and where

A�n(�) = U(�)T �Mn(�)
�1;

with

�Mn(�) = E�

�
H(r+1)(�)H(r+1)(�)T

�
+ (3.3)

n�r�1X
k=1

(n�r�k)
(n�r)

h
E�

�
H(r+1)(�)H(r+1+k)(�)T

�
+E�

�
H(r+1+k)(�)H(r+1)(�)T

�i
and

U(�) = �C(�)@�T â(�): (3.4)
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Here �C(�) =diagf ~C1(�); : : : ; ~CN(�)g with

~Cj(�) = [E�fZ(r�1)
jk Z

(r�1)
jl g]k;l=0;:::;qj ;

where Z
(r�1)
j0 = 1, and

â(�) =
�
â10(�); â1(�)

T ; : : : ; âN0(�); âN(�)
T
�T
; (3.5)

where âj0(�) and âj(�) are given by (2.4) and (2.5). A suÆcient condition for
(3.1) to be optimal is that the matrix @�T â(�) has full rank, and that the func-
tions 1; f1; : : : ; fN are linearly independent on the support of the conditional
distribution of Yn given Y1; : : : ; Yn�1. In particular, the latter condition implies
that the matrix �Mn(�) is invertible.

In Section 4 we shall see that for many di�usion models there exist K > 0
and � > 0 such that the absolute values of all entries in the expectation matrices
in the sum in (3.3) are dominated by Ke��(k�r�1) when k > r. Therefore, the
sum in (3.3) can in practice often be truncated so that fewer moments need to
be calculated.

Natural choices for fj(y) and Z
(i�1)
jk would be fj(y) = y�j0 and Z

(i�1)
jk = Y

�jk
i�ljk

,

where �j0 and �jk are such that E�[Y
4�] exists with � = maxf�10; : : : ; �NqNg.

Note that it is enough that E�[Y
2�] exists for a prediction-based estimating func-

tion to be well-de�ned. The more strict condition is for the optimal prediction-
based estimating function to exist. From now on we assume that fj and Z

(i�1)
jk

have the form just indicated. For simplicity we assume �j0 and �jk are inte-
gers. In order to calculate (3.3), we then need higher order moments of the
form E�[Y

k1
1 Y k2

t1 Y
k3
t2 Y

k4
t3 ], where 1 � t1 � t2 � t3 and where ki; i = 1; : : : ; 4 are

non-negative integers such that (k1 + k2 + k3 + k4) � 4�. We will express these
moments in terms of the moments of Xt, which will usually either be known or
possible to determine by simulation.

De�ne

 (v; u; s; r; �) = E�[Xv1 � � �Xvk1
Xu1 � � �Xuk2

Xs1 � � �Xsk3
Xr1 � � �Xrk4

];

where v = (v1; : : : ; vk1), u = (u1; : : : ; uk2), s = (s1; : : : ; sk3), r = (r1; : : : ; rk4),

�(x; k; t;�) = '(x1 � (t� 1)�) � � �'(xk � (t� 1)�);

where k is an integer and x = (x1; : : : ; xk),

�(v; u; s; r; t1; t2; t3;�) = �(v; k1; 1;�)�(u; k2; t1;�)�(s; k3; t2;�)�(r; k4; t3;�);
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and

A1 = [0 ; �]k1

A2 = [(t1 � 1)� ; t1�]
k2

A3 = [(t2 � 1)� ; t2�]
k3

A4 = [(t3 � 1)� ; t3�]
k4

T1 = f(v1; � � � ; vk1) : 0 � v1 � � � � � vk1 � �g
T2 = f(u1; � � � ; uk2) : (t1 � 1)� � u1 � � � � � uk2 � t1�g
T3 = f(s1; � � � ; sk3) : (t2 � 1)� � s1 � � � � � sk3 � t2�g
T4 = f(r1; � � � ; rk4) : (t3 � 1)� � r1 � � � � � rk4 � t3�g
B = (A1 \ T1)� (A2 \ T2)� (A3 \ T3)� (A4 \ T4):

In the same way as in Section 2 we get

E�

�
Y k1
1 Y k2

t1 Y
k3
t2 Y

k4
t3

�
=

Z
A1�A2�A3�A4

 (v; u; s; r; �) �(v; u; s; r; t1; t2; t3;�) dt;

where dt = drk4 � � �dr1 dsk3 � � �ds1 duk2 � � �du1 dvk1 � � �dv1. Thus we need the
mixed moments of the process X of order up to (k1 + k2 + k3 + k4). These
depend on the distance in time between the variables Xti appearing in the ex-
pression for the moment, and care has to be taken when di�erent variables are
integrated over the same interval when the order of the integration variables
changes. When '(t) = 1=�, this can be solved in the following way. Assume
that 1 < t1 < t2 < t3. Arguments of symmetry yield that

E�[Y
k1
1 Y k2

t1 Y
k3
t2 Y

k4
t3 ] =

k1!k2!k3!k4!

�(k1+k2+k3+k4)

Z
B

 (v; u; s; r; �) dt (3.6)

The factor k1! appears because v1; � � � ; vk1 can be ordered in k1! di�erent ways.
The arguments for the other factors are similar.

Example 3.1 (Example 2.1 continued) We will now �nd the optimal prediction-
based estimating function for the integrated Ornstein-Uhlenbeck process with
N = 1; q1 = r = 1; f1(y) = y, and Z

(i�1)
11 = Yi�1. We have

E�(Y
k1
1 Y k2

t1 Y
k3
t2 ) = 0

for k1 + k2 + k3 = 3 and 1 � t1 � t2, because all moments of an odd order are
zero. Moreover

E�(XvXuXsXt) = 1
4�

�2�4
�
2e�(s�u)� + e(s�u)�

�
e�(t�v)�

for v � u � s � t. Thus, using (3.6),

E�(Y1Yt1Yt2Yt3) =
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1
4�

�2�4��4

Z �

0

Z t1�

g1(v)

Z t2�

g2(u)

Z t3�

g3(s)

�
2e�(s�u)� + e(s�u)�

�
e�(t�v)�dt ds du dv

for 1 � t1 � t2 � t3, where gi(z) = z if ti = ti�1 and gi(z) = (ti � 1)� if
ti > ti�1 with t0 = 1 (i = 1; 2; 3). Finally we end up with the following optimal
prediction-based estimating function:

G�

n(�) =
nX
i=2

�
Yi�1Yi � Y 2

i�1

(1� e���)2

2(��� 1 + e���)

�
:

Example 3.2 (Example 2.2 continued) Consider again the CIR-model. In order
to �nd the optimal prediction-based estimating function with N = 1, f1(y) = y,

and Z
(i�1)
1k = Yi�k, k = 1; : : : ; r, we need moments of the form E�(Y1Yt1Yt2) and

E�(Y1Yt1Yt2Yt3), (1 � t1 � t2 � t3). By the formulae above, these can be obtained
by integration of moments of the form E�(Xt1Xt2Xt3) and E�(Xt1Xt1Xt2Xt3),
for which explicit and easily integrable expressions are known, see e.g. S�rensen
(2000). As the resulting expressions are rather long, they are omitted.

4 Asymptotic results

In this section we give asymptotic results for our estimating functions and the
corresponding estimators when our observations are integrated di�usions, based
on general results in S�rensen (1999) and (2000). To do this we need to study
which properties the process Y inherits from the underlying di�usion process X.
The integrated process Y is not a Markov process, but mixing properties and
moment conditions satis�ed by X are preserved, which is what we will use in this
section.

We begin with a result on the asymptotic behaviour of an estimating function
of the general form

Gn(�) = An(�)
nX
i=r

H(i)(�); (4.1)

where fAn(�)g is a sequence of p�PN
j=1(qj + 1)-matrices, and where H(i)(�) is

given by (3.2).

Theorem 4.1 Suppose the di�usion process X is stationary and �-mixing with
mixing coeÆcients �t(�), t > 0, and that there exists a Æ > 0 such that

1X
k=1

�k�(�)
Æ=(2+Æ) <1 (4.2)

and
E�

���H(r)(�)jk
��2+Æ� <1; j = 1; : : : ; N; k = 0; : : : ; qj: (4.3)
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Then as n!1,
�Mn(�)!M(�); (4.4)

where �Mn(�) is given by (3.3) and where

M(�) = E�

�
H(r)(�)H(r)(�)T

�
+ (4.5)

1X
k=1

�
E�

�
H(r)(�)H(r+k)(�)T

�
+ E�

�
H(r+k)(�)H(r)(�)T

�	
:

Assume, moreover, that An(�)! A(�) as n!1. Then as n!1,

n�1Var� (Gn(�))! V (�) = A(�)M(�)A(�)T ; (4.6)

and
1p
n
Gn(�)! N (0; V (�)) (4.7)

in distribution, provided that the matrix A(�) is such that A(�)M(�)A(�)T is
strictly positive de�nite.

Proof: First note that it follows that the process Y is stationary and �-mixing
with mixing coeÆcients �Y

k (�), satisfying �
Y
k (�) � �(k�1)�(�); k = 2; 3; : : :. This

is because the �-algebra generated by Yi, i = 1; : : : ; n is contained in the �-algebra
generated by Xu; 0 � u � n�, and the �-algebra generated by Yi, i = n; n+1; : : :
is contained in the �-algebra generated by Xu; u � (n � 1)�. Next note that
since H(i)(�) is a function of Yi�r; : : : ; Yi, the process H

(i)(�), i = r + 1; r + 2; : : :
is �-mixing with mixing coeÆcients �H

k (�), satisfying that �
H
k (�) � �(k�r�1)�(�);

k = r + 2; : : :, and hence (4.2) holds with �k�(�) replaced by �H
k (�).

To prove asymptotic normality, it is enough to consider the one-dimensional
process vTGn(�) for every v 2 IRpnf0g (Cram�er-Wold device). Hence the theorem
follows from a classical central limit result by Ibragimov, see e.g. Theorem 1 in
Section 1.5 of Doukhan (1994).

2

For the one-dimensional, ergodic di�usion process X there are a number of
relatively simple criteria ensuring �-mixing with exponentially decreasing mixing
coeÆcients for which (4.2) is obviously satis�ed. If, for instance, the spectrum of
the generator of X has a discrete spectrum then the process is �-mixing. If �1
denotes the smallest non-zero eigenvalue, then the mixing coeÆcients satisfy

�t(�0) � e�t�1 ;

see Doukhan (1994, p. 112). Thus X is geometrically �-mixing.
The di�usion processes considered in Examples 2.1 and 2.2 both have a dis-

crete spectrum with �1 = � and �1 = �, respectively.
Doukhan (1994) gives other criteria for geometrical mixing too; see also Hansen

and Scheinkman (1995) and Veretennikov (1997). Rather general criteria for
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geometric �-mixing of di�usion processes expressed in the language of Malli-
avin calculus were given by Kusuoka and Yoshida (1997). We cite the following
straightforward set of conditions by Genon-Catalot, Jeantheau and Lar�edo (2000)
on the coeÆcients b and � that are suÆcient to ensure geometric �-mixing of X.
It is presupposed that X is stationary with state space (`; r) (�1 � ` < r � 1)
and that the usual conditions on the scale measure and the speed measure hold,
i.e. that Z x0

`

s(x)dx =

Z r

x0

s(x)dx =1 and

Z r

`

m(x)dx <1;

where

s(x) = exp

�
�2
Z x

x0

b(u)

�2(u)
du

�
and m(x) =

1

�2(x)s(x)
;

and where x0 2 (`; r):

Condition 4.2

(i) The function b is continuously di�erentiable and � is twice continuously dif-
ferentiable on (`; r), �(x) > 0 for all x 2 (`; r), and there exists a constant K > 0
such that jb(x)j � K(1 + jxj) and �2(x) � K(1 + x2) for all x 2 (`; r).

(ii) �(x)m(x)! 0 as x # ` and x " r.

(iii) 1=(x) has a �nite limit as x # ` and x " r, where (x) = �0(x)�2b(x)=�(x):

This condition in fact implies more than geometric �-mixing, it actually en-
sures geometric �-mixing, which again implies the exponential bounds on certain
moments mentioned in Sections 2 and 3. Speci�cally, there exist K > 0 and
� > 0 such that if Z1 is measurable with respect to the �-algebra generated by
Xs, s � t1, and Z2 is measurable with respect to the �-algebra generated by Xs,
s � t2, t1 < t2, then jCov(Z1; Z2)j � Ke��(t2�t1)Var(Z1)Var(Z2).

Weak conditions ensuring polynomial �-mixing were given by Veretennikov
(1988).

The following lemma can be used to check the moment condition (4.3) in
Theorem 4.1.

Lemma 4.3 Suppose fj(y) = y�j0 and Z
(i�1)
jk = Y

�jk
i�ljk

with �jk; ljk � 1 (j =

1; : : : ; N; k = 0; : : : ; qj). If E� (jX0j4�+�) < 1 for an � > 0, where � =
maxf�10; : : : ; �NqNg, then (4.3) holds with Æ = �=(2�).

Proof: It is enough to check that E�

�
jY �1

i Y �2
1 j2+Æ

�
< 1 for 1 � i � r and

�1; �2 2 f�10; : : : ; �NqNg, and by Cauchy-Schwartz' inequality this is the case if

E�

�
jY1j2�(2+Æ)

�
< 1. Finally, by Jensen's inequality, Fubini's theorem and the
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stationarity of X

E�

�
jY1j2�(2+Æ)

�
= E�

 ����Z �

0

Xu�(du)

����2�(2+Æ)
!

�
Z �

0

E�

�jXuj2�(2+Æ)
�
�(du) = E�

�jX0j2�(2+Æ)
�
<1:

2

For more general choices of fj(y) and Z
(i�1)
jk , the existence of the relevant moments

must be checked.
The following result about existence, consistency and asymptotic normality

of our estimators can now be proved exactly as the similar result in S�rensen
(2000).

Theorem 4.4 Let �0 denote the true value of the parameter vector. Suppose the
conditions of Theorem 4.1 hold for � in a neighbourhood e� of �0 and that

(1) The vector â(�) given by (3.5) and the matrix An(�) are twice continuously
di�erentiable with respect to �,

(2) The matrices @�T â(�0) and A(�0) have rank p,

(3) The matrices An(�), @�iAn(�) and @�i@�jAn(�) converge to A(�), @�iA(�) and

@�i@�jA(�), respectively, uniformly for � 2 e�.
Then for every n � r, an estimator �̂n exists that solves the estimating equation
Gn(�̂n) = 0 with a probability tending to one as n!1. Moreover,

�̂n ! �0 (4.8)

in probability and

p
n(�̂n � �0)

D�! N
�
0 ; D(�0)

�1V (�0)(D(�0)
�1)T

�
(4.9)

as n!1 with D(�0) = A(�0)U(�0), where U(�0) is given by (3.4).

5 Conclusion

We have demonstrated that the problem of statistical inference for integrated
di�usions can be solved in a satisfactory and readily implementable way by means
of prediction-based estimating functions. We have derived optimal estimating
functions and have shown that under mild regularity conditions the estimators
have the usual theoretical properties of consistency and asymptotic normality.

We have, moreover, considered some of the problems encountered when the
method is implemented in practice. In particular, we have demonstrated that
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the calculation of moments needed in order to �nd the optimal prediction-based
estimating function is easily programmable when an analytic expression is known
for the moments of the underlying di�usion process or when we can obtain the
moments of the di�usion by numerical simulation. Two examples were considered
in which analytic expressions for these moments are available.
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