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Abstract

In functional magnetic resonance imaging, spatial activation patterns are com-
monly estimated using a non-parametric smoothing approach. Signi�cant peaks
or clusters in the smoothed image are subsequently identi�ed by testing the null
hypothesis of lack of activation in every volume element of the scans. A weakness of
this approach is the lack of a model for the activation pattern; this makes it diÆcult
to determine the variance of estimates, to test speci�c neuroscienti�c hypotheses or
to incorporate prior information about the brain area under study in the analysis.
These issues may be addressed by formulating explicit spatial models for the acti-
vation and using simulation methods for inference. We present one such approach,
based on a marked point process prior. Informally, one may think of the points as
centres of activation, and the marks as parameters describing the shape and area of
the surrounding cluster. We present an MCMC algorithm for making inference in
the model, and compare the approach with a traditional non-parametric method,
using both simulated and visual stimulation data. Finally we discuss relevant ex-
tensions of the model and the inferential framework to account for non-stationary
responses and spatio-temporal correlation.

Keywords: Functional magnetic resonance imaging; Stochastic geometry model; Marked
point process; Markov chain Monte Carlo; State space model.

1 Introduction

Functional magnetic resonance imaging (fMRI) uses the di�erent magnetic properties of
oxy- and deoxyhaemoglobin to visualize localized changes in blood 
ow, blood volume
and blood oxygenation in the brain. These are in turn indicators for local changes in
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neural activity. By exposing a subject to controlled stimuli, which are carefully designed
to a�ect only certain brain functions, it is possible to estimate the anatomical location of
neurones involved in the corresponding functions. Brain function may then be mapped to
brain anatomy by combining fMRI scans with anatomical scans obtained by conventional
MRI.

The technique is quite new; one of the �rst experiments was reported by Kwong
et al. (1992), and since then the number of publications in the �eld has grown extremely
fast. Today fMRI is one of the most important modalities for imaging the brain, since
it is completely non-invasive, has a reasonable temporal resolution (about 2 sec) and
an excellent spatial resolution (about 2 mm). See Lange (1996) or Hartvig (2000) for
introductions to the subject.

The data obtained in an fMRI experiment is a time series of three dimensional scans
of the brain, as well as covariates describing the presentation of stimuli. In the analysis
of the data, the signal of interest is a spatio-temporal process, where the temporal pro�le
is coupled to the stimulation rhythm through the haemodynamic response to neural
activation (also known as the BOLD e�ect). The response lags the neural activation with
about 6 sec., and is more smooth than the latter. Empirically, the impulse response has
been found to look roughly like a Gamma density, but despite attempts to explain this
quantitatively (Buxton et al., 1998), there is still not a fully accepted biological model
for the process.

Generally the neurones involved in a speci�c task are expected to posses spatial struc-
ture, yielding a spatially correlated neural activation process. The resulting haemody-
namic oxygenation changes contribute further to this correlation, as they di�use in the
venous side of the capillary system, spreading over several millimetres. Modelling the spa-
tial structure of this haemodynamic process is a diÆcult task: Firstly the overall pattern
will of course depend on the type of stimulation, and it is diÆcult to impose structure on
this in a general setting. Secondly the complex geometry of the cortical surface makes it
diÆcult to de�ne relevant neighbourhoods in the space of volume elements (or voxels) of
the scanned brain.

Instead, a common approach is to estimate the activation magnitude separately in
each voxel by a one dimensional time series model, see for instance Worsley and Friston
(1995), Lange and Zeger (1997), Bullmore et al. (1996) or Genovese (2000). The spatial
structure of the data is included in a second step, when the image (or volume) of marginal
estimates is convolved with a smoothing kernel, to obtain a non-parametric spatial esti-
mate. Subsequently, signi�cant peaks or clusters in the image are identi�ed, by testing
the null hypothesis of lack of activation at each voxel, and the �nal estimate may consist
of voxels that are signi�cantly higher than what would be expected by chance. Here the
signi�cance level is corrected for the large number of hypotheses tested, using results for
Gaussian random �elds (Worsley, 1995).

The fundamental problem in this approach is the lack of a model for the activation,
i.e. there is no model for the distribution of the statistics under the alternative hypothesis
that a voxel is active, and no assumptions are made about the distribution of shape and
size of activated regions. Without an explicit spatial model, concepts such as uncertainty
of the estimated pattern or the testing of high-level hypotheses are very diÆcult to study.
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In this paper we propose a spatial model, by which some of these problems may
be addressed. The model is motivated by two fundamental assumptions in the fMRI
literature, which are based partly on the spatial structure on a neuronal level, and partly
on the haemodynamic origin of the signal: 1) The activated areas have a spatial extent
of several millimetres and 2) the activation pattern is \smooth". Using these, we will
model the activation surface as a collection of Gaussian functions, which to some extent
represent individual centres in the brain. This is formulated as a stochastic geometry
model based on marked point process prior (Baddeley and van Lieshout, 1993), where
the points stand for the locations and the marks describe the shape and height of the
centres. The inference in the model is based on simulation techniques, by which we can
estimate the posterior mean of functions of interest, such as the mean activation pattern.

One advantage, compared to the typical analysis outlined above, is a more precise
estimate of the spatial pattern. This may be particularly relevant for short time series, in
experiments with many di�erent types of stimuli or in situations where signal estimation
is more important than just signal detection. The latter is the case for instance in pre-
surgical planning or when fMRI is combined with other imaging modalities. A further
motivation is the extended inferential scope, which allows us to assess the uncertainty of
estimates in a Bayesian framework, or to quantify the belief in more speci�c hypotheses by
estimating posterior probabilities. Finally the haemodynamic response function may be
modelled in a semi-parametric way, which allows for non-stationarities and non-linearities.
With the latter approach explicit knowledge of the stimulation paradigm is not required,
and we can hence estimate activation which is not time-locked to the stimulation rhythm.

The paper is organized as follows: We �rst present a typical set of fMRI data and
its preprocessing in Section 2. In Section 3 we formulate the basic model for the spatial
activation pattern and combine this with a simple model for the temporal response to
obtain a spatio-temporal model. The temporal pattern is assumed to be known and de-
scribed by a convolution model. The posterior inference is done by an MCMC algorithm,
which is described in Section 4. In Section 5 we apply the model to simulated data,
which is used for estimating prior parameters, and to visual stimulation data. Finally we
discuss relevant extensions in Section 6, to account for correlated noise or non-stationary
responses, and give a conclusion in Section 7.

2 fMRI data and its preprocessing

For illustration, we will consider data acquired in a well studied experimental design,
namely a visual stimulation presented periodically in blocks of 20 seconds. The stimulus
was a light, 
ashed with 7 Hz in front of the right eye of the subject. 90 so-called Echo-
Planar Imaging scans were acquired during a 3 minute period, with an inter-scan time
(or repetition time) of 2 seconds. The stimulation was arranged in blocks of 20 seconds
o�, 20 seconds on, 20 seconds o� etc., with 4 complete on-o� cycles during the session.
Each volume of scans consists of 5 slices of thickness 5 mm, each comprised of 128 by 128
voxels of size 1:875� 1:875 mm. We discarded the �rst 5 scans, due to initial instabilities
in the magnetization level of the tissue.
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Figure 1 is a graphical illustration of the data. The left panel displays a section
of a slice from one of the scans, oriented in an oblique axial-coronal direction with the
posterior part of the brain in the top of the image. The right panels display two voxel time
series; one is located in the visual cortex, which is known to process visual impressions,
the other is located in an area where activation is not expected. The 
uctuation in the
former series is evident, as is the haemodynamic delay and dispersement.
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Figure 1: Graphical illustration of visual stimulation fMRI data. Left: A section of an MR
scan of a slice of the brain. Right: Time series of respectively an active (top) and non-active
(bottom) voxel. The stimulation epochs are indicated by grey bars.

The scans are almost always preprocessed before the statistical analysis to reduce
artifacts caused by the scanner or by subject movement, or to map individual brains to
a standard atlas. To correct for movement artifacts, we have used a simple procedure,
where each image is aligned to a reference image by minimizing the squared di�erence
between the two images over all translations and rotations. Often di�erent types of
trends and low-frequency 
uctuations may be observed in the voxel time series. These
may be caused by scanner instability, by physiological processes or by aliased cardiac
and respiratory pulsations. We chose a very simple correction for this, by subtracting
a �tted linear trend term in each voxel time series. More general trend and 
uctuation
models, such as a cosine basis proposed by Holmes et al. (1997), may be applied. As will
be clear later, however, our focus is partly to model general temporal response patterns,
and hence we are cautious not to remove any 
uctuations related to the haemodynamic
response. A linear term is a good compromise in this context.

Finally we log-transformed the data to stabilize variances. Furthermore, this trans-
formation is motivated by the fact that the units of the MR scanner are arbitrary and
commonly variation is quanti�ed as percent of baseline intensity. The units on the log-
scale are directly interpretable in accordance with this, namely as relative increments of
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the original series.
Let Y = fYit; i 2 V; t = 1; : : : ; mg denote the preprocessed fMRI time series. Here V

is the set of voxels covering brain tissue, V � S, where S represents a two dimensional
slice or a three dimensional volume of the brain, and m is the number of scans. We will
let �t denote the stimulation function, where �t = 1 indicates stimulation and �t = 0 no
stimulation at time t.

3 The model

Our general model has the form

Yit = (Ai(X) + �i)'t + "it;

where � = f�i; i 2 V g and " = f"it; i 2 V; t = 1; : : : ; mg are Gaussian processes. Here
A(X) = fAi(X); i 2 V g is the magnitude of activation, which is parametrized by a
marked point process X, and ' = f't; t = 1; : : : ; mg is the temporal variation caused by
the BOLD e�ect. We will describe in detail how the spatial and temporal patterns are
modelled in the following.

3.1 A model for the spatial activation pattern

Consider �rst the case where data only represent a two dimensional slice of the brain,
that is V � S � R

2 . We will describe the spatial activation pattern by a marked point
process X = fX1; X2; : : : ; Xng, where Xk = (�k; ak; dk; rk; �k). A point Xk may to some
extent be considered as a centre of activation with location �k 2 S, and where the four
marks (ak; dk; rk; �k) describe the magnitude and shape of the centre. The activation
pattern fAi(X)gi2V is assumed to have a speci�c geometry, namely a sum of Gaussian
functions, Ai(X) =

Pn
k=1 h(i;Xk); where

h(i;Xk) = ak exp

�
�� log 2

dk

�
j21

rk=(1� rk)
+

j22
(1� rk)=rk

��
; (1)

here (j1; j2) = R(��k)(i� �k) and R(�) is a rotation with angle �. This representation is
motivated by the common assumptions of smoothness and spatial extent of the activation,
and the heuristic idea is that a general smooth activation surface with few localized peaks,
may be well approximated by a collection of Gaussian functions. The interpretation of
the parameters is that ak 2 R+ is the height of the Gaussian bell at the centre �k, dk 2 R+

is the area of the contour ellipse at half height, rk 2 (0; 1) is a measure of the eccentricity
of the ellipse, more precisely the ratio of the �rst principal axis and the sum of the two
axes, and �k 2 [��=4; �=4] is the orientation of the ellipse.

We have speci�c prior knowledge on the parameters of the model. The magnitude is
typically about 2%-5% of the baseline intensity, we expect the activation clusters to cover
at least a few voxels, and we may often have a strong prior idea of where they will occur,
based on previous experiments on the same subject or on general knowledge of the brain
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function under study. Furthermore a typical point con�guration should contain only a
moderate number of points. This may be included in the model in a Bayesian framework,
and we will therefore consider the process X as a realization of a random variable with
a prior distribution.

Each centre Xk is a point in X = S � M , where M = [0; Ca] � [0; Cd] � (0; 1) �
[��=4; �=4]: Here Ca and Cd are natural bounds for the height and area, respectively.
Let X be equipped with the Borel �-�eld S �M and the Lebesque measure �2 � �4,
and let 
 denote the exponential space over X , that is the set of �nite sets fx1; : : : ; xng
where xi 2 X for all i. The process X is then a point process in 
 or, equivalently, a
marked point process with point space S and mark space M . We will assume that the
prior distribution has density

p(x) /
nY

k=1

(�(�k)p(ak)p(dk)p(rk)) ; x 2 
; (2)

with respect to the unit rate Poisson process on 
, where n = n(x) is the number of points
in x. Here �(�) is an intensity function, which may give preference to speci�c cortical
areas, or may be constant if there is no prior knowledge of where the activation is likely
to occur, and p(�) is a generic notation for prior densities of the three mark parameters
ak, dk and rk.

3.1.1 Priors for the marks

The priors for a and d should be as uniform as possible, yet penalizing values close to zero.
The inverse Gamma distribution is a suitable choice in this context, with its light tail
near zero and quite heavy tail for large values. Hence we will assume that a�1 � �(2; �a)
and d�1 � �(2; �d) with the restrictions that a 2 (0; Ca] and d 2 (0; Cd]. The density of
d is

p(d) = exp(�d=Cd)(�d=Cd + 1)�1�2dd
�3 exp(��d=d); d 2 (0; Cd]:

The upper-bounds Ca and Cd are natural bounds for the magnitude and size of activation
clusters. The prior mean of d is �d=(1 + �d=Cd), or approximately �d when Cd is large.

As for the axis ratio r we wish to discourage very eccentric ellipses. This can be
obtained by a Beta-prior, r � Beta(�r; �r):

3.1.2 The intensity function

The intensity function provides a 
exible tool for incorporating substantial prior infor-
mation on the position of the activation. One possibility is to use anatomical covariates
obtained from a high-resolution scan of the brain, acquired simultaneously with the func-
tional scans. A relevant anatomical constraint is to restrict activation to the gray matter
sheet of the cortical surface (Kiebel et al., 2000). A simple approach to addressing this,
is to segment the high-resolution scan, and let the intensity function favour points lo-
cated in gray matter. Using a soft constraint like this allows for some degree of variation
in the position, which is advantageous given the uncertainty in the classi�cation of the
high-resolution scan and in the alignment of the images.
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Another interesting possibility is to use functional prior information, for instance ob-
tained from a previous experiment on the same subject. This �ts well with the Bayesian
paradigm of sequential updating of information, and may improve eÆciency in the anal-
ysis by e�ectively restricting focus to relevant areas, yet allowing for variations from
one experiment to the other. Since the activation pattern may be quite variable even
in replicated experiments, also in this case a soft constraint in a Bayesian framework is
appropriate.

3.2 A model for the temporal pattern

The simplest model for the temporal pattern ' is a �xed regression model. The response
is to a good approximation time-invariant and additive (Boynton et al., 1996), which
leads to a convolution model, where an impulse response function is convolved with
the stimulation function to obtain '. Based on empirical studies, Friston et al. (1995)
suggested to use a Gaussian density with mean 6 sec. and variance 9 sec.2 as impulse
response, to model the delay and dispersion of the haemodynamic response. We will
adopt this choice here, and thus let

't =
X
i

�t�i
Tp
2�3

exp(�(iT � 6)2

18
); (3)

where T is the repetition time. This simplicity of this model makes it an attractive
starting point, as it allows us to focus on the spatial pattern in the inference, which
simpli�es the simulation procedure signi�cantly.

The basic assumption made here, is that the spatio-temporal activation pro�le is
separable, i.e. that the response function is the same in all voxels. We will discuss later,
how the model may be extended to relax this assumption, and to account for a non-
stationary response that changes over time.

3.3 Combining the spatial and temporal models

Given the centres X and the haemodynamic response function ', the model for the
intensity Y is,

Yit = (Ai(X) + �i)'t + "it; (4)

where � = f�i; i 2 V g � N(0; � 2IjV j), " = f"it; i 2 V; t = 1; : : : ; mg � N(0; �2IjV j 
 Im)
and � and " are independent. The likelihood function is given by

p(Y jx) = (2��2)�
(m�1)jV j

2 exp

(
� 1

2�2

X
i2V

mX
t=1

�
Yit � ~Yi't

�2)

� (2�(�2 + � 2ss'))
�V

2 exp

(
� 1

2(�2=ss' + � 2)

X
i2V

�
~Yi � Ai(x)

�2)
: (5)
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Here ~Yi is the coeÆcient of the projection of fYit; t = 1; : : : ; mg on the vector space
L = spanf'g,

~Yi =
mX
t=1

Yit't=ss'; ss' =
mX
t=1

'2t : (6)

Notice that the likelihood function factorizes into two terms, involving only the pro-
jection of Y onto L and onto the orthogonal complement to L, respectively, with X only
entering in the former. Hence we �nd that the regression image f ~Yi; i 2 V g, which is
known as a Statistical Parametric Map (SPM) in the brain imaging literature (Friston
et al., 1994), is suÆcient for X. As mentioned earlier, usually the SPM is smoothed with
a Gaussian kernel to obtain a non-parametric estimate of the activation, and the present
setup may thus be viewed as an alternative analysis of the SPM, based on a parametric
model.

The purpose of the random e�ect term �i is to regularize the estimate of X. To see
why this is necessary, consider the log posterior distribution of X, which up to an additive
constant is given by

log p(xjY ) = � 1

2(�2=ss' + � 2)

X
i2V

�
~Yi � Ai(x)

�2
+ log p(x):

Suppose for a moment that � = 0, corresponding to omitting the random e�ect �i above.
By inserting suÆciently many small bells, we can obtain a con�guration where Ai(x) = ~Yi
when the latter is positive, and Ai(x) = 0 elsewhere. This will minimize the sum of
squares above. Even if the prior density of such a pathological point con�guration is very
small, it will be the maximum a posteriori estimate in the limit as m, and hence ss',
tends to in�nity, since the sum of squares will dominate in the limit. By assuming a �xed
positive value for � 2 this undesirable property of the posterior distribution is removed.
Intuitively � 2 is a measure of how well we expect the actual activation surface to be
described by a reasonable collection of Gaussian functions, while the purpose of the prior
for X is to quantify what we mean by a reasonable collection.

We will use simple estimates for the variance parameters. An unbiased and consistent
estimator for �2 is given by

�̂2 =
1

(m� 1)jV j
X
i2V

mX
t=1

�
Yit � ~Yi't

�2
� �2�2(f)=f; f = (m� 1)jV j: (7)

As for � 2, we will estimate �2=ss'+� 2 by considering the regression coeÆcients ~Yi. These
are mutually independent and distributed as

~Yi � N(Ai(x); �
2=ss' + � 2); i 2 V:

Letting @i denote the 9-voxel neighbourhood of i, we will let

�Yi =
1

9

X
j2@i

~Yj � N( �Ai(x);
1

9
(�2=ss' + � 2))
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for i 2 V Æ, where V Æ = fi 2 V j @i � V g. By assuming that the activation surface Ai(x)
can be approximated by a plane locally around i, we have that Ai(x) = �Ai(x) and hence
that

9

8jV Æj
X
i2V Æ

�
~Yi � �Yi

�2
(8)

is an unbiased and consistent estimator for �2=ss' + � 2. When the approximation is not
exact, we will get a slight positive bias in the estimate for � 2.

4 Simulating from the posterior distribution

In order to explore the posterior distribution of the activation centres given the data, we
have designed a Metropolis-Hastings algorithm based on the Geyer and M�ller (1994)
algorithm for general �nite point processes. This algorithm is a special case of the
reversible-jump algorithm of Green (1995), where the Jacobian term is always one. Let
x be the current point con�guration. We will then propose to 1) insert a new point, 2)
remove an existing point or 3) change an existing point, with probabilities p1, p2 and p3
respectively, where p1 + p2 + p3 = 1. By \change an existing point" we mean that one of
the coordinates of the point is changed, either the position or one of the marks.

Let qm(x
0 j x) denote the proposal density of a new con�guration x0 based on the

current con�guration x with move type m = 1; 2; 3. The probability of accepting the
move is then respectively

�1(x; x
0) = min

�
p(x0 jY )q2(xjx0)p2
p(xjY )q1(x0jx)p1 ; 1

�
;

�2(x; x
0) = min

�
p(x0 jY )q1(xjx0)p1
p(xjY )q2(x0jx)p2 ; 1

�
;

�3(x; x
0) = min

�
p(x0 jY )q3(xjx0)
p(xjY )q3(x0jx) ; 1

�
:

If the move is rejected, the Markov chain stays in x. The proposal distributions are
described in detail in the following.

4.1 Insertion of a point

With probability p1 we propose to add a new point � = (�; a; d; r; �) to the existing point
con�guration x = fx1; : : : ; xng. In order to obtain a reasonable acceptance rate for this
move, we wish to perform a Gibbs-like update and sample the parameters from a density
proportional to the conditional intensity p(x[�jY )=p(xjY ). However this is a distribution
on the six dimensional space of points and marks and it is not possible to simulate directly
from it. Instead, we will propose the parameters (�; a; d; r; �) sequentially, such that the
proposal q1(x [ �jx) is a combination of the terms

q1(x [ �jx) = q(�jx)q(aj�; x)q(dj�; a; x)q(rj�; a; d; x)q(�j�; a; d; r; x); (9)
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where we use the generic symbol q(�j�) for a proposal density. We will choose the pro-
posal of a single parameter, a say, such that it resembles the conditional intensity of a
point (�; a; d0; r0; �0) given the current con�guration x, where (d0; r0; �0) are �xed typical
values for the remaining parameters and � is the proposed position of the point. In our
applications we have chosen a0 = 0:01, d0 = 50 mm2 (corresponding to about 14 voxels
in our data), r0 = 0:5 and �0 = 0. Generally we simulate from discretized approximations
to the conditional intensities, the details are given below.

Using (5) we �nd that when ignoring the priors, the conditional intensity of a new
point � given x is

p(Y jx [ �)

p(Y jx) = exp

(
� 1

2(�2=ss' + � 2)

 X
i2V

h(i; �)2 � 2
X
i2V

h(i; �)( ~Yi � Ai(x))

!)
: (10)

By approximating the discrete sum by an integral, we �ndX
i2V

h(i; �)2 '
ZZ

a2 exp

�
�2� log 2

d

�
x2�

r=(1� r)
+

y2�
(1� r)=r

��
dxdy=(vxvy)

=

ZZ
a2 exp

�
�2� log 2

d
(x2 + y2)

�
dxdy=(vxvy)

= a2d=(2 log 2vxvy) = a2 ~d=(2 log 2); (11)

where vx and vy are the length of the voxel sides in mm and ~d = d=(vxvy) is the area
measured in voxels. Above (x�; y�) represents a translation and rotation of (x; y), and
the second equality follows since this transformation together with the coordinate scaling
has Jacobian one.

When proposing the position � we will �x the remaining parameters at (a0; d0; r0; �0)
and approximate the intensity in (10) with a voxel-wise constant density;

q(�jx) / exp

(
1

(�2=ss' + � 2)

X
i2V

h(i;�; a0; d0; r0; �0)( ~Yi � Ai(x))

)
for � 2 V:

The log-proposal is thus proportional to the convolution of the residual image with the
typical activation centre, which may be calculated eÆciently in the Fourier domain, see
Press et al. (1992). Considering (10) as a function of the height a, the proposal density
is

q(aj�; x)

/ exp

(
� 1

2(�2=ss' + � 2)

 
a2d0

2 log 2vxvy
� 2a

X
i2V

h(i;�; 1; d0; r0; �0)( ~Yi � Ai(x))

!)
;

(12)

which is a Gaussian distribution,

aj�; x � N

 P
i2V h(i;�; 1; d0; r0; �0)( ~Yi � Ai(x))

~d0=(2 log 2)
;
�2=ss' + � 2

~d0=(2 log 2)

!
;
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restricted to the interval (0; Ca]. As for the three remaining parameters (d; r; �) we will
approximate the conditional intensity with a piecewise log-linear intensity, and sample
from the corresponding distribution. When proposing d we will select a grid (Æ0; : : : ; Æm)
such that Æ0 = 0, Æm = Cd and let

q(dj�; a; x) / exp

�
pi�1 +

pi � pi�1
Æi � Æi�1

(d� Æi�1)

�
for d 2 (Æi�1; Æi];

where

pi = � 1

2(�2=ss' + � 2)

 
Æi

a2

2 log 2vxvy
� 2

X
i2V

h(i;�; a; Æi; r0; �0)( ~Yi � Ai(x))

!

� 3 log Æi � �d=Æi; (13)

for i = 1; : : : ; m � 1, p0 = p1 and pm = pm�1. Above the last two terms stem from the
prior for d. The expressions for q(rj�; a; d; x) and q(�j�; a; d; r; x) are derived similarly.

4.2 Removal of a point

With probability p2 we propose to remove a point. If the current con�guration x is
empty we do nothing, otherwise we select the candidate from the points in x with equal
probability 1=n(x).

4.3 Moving a point

With probability p3 we propose to change a parameter of a randomly selected point. We
choose one of the parameters �, a, d, r or � with equal probability and a new value is
proposed by considering the conditional distribution given the other parameters.

Suppose for instance that a point � = (�; a; d; r; �) 2 x has been selected and we wish
to propose a new position �0 for �. Corresponding to the insertion of a new point above,
we will then propose the position by simulating from a distribution which has voxel-wise
constant density

q(�0jx) / exp

(
1

(�2=ss' + � 2)

X
i2V

h(i;�0; a; d; r; �)( ~Yi � Ai(xn�))
)
; �0 2 V:

For the parameters r, d and � we consider a neighbourhood of the current value, and
approximate the conditional density as in (13) above. In our application, we have chosen
a neighbourhood of 100 mm2 for d, 0.3 for r and 0.35 for �.

Finally, the height a is simulated from a normal distribution as when proposing a new
point,

ajx � N

 P
i2V h(i;�; 1; d; r; �)(

~Yi � Ai(xn�))
~d=(2 log 2)

;
�2=ss' + � 2

~d=(2 log 2)

!
:
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5 Applications

5.1 A simulation study

We simulated data from the model (4) with a known activation pattern A, displayed in
Figure 2. The pattern mimics a \true" activation image, in the sense that it has coherent
regions of activation of both small and moderate size, and by the fact that it is more
complex than any single realization of the stochastic geometry model.

We performed an informal sensitivity analysis, where di�erent parameters of the prior
were studied. We used three di�erent values of a constant intensity �(�) = � (0.01, 0.1,
1.0) and two di�erent values of respectively �a (0.02, 0.05) and �d (50 mm2, 200 mm2)
(assuming a voxel-size of 3.52 mm2 as for the real data.) For all runs, we set �r = 5.
For each parameter combination, we obtained 600000 iterations of the MCMC algorithm
as described in the previous section, where at each step one of the points were updated,
or a change in the number of points was proposed. By diagnostic plots, the chains were
judged to be stationary after a burn-in of 100000 iterations, and we subsampled every
100'th iteration from this point to obtain 5000 samples.

0.000

0.005

0.010

0.015

0.020

0.025

Figure 2: Top row: True activation pattern (left) and non-parametric estimates with kernel-
width 2 voxels (middle) and 3 voxels (right). Bottom row: Estimates of posterior mean acti-
vation from the model. Left: � = 0:1, �d = 200 mm2, �a = 0:05, middle: � = 0:01, �d = 200
mm2, �a = 0:05, right: � = 1:0, �d = 50 mm2, �a = 0:02. For display purposes, the intensities
in the images in the top row are clipped to the range of the colour scale. The actual ranges are
respectively [0,0.045], [-0.009,0.025] and [-0.007,0.018].
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Figure 2 shows usual non-parametric estimates, obtained by smoothing the regression
image f ~Yig with a Gaussian kernel of full-width-at-half-maximum (FWHM) 2 and 3
voxels respectively. These are typical choices of the kernel-width in the neuroimaging
literature; often a width of 3 voxels is used to ensure that the estimate is suÆciently
smooth to approximate a continuous random �eld. The �gure displays three posterior
mean activation estimates as well, where the e�ect of the prior parameters is evident:
When restricting the number of points by reducing � (middle panel), the two regions
in the lower left part of the image, is merged to one. On the other hand, when the
insertion of new bells is encouraged, by increasing � and reducing �d and �a (right panel),
the activation pattern is sensitive to noise, and is more similar to the non-parametric
estimates. The parameter setting of the left-most panel is the best compromise between
robustness and sensitivity in this case, as measured by the posterior mean L2-distance
between the model activation pattern and the true pattern (Table 1). As a typical
summary statistic of interest, we also consider the posterior mean and standard deviation
of the integrated activation, i.e. the integral of the activation surface. The true value
is 3.49, which is within one standard deviation from the mean for the �rst parameter
combination.

Table 1: Goodness-of-�t (GOF) of the model with di�erent parameter values. The mean
L2-distance between the model activation and the true pattern is used as a goodness-of-�t
measure. Standard errors due to simulation are given in parentheses. The last column contains
the posterior mean and standard deviation of the integrated activation, i.e. the total mass under
the activation surface. The true value is 3.49. The two last lines display corresponding values
for the non-parametric estimates.

� �d �a GOF� (st.err.) Int. act. (st.dev.)
0.1 200 0.05 129.2 (0.23) 3.72 (0.34)
1.0 200 0.05 130.2 (0.21) 4.04 (0.36)
0.01 200 0.05 135.9 (0.28) 3.65 (0.27)
1.0 50 0.05 130.3 (0.21) 3.96 (0.35)
0.1 50 0.05 131.4 (0.21) 3.67 (0.30)
1.0 50 0.02 138.5 (0.22) 5.63 (0.43)
1.0 200 0.02 141.5 (0.25) 5.92 (0.48)
NP, FWHM 2 174.2 3.02
NP, FWHM 3 143.0 2.99

�Scaled by 103

As it is often the case in Bayesian image analysis, we have no rigorous method for
selecting the parameters of the prior. A simple approach is to use simulation studies like
this, to determine sensible combinations. Furthermore, the parameters �a and �d are
directly related to the size and magnitude of activation clusters, hence sensible values of
these may be determined from previous experience.

Clearly the model-based approach is very di�erent from the non-parametric procedure,
as the inferential tool in the former is an entire distribution rather than only a point
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estimate. We may, however, still perform an isolated comparison of estimates obtained
by the two procedures, both visually in Figure 2 and by the summary values in Table 1.
In both cases the model-based estimate seems to be much more precise than the FWHM
2 estimate, and slightly better than the FWHM 3 estimate. An argument against this
comparison, however, is the fact that the non-parametric images are often thresholded,
and only the set of supra-threshold voxels is used as an activation estimate. The plot of
the number of supra-threshold voxels as a function of threshold level in Figure 3 allows
for a comparison of the estimates from this point of view. Here there is only a slight
di�erence between the FWHM 2 estimate and the model-based one. The FWHM 3
estimate, however, tends to oversmooth the activation pattern much more than the two
others.
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Figure 3: The number of supra-treshold voxels as function of threshold level for the true image,
the posterior mean estimate and for the non-parametric estimates with FWHM 2 and 3 voxels
respectively.

5.2 An analysis of visual stimulation data

We selected one of the �ve slices in the visual stimulation data described in Section 2,
and analyzed it by the stochastic geometry model. The variances were estimated to
�̂ = 0:0294 and �̂ = 0:00421, and based on the simulation study, we set �(�) = 0:1,
�d = 200 mm2, �a = 0:05 and �r = 5.

Since problems with mixing was more prominent with this data, we chose a more
elaborate rule for updating points in the MCMC algorithm. At each iteration, where
a point-update was proposed, all the points were considered after turn, in a random
ordering, and all parameters of each point were updated. One iteration of this kind thus
corresponds to a collection of about 100 simple single-parameter updates used in the
previous section, depending on the number of points. We found that a systematic update
of all points in this fashion improved the acceptance rates for insertion and deletion of
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points, and thus the mixing of the algorithm. After a burn-in run, we generated 75000
iterations from this modi�ed algorithm and subsampled every 10'th sample. The plots
in Figure 4 show diagnostic variables of the simulated point process, namely the number
of points and the log-posterior and log-prior densities. Though the autocorrelation is
reasonably low, the mixing of the algorithm may be improved, for instance by simulated
tempering (Geyer and Thompson, 1995). The acceptance probabilities for the di�erent
move types are listed in Table 2.
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Figure 4: Time series of summary statistics obtained by subsampling every 10th iteration of
the modi�ed MCMC algorithm. Left: Simulated values of the number of points, log-posterior
and log-prior densities. Right: Empirical auto-correlation functions for the time series.

The images in Figure 5 show the posterior mean activation level, calculated voxel-wise
in the present model with uncorrelated noise and in a model with a separable spatio-
temporal correlation function to be described later. The area with high activation in-
tensity in the back of the brain corresponds well with the visual cortex, which is known
to process visual impressions. Displayed for comparison is also the non-parametric es-
timate with kernel-width 3 voxels (FWHM). The problem with oversmoothing seems to
be present also in this example, though the true scene is not known for these data. On
the other hand, the posterior mean images possess some very eccentric regions, which
are most likely artifacts. The simplistic noise model is one likely reason for this. This
is both intuitively clear, since it is well known that the noise may be complex in fMRI
data, and can also be seen by comparing the improvement in the estimate in the model
with correlated noise compared to the independent noise model. Furthermore we did
not observe this e�ect in the simulated data, where the noise was independent. We thus
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Table 2: Acceptance probabilities for the di�erent move types in the MCMC algorithm. The
correlated noise model will be described in Section 6.2.

Move type Acceptance (%) Acceptance (%)
Independent noise Correlated noise

Insert point 15.7 13.9
Delete point 15.6 14.1
Update position 10.6 11.5
Update height 40.8 45.2
Update area 30.6 34.3
Update angle 64.7 66.6
Update ratio 55.9 59.4

suggest that more elaborated noise modelling is a key factor in addressing this, and will
discuss an extension to correlated noise in Section 6.2. Another approach is to penalize
eccentric ellipses more in the prior distribution. This seems sensible, since relatively few
voxels are a�ected by a thin ellipse, and thus the likelihood function contains little in-
formation on these. One problem, however, is the fact that the imaged slice is a section
through the convoluted cortical surface. Eccentric ellipses may thus arise naturally when
a circular area on the cortical surface is transected orthogonally by the image-plane. A
natural, but also much more ambitious extension, is thus to extract the geometry of the
cortical surface from high-resolution anatomical scans, and formulate the model directly
on the two dimensional surface. Recent works along this line are Andrade et al. (2000)
and Kiebel et al. (2000).

A more fundamental di�erence between the model-based and non-parametric ap-
proach, is the possibility of attaching estimates of uncertainty to the images. As an
example of this, displayed is also a conservative activation estimate, obtained by sub-
tracting two times the voxel-wise standard deviation from the mean image. This may be
considered as a thresholded version of the original mean image, but where the threshold
is voxel-dependent, to re
ect the voxel-wise uncertainty. This is only one possible way of
visualizing the posterior variance of activation pattern, and the 
exibility of the MCMC
approach may of course be exploited in a range of other ways. One possibility is to esti-
mate summary characteristics of the activation pattern with associated standard errors,
which may be used to quantify how well data support speci�c neuroscienti�c hypothesis.

6 Extensions

So far we have established a basic framework for analyzing fMRI data by a simple spatio-
temporal model. However, both the noise and signal may possess more complex struc-
tures, which this model does not account for, necessitating several re�nements and ex-
tensions. We will brie
y discuss relevant extensions in the following and illustrate how
the inferential framework may be modi�ed suitably.



A Stochastic Geometry Model for fMRI 17

0.000

0.022

0.044

0.066

0.088

0.110

Figure 5: Activation estimates for the visual stimulation data. Top: Mean posterior activation
in the stochastic geometry model with uncorrelated noise (left) and the non-parametric estimate
with kernel-width 3 voxels (right). Bottom: Mean posterior activation in the model with a
separable spatio-temporal covariance function described in Section 6.2 (left), and a conservative
estimate in this model, obtained by subtracting twice the standard deviation from the mean
activation level in each voxel (right).

6.1 Non-stationary responses

We have assumed that the temporal pattern ' is the same for all voxels, to obtain a simple
spatio-temporal model. It is well known, that this is only an approximation, and more
general approaches are studied for instance by Lange and Zeger (1997) and Genovese
(2000), who explicitly account for di�erences in delay from one voxel to another. In
practice, the approximation will be relatively good for blocked paradigms, where the
stimulus is presented for longer periods of time, but problematic for so-called event-
related designs, where the presentation changes rapidly. A natural extension to improve
this, is to linearly combine the simple response function with its derivatives with respect
to di�erent parameters (Friston et al., 1998). These may, in a Taylor-like fashion, account
for small voxel-vise di�erences in the delay and dispersion.

A fundamental question, which is more challenging to address, is whether the response
is stationary over time, or if it changes with general alertness and learning as suggested
by Gaschler-Markefski et al. (1997). To model non-stationary responses we may consider
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the state-space model

't = �t + �t; �t � �t�1 � N(0; �2); t = 1; 2; : : : ; m; (14)

where f�t � �t�1g are independent and �0 = 0. The mean �t is the simple model (3)
which re
ects the overall temporal structure, but ' is allowed to deviate from this via
the random walk structure of the noise terms �t. The variance �

2 governs the smoothness
of the residual process 't � �t.

By combining this with the spatial prior (2), we can make inference on (X;') through
the joint posterior distribution P (X;'jY ). For computational reasons we will in fact
consider the posterior of (X;'; �), where � = f�i; i 2 V g are the random intercepts in
the model (4). This is given by

p(X;'; �jY ) / P (Y jX;'; �)P (X)P (')P (�);

where the likelihood term is obtained by conditioning on � in (4). A Markov chain with the
posterior as invariant distribution may be generated by a variable-at-a-time Metropolis-
Hastings algorithm, where iteratively one parameter is updated given the two others.
When updating X the proposals are as described earlier, though with the modi�cation
that we replace Ai(x) with Ai(x) + �i and set � 2 = 0 in the formulas in Section 4 to
condition on �. A similar modi�cation applies to the likelihood function in (5), when
calculating the acceptance ratio. When updating � or ' we can simulate directly from
the conditional distributions, as it can easily be veri�ed that

�ijY;X; ' � N

�
� 2

� 2 + �2=ss'
( ~Yi � Ai(X)); � 2

�
1� � 2

� 2 + �2=ss'

��
; (15)

with all �i's conditionally independent. The simulation of 'may be carried out recursively
by simulating ('tj't+1; : : : 'm; X; �; Y ) for t = m;m � 1; : : : ; 1. These are all normal
distributions, and the moments may be calculated eÆciently with the Kalman smoother
(West and Harrison, 1989).

We estimated the temporal response using the visual stimulation data of Section 2,
though preprocessed in a slightly di�erent way, as we removed some low-frequency trends
with large magnitude to stabilize the algorithm. The plots in Figure 6 illustrate a simple
least squares estimate and the posterior mean of ' . The simple estimate is obtained
by assuming that the spatial activation pattern is �xed and given by the mean image in
the top left panel in Figure 5. The posterior mean is based on 75000 simulations of the
Markov chain described above, where the update rules for the points are as in Section
5.2. Both plots indicate that the actual response may in fact not be described by a �xed
time-invariant model as the last peak is higher than the three �rst, and the dip below
baseline is more prominent after the �rst and third cycle than after the second.

A consequence of modelling ' in this way, is that the stimulation function is only
partly included in the model. Though it may seem ineÆcient to ignore a relevant covariate
like this, in some experiments the actual stimulation is not directly controllable by the
experimenter and hence precise information on this is not available. This may be the
case in mental experiments, where it is not possible to end the stimulation at an exact
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Figure 6: Left: Least squares estimate of the haemodynamic response, assuming a known
spatial activation pattern given by the top left panel in Figure 5. Right: Monte Carlo estimate
of the posterior mean of the haemodynamic response function based on 7500 subsamples of
75000 iterations of the MCMC algorithm (see text.) Overlaid are pointwise 95%-credibility
regions based on the posterior variance. The initial stationary model (3) is overlaid as a thin
line in both plots.

time point. Furthermore with this formulation, we may detect subtle activation patterns,
which depends on the paradigm in more complex ways. An example of the latter is the
XOR signal of Lange et al. (1999).

As a further extension a collection of di�erent response functions could be modelled by
a multidimensional state space model for '. By assigning di�erent functions to di�erent
groups of centres, one may account for regional di�erences in the response. At least for
moderate dimensions of ' the recursive simulation routine would still be very eÆcient.

6.2 Correlated noise

As discussed earlier the initial model with uncorrelated noise is too simple in practice.
The noise sources in fMRI data are both of physiological and physical origin. The pixel
values are constructed by inverse Fourier transforms of measurements of currents in a
coil over a short time period. Hence there is no physical separation of the pixels, which
could justify independence. The temporal correlation arises from physiological sources,
but also intrinsically in the MR scanner.

The main problem with modelling a general covariance function is the fact that the
likelihood function must be easily calculated, in order that the MCMC algorithm is rea-
sonably fast. A tractable starting point is to assume a separable covariance function. We
have previously studied the empirical correlation of the visual stimulation data (Hartvig,
1999), and found evidence that the temporal covariance varied slightly with spatial loca-
tion, but that a separable model was a reasonable approximation to the true covariance
function. Letting " = f"it; i 2 V; t = 1; : : : ; mg be the noise terms in (4) regarded as a
jV j �m matrix, we will thus consider the model

" � NjV j�m(0; �
2�
 �):
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where 
 denotes the Kronecker product and where � and � are the spatial and temporal
correlation matrices of dimension jV j � jV j and m�m, respectively.

Let L and M denote the lower-triangular Cholesky square roots of � and �. Consider
the data Y as a jV j � m matrix and let Y Æ = Y (M�1)0, and 'Æ = M�1'. Then the
conditional likelihood function, where we condition on �, is given by

p(Y jx; '; �) = (2��2)�
mjV j

2 jM j�jV jjLj�m exp

(
� 1

2�2

mX
t=1

kL�1(Y Æ
?t � ~Y Æ'Æ

t )k2
)

� exp

�
� 1

2�2=ssÆ'
kL�1( ~Y Æ � A� �)k2

�
; (16)

where

~Y Æ
i =

mX
t=1

Y Æ
it'

Æ
t =ss

Æ
' and ssÆ' =

mX
t=1

'Æ
t
2

are de�ned equivalently to (6), and Y Æ
?t = fY Æ

itgi2V . Notice that equations of the form
v = L�1w may be solved easily, due to the lower-triangularity of L. Suppose good
estimates are available for � and �, such that the uncertainty of these can be ignored.
By simply inserting the expression above in the Metropolis-Hasting ratio instead of (5),
the MCMC algorithm will converge to the posterior distribution in the correlated noise
model.

The problem is thus reduced to obtaining estimates of � and �, or rather the corre-
sponding Cholesky decompositions of these. Due to the large number of voxels, it is gen-
erally very hard to decompose �, which preclude the use of Gaussian models parametrized
in terms of elements of the covariance matrix (Cressie, 1991). As a pragmatic alternative,
in Hartvig (1999) we proposed a stationary moving average-type model, parametrized di-
rectly by L. For a given ordering of the voxel indices (corresponding to the ordering of
the elements of the matrix �), we let Lij = li�j, where lk = 0 unless k 2 D and D is a
set of neighbours in the positive direction. We chose the lexicographic ordering of voxel
indices, and though the covariance function will to some extend depend on this choice,
the computational advantages of parametrizing the model in terms of L are considerable:
By construction, the covariance function will always be positive de�nite, which simpli-
�es parameter estimation, and both the covariance and inverse covariance matrices may
easily be calculated, despite the large dimensionality.

We �tted a stationary model with six parameters to the spatial covariance and an
AR(1)-model to the temporal covariance function. Using the visual stimulation data, we
performed 75000 iterations of the MCMC algorithm as described in Section 5.2. The
mean posterior activation image is displayed in Figure 5, and as discussed earlier, it is
slightly improved compared to the original estimate.

6.3 Negative haemodynamic responses

We have restricted the activation level ak to be positive, but in fact a decrease in the
intensity during stimulation is sometimes observed. This may either be due to the fact
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that an area is more active during the \rest"-condition than the stimulation condition,
or it may be attributed to special haemodynamic e�ects. In order to extend the model
to account for this, the activation may be represented as A+ � A�, where A+ and A�

are positive surfaces describing positive and negative activation respectively. For identi-
�ability reasons we have to incorporate an interaction term in the prior that separates
the two surfaces; if not, overlapping positive and negative sites will be highly correlated,
and the interpretation of the activation surface becomes very diÆcult.

We propose simply to use an interaction prior, which makes the two surfaces condi-
tionally independent given the data. For the independent noise model, the prior is of the
form

p(X+; X�) / f(X+)f(X�) exp(��
X
i2V

Ai(X
+)Ai(X

�));

where f(�) is the density in (2) and where X+ andX� are two point processes determining
the positive and negative surfaces respectively. When � > 0, the last term penalizes
con�guration where Ai(X

+) and Ai(X
�) are both large for some i 2 V . Let ��1 =

�2=ss' + � 2, the variance of ~Yi, then it is easy to see that X+ and X� are independent
given the data Y . Hence we can make inference about X+ and X� in their respective
marginal distributions, and afterwards combine estimates using the independence of the
two point processes. Clearly other types of interactions may be considered, but the
present is appealing because of the advantages of marginalizing the inference, namely a
reduction of the dimensionality of the point processes and improved properties of the
simulation algorithm.

6.4 Interaction between centres

In Bayesian object recognition it is well known, that unless an interaction term is in-
cluded in the prior, the estimate may tend to contain clusters of almost identical objects
(Baddeley and van Lieshout, 1993). An extension of the prior in this respect may have
the following form

p(x) /
nY

k=1

�(�k)
Y
k<j

�(xk; xj)
nY

k=1

(p(ak)p(dk)p(rk)) ; x 2 
;

where � is an interaction function, which prevents centres from clustering. It is natural
to consider a function with a hard-core property, which prohibits pairs of centres with
distances close to zero. This is achieved with the model of Ogata and Tanemura (1984)
where �(xk; xj) = 1 � exp f�(Æ(xk; xj)=�)pg ; p � 2; with respect to a distance Æ(�; �)
on X . Here � > 0 is an interaction radius. A hard-core Strauss model is obtained
by setting p = 1, while �nite values of p yield an interaction function which increases
continuously from 0 to 1 with the distance between two points. A natural de�nition of
the distance Æ is to let two centres be close, if they are close in space and have similar
size and shape. One way of assessing this is by the J-divergence (Kullback, 1959) of the
corresponding Gaussian functions. This does not satisfy the triangle equality, and is thus
strictly speaking not a distance (in the sense of a metric), but for the present purpose
the symmetry-, uniqueness- and positivity-properties are suÆcient.
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6.5 Generalization to three dimensions

The spatial model can straightforwardly be generalized to a three dimensional setting
where S � R

3 . In this case a centre is given by x = (�; a; d; r1; r2; �1; �2); and the
contribution to the activation volume is

h(i; x) = a exp

�
� log 2

�
4�

3d

�2=3 �
j21

(r21=r2r3)
2=3

+
j22

(r22=r1r3)
2=3

+
j23

(r23=r1r2)
2=3

��
:

Here r3 = 1� r1 � r2, rk > 0 for k = 1; 2; 3 and

(j1; j2; j3) =

0
@cos �1 cos �2 � sin �1 � cos �1 sin �2
sin �1 cos �2 cos �1 � sin �1 sin �2

sin �2 0 cos �2

1
A (i� �):

With this parametrization d is the volume of the contour ellipsoid at height a=2, and rk is
the ratio of the kth main axis and the sum of the three axes. The angles �1 and �2 are the
rotations in the xy-plane and xz-plane respectively, which are restricted to the interval
[��=4; �=4]. The natural extension of the priors is to assume that (r1; r2) � D2(�r; �r)
where D2 is the two dimensional Dirichlet distribution.

7 Discussion

We have proposed a spatio-temporal model for fMRI data which explicitly accounts for
the fact that signal changes are locally coherent in both space and time. This assumption
is often implicitly included in the analysis, when spatial and temporal �ltering are applied,
but rarely formulated explicitly in a model. The relation (5) shows that in the simplest
setting we are e�ectively �tting Gaussian functions of di�erent sizes and orientations
to a regression image, and assessing the signi�cance of these. The random �eld theory
has counterparts to this, namely the search for local maxima in both scale and space
(Siegmund and Worsley, 1995), and in the space of ellipses with di�erent orientation and
shape (Sha�e et al., 1998). The method is, however, fundamentally di�erent from the
random �eld approach. The latter provides a framework for signal detection, by testing
multiple null hypotheses with correction for the large number of tests performed. As
was pointed out by Keith Worsley in the discussion to Lange and Zeger (1997), what is
really an estimation problem is thus answered by hypothesis testing, with corresponding
conceptual and mathematical problems. With the proposed method the focus is shifted
towards estimation of the activation pattern by standard Bayesian methods.

Since the amount of data in fMRI experiments may be enormous, there is a compro-
mise between model complexity and the computational burden of the analysis. In an
attempt to formulate a relatively simple model, we have made speci�c assumptions on
the spatial pattern, and clearly these may not be fully satis�ed by the true activation.
Though the random intercept surface � will account for minor deviations from the point
process representation, the model should be applied to a range of other fMRI data for
further validation.
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As mentioned earlier, Kiebel et al. (2000) and Andrade et al. (2000) have recently
studied global models, where the geometry of the cortical surface is used to model the
haemodynamic e�ects. These were not formulated in a parametric framework, and assess-
ing the uncertainty of estimated activation patterns were not considered. The geometry
of the cortical surface is a very relevant covariate to be included in our setup also, for
instance by formulating the model on the two dimensional surface. A major challenge
with this extension, however, is the increased computational burden, which is already at
the limit of what is acceptable for practical purposes.

Alternatively local spatial models have been proposed by Descombes et al. (1998),
Salli et al. (2001) and Hartvig and Jensen (2000). These are Markov random �eld-type
models, where MAP estimates are obtained iteratively or in closed form, whence MCMC
is not required. The computational burden is thus much reduced, but so is the inferential
scope, since only a point estimate is obtained. In the present setup, the signi�cance of
hypotheses of interest within single subjects may be quanti�ed, or estimates and standard
errors of relevant features of the activation in di�erent experiments may be obtained, for
comparing di�erent groups of subjects.

Modelling the temporal response in a non-parametric setting with few assumptions
seems relevant, given the uncertainty about the haemodynamic e�ects in di�erent stimu-
lation types. Also the fact that the modelled response depends only partly on the speci�ed
paradigm is an advantage when analyzing data where the actual paradigm is diÆcult to
determine. The approach has some similarity with non-parametric multivariate methods,
such as principal component analysis (PCA), where a representative time course and the
corresponding spatial pattern is estimated directly from the data. In our setup, the time-
course is also estimated from the data, but unlike in PCA, the assumptions of spatial
smoothness and coherency is simultaneously taken into account.

With noticeable exceptions (Genovese, 2000; Frank et al., 1998), Bayesian analyses of
fMRI data are rare. We are of the opinion that a Bayesian approach to this data makes
sense for several reasons. Firstly there is substantial prior information on the activation
pattern, which should of course be used in the analysis. This may either be general
knowledge of the functional organization of the brain, or results from earlier experiments
on the same subject. The ease by which data can be acquired even allows us to design
experiments according to this, by performing pilot studies to generate detailed prior
information before the actual experiment. Secondly often large inter- and intra-subject
variation is observed, which makes it more natural to consider the activation pattern
as a realization of stochastic variable than as a �xed unknown parameter. A similar
interpretation is made in the currently applied random e�ect analyses of Holmes and
Friston (1998).
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