
VALUATION OF ASIAN BASKET OPTIONS WITH

QUASI-MONTE CARLO TECHNIQUES AND SINGULAR

VALUE DECOMPOSITION

LARS OSWALD DAHL AND FRED ESPEN BENTH

Abstract. We propose pricing methods for European-style Asian arithmetic
average basket options in a Black-Scholes framework based on a QMC method.
The nature of QMC methods enables us to enhance the accuracy by decom-
posing the correlation structure of the noise in the problem using singular
value decomposition. This leads to optimal utilization of the low discrepancy
sequence, and gives several orders of magnitude enhanced performance over
conventional QMC and standard MC methods.

1. Introduction

There are no closed form pricing formulas for the European-style Asian arithmetic
average options (hereafter Asian options), neither the single asset option nor the
basket option. Both problems must be solved by numerical solution methods, and
are computer intensive tasks. The option price is given by an expected value, and
the pricing is therefore an integration problem. In this paper we formulate the
pricing problems explicitly as multi-dimensional integrals, which enables us to
use quasi-Monte Carlo (QMC) methods to approximate their values. The main
goal is the pricing of the Asian basket option, but the single asset option is
also discussed as an introduction to the basket case and for comparative studies
between di�erent path discretization schemes.

It is well known that Asian options and other path dependent options hold cer-
tain properties that can be exploited to increase the convergence rate when cal-
culating their values with QMC methods. This is done by combining the QMC
method with variance reduction techniques. Singular value decomposition (SVD)
of the noise term in the problem is suggested. We propose to use a combina-
tion of SV-decomposition of the covariance matrix of the Brownian paths, and
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a representation of the volatility matrix for the assets in the basket by using
SV-decomposition of the covariance matrix of asset returns. We demonstrate
that this approach leads to considerably better convergence properties than in
the case where conventional discretization is used on the Brownian paths, and
Cholesky-decomposition is used to create the volatility matrix from the covari-
ance matrix of the returns. We have also included the Brownian Bridge method
for the discretization of the Brownian paths in order to compare with the SVD
approach for the single asset case, and we show that the proposed SVD method
work better than the Brownian Bridge method as well.

For Asian basket options the number of dimensions in the problem may grow
signi�cantly as it is the product of the number of assets in the basket and the
number of time discretization points. We show how to avoid performing an SV-
decomposition of the full problem by using the direct matrix product to combine
the decompositions of each of the covariance structures (the path and the basket)
into a matrix that describes the full system. This reengineering of the problem
enables us to exploit the QMC method better. This is because low discrepancy
sequences, which is the basic part of the QMC approach, often have the property
that some elements of the sample vector have better discrepancy characteristics
than other, and by reengineering the problem we adapt it to this property.

Section 2 describes the �nancial market in which we will do our analysis, and sec-
tion 3 gives some background information on multi-dimensional Brownian motion
which is useful in our context. In section 4 we give a short motivation for the use
of QMC methods and give arguments for why the methods we use in our approach
do work. Section 5 introduces the general expression for the value of the claim.
In section 6 we point out the properties of the asset price process we have to use
in order to formulate the Asian basket option problem as an integral. The section
focuses on the conventional QMC approach to outline the general concept and to
show how we construct the algorithms we compare the SVD methods with. We
describe the Brownian Bridge technique in section 7, and the SVD in section 8.
In section 9 we present numerical results comparing the di�erent methods, and
�nally we conclude in section 10.

2. The market

We operate in the context of a complete, standard �nancial market M, with
constant risk-free rate r and volatility matrix �. The price processes of the assets
in this market are governed by a set of stochastic di�erential equations (SDEs).
There are N + 1 assets in the market, one risk free asset and N risky assets.
The model for the risky assets is the so called geometric Brownian motion. For a
comprehensive survey of the assumptions and properties of the market see [KS98].
The solution to the SDEs is achieved by the development of a risk free measure P0

and straightforward use of Ito's formula. This leads to the following expressions
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for the price processes:

S0(t) = ert (2.1)

Sn(t) = Sn(0) exp
�
(r � 1

2

NX
d=1

�2
nd)t +

NX
d=1

�ndW
(d)
0 (t)

�
; n = 1; : : : ; N: (2.2)

The volatility matrix � 2 R
N�N is such that ��T � �2 is the covariance matrix of

the returns of the assets. Note that the relation de�ning � is not unique, and this
is a key feature for the enhancement of the numerical methods. The stochastic
process W0(t) is an N dimensional Brownian motion under the risk free measure
P0. In the following analysis it is convenient to write the price process for the
risky assets like

Sn(u) = hn(u� t; S(t); �(W0(u)�W0(t))); 0 � t � u � T; (2.3)

where h : [0;1)� R
N
+ � R

N ! R
N
+ is the function de�ned by

hn(t; p; w) � pn exp
�
(r � 1

2

NX
d=1

�2
nd)t + wn

�
; n = 1; : : : ; N: (2.4)

The process W0(t) is an essential part of the market M. � 2 R
N is given by the

relation b� r1 = ��, where b 2 R
N is the vector of drift coeÆcients for the assets

ofM. � is called the market price of risk. By using the Girsanov theorem it can
be shown that

W0(t) = W (t) +

Z t

0

�ds; 8t 2 [0; T ] (2.5)

is an N -dimensional Brownian motion under the risk free measure P0 relative to
the �ltration fF(t)g ofW (t). The processW (t) is the Brownian motion observed
for the assets in the market under the market induced probability measure P .
For a more comprehensive survey of these aspects, see [KS98, Ch. 1].

3. Useful properties of the Brownian motion

In this section we present some well-known properties of Gaussian processes which
are useful for our approach. The Brownian motionW0(t) 2 R

N is a Gaussian pro-
cess, which means that the random variable Z = (W0(t0); : : : ;W0(tK) 2 R

N(K+1)

has a normal distribution. The covariance matrix of Z is given by

C2
Z =

2
664
t0I t0I : : : t0I
t0I t1I : : : t1I
...

...
. . .

...
t0I t1I : : : tKI

3
775 ; (3.1)

where I is the N � N identity matrix, see e.g. [�ks98]. Let C2 be the co-
variance matrix of Z for the case where N = 1. If we construct the process
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X = (�W0(t0); : : : ; �W0(tK)) 2 R
N(K+1) , where W0(tk) 2 R

N and �2 2 R
N�N is

positive semide�nite, the covariance matrix C2
X 2 R

N(K+1)�N(K+1) of the process
X is given by

C2
X =

2
664
t0�

2 t0�
2 : : : t0�

2

t0�
2 t1�

2 : : : t1�
2

...
...

. . .
t0�

2 t1�
2 : : : tK�

2

3
775 : (3.2)

In the notation of the direct product of matrices we can write C2
X = C2 
 �2.

To see that C2
X is given by (3.2), consider the process Ẑ0 = �W0(t0) 2 R

N : We

know that Ẑ0 � NN(0; t0��
T ). By using this for each of the N processes ẐK

contained in Z 2 RN(K+1) we get to the expression (3.2). It can be shown that
the eigenvalues of C2

X are found directly from the eigenvalues of the matrix �2

and the eigenvalues of C2 by the relation �C2
X
= �C2 
 ��2 2 R

N(K+1)�N(K+1)
+ .

See [Lam93] and [Lan69] for a full treatment of the direct matrix product. The
eigenvalue property enables us to �nd an ordering of the total set of eigenvalues.
In section 4 we will look into the QMC method, and reveal the advantage of
knowing the eigenvalues and their ordering in �nance problems.

4. Quasi-Monte Carlo methods

In this section we give a brief survey of the QMC-technique. The goal is to
evaluate an integral of the form

Z
[0;1]s

f(y)dy � 1

L+ 1

LX
l=0

f(yl): (4.1)

The sequence fylg of vectors yl = (yl1; : : : ; y
l
s) 2 [0; 1]s; l = 0; : : : ; L used for the

approximation can be generated by a systematic combinatorial approach, giving
a conventional grid-based numerical integration algorithm. The problem with
this approach is that the complexity grows exponentially with the dimension s,
leading to practically useless algorithms for s > 5. If, on the other hand, the
sequence is created by letting each vector yl be independent uniform random
variables in [0; 1]s, we get the conventional MC approach. This enables us to in-
crease the number of evaluation points in a smooth manner, �lling the domain of
integration gradually. QMC methods keep this nice feature of the MC approach,
but uses number sequences which are not random. These number sequences are
constructed with the intention of �lling the domain of integration as evenly as
possible, resulting in methods where the approximation of the integral can be
obtained with even fewer integrand evaluations than in the conventional MC
Methods. Conventional MC method only converges at an order of O(1=pL), but
QMC methods are able to increase this rate. The employment of QMC meth-
ods are closely linked to the formulation of the problem as a multi dimensional
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integral, and strict control of the use of the number sequence fylg in the con-
struction of the distributions used. QMC methods are based on the approach
of removing randomness from the generation of sampling sequences. The idea
is to look for �xed sequences that perform better than random sequences in a
well de�ned sense. The measurement of this behavior is not trivial in general,
and these uniform distributed sequences are objects of extensive research, see e.g.
[NX96], [Owe99], [Owe98]. The discrepancy of the sequence is used to measure
how well distributed the samples are, see e.g. [JBT96], [AP97], [Pas97] for more
details. Discrepancy is de�ned as follows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1. An illustration of the ability to �ll the domain [0; 1]2

uniformly by the use of the conventional pseudo-random numbers
(left), and the Halton leaped low discrepancy sequence (right).

De�nition 4.1. Let B be a family of shapes which are subsets of [0; 1]s. Given a

sequence fylg of sample points. The discrepancy of fylg with respect to B is

DL(B; fylg) = sup
B2B

����#fy
l 2 Bg
L

� �(B)

���� ; (4.2)

where �(B) is the volume of B and yl; l = 1; : : : ; L are elements of the sequence

fylg.

The de�nition says that we are �nding the maximum di�erence between the
fraction of points inside one of the shapes and the volume of the shape. When
the set of shapes B is the set of boxes with a corner at the origin, this is called
the star discrepancy D�

L(fylg).
The Koksma-Hlawka theorem gives an upper bound for the error in QMC meth-
ods, see e.g. [KN74], [Nie78], [Nie87]. It is given as the product of the variance
of the function that is integrated and the discrepancy.
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Theorem 4.1 (Koksma-Hlawka theorem). Let Î be the estimator of the integral

I over the domain 
. Then an upper bound for the error is���I � Î
��� � V (f)D�

L(fylg); (4.3)

where V (f) is the total variation of the function f over 
 in the sense of Hardy

and Krause.

See [MC94], [MC95] or [Nie92] for extensive surveys on this subject, and [Woz91]
and [MC94] for the alternative approach involving the so called Wo�zniakowski's
identity. The theorem says that QMC methods yields an integration error that
is proportional to the discrepancy of the point sequence used. In s dimensions,
it is possible to �nd sequences fylg such that

D�
L(fylg) = O(

(logL)s�1

L
): (4.4)

The given error bound is thus better than that of the conventional MC method
as the number of simulations L grows to in�nity, but it is evident that L needs
to be very large for reasonable sized s (the dimension of the problem) in order
for the bene�t to appear. In practice, however, the theoretical bounds for QMC
methods are conservative, (see [KW97] for a general survey or [Dah00] for an
example involving European basket options). The measure of discrepancy is
mainly used as a criteria for constructing good low discrepancy sequences rather
than �nding error bounds of integration rules.

In conventional MC methods it is common to use some known algorithm like
the Polar-Marsaglia or the Marsaglia-Bray to simulate values from the standard
normal distribution, (see [Rip87, Ch. 3] for an overview of such methods). These
methods are known as rejection methods, which means that some combinations
of the uniform distributed variables used in the algorithms are rejected. When
using QMC methods however, we need to ensure that we do not reject any of
the uniform distributed numbers. This is because we have to maintain the low
discrepancy characteristics of the uniform distributed sequence. Standard rejec-
tion methods can therefore not be used directly in QMC methods. Smoothed
rejection methods developed in [Caf94] and [Caf98] can however be used with
QMC methods, but are harder to implement.

A low discrepancy sequence which is rather simple to implement is the Halton
sequence. It was �rst presented in [Hal60]. In this paper we are going to use
an extension of the Halton sequence denoted the Halton leaped sequence. It was
presented in [KW97], together with good leap values. We have used the leap
value 31 for the numerical experiments in this paper. We are not going to dwell
on the choice of sequence here, but mention that other types exist; We have
the Sobol sequence �rst introduced in [Sob67], with an improved implementation
presented in [AS79]. We also have the Faure sequence [Fau82] and the Van der



ASIAN OPTIONS AND QUASI-MONTE CARLO METHODS 7

Corput sequence [Pag92]. These named sequences have been shown to belong
to a generalized family of (t; s)-sequences for which [Nie92] is a comprehensive
reference. An other family of sequences are produced by so called lattice methods
for which [SJ94] is the de�nitive reference. The research in this �eld is rich and
extensive, both in comparative studies between sequences (and their extensions)
for a variety of dimension and integrands (e.g. in [KW97], [MC94] and [LL00b]),
in connection with variance reduction techniques (e.g. [Owe98] and [LL00a]), and
in solution of concrete problems in �nance (e.g. [Pas97], [PT95], [MC95], [LL98],
[BG96] and [PAG96]).

In many �nance problems the so called e�ective dimension ds for the problem is
actually lower than the real dimension s. (See e.g [CMO97] and [CM96] for �nance
problems, and [SW98] for a general discussion). This property is present both for
path dependent option problems and multi-asset options. The problem of pricing
Asian basket options has a mix of both, and some of the challenge is to pinpoint
the e�ective dimensions of the problem. The concept of e�ective dimension is
closely linked to the so called ANOVA decomposition. (See e.g. [Hoe48], [ES81]
or [Owe98, Owe99]). It is used to �nd a representation of the integrand as a
sum FA of orthogonal functions. If each of these orthogonal functions depends
only on a distinct subset of the coordinates, the integrand can be written as
a sum of integrals of functions of lower dimension, and the complexity of the
problem has been reduced with regards to the integral dimension. Even if we are
not able to reduce the dimension of the original integrand by this approach, we
can �nd that some of the orthogonal functions in FA, say FAC , have little e�ect
on the value of the integral. Then if FA � FAC have dimension ds, and ds is
lower than the dimension of original integral, but estimates the true value within
acceptable limits ("), we say that the original problem has e�ective dimension
ds. In �nance problems we can often achieve a representation involving matrices
describing the connection between the di�erent variables linearly as arguments
to the exponential function, i.e f(x) = exp (

P
i cixi); ci � ci+1; 8 i < s. This

is the case in the problem we are studying, and we achieve this by using the
SV-decomposition. If we truncate the sum

P
i cixi at some point d, where cd <

"̂ � c0 we will get a good approximation of the original problem by evaluating
the integral over this lower dimensional integrand. The e�ective dimension found
by the SV-decomposition approach and the e�ective dimension from the ANOVA
approach are compatible, since we can write the exponential function as a sum
of polynomials through a series expansion. This means that QMC-methods are
well suited for integrals of functions with low e�ective dimension. Especially if we
can �nd the dimensions having e�ect, and are able to employ a low discrepancy
sequence fylg for which we know the elements yli having the lowest discrepancy.
A numerical test to �nd the e�ective dimension of the single asset Asian option
problem is performed in subsection 9.1.
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Figure 2. The initial elements have better abilities to �ll the do-
main than the one further back in the low discrepancy vector. Pro-
jections onto [0; 1]2 of Halton leaped. (0; 1 and 42; 43).

5. The value of the claim

An Asian option is actually a special type of European contingent claim, which
is de�ned as a cumulative income process. Without going into details (which can
be found in [KS98, Ch. 2.4]), we state that the value at time t of an Asian option
is

V (t) = e�r(T�t)E0['(�(T ))jF(t)]; (5.1)

where '(�) is a Borel measurable function. This function can for example be
given by

'(�(T )) = (�(T )� q)+; (5.2)

resulting in the European-style Asian option. A variety of di�erent option con-
tracts �ts into this framework by choosing di�erent functions �(T ) : RK+1 ! R,
'(�) 2 R and T 2 R

K+1 . All of them, however, are European contingent claims.

The theoretical de�nition of the Asian option is

(For single asset option) �1(t0; T ) =

Z T

t0

S(u)�(du) (5.3)

(For basket option) �N(t0; T ) =

Z T

t0

NX
n=1

Sn(u)�(du); (5.4)

for some Borel measure � on [t0; T ]. Our formulation is rather general, but
the measure � is usually given by �(du) = (T � t0)

�1du. Other candidates can,
however, easily be handled by our setup. If we for example choose �(du) = ÆT (du),
where ÆT is the Dirac point mass at T , we get a European call option. Other
examples are given in, e.g. [RS95]. Note also that contracts often are speci�ed
with t0 = 0, but in our discussion we only need t0 < T .
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In real applications the integrals in the formulations of �(t0; T ) and �B(t0; T )
must be approximated, and often these approximations are speci�ed in the con-
tracts by specifying the number of sampling points along the path. For this
purpose let �(du) = (T � t0)

�1du and T = (t0; t1; : : : ; tK); tK = T , and specify
the number K + 1 of sampling points. The length of the intervals tk � tk�1 need
not be equal, but we shall assume this here for simplicity. Approximations of
(5.3) and (5.4) can then be carried out by using the expressions

(For single asset option) �̂1(T ) = 1

K + 1

KX
k=0

S(tk) (5.5)

(For basket option) �̂N(T ) = 1

K + 1

KX
k=0

NX
n=1

Sn(tk): (5.6)

Note that by choosing N = 1 in (5.6), the basket option is a single asset option.
These types of approximations are also necessary in order to apply the MC and
QMC framework. We will brie
y discuss the convergence of (5.3) to (5.5) and
(5.4) to (5.6) in section 9. For simplicity we prefer to consider V (t) at t = 0,
which is the value at the time the option is bought. Note that this does not imply
t0 = 0. The expression we are going to use throughout the rest of the paper for
the value of the Asian basket option thus becomes

VN(0) = e�rTE0['
�
�̂N (T )

�
]; (5.7)

In section 6 we will show the conventional way of how the price processes for the
risky assets can be expressed as models where the the noise is implemented as
independent stochastic processes. This independence formulation enables us to
express the expected value in expression (5.7) as an integral over RN(K+1) , see
for instance [�ks98, Ch. 2.1]. Furthermore we will show that in the particular
case of integrals involving distribution functions, we can convert the integral from
R
N(K+1) to [0; 1]N(K+1).

6. The conventional way of formulating E0 as an integral

In the standard formulation of the asset price processes given by (2.3) and (2.4),
the Brownian motion used as the driving noise has a built-in correlation structure.
In order to formulate the Asian basket option pricing problem as an integral we
have to model the price processes in terms of independent stochastic variables.
This can be done in several ways, resulting in algorithms with di�erent properties
when used together with QMC methods. In this section we outline the conven-

tional way of doing this. This approach exploits that the increments �W0(tk)
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are independent, and results in the following expressions:

KX
k=0

Sn(tk) =
KX
k=0

hn(tk; S(0); �W0(tk)) (6.1)

= Sn(0)hn(t0; 1; ��0)
�
1 + hn(�t1; 1; ��1)

�
1 + hn(�t2; 1; ��2)

�
1 + � � � ��� (6.2)

= Sn(t0)Æ
n
K;1(��1; : : : ; ��K); (6.3)

where �tk = tk � tk�1; ��k � NN(0;�tk�
2); 0 < k � K are independent of Ftk�1 ,

while ��0 � NN(0; t0�
2). The notation including the Æ function is achieved by

letting

ÆnK;K(��K) = 1 + hn(�tK ; 1; ��K) (6.4)

ÆnK;k(��k; : : : ; ��K) = 1 + hn(�tk; 1; ��k)Æ
n
K;k+1(��k+1; : : : ; ��K); k = K � 1; : : : ; 1:

(6.5)

Note furthermore that the most common method of �nding � is by use of the
Cholesky decomposition of �2, even if other types like the SV-decomposition
exists, and are more suited in �nance problems. In section 9, where we compare
di�erent approaches, we have used the Cholesky decomposition when calculating
values of the Asian basket option by the conventional approach, while we have
used the SV-decomposition in the SVD approach described in section 8.

With the expression (6.3) we can write the value of the Asian basket option as

VN(0) = e�rTE0['
�
�̂N(T )

�
]

= e�rT
Z
RN(K+1)

'
� 1

K + 1

NX
n=1

Sn(t0)Æ
n
K;1(x)

�
 (x)dx (6.6)

= e�rT
Z
[0;1]N(K+1)

'
� 1

K + 1

NX
n=1

Sn(t0)Æ
n
K;1(	

�1(y))
�
dy; (6.7)

where  : RN(K+1) ! R
N(K+1) is the density of an N(K + 1) - dimensional cen-

tered Gaussian random variable with covariance matrix equal to the identity, and
	�1 : [0; 1]N(K+1) ! R

N(K+1) is a vector of inverse cumulative normal distribution
functions with mean 0 and variance 1: 	�1(y) = (	�1

1 (y1); : : : ;	
�1
N(K+1)(yN(K+1))).

In the following it is convenient to introduce the notation '̂(Y ) � '( Y
K+1

) in or-

der to simplify the expressions. The transformation of the integral over RN(K+1)

in (6.6) to [0; 1]N(K+1) in (6.7) is due to the mapping performed by the function
	�1(�), and is valid for any inverse cumulative distribution function. In order to
�nd the inverse of 	(�) we use that 	�1

n (yn) = erf�1(2yn� 1). We do the evalua-
tion by a rational approximation suggested in [Mor98]. Other types of methods
for calculating 	�1(�) could be employed, but caution must be taken when used
together with QMC. (See comments in section 4 on this.) It is evident at this
stage that we can approximate the option price by making use of a convenient
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set of points fyg � [0; 1]N(K+1). In the conventional QMC approach this is done
by using samples yl from the Halton leaped sequence as input to 	�1(�), and
calculating the mean value of the integrand in the domain of integration. The
value for an Asian basket option for this approach is thus approximated by

VN(0) � e�rT

L

LX
l=1

'̂
� NX
n=1

Sn(t0)Æ
n
K;1(	

�1(yl))
�

(6.8)

where yl 2 [0; 1]N(K+1) is the l'th vector in the low discrepancy sequence. As L
is increased in (6.8) we get better approximations. The approach in this section,
however, does not take into account any special structures of the integrand. This
must be done in order to exploit that some of the elements of the low discrep-
ancy vector in the QMC method are more evenly distributed than others. In
section 4 we have discussed methods of reengineering the integrand to reduce the
complexity and to improve convergence rates. The next sections are devoted to
the speci�cation of two types of decompositions, the Brownian Bridge approach
and the SVD approach.

7. The Brownian Bridge approach

The Brownian Bridge approach is presented for the pricing of Asian options on
a single underlying asset only. This is because the coupling between the asset
dependency and the time dependency in the basket case is hard to de�ne for the
Brownian Bridge approach. We will show in the next section that this coupling
can be handled rather easily in the SVD approach. The inclusion of the Brownian
Bridge approach is solely for reason of comparison. In section 9 we present results
showing that the SVD approach turns out to be better among the two.

When evaluating path dependent options we have to simulate the path { one way
or the other. In the formulation leading to the conventional approach, involving
the Æ(�) function, this is done by using the independent increment property of
Brownian motion. We can, however, achieve a representation of the path by using
another approach { the so called Brownian Bridge approach:

(1) Before entering the simulation loop: Choose T , and the number of equal
time steps K = 2p. Set �t = T

K
and tk = k�t; k = 1; : : : ; K.

(2) Inside the simulation loop: Generate Gaussian independent variables �lj,
for each of the L turns in the simulation loop, distributed according to

�lj =
q
t̂j	

�1(ylj) � N (0; t̂j); j = 0; : : : ; K � 1 (7.1)

where t̂0 = T and t̂j =
T

22+blog2 jc
; j = 1; : : : ; K � 1 (7.2)
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(3) The Wiener path wl(t) is sampled at each tk as

wl(t0) = 0 (7.3)

wl(tK) = ��l0
�� N (0; �2T )

�
(7.4)

wl(tK=2) =
1

2
(wl(t0) + wl(tK)) + ��l1

�� N (0; �2T

2
)
�

(7.5)

wl(tK=4) =
1

2
(wl(t0) + wl(tK=2)) + ��l2

�� N (0; �2T

4
)
�

(7.6)

wl(t3K=4) =
1

2
(wl(tK=2) + wl(tK)) + ��l3

�� N (0; �2T

4
)
�

(7.7)

...

(4) The price path is then calculated by using

Sl(tk) = S(t0) exp ((r � 1

2
�2)tk + wl(tk)) (7.8)

(5) The price of the option is found by averaging:

V1(0) � e�rT

L

LX
l=1

'̂
� KX
k=0

Sl(tk)
�

(7.9)

Although the total variance in this representation is the same as in the standard
discretization, much more of the variance is contained in the �rst few steps of the
Brownian Bridge formula. This reduces the e�ective dimension of the simulation
and increases the e�ect of the low discrepancy sequence used. It turns out that
this decomposition is not optimal, and the optimal decomposition is given by the
SVD method presented next.

8. The SVD approach

A random variable Y � NN(0;��
T ) can be written Y = �X where X �

NN(0; I), and I is the N � N identity matrix. In section 3 we discussed prop-
erties of multidimensional Brownian motion, and concluded in expression (3.2)
with the covariance matrix of the process. Given a covariance matrix �2 = ��T

there are several alternatives of �nding the matrix �. The Cholesky decompo-
sition produces a � matrix which is triangular, while the � matrix from the
SV-decomposition can be written as E

p
�, where E contains the eigenvectors of

�2 and � is a diagonal matrix with the corresponding eigenvalues in decreasing
order on the diagonal. We will use the SV-decomposition both for the Wiener path
along the time dimension and to �nd a volatility matrix � used in the modeling
of the price process of the underlying assets. The properties of Brownian motion
enables us to perform two separate SV-decompositions instead of one large: One
for the covariance matrix C2 2 R

(K+1)�(K+1) given in section 3, describing the
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path-dependencies, and one for the covariance matrix �2 2 R
N�N for the under-

lying assets. The eigenvalues of C2 and �2 can then be combined by the direct
matrix product into an ordering O : N � N ! N of the total set of eigenvalues
for the full problem to give us �O(�;�) such that �1 � �2 � � � � � �N(K+1). This
method enables us to allocate speci�c elements yli from the low discrepancy vector
yl to the di�erent orthogonal noise generators (represented by the eigenvalues �)
of the full problem. If yl is a vector from the Halton leaped sequence, the noise
term with the biggest eigenvalue is mapped to yl1 the next biggest to y

l
2 and so

forth. In order for this approach to be e�ective, the discrepancy of yl1 should be
lower than the discrepancy of yl2 etc. This is a property of many low discrepancy
sequences, and the Halton leaped sequence seems to have this characteristic. (See
e.g. [KW97]).

The principles of the SVD method for the basket option problem given as a list
of tasks are as follows:

(1) Before entering the simulation loop: Find � 2 R
N�N by performing an

SV-decomposition of the covariance matrix �2, and C 2 R
(K+1)�(K+1) by

an SV-decomposition of the covariance matrix C2. Find a relation O(�; �)
between the time discretization point k, the asset n and the ordering of
the eigenvalues � by sorting the output from the direct matrix product in
reverse order:

� = ��2 
 �C2 (8.1)

(2) Inside the simulation loop: Create a low discrepancy vector yl 2 [0; 1]N(K+1)

for each of the L turns in the simulation loop.
(3) Find the corresponding inverse cumulative normal values

�lO(n;k) = 	�1(yln;k) n = 1; : : : ; N; k = 0; : : : ; K: (8.2)

(4) Find the asset price for each of the N assets in each of the K + 1 points
along the time line. This is done by

Sl
n(tk) = Sn(t0) exp

�
(r � 1

2

NX
d=1

�2
nd)tk +

NX
d=1

�nd

KX
j=0

Ckj�
l
O(d;j)

�
; (8.3)

(5) Find the average of all the asset prices computed in (8.3) and evaluate

'̂(�̂N ).
(6) The option price is approximated by performing the described loop L

times, averaging the L results of '̂(�), and discounting by e�rT .
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The full expression for the approximate value of the Asian basket option by the
SVD approach is therefore given by

VN(0) �e
�rT

L

LX
l=1

'̂
� NX
n=1

KX
k=0

Sn(t0)

exp
�
(r � 1

2

NX
d=1

�2
nd)tk +

NX
d=1

�nd

KX
j=0

Ckj�
l
O(d;j)

��
(8.4)

where �nd and Ckj are elements of the matrices resulting from the SV-decompo-
sitions. The matrices � and C together with the function O(�; �) are the essential
parts of this approach.

9. Numerical results

We present the numerical results from simulations of prices of both single asset
Asian call options and Asian basket call options. The simulations for single asset
options is performed to show the di�erence between the convergence of the con-
ventional recursive approach, the Brownian Bridge and the SVD method, while
the basket option simulations only compare the conventional recursive approach
with the SVD approach. We will also look brie
y into the convergence of the
sum in (5.5) to the value of the integral (5.3) as the number of evaluation points
K along the path increases. For the numerical calculations we specify '(�) to be
the payo� function of a call option. This speci�cation also e�ects '̂(�), giving:

'(Y ) � �Y � q
�+

(9.1)

'̂(Y ) � � Y

K + 1
� q

�+
=

1

K + 1

�
Y � q̂

�+
; (9.2)

where q̂ � q(K + 1). In addition we let t0 = 0 in the numerical examples.

9.1. Convergence of �̂. The integrand in the expression for �̂1(T ) must be
approximated when calculating the value of the theoretical expression for the
Asian option, and therefore it is interesting to investigate how fast the conver-
gence of the sum in (5.5) to the value of the integral (5.3) is achieved. We do
this numerically by looking at the expressions:

e�rTE0['
�Z T

0

S(u)T�1du
�
] = lim

K!1
e�rTE0['̂

� KX
k=0

S(tk)
�
] (9.3)

= lim
K!1
L!1

e�rT

L

LX
l=1

'̂
� KX
k=0

Sl(tk)
�
: (9.4)

When performing the calculation we use the SVD method since this have the
lowest variance, i.e we can keep L smaller than for the other methods. Figure 3
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gives the level of accuracy for a given K compared to the true value of the
integral. We see that the convergence is rather fast, and that for K = 10, we
are well within 0:1% of the value of the integral. This indicates that an e�ective
dimension of ds = 10 for this problem is a conservative estimate. Notice that
we do not know the real value of the integral, and therefore these convergence
results are purely indicative.

7.4

7.5

7.6

7.7

7.8

7.9

8

0.5 1 1.5 2 2.5 3

7.937

7.938

7.939

7.94

7.941

7.942

0.5 1 1.5 2 2.5 3

Figure 3. The convergence of the option price as K !1

9.2. Single asset Asian options. We will simulate prices for options where
time to maturity is one year T = 1:0, initial price S(0) = 100 and strike q = 100.
Furthermore the risk free rate in the market is r = 0:05, the volatility is constant
� = 0:3, and the assets pay no dividends. With this setup we calculate the price
for K = 2p; p 2 f1; 2; 3; 4; 5; 6; 7; 8; 9g, by using L number of simulations in the
range L 2 [103; 105]. The standard MC method (STA), the conventional QMC
method by the use of the recursive Æ(�) function (REC), the Brownian Bridge
method (BB) and the SVD method (SVD) are compared by use of a set of graphs.
The variance of the resulting series are also given as a measure of convergence
speed. Notice that each new point in each of the graphs are calculated by using
non-overlapping sequences of low discrepancy vectors. The results is shown as
graphs where the price of the option is on the Y-axis and the X-axis show the
number of simulations on log10 scale. See Figure 4 and Figure 5.

It is important to quantify the performance of the di�erent approaches, and we
have done this by simply calculating the variances of the graphs. Although the
prices have been calculated by a deterministic approach, and we therefore can not
truly trust statistical measures on the behavior, we believe that the used measure
will give some insights. The result of this measurement for an Asian option on
a single underlying asset is given for K = 2p; p = 1; : : : ; 9 in Table 1. We have
done two sets of simulations, one for L 2 [103; 104] and one for L 2 [104; 105].

When we plot these results (for p � 9) we get the rather illustrative picture in
Figure 6, showing that the SVD method has close to constant variance as the
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svd halton 1,256
rec halton 1,256

Figure 4. Comparing SVD method with STA and REC. For these
simulations, N = 1 and K = 256, and REC does not perform
better than STA for dimensions this high.
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svd halton 1,256
bb  halton 1,256

Figure 5. Comparing SVD with BB. We see that SVD is slightly
better than BB. N = 1 and K = 256.

number of dimensions 2p are increased, while the variance of the conventional
method increases linearly (note that the scale on both axis are logarithmic). The
standard (non QMC-approach) has constant high variance, and the Brownian
Bridge approach increases a bit in the start but stabilizes on a lower level than
the SVD method.

9.3. Basket Asian options. When we calculate the value of the basket option,
an additional element concerning the N assets in the basket comes into consid-
eration. In section 3 we described how to �nd the eigenvalues of the full system,
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L p STANDARD REC BB SVD

103 ! 104 1 0.0750028 0.000164428 0.000234812 0.000349644

103 ! 104 2 0.0880283 0.000484648 0.000313312 0.000217205

103 ! 104 3 0.0943216 0.00216916 0.00030832 0.000221485

103 ! 104 4 0.074528 0.00749465 0.000311825 0.000220451

103 ! 104 5 0.0789701 0.021403 0.000303524 0.000221139

103 ! 104 6 0.0750914 0.01854 0.000307054 0.000221403

103 ! 104 7 0.0805887 0.0351491 0.000305817 0.000221582

103 ! 104 8 0.0490915 0.258421 0.000309338 0.00022173

103 ! 104 9 0.053857 0.407136 0.00031079 0.000221813

L p STANDARD REC BB SVD

104 ! 105 1 0.00611862 2.32071e-006 2.16537e-006 3.09931e-006

104 ! 105 2 0.00542252 6.30376e-006 3.75607e-006 2.78211e-006

104 ! 105 3 0.00637498 3.73341e-005 5.16935e-006 2.79055e-006

104 ! 105 4 0.00827774 0.000298189 6.74235e-006 2.77861e-006

104 ! 105 5 0.00709202 0.000459984 7.33869e-006 2.78717e-006

104 ! 105 6 0.00766036 0.000888891 7.40184e-006 2.80059e-006

104 ! 105 7 0.00605674 0.00134237 7.23032e-006 2.8036e-006

104 ! 105 8 0.00528101 0.00532122 7.38271e-006 2.80411e-006

104 ! 105 9 0.0059849 0.0312871 7.45808e-006 2.80269e-006

Table 1. The variances are calculated for each series of 100 prices
calculated by simulating for L in the range [103; 104] and [104; 105].
The mapping onto these ranges are logarithmic, i.e there are fewer
samples from the end of the interval than the beginning. N = 1
and K = 2p.

and in section 8 we showed how to utilize this to optimize the use of the low dis-
crepancy sequence. In this section we will use a setup of the simulation similar
to the one used for the single asset option, but in addition we will let the number
of assets vary: N 2 f2; 4; 8; 16; 32; 64g.
The results are given in Table 2 and illustrated in Figure 8. In the illustrations
we have kept the number of sampling points K constant and increased the num-
ber of assets N in the basket. The di�erent methods are labeled REC for the
conventional QMC method, SVD1 for the full SVD method including an ordering
of the total noise in the problem by the use of the O(�; �) function, and SVD2
for an SVD method where we have decomposed both time and asset dimensions,
but not combined them into an overall ordering. In SVD2 the N �rst elements
of the low discrepancy vector are used for the noise in the problem stemming
from the time discretization point giving the biggest contribution, and these N
elements are used in an ordering according to the contributions from the di�er-
ent assets. This should theoretically give the SVD1-method best performance,
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Figure 6. The plots have p on the X-axis, and log10 of the vari-
ance on the Y -axis. There are 9 estimated variance values for each
approach, one for each p. Each series of prices contains 100 values,
and are created by simulating prices for L in the range [103; 104]
(left) and [104; 105] (right). The mapping onto these ranges are log-
arithmic, i.e there are fewer samples from the end of the interval
than the beginning. N = 1 and K = 2p.
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Figure 7. Comparison of the methods for di�erent baskets. N
and K given in the labels of the plots.

but for the example we have tested, this conclusion can not be drawn. In the
numerical studies of the Asian basket option, we have estimated the matrix �2

by using asset return time-series from the Oslo Stock Exchange in Norway to get
a realistic case.

10. Conclusions

The use of QMC methods gives faster convergence than conventional MC Meth-
ods for both single asset and basket Asian options. By using the low discrepancy
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L i REC SVD2 SVD1

103 ! 104 1 0.00727686 0.000156036 0.000141992

103 ! 104 2 0.0108797 0.000231383 0.000234575

103 ! 104 3 0.00988478 0.000276212 0.00019724

103 ! 104 4 0.0240513 0.000312554 0.000224188

103 ! 104 5 0.0374931 0.000709355 0.00073982

103 ! 104 6 0.0486269 0.00028011 0.000391925

Table 2. The variance of the option price as the number of assets
N = 2i in the basket is increased. Here K = 25 = 32.
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Figure 8. The variance of the option price as the number of as-
sets in the basket is increased. N = 2i, i on the X-axis. Time
discretization is K = 25 = 32 (left) and K = 22 = 4 (right).

sequence more e�ectively, the examples we have simulated show a large perfor-
mance gain compared to the conventional QMC method. Furthermore we get
better results when using the SVD approach than the Brownian Bridge approach
for single asset Asian options. The bene�t of the SVD approach increases as the
number of sampling points in the time interval increase due to the fact that the
conventional QMC method becomes less e�ective, while the SVD method main-
tains its eÆciency. The conventional QMC method is actually outperformed even
by the conventional MC method for very high dimensions (K � 256), while the
QMC method based on SVD remains very good also for high dimensions. The
problem clearly has low e�ective dimension, but while we can estimate this to
about 10 for the single asset Asian option, the e�ective dimension of the basket
Asian option will depend on the covariance structure of the assets in the basket,
and can therefore vary among di�erent baskets. The numerical tests show that
as we increase the number of assets in the basket, the di�erence between the con-
ventional QMC method and the SVD method is seemingly constant, or slightly
increasing as N becomes large.
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