LEVY PROCESSES AND CONVOLUTION SEMIGROUPS WITH
PARAMETER IN A CONE AND THEIR SUBORDINATION

JAN PEDERSEN AND KEN-ITI SATO

University of Aarhus and Nagoya

ABSTRACT. Convolution semigroups and Lévy processes with parameter in a cone
K are defined. Compared to ordinary convolution semigroups and Lévy processes
(corresponding to K = R, ) the case of a general cone K is more complicated in
that there is generally not a one-to-one correspondence between semigroups and
Lévy processes. Thus, in particular we have to distinguish subordination of cone-
parameter convolution semigroups and of cone-parameter Lévy processes.

Several fundamental properties of cone-parameter convolution semigroups and
Lévy processes are derived. In the study the distinction between cones with and
without a strong basis is important. Conditions that a cone-parameter convolution
semigroup is generative (that is, there is a cone-parameter Lévy process in law
associated with it) are derived and examples of non-generative semigroups are given.

1. INTRODUCTION

Usual Lévy processes and convolution semigroups have Ry = [0, c0) as domain of
the parameter. The basic correspondences among them are formulated as follows, see
Sato [22], [24]. (i) The class of convolution semigroups {j;: t > 0} on R? corresponds
to the class of infinitely divisible distributions p through g = p;. This is due to the
fact that the characteristic function 7i;(z) of y; satisfies fi;(2) = fiy(2)'. (ii) The class
of Lévy processes in law {X;: ¢t > 0} on R? corresponds to the class of convolution
semigroups on R? through p; = £(X;), the distribution of X;. This correspondence
is one-to-one if processes with the same law are identified. Here we recall that a Lévy
process in law is continuous in probability, but, unlike Lévy processes, the sample
functions need not be cadlag. (iii) Every Lévy process in law has a modification

which is a Lévy process.
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A natural generalization of R, is a cone K in a Euclidean space. In this paper
we study K-parameter convolution semigroups, Lévy processes and Lévy processes
in law, and investigate whether the correspondences above are generalized. Further,
we study the generalization of subordination to the cone-parameter case. Thus, we
develop the study of the Rf -parameter case initiated by Barndorff-Nielsen, Pedersen
and Sato [1].

The cone K induces a partial order from which the notions of K-increasingness
and K-decreasingness are defined. In the definition of a K-parameter Lévy process
{Xs: s € K} we require independence of X2 — Xg1,..., X — X1 for every K-
increasing sequence {s', ..., s"} and increment stationarity in the sense that £(X,> —
Xg) = L(Xg — Xg) for 2 — st = s* — s € K together with the condition X = 0
a.s. The cadlag property of sample functions of a Lévy process is now replaced by the
K-cadlag property, the meaning of which will be made precise in Section 2. As in the
usual case, we introduce the notion of a K-parameter Lévy process in law, dropping
the requirement of the K-cadlag property, but retaining the continuity in probability.
A K-parameter convolution semigroup is defined to be a class of probability measures
{us: s € K} having the property that g, = pa * ug for s') s> € K and satisfying
the continuity condition that p, — dp as t | 0 for every s € K.

Any K-parameter Lévy process in law {X;: s € K} induces a K-parameter
convolution semigroup {us: s € K} by pus = L£(X). We study questions on the
converse. Given a K-parameter convolution semigroup, can we find a K-parameter
Lévy process in law that induces the semigroup ? Is it unique in law when we can
find one 7 The situation is radically different according as the cone K has a strong
basis or not. We say that {e',...,e"} is a strong basis of an N-dimensional cone
K if e!,...,e" are linearly independent vectors belonging to K and if every s € K
is expressed as s = sje! + -+ + sye” with nonnegative si,...,sy. We say that
{e',...,eN} is a weak basis of K if the former condition is satisfied. When K has
a strong basis {e',..., eV}, we have two important examples of K-parameter Lévy
processes. Let {V'},..., {V,"} be independent R, -parameter Lévy processes, where

{V/} is R% -valued. One example is

(1.1) Xo=(V, ..., V) for s =sie" + - + sye.
Another is
(1.2) X, =V, +- -+ V) for s =se" +-- +sye”,



assuming that d; = --- = dy.

Our main results in Sections 3 and 4 are as follows. Let {e!,..., e} be a weak
basis of K.

1. If {us: s € K} is a K-parameter convolution semigroup on R?, then , is
determined by fi,1, . .., fen as fig(2) = fier (2)% ... len (2)%N for s = sje! +-- -+ sye €
K, where sq,...,sy are not necessarily nonnegative.

2. We say that a set of infinitely divisible distributions {py, ..., py} is admissible
with respect to {e',...,eN} if there is a K-parameter convolution semigroup {,}
such that p.; = p; for j =1,...,N. If {e!,...,e"} is a strong basis, then {p1, ..., py}
is always admissible. If {e!,...,eN} is not a strong basis, then there exists a set
{p1,...,pn} which is not admissible, and a necessary and sufficient condition for
admissibility is given.

3. Given a K-parameter convolution semigroup {1}, we say that it is generative
if there is a K-parameter Lévy process in law {X;} such that £(X;) = pus. We
say that {us} is unique-generative or multiple-generative according as such a Lévy
process in law is unique in law or not. A remarkable difference from the usual R, -

parameter case is the existence of the non-generative case. For the cone M},

g of
d x d nonnegative-definite symmetric matrices we introduce a natural convolution
semigroup {ps: s € M ,} by ps = Ny(0,s), the Gaussian distribution on R? with
mean 0 and covariance matrix s. We show that {yus} is non-generative. The fact
that generative semigroups are not always unique-generative is essentially recognized
in [1].

4. If K has a strong basis, then every K-parameter convolution semigroup on
R? is generative; in fact, a K-parameter Lévy process of the form (1.2) is associated.
Without the assumption of the existence of a strong basis, any K-parameter purely
non-Gaussian convolution semigroup on R? is generative, and any K-parameter con-
volution semigroup on R (that is, d = 1) is generative.

5. When {e!,...,e"} is a strong basis, a sufficient condition and a necessary
condition for unique-generativeness of {us: s € K} are formulated in terms of the
supports of g, 7 = 1,...,N. For example, if {us} is the semigroup induced by
a K-parameter Lévy process of the form (1.1), then it is unique-generative. In the

Gaussian case, a necessary and sufficient condition is given.



6. If K has a strong basis and if {X,} is a K-parameter Lévy process in law
associated with a unique-generative K-parameter convolution semigroup, then {X;}
has a modification which is a K-parameter Lévy process.

Unlike the usual R, -parameter case there is generally not a one-to-one corre-
spondence between subordination of K-parameter convolution semigroups and that
of K-parameter Lévy processes. This is due to the existence of multiple-generative
and non-generative semigroups. Therefore, in Section 5 we formulate both subordi-
nation of K-parameter convolution semigroups and of K-parameter Lévy processes,
and study the change of generating triplets under these transformations. Further,
we study preservation of selfdecomposability, the L,, property and stability under
these operations. This constitutes a partial extension of the results of [1]. As an
application of subordination of cone-parameter convolution semigroups, we give a
characterization of multivariate type G distributions introduced by Barndorff-Nielsen
and Pérez-Abreu [2].

As to works earlier than [1], we mention that Bochner, [4] pp. 106-108, made a
heuristic discussion of cone-parameter convolution semigroups, and that there exist
several studies of RY -parameter Lévy processes of the form (1.1) or (1.2). Dynkin [8],
Evans [10], Fitzsimmons and Salisbury [11] worked on processes which generalize the
process {X;} of (1.1). Hirsch [12] and Khoshnevisan, Xiao and Zhong [14] studied
the process (1.2).

There are many papers on multiparameter Brownian motions and Lévy processes.
Lévy [16] introduced a multiparameter Brownian motion with parameter in RY and
the papers of Chentsov [5] and McKean [18] followed. Mori [19] characterized similar
processes in the purely non-Gaussian setting. Another process called Brownian sheet
(with parameter in RY) was studied by Orey and Pruitt [20], Talagrand [27], Khosh-
nevisan and Shi [13] and others. The multiparameter stable processes of Ehm [9] and
the two-parameter Lévy processes of Vares [28] and Lagaize [15] are generalizations
of the Brownian sheet. Lévy’s multiparameter Brownian motion restricted to a cone
K with dimension > 2 does not satisfy the independence of the increments along
K-increasing sequences. The Brownian sheet and the processes in Ehm [9], Vares [28]
and Lagaize [15] do not have the stationarity of the increments in the RY -increasing

direction.

The authors thank Ole E. Barndorff-Nielsen, Victor Pérez-Abreu and Jan Rosinski

for valuable discussions.



2. PRELIMINARIES ON CONES

Let R, Q, N and C be the sets of real numbers, rational numbers, positive integers
and complex numbers, respectively. Let R, = [0,00). Throughout the paper let

N, M and d be positive integers. Elements of R¢ are column vectors. We denote

the coordinates of x € R? by z;, and use either the notation z = (x;)1¢j<a Or
x = (71,...,74) . The inner product on R? is (z,y) and the norm is |z|. When
di,...,d, are positive integers and 2/ € R% for j = 1,...,n, then (z!,...,2")"

denotes the stacked vector
(2.1) (z', ..., 2" = S I

which is an element of R+ +dn,

Let ID(R?) be the class of infinitely divisible distributions on R? equipped with
the Borel o-algebra B(R?). For ,u € [D(]Rd) and t > 0, denote pu! = p**. The
characteristic function of y is fi(z) = [ € dx z € RY. Let £(X) be the
distribution (law) of a random var1able X. By X £ Y we mean L(X)=L(Y). For
probability measures 1, (n = 1,2,...) and g on R?, y1,, — p means weak convergence
of yt, to . For a measure x on RY Supp(p) denotes the support of p as defined
e.g. in [22], p.148. Let d, denote a distribution concentrated at a point ¢. Such a
distribution is called trivial. For a,b € R, a A b = min{a, b} and a V b = max{a, b}.

We use the word cone in the following sense.

Definition 2.1. A subset K of RM is a cone if it is a non-empty closed convex set
closed under multiplication by nonnegative reals (s € K and a > 0 imply as € K)

and containing no straight line through 0 (s € K and —s € K imply s = 0) and if
K # {0}.

Throughout this paper, K is a cone in RM unless otherwise stated. Notice that K
is closed under addition. Therefore, if s',...,s" are in K, then t;s' + -+ +t,5s" € K
for any nonnegative reals tq,...,t,.

Let L be the linear subspace generated by K, that is, the smallest linear subspace
of RM that contains K. If dim L = N, then we say that K is an N-dimensional cone.
If dim L = M, then K is said to be nondegenerate.

If {e',...,e"N} is a linearly independent system in R then the set of vectors
s = sie! +--- + sye” with nonnegative sq,..., sy is the smallest cone that contains
et,...,eN. It is called the cone generated by {e!,...,eMN}.



Definition 2.2. Let K be an N-dimensional cone in RM. If {e',... €™} is a linearly
independent system such that K is the cone generated by it, then {e*, ..., e} is called

a strong basis of K. If {e!,...,e"N} is a basis of the linear subspace L generated by

K and ife',... e are in K, then {e',...,e"N} is called a weak basis of K.

Any cone has a weak basis. A cone in R is either [0, 00) or (—oc, 0], and has a

strong basis. Any nondegenerate cone in R? is a closed sector with angle < 7 and
has a strong basis. A nondegenerate cone in R® has a strong basis if and only if it is
a triangular cone. For any M, the nonnegative orthant RY is a cone with a strong
basis.
Definition 2.3. Write s' <x s if s* —s' € K. A sequence {s"},—15  in RY
is K-increasing if s" <x s"*! for each n; K-decreasing if s"*' <x s" for each n.
A mapping f from [0,00) into RM is K-increasing if f(t,) <k f(t2) for t; < ty;
K-decreasing if f(t2) <k f(t1) for t; < t.

More generally, let K; and K, be cones in RM* and RM2, respectively. A mapping
f from K; into RM? is (K, Ky)-increasing if s* <y, s implies f(s') <g, f(s?);
(K1, Ks)-decreasing if s' <g, s* implies f(s%) <k, f(s').

The following facts are basic for cones. The proofs are left to the reader. We
call H a strictly supporting hyperplane of K, if H is an (M — 1)-dimensional linear
subspace such that H N K = {0}.

Proposition 2.4. A cone K in RM has the following properties.

(i) There exists a strictly supporting hyperplane H of K.

(ii) Let H be a strictly supporting hyperplane of K and let s° € K \ {0}. Then
the hyperplane s° + H does not contain 0. Let D be the closed half space containing
0 with boundary s° + H. Then K N D is a bounded set.

(iil) If {s"}n=12,. is a K-decreasing sequence in K, then it is convergent.
A weak basis of K is not unique. But, a strong basis of K is essentially unique,
if it exists.

Proposition 2.5. Let {e!,...,eN} be a strong basis of K with |e’| = 1 for j =
1,...,N. Then it is unique up to change of the order.

Remark 2.6. Given s!, s? in a cone K in RM, we call u € K the greatest lower

bound of s' and s? in the partial order <y and write u = s' Ag s2, if

(2.2) fveK:v<gs'IN{fve K:v<g s*y ={ve K:v <k u}.



If K has a strong basis {e',..., e}, then for any s', s> € K, s' Ag s? exists. Indeed,
if s = slel +---+sheN for j = 1,2, then s' Ag 52 = (st Asd)el +--- + (s As%)el.
Let K be a circular cone in R®. Then, for s!, s? € K, s' Ax s? does not necessarily
exist. This is seen in the following way. Denote z = (z;)1<j<3 € R® and let K have
the z3-axis as the axis of rotation. We have {v € K: v <k s} = (s — K) N K for
s € K. The section of the left-hand side of (2.2) by a plane z3 = constant is not a
disc if s' — s> ¢ K U (—K). Thus, the relation (2.2) is not always possible.
Similarly, one can define the least upper bound. As above, the least upper bound

exists when K has a strong basis, but generally not when K is a circular cone.

Definition 2.7. Let K be a conein RM. Let K' = {u € RM: (u,s) > 0 for all s € K}.

Then K’ is again a cone in RM. It is called the dual cone of K.

We have (K')' = K. If K =R}, then K = K'. For two cones K;, K, in RY | we
have K; C K, if and only if K| D K.
Example 2.8. Let
(2.3) el = (L5107, =517, &£=(0-11)"
in R3. These points are on the circle 2 + z2 = 1, x3 = 1, and form an equilateral tri-
angle. Let I'; and I'y be the line segments from e3 to e! and from e? to €?, respectively.
Let C be the arc from e' to €? of the circle. Let D be the closed convex set on the
plane z3 = 1, surrounded by I';, C and I'y. Let K = {s =tu € R®*: w € D and ¢t > 0}.
Then {e', €2, €3} is a weak basis of K. Any s € R? is expressed as s = s;e' +s,6?+s3€°
with s; € R. For any u € R® we have
(2.4) (u,s) = 151 + sy + azss with a; = (u,e’) for j = 1,2, 3.
Then, v € K’ if and only if o; > 0 for j =1,2,3 and
(2.5) acy + (1 —a)ag —a(l —a)az > 0 for 0 < a < 1.
An alternative characterization is that v € K' if and only if o;; > 0 for j = 1,2,3 and
(2.6) a;/Z < a}/Q + aé/z.
Indeed, a few calculations show that s € C' if and only if
(2.7) s=(1—-a(l—a)) *(ae' + (1 —a)e’ —a(l —a)e’) with 0 < a < 1.

Using this it follows that v € K’ if and only if (2.5) holds and «; > 0 for all j. Then
notice that nonnegative reals oy, e, arg satisfy (2.5) if and only if they satisfy (2.6).



Example 2.9. Let K be the least cone in R® containing e!,. .., e, where
e =(0,0,1)7, 2 =(1,1,1)7, & =(1,0,1)7, ' =(0,1,1)".

That is, K = KUK, where K] is the cone generated by {e', e?, €3} and K is the cone
generated by {e',e? e'}. Note that the section K N {(x1, 29, 23)" : 21,22 € R} for
x3 > 0 is the square with vertices (0,0, z3)", (z3,0,23) ", (23,23, 23) " and (0,23, 23)".

Let us use {e',e? e} as a weak basis of K. For any u € R® (u,s) is written
as in (2.4). Since e* = e' + ¢ — €3 it follows that v € K’ if and only if o; > 0 for
j =1,2,3 and a3 < a; + as. In particular, there are vectors u!,...,u* € K' such
that (ul,s) = s1, (u?, s) = sq, (u?,5) = 51 + s3, (u*,s) = s34+ s3. Moreover, it is

easily seen that any u € K’ is written as u = Biu' + - - - + B4u? where B,..., 34 > 0.

Proposition 2.10. Let K be an N-dimensional cone in RM . Let L be the linear
subspace generated by K and let T be a linear transformation from L to RM such that
dim(TL) = N. Denote by T~ the inverse of T defined on TL. Define K= TK, the
image of K by T'. Then, K is an N-dimensional cone in RM . We have u* <g u?if
and only if T7'u' <x T~'u?. A system {u',... ,u"N} is a strong basis (resp. a weak
basis) of K if and only if {T~"u!,..., T "uN} is a strong basis (resp. a weak basis)
of K.

The proof is easy and omitted. In the situation above we say that K and K are

isomorphic cones and call T an isomorphism from K to K.

Example 2.11. Any N-dimensional cone K with a strong basis is isomorphic to RY .

The isomorphism is given by a mapping between strong bases.

Example 2.12. Let d > 2 and let K = M, be the set of symmetric nonnegative-
definite d x d matrices s = (s;x)%;_; € K. The lower triangle, (s;)r<; with d(d+1)/2

entries, determines s. We identify K with a subset of R4+1)/2

, considering (s;x)r<;
as a column vector. Then K is a nondegenerate cone in RX%*1/2 and does not have
a strong basis, which will follow from Theorems 4.7 and 4.13. For d = 2 this is seen
also from the following isomorphism.

If K = My, then s is identified with (21, 29, 73) ", where 1 = 511,29 = S99, 23 =
s91, and hence K = {(xy, w9, 23)" : 21 > 0, 29 > 0, 1129 — 22 > 0}. In this case K
is isomorphic to a circular cone in R3. Indeed, consider the linear transformation
T from R® to R® defined by T(z1, 79, 23)" = (u1,us,u3)’ with z; = uy + uz, 15 =

—uy + u3,r3 = us. Then u € K = TK is expressed as u; + uz > 0, —uy + ug >



0, (u1 + uz)(—uy + uz) — u3 > 0. This is written as uz > 0,u? — u? — u3 > 0, which
describes a circular cone. For d > 3 it is unlikely that the cone M} , is isomorphic to
a cone expressible by quadratic equations, because the property det(s) = 0 is written

as an equation of degree d.

Definition 2.13. Let f be a mapping from a cone K in RM into R?.

(i) We say that f is K-right continuous at s° € K, if, for every K-decreasing
sequence {s"},—1o . in K with |s" — s°| — 0, we have |f(s") — f(s")| — 0.

(ii) We say that f has K-left limits at s° € K \ {0}, if, for every K-increasing
sequence {s"},—1o.. in K \ {s°} satisfying |s” — s°| = 0, lim,, ,, f(s") exists in R?.

(iii) We say f is K-cadlag if it is K-right continuous at each s € K and has
K-left limits at each s° € K \ {0}.

When f: K — R has K-left limits at s° € K then lim,_,,, f(s") may depend
on the choice of the K-increasing sequence {s"}. But, we now show that if K is
an N-dimensional cone with a strong basis, then any K-left continuous mapping has

at most 2V — 1 different left limits at each point. Let K be with a strong basis

{el,...,eN}. Let s° € K and {s"},—12.. be a sequence in K. Write s° and s" as
s% = s¥el + - 4+ s%el and s = sPel +- -+ shelV. Note that s" <x s"*'if and only
if 57 < s?“ forall j =1,..., N. Thus, {s"},-1 2, is K-increasing with |s" —s°| — 0

if and only if {s?}n:m,m is an increasing sequence in R, which tends to 52 for each 7.

Let a be a nonempty subset of {1,..., N}. We use the notation s" 1, s° if {s"},=1, .

is K-increasing with |s" — s°| — 0 such that s} < s§ for j € a and all n, and s7 = s}

for j ¢ a and n sufficiently large. Let pyo = {j: 52 > 0}.
Lemma 2.14. Let K have a strong basis {e',...,eN}.
(i) Let {s"}n=12... be K-increasing in K\{s"} with |s" — s°| — 0. Then there is

a unique nonempty subset a of pyo such that s™ 1, s°.

This particular a is given by
a={j: s} < s} for all n}.

(i) Let f: K — R? have K-left limits at s° € K\{0}. Then there is a family
{f%(sq): a C pyo, a nonempty} in R? such that if a is a nonempty subset of po and

{s"}z12,. is a sequence in K with s™ 1, s°, then f(s") — f%(s°).

Note that to prove (ii) we must show that if {s"} and {r"} are sequences in K
with s™, 7" 4, s, then lim f(s") = lim f(r"). Details are left to the reader.



3. CONE-PARAMETER LEVY PROCESSES AND CONVOLUTION SEMIGROUPS

In this section we define cone-parameter Lévy processes and convolution semi-

groups. Several examples and properties will be discussed as well.

Definition 3.1. Let {X,: s € K} be a collection of random variables on R? defined
on a probability space (2, F, P). Then, {X,: s € K} is a K-parameter Lévy process
on R? if the following five conditions are satisfied.

(i) If n > 3 and {s;};=1,., is K-increasing in K, then X;+1—X,,7=1,...,n—1,
are independent.

(i) If s!,...,s' € K and 2 — s! = s* — $3 € K, then Xy — Xy < Xy — X,o.

(iii) Xo =0 a.s.

(iv) X(w) is K-cadlag in s for almost all w € Q.

(v) If s € K and {s"},—12.. is a sequence in K with [s" — s°| — 0, then
X — Xy in probability.
If {X,: s € K} satisfies (i)—(iii) and (v), then {X;: s € K} is called a K-parameter

Lévy process in law.

Remark 3.2. (i) Note that with K = R, the definition of an R, -parameter Lévy
process reduces to the definition of a Lévy process in [22]. Similarly, an R, -parameter
Lévy process in law is a Lévy process in law, as defined in [22].

(i) Recall that {X,: s € K} is called measurable if the mapping X(w) from (w, s) €
Q) x K into R? is measurable with respect to (F x B(K), B(R?)). A K-parameter
Lévy process is automatically measurable if condition (iv) of Definition 3.1 holds for
all w (not only for almost all w), or if the underlying probability space is complete.
More generally, any K-parameter Lévy process in law has a measurable modification.
This follows from the fact that any process which is continuous in probability has a

measurable modification; see Cohn [6], Theorem 2.

Proposition 3.3. A process {X;: s € K} is a K-parameter Lévy process if and only
if it satisfies (1)—(iv) of Definition 3.1.

We postpone the proof. Next we define convolution semigroups.

Definition 3.4. A family {u,: s € K} of probability measures on R? is a K-
parameter convolution semigroup if

(i) pg1 * prg2 = pgiyg2 for all s s? € K,

(ii) pgs — 6o for s € K as t | 0.

10



The following fact is basic.

Proposition 3.5. Let {X,: s € K} be a K-parameter Lévy process in law on R? and
let ps = L(X5). Then {us: s € K} is a K-parameter convolution semigroup.

Proof. We have
Mslys2 = 'C(Xlers?) = E(Xsl + (X51+s2 — Xsl)) = E(Xsl) * ,C(st) = g1 * g2,

that is, (i) in Definition 3.4. Let s € K and t, € R, with ¢, | 0. Then t,s — 0
which, by Definition 3.1 (iii) and (v), gives (ii) in Definition 3.4. O

Let us provide some examples of K-parameter Lévy processes (in law) and K-

parameter convolution semigroups. The proof of the first lemma is left to the reader.

Lemma 3.6. Let {X!:s € K}, ..., {X": s € K} be independent K -parameter
Lévy processes (resp. Lévy processes in law) on R?. Let X, = X! + -+ X", Then

{X,: s € K} is a K-parameter Lévy process (resp. Lévy process in law) on RY.

Example 3.7. Let K be a cone in RM and K’ be the dual cone of K. Let u € K.
Let {V;: t > 0} be a Lévy process on R?. Then, we get a K-parameter Lévy process
{X,: s € K} on R? by letting Xy = Vi, ).

Example 3.8. Let K have a strong basis {¢',...,e"}. Then, in each of the following
three constructions of X for s = sje! + -+ + sye¥ € K, we obtain a K-parameter
Lévy process {X,: s € K} on R?.

(i) Let {V;: t > 0} be a Lévy process on R¢. Fix (¢j)i<j<n with ¢; > 0 for
1 <7< N. Define X; =V, 5,4 tensy-

(ii) Let {V/: ¢ >0}, j=1,..., N, be independent Lévy processes on R?. Define
Xy = Vit VY,

(iii) For each j = 1,..., N, let {Utj: t > 0} be a Lévy process on R%. Assume
that they are independent. Let d = dy + -+ - + dy. Define X, = (U},,...,UN)".

S17°

Example 3.9. Let K = M, , with d > 2. For s € K let u, be the Gaussian
measure on R?, defined as p, = N4(0,s), the d-dimensional Gaussian distribution
with mean zero and covariance matrix s. Then, obviously, {us: s € K} is a K-
parameter convolution semigroup on R?. We call it the canonical M}, ,-parameter

convolution semigroup.
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Remark 3.10. Let K and K be isomorphic cones as in Proposition 2.10. If {p,: s €
K} is a K-parameter convolution semigroup on R¢, then {fi,: u € K } defined by 1, =
fp-1, 1S & K-parameter convolution semigroup. If {X,: s € K} is a K-parameter
Lévy process (resp. a K-parameter Lévy process in law) on R?, then {)Zu u € l?}
defined by )?u = Xp-1, IS a I?—parameter Lévy process (resp. a I?—parameter Lévy
process in law). The semigroup {Ji,} and the process {X,} have the same structures

as {us} and {X,}, respectively.

Remark 3.11. Let K; and K5 be cones in RM such that K, C K. If {X,: s € Ky}
is a Ky-parameter Lévy process (resp. a Ky-parameter Lévy process in law) then its
restriction {X;: s € K;} is a Kj-parameter Lévy process (resp. a K;-parameter Lévy
process in law). If {us: s € Ky} is a Ky-parameter convolution semigroup then its
restriction {p5: s € K1} is a Kj-parameter convolution semigroup.

In particular, if {us: s € K} is a K-parameter convolution semigroup then
{pus: t = 0} is an Ry -parameter convolution semigroup for s € K, and if { X: s € K}
is a K-parameter Lévy process (resp. a K-parameter Lévy process in law), then

{Xis: t > 0} is a Lévy process (resp. a Lévy process in law).

It follows from the preceding remark that, if {us: s € K} is a K-parameter
convolution semigroup on R?, then p, € ID(R?) for each s. Thus cone-parameter
convolution semigroups can be studied within the framework of the theory of infinitely
divisible distributions. In the rest of this section we study convolution semigroups
from this viewpoint. A deeper study of cone-parameter Lévy processes and convolu-
tion semigroups is postponed to Section 4.

For z,z € R? let g(z, ) be the function

For 4 € ID(R?) and r € R, we define 7i(2)", z € R?, as Ji(z)" = e"'°8%() where
log ji(z) is the distinguished logarithm of 7i(z) in [22], p.33. In other words,

e = exp |7 (442 + it + [ gt

where (A, v, ) is the triplet or the generating triplet of p in [22], p. 38. The matrix
A and the measure v are respectively the Gaussian covariance matrix and the Lévy
measure of . The vector v is a location parameter. If v satisfies f‘x |z|v(dz) < oo,

let Y be the drift p, that is 4° = v — f‘ zv(dz).

<1

z|<1
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Proposition 3.12. Let {,: s € K} be a K-parameter convolution semigroup on RY.
Then, jg = 0o and ps € ID(RY) for s € K. We have g = pt for t > 0. Thus, for
the triplet (As,vs,vs) of s,

(32) A51+52 = Asl + Asz, VUglyg2 = Vgt + Vg2,  Yslpg2 = Vg1 + Vs2,
(33) Ats = tAs; Ups = s, Yis = 1.

If, moreover, f|x lvs(dz) < oo for all s € K, then, for the drift v° of s, we have

< l?
(3.4) Vg = Yo+ Yo =17

Proof. Since {ps: t > 0} is an R, -parameter convolution semigroup as noted in
Remark 3.11 we have g = &y, pts € ID(R?) and s = pt. Equations (3.2)-(3.4) are

obvious consequences. [

Theorem 3.13. Let {us: s € K} be a K-parameter convolution semigroup with
triplets (A, vs,vs). Let {e',...,e"} be a weak basis on K. Then, for all s € K, u

is determined by fie1, . . ., pen. More precisely, for s = sie! +---+sye’ € K we have

(3.5) 15 (2) = 1 (2)™ .. Jien (2)°Y, 2 € Rda

(3.6) Ay =140 + -+ + SNAN, Vs = 81Vt + ++ + SNVeN, Vs = S1%el £+ + + SNTVen.

The second equality is understood to hold on the class of Borel sets B such that

If {s"} =12, is a sequence in K with |s" — s°| — 0, then pign — pgo.

Proof. Any s € K is represented uniquely as s = sje! +- -+ sye”, with s1,...,s5y €
R. Let s; =s;V0and s; = —(s; A0). Then s; = 5] —s;. We have s = s’ — 5" with
s'=sfel +---+syeV € K and 8" = s7e! + -+ sye™ € K. Hence pig * pugn = fig.
Noting that fig«(z) # 0 by infinite divisibility, we have
() = Bele) e (2T e (2
fsr(2) - Jia(2)7 L flew (2)°
which is (3.5). Now (3.6) is a consequence of (3.5) by the uniqueness of the expression
as formulated in [22], E 12.2.
To prove that pisn — g0 for s® — %, decompose s" as s" = ste' +-- -+ s%eV for
n=0,1,.... Then s7 — s} for j = 1,..., N and (3.5) shows that [is(z) — [is0(2)
for all z. O
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Proof of Proposition 3.3. Let {X,: s € K} satisfy (i)—(iv) of Definition 3.1. We show
that it is continuous in probability.

For s € K let us = L£(X;). First we show that {u: s € K} is a K-parameter
convolution semigroup. By repeating the first part of the proof of Proposition 3.5 it
follows that pi,i,e = per * pg2. By K-right continuity of the paths and by Xy = 0
a.s. it follows that pu;, s — dp whenever ¢, | 0.

Let {s"}nz12.. C K and s° € K with |s" — s — 0. Let {e',...,e"} be a
weak basis of K and decompose s" and s° as s" = sPe! + --- + s%e” and s* =
stel +---+s3 e where 57,59 € R for all j and n. Define u” by u" = ufe'+- - -4uje",
where u} = s?Vs? for j=1,...,N. Since uj — s} > 0 for all 7 we have u" —s" € K,
that is s" <x v" and u" € K. Similarly, s <x u™. Since X;n — X0 = [Xyn — Xyo0] —
[Xyn — Xsn] it suffices to prove that the two terms on the right-hand side converge to
zero in probability. As u™ — s™, u™ —s° — 0, the result follows from Definition 3.1 (ii)

and the last assertion in Theorem 3.13. ]

Definition 3.14. Let {e!,..., e} be a weak basis of K and let py, ..., px € ID(R?).
We call {p1,...,pn} admissible with respect to {e', ..., e}, if there exists (uniquely,
by Theorem 3.13) a K-parameter convolution semigroup {us: s € K} such that
pei = pj for j=1,...,N.

Let us consider the problem what condition guarantees that {p;,..., px} is ad-
missible with respect to {e!,..., e"}.
Theorem 3.15. Let {e!, ..., eN} be a weak basis of K. Let py,...,px € ID(RY) and
e . vi,7;) be the generating triplet of p;. Then the following three statements are
let (A;,v;,7;) be th ting triplet of p;. Then the following three statement
equivalent.

(i) {p1,...,pn} is admissible with respect to {e*,... eN}.

(ii) If s1,...,5n € R are such that sie' +---+sye™ € K, then p1(2)* ... pn(2)*Y
s an infinitely divisible characteristic function.

(iii) If s1,...,sy € R are such that sie' +---+sye" € K, then s;A;+---+syAy

15 nonnegative-definite and sivy + - -+ + syVn 1S nonnegative.

Proof. By Theorem 3.13, (i) implies (ii). Conversely, suppose that (ii) is true. For each
s € K, define ps € ID(R?) by (3.5) with e = p;. Since si,..., sy are determined
by s, this is well-defined by virtue of (ii). The property pisi s = fig1 * fi52 is obvious.
If s - 0, then s; — 0 for 1 < j < N, and hence pi; — 0p. This shows (i). The

equivalence of (ii) and (iii) is a consequence of E 12.3 of [22]. O
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Corollary 3.16. Let {e',...,e"} be a weak basis of K. Then, every choice of
{p1,...,pn} in ID(R?) is admissible with respect to {e!,... e~} if and only if the

system {et, ..., eN} is a strong basis of K.

Proof. If {e!,...,eN} is a strong basis, then condition (ii) of the theorem above is
automatically satisfied, since s; > 0 for j = 1,...,N. Conversely, suppose that
{e',...,eN} is not a strong basis. Then, we can choose j, such that there exists

s=siel +---+syel¥ € K with s;, < 0. Let p € ID(R?) be nontrivial and p; = p for
j # jo and p;, = p° with ¢ so large that (1 —¢)s;, > sy + -+ + sy. By the theorem

above, {p1,...,px} is then not admissible with respect to {e',...,e"}. O

Example 3.17. Let e',e? e3> and K be as in Example 2.8. Then, {py, ps, p3} is
admissible with respect to {e',e? €*} if and only if the following condition (3.7) or,

equivalently, (3.8) is satisfied:

(3.7) aA; + (1 —a)Ay —a(l —a)A3 € M, for 0 <a <1,
' avy + (1 —a)vy —a(l —a)vz = 0 for0 <a<1,
(3.8) (A3z,2)Y2 < (A2, 2)Y2 + (Agz, 2)1/? for 2 € R?,
. V3(B)1/2 < l/l(B)l/2 + V2(B)1/2 for B € B(Rd)

Indeed, for aq, a9, a3 > 0, the condition that a;s; + asse + aszsz > 0 for all s =

3 € K is expressed by the condition (2.5) or, equivalently, (2.6).

sie! + sqe? + sse
Hence, by Theorem 3.15 we get the result.
For example, if p; = ps = p with triplet (A, v, ), then the admissibility condition

for {p, p, ps} is that 44 — A3 € M , and 4v — 13 > 0.

Example 3.18. Let K be the circular cone in R® defined by 22 +23 < 22 and z3 > 0.
Let €', €, €3 be as in (2.3). These form a weak basis of K. Notice that the points e,
e?, €3 are located on the circle C' defined by 2? + 22 = 1,23 = 1 and that the triangle
ele?e? is equilateral. Thus K is the union of three cones, each of which is isomorphic
to the cone of Example 2.8. Hence we conclude the following from Example 3.17. Let
p; € ID(RY) for j = 1,2,3. Then, {p1, p2, p3} is admissible with respect to {e', e? €3}

if and only if, for (k,l,m) = (1,2,3), (2,3,1), and (3,1, 2),

(3.9) {aAk—l—(l—a)Al—a(l—a)AmEijd for 0 <a <1,

avg + (1 —a)yy —a(l —a)v, >0 for0 <a<1
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or, equivalently,

{(Amz, V2 ( Az, 2)Y2 + (A2, 2) Y2 for 2 € R?,

3.10
(3.10) Vi (B)Y? < v (B)Y? + yy(B)Y/? for B € B(R?).

For example, for any p € ID(R?), {p, p, p} is admissible with respect to {e!, 2, €3}
and the associated semigroup {us: s € K} satisfies us = p for any s € C, which
is proved from (2.7). As another example, let p; = p, = p € ID(R?) with triplet
(A,v,7). Then, like in Example 3.17, {p, p, p3} is admissible with respect to {e!, €%, *}
if and only if 44 — A3 € M, and 4v — v3 > 0.

Suppose that Supp(p;) C L; for j = 1,2,3, where L; are linear subspaces of R
such that any ¢ € L, + Ly + Ls is uniquely decomposed as z = z' + 22 4+ 2 with
27 € Lj. Then, {p1, pa, p3} is admissible with respect to {e',e?, €3} only if each p; is

trivial, as will be seen in Corollary 3.21.

Example 3.19. Let €',...,e* and K be as in Example 2.9. Let p; € ID(R?) for
j = 1,2,3. Then, {py, p2, p3} is admissible with respect to {e!,e? €3} if and only if
Ay + Ay — Ajz is nonnegative-definite and vy + v, — v3 > 0. This is an immediate

consequence of the characterization of the dual cone given in Example 2.9.

Let us give some other applications of Theorem 3.13. For a d x d matrix A,
A(R?) = {Az: r € R?} denotes the range of A.

Proposition 3.20. Let L,,..., Ly be linear subspaces of R¢ and set L = Ly +-- -+
Ly. Assume that any x € L is uniquely decomposed as v = z'+-+-+a™N with 27 € L;
forj =1,...,N. Let {e',...,e"N} be a weak basis of K. Let {js: s € K} be a K-
parameter convolution semigroup on R® such that Supp(pe) C Lj forj=1,...,N.
If there is s € K satisfying s = sie' + - -+ sye’N with s;, < 0, then pi, is trivial.

Proof. Step 1. Let us prove the assertion under the assumption that L;, j =1,..., N,
are orthogonal. Let (A;,v;,7;) be the generating triplet of p.. It follows from
Supp(es) € L; that A;(R?Y) C Lj, Supp(v;) € L; and v; € L; (cf. Proposition
24.17 of [22]). Now choose s such that s;; < 0. Let z € Lj. Then, by (3.6)
0 < (z,(s141 + -+ snvAn)z) = sj,(2, Aj,z). Hence (z,Aj,z) = 0. It follows that
Aj,z =0. Since A;(R?) = {4;2: z € A;(R?)} and 4;(R?) C L;, we see that A;(R?) =
{A;z: z € L;}. Therefore, A; (R?) = {0}, that is, A;, = 0. Let B be a Borel set in
Lj,. Then v;(B) < v;(Lj, N L;) =0 for j # jo. Hence s;,v,,(B) > 0. Since sj, < 0,
this means that v;,(B) = 0. That is, vj, = 0. Thus, g, is trivial.
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Step 2. General case. There exists a linear transformation 7 from R¢ onto
R? such that the images Lg- of Ly by T, j = 1,..., N, are orthogonal. Denote
ph(B) = pus(T7B). Tt is readily seen that {uf: s € K} is a convolution semigroup.
Since uij(Lg-) = Ll (T‘ng) = ltei (L;) = 1, we have Supp(uij) C Lg. Hence, by Step

1, uijo is trivial, that is, g, is trivial. UJ

Corollary 3.21. Under the same assumptions as as in Proposition 3.20, if, for every
j, there is an s = sle' + - + S{VGN € K satisfying sg < 0, then {us: s € K} is

trivial.

Let K and K be cones satisfying K C K. Let {u,: s € K} and {Ji,: s € K}
be, respectively, K- and IN(—parameter convolution semigroups on R?. We say that
{is: s € K} is an extension of {y,: s € K} if Jiy = pu, for all s € K.

Proposition 3.22. Let K be an N-dimensional cone with strong basis {e', ..., eN}.
Then there exists a K -parameter convolution semigroup {ps: s € K} on R such that,
for any N-dimensional cone K satisfying KDK and K # K, {us: s € K} is not
extendable to a I?—pammeter convolution semigroup. In particular if, for the Lévy
measures vj of [, there are B; € B(R), j = 1,..., N, such that v;j(B;) > 0 and
vk(Bj) =0 for k # j, then {ps: s € K} is not extendable.

Proof. Let {us: s € K} be as above and let K be an N-dimensional cone satisfying
K D K and K # K. Suppose that {i,: s € K} is extendable to {fi;: s € K}. Since
{et,...,eN} is a weak basis of K but not a strong basis, there is s € K such that
s = siel + -+ sye with s; < 0 for some j. The Lévy measure vy of 15 satisfies
Vs = 814 + -+ + syvy by Theorem 3.13. Hence v,(B;) = s;vj(B;) < 0, which is
absurd. OJ

4. GENERATIVE AND NON-GENERATIVE CONVOLUTION SEMIGROUPS

In this section we make a deeper study of the relations between K-parameter
convolution semigroups and K-parameter Lévy processes in law. Proposition 3.5
motivates the following definition.

Definition 4.1. Let {u: s € K} be a convolution semigroup on R?.

(i) A K-parameter Lévy process in law {X;: s € K} is associated with {p: s € K}
if pus = L(X;) for all s € K;

(i) {us: s € K} is generative if there exists a K-parameter Lévy process in law

associated with it. Otherwise it is called non-generative;
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(iii) {ps: s € K} is unique-generative if it is generative and any two K-parameter
Lévy processes in law, {X!: s € K} and {X?: s € K}, associated with it satisfy
{X!:se K} L {X2: s € K}, which denotes that the two processes have a common
system of finite-dimensional marginals; {us: s € K} is multiple-generative if it is

generative and not unique-generative.

In the case K = R, it is well-known that any R, -parameter convolution semi-
group is unique-generative. But in Remark 4.6 we will give an example of a multiple-
generative convolution semigroup. In Theorem 4.13 we will construct a class of
non-generative convolution semigroups, which includes the canonical M, ,-parameter
convolution semigroup. On the other hand, we will prove that if {us: s € K} is a
convolution semigroup on R?, then each of the following three conditions is sufficient
for {ys} to be generative: (i) K has a strong basis, (ii) p, is purely non-Gaussian for
all s, (iii) d = 1. When K has a strong basis and pu is Gaussian we give a necessary
and sufficient condition that { s} is unique-generative. First we state a few properties

of generative convolution semigroups.

Definition 4.2. Let {X,: s € K} be a K-parameter Lévy process in law on RC.
If {s7}1<j<n is K-increasing, then let us call £((X)i<j<n) & K-increasing marginal
distribution of {X,: s € K}.

Theorem 4.3. Let {us: s € K} denote a generative K -parameter convolution semi-
group. Then {ps: s € K} determines uniquely all K -increasing marginal distributions

of a K-parameter Lévy process in law {Xs: s € K} associated with it.

Proof. Let {s?}1<j<n be K-increasing. Let s® = 0. Then Xy — Xg-1, j = 1,...,n,
are independent and L£(X, — Xy-1) = L(X_g-1) = pg_g-1. Hence L((Xy —
X,i-1)1<j<n) 18 the direct product of jug -1, 1 < j < n. Since (Xg)1<j<n is obtained

from (X —Xgi-1)1<j<n by a linear transformation, its distribution is determined. [

Let us give a method of construction of K-parameter Lévy processes in law.

Proposition 4.4. Let {u,: s € K} be a K-parameter convolution semigroup on R?
and let n > 2. For each j = 1,...,n let {XJ: s € K} be a K-parameter Lévy
process (resp. Lévy process in law) associated with {ps: s € K}. Let U; be nonneg-
ative random variables such that 1 = Uy + -+~ + U, a.s. Suppose that {X}: s €
K},....,{X": s € K} and (Uy,...,U,)" are independent. Define {X;: s € K} by
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Xy=X} 4+ +X}} , forse€ K. Then {X,: s € K} is a K-parameter Lévy process
(resp. Lévy process in law) associated with {us: s € K}.

Proof. First assume that Uy, ..., U, are nonrandom. Then it follows from Lemma 3.6

that { X} is a K-parameter Lévy process in law. Moreover, for s € K we have

L(X;) = LX) weex LX) = ol = g,

S

that is, { X} is associated with {yus}.

If Uy, ..., U, are random we hence have that { X} is a K-parameter Lévy process
in law associated with {us} conditional on (Ui, ..., U,). It is easily seen that the same
holds in the unconditional distribution.

If the paths of {X7} are K-cadlag a.s., then the same holds for {X,}. Thus, the
property of being a K-parameter Lévy process is inherited from {X7} to {X,}. O

Let (RY)X be the set of mappings w = (w(s))sex from K into R? and let B(R?)X
be the o-algebra generated by the coordinate mappings & (w) = w(s),s € K. If
{X: s € K} is a K-parameter Lévy process in law, then it induces a unique proba-
bility measure @ on ((RY)%, B(R?)X) such that {X,: s € K} is identical in law with
{&:s € K} under Q. We call @) the distribution (or law) of {X;: s € K} and
denote @ = L({X: s € K}). The finite-dimensional marginals of {£;} under @ are
called the marginals of (). For a K-parameter convolution semigroup {us: s € K}
denote the set of distributions of K-parameter Lévy processes in law associated with
it by L({ps: s € K}). Then, {us: s € K} is generative (resp. multiple-generative,
unique-generative, non-generative) if and only if L({us: s € K}) is nonempty (resp.

has more than one element, is a singleton, is empty).

Theorem 4.5. Let {us: s € K} be a multiple-generative convolution semigroup.

Then L({ps: s € K}) is a conver set of probability measures.

Proof. Let Q°, Q" € L({us: s € K}) and p € [0,1]. Let {X?: s € K} and {X!: s €
K} be K-parameter Lévy processes in law with Q' = L({X/: s € K}) for j =
0,1, and U be a random variable such that {X?: s € K},{X!: s € K} and U are
independent and p = P(U = 1) = 1 — P(U = 0). Define X; = X7, + X} ), for
s € K. Then from Proposition 4.4 it follows that {X,: s € K} is a K-parameter
Lévy process in law associated with {us: s € K}. Let Q = L({X;: s € K}). For

n>1,s...,s"€ K and By,..., B, € B(R?), we have

Q(gsl eBla-"ags” GBn):P(Xsl GBla---aXs" GBn)
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= pP(X% e B, ..., X% eB,)+(1-pP(XLeB,...,X. €B,),

that is, pQ° + (1 — p)Q' = Q € L({u,: s € K}), as desired. O

Remark 4.6. In the setting of Theorem 4.5 let @ € L({us: s € K}). Then, all
K-increasing marginals of () are infinitely divisible. But, in general the marginals of
@ need not be infinitely divisible. To illustrate, let K = R%. Let {p,: s € R%} be the
convolution semigroup on R given by y; = N(0,s; + s2) for s = (s1,52)" € RL. For
j=1,2,3,let {V/:t > 0} be independent standard Wiener processes on R. Define
{X):seRy by X0 =V! + V2, and {X}: s e RZ} by X! =V32, . Let Q% and Q'
be the respectively laws. Since Q° # Q', {us: s € R%} is multiple-generative. Let
0<p<1landlet @=pQR"+ (1—p)Q'. Then the distribution p of (&.1,&.2)" under
Q is not infinitely divisible, where e! = (1,0)" and e = (0,1)".

The proof is as follows. For any B € B(R?), u(B) = pN,(0,diag(1,1))(B) + (1 —
p)p(B), where p is a degenerate Gaussian concentrated on the line L, = {(zy,22)" €
R?: xy = x5}. Suppose that p is infinitely divisible. Then the projection o of y onto
the line Ly = {(z1,22)" € R?: 2 = —x,} has to be infinitely divisible by Proposition
11.10 of [22]. But o is a mixture of a Gaussian distribution and a point mass at the

origin, which is not infinitely divisible by Remark 26.3 of [22].

The next result shows that when K has a strong basis any convolution semigroup
is generative, and we give a characterization of the unique-generative convolution

semigroups.

Theorem 4.7. Let K have a strong basis {e',...,eN} and let {us: s € K} be a
K -parameter convolution semigroup on R*. Let Yy = V! + .-+ VN for s = sie' +
oo+ sye € K, where {V?:t >0}, j =1,...,N, are independent Lévy processes
satisfying L(VY) = p forj=1,...,N.

(i) The semigroup {us} is generative. In particular, {Ys: s € K} is a K-
parameter Lévy process associated with {js}.

(ii) The following three statements (a)—(c) are equivalent:

(a) {us} is unique-generative.
(b) Any K -parameter Lévy process in law {Xs: s € K} associated with {us: s € K}
satisfies {Xs: s € K} 4 {Y;: s e K}.

(c) For any K-parameter Lévy process in law {X: s € K} associated with {us: s € K}

and any s = sjet + -+ + sye¥ € K we have Xo=Xg o0+ + Xjon a.s.
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(i) If {us} is unique-generative, then any K-parameter Lévy process in law

{Xs: s € K} associated with {ps} has a K-parameter Lévy process modification.

Remark 4.8. (i) We do not know whether every K-parameter Lévy process in law
has a K-parameter Lévy process modification.

(ii) From Theorem 4.7 (ii) it follows that if {us: s € K} is unique-generative,
then the N processes {Xyi:t > 0},...,{X;ev: ¢ > 0} are independent whenever
{X;: s € K} is a K-parameter Lévy process in law associated with {p}.

Proof of Theorem 4.7. (i) Example 3.8 shows that {Y;} is a K-parameter Lévy pro-
cess. To see that it is associated with {u,}, note that for s = sje' +--- + sye” we
have £(Ys) = L(Vyy) s -+ x LIVIT) = pgh 5 - gl = .

(ii) It follows directly from (i) that (a) and (b) are equivalent. Assume that { s}
is unique-generative. Let { X} be a K-parameter Lévy process in law associated with
{us} and let s = sie' +--- + sye” € K. Then, from (b),

P(Xslel+---+sNeN = Xslel +oeeet XsNeN) = P(Y;lel+---+sNeN = Y;161 +eeet )/sNeN)

and since this probability trivially is 1, we get (c).
Conversely, assume that (c) holds. Let {X;} be a K-parameter Lévy process in
law associated with {us}. Let n > 1 and 0 = s9 < s1 < ... < s,. Define random

vectors Z; j fori=1,...,N,7=0,...,n by

Zl,] = X8n81+"'+8n6i71+8j6i .

Thus, Z;0 = Z;_1,, for i > 2 and Z;y = 0. If follows from (ii) of Definition 3.1 that
Zij—Zij1withi=1,...,Nand j =1,...,n are independent. Since

Zi,j :Xsnel —|—-.-—|—Xsnei—1 +Xs]-ei a. s.

by (c), we see that X, . — X, o with i = 1,...,N and j = 1,...,n are inde-
pendent. Since this holds for arbitrary n > 1 and 0 < s; < ... < 8y, {Xper: t >
0},...,{Xen:t > 0} are independent Lévy processes in law with £(X,;) = pu,; for
all j. Choosing their modifications which are Lévy processes we now see that (b)
holds.

(iii) Let {us} be unique-generative. Let { X} be a K-parameter Lévy process in
law associated with {us}. Since {Xyi: ¢ > 0} is a Lévy process in law by Remark
3.11, it has a Lévy process modification {U;Z: t > 0}. For simplicity let {Utj: t >0}
be chosen such that all paths are cadlag. For s = sie! + -+- + syel¥ € K define
Xl as X, =U) +---+UN. Then {X.: s € K} is a modification of {X,: s € K}
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by (c). We claim that all paths of {X!: s € K} are K-cadlag. Indeed, K-right
continuity follows from right continuity of U/. If s” = s%e' + --- + sheV is K-
increasing, s" € K \ {s°} and s" — 5% = s%! + -+ 4+ sQe", then, by Lemma 2.14,
there exists a unique nonempty subset a of {1,..., N} such that, s” 1, s°. Therefore,
lim,, 00 X0 = zj@ Ug? + Zj@ lim,,_, o USJ;L exists. O

Corollary 4.9. Let K have a strong basis. If {us: s € K} is unique-generative
and {Xs: s € K} is a K-parameter Lévy process in law associated with it, then any

finite-dimensional marginal of {X: s € K} is infinitely divisible.

This is a consequence of (ii) of the theorem above. This fact should be compared
with Remark 4.6.

Next we give a sufficient condition for {us: s € K} to be unique-generative.
Recall that a subset L of R? is an additive subgroup if # — y € L whenever z and y
are in L. For instance, a linear subspace is an additive subgroup. As another example
note that QQ is an additive subgroup of R; in particular we see that additive subgroups

need not be closed.

Theorem 4.10. Let K have a strong basis {e',...,eN} and {us : s € K} be a
K -parameter convolution semigroup on R¢. For j =1,...,N let L; be an additive
subgroup of R such that L; € B(R?). Assume that for alli # j we have L,NL; = {0}.
Let puei(Lj) =1 fort >0 and j=1,...,N. Then {ps} is unique-generative.

Proof. We use induction in N. In the case N = 1 the theorem is trivially true.
Assume that the theorem holds for N — 1 in place of N. Let {X;: s € K} be
a K-parameter Lévy process in law associated with {us}. By Theorem 4.7 it is
enough to verify condition (c). Consider the (N — 1)-dimensional cones K; and
K, generated by {e?,...,eN} and by {e!,e3 ..., eV}, respectively. Then, by the
induction hypothesis, both {us: s € K;} and {us: s € Ky} are unique-generative.
The restrictions {X;: s € K1} and {X;: s € Ky} are associated with {u,: s € K}
and {us: s € Ko}, respectively. Let s = sjel + -+ + sye™ € K and define s' =
s —siel € Ky and s? = s — s9e? € K,. Using condition (c) for the two restrictions,

we decompose X, as

(41) Xy, = Xa+ (X, —Xa) = X2+ + X, ov + (X — Xg1),
(4.2) Xy = Xe+ (Xs—Xe) Z Xyt 4+ Xgges + -+ Xy o + (X5 — Xg2).
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By equating (4.1) and (4.2) it follows that (X, — X;1) — X, o 2 (X, — Xy2) — Xy,e2.
The left-hand side is concentrated on L; and the right-hand side on L,. Therefore,
X; — Xg = X a.s. Inserting this in (4.1) we get the a.s. identity in (c) for
{Xs:s€ K}. O

Example 4.11. (i) In the case N = 2 the additive subgroups L; = Q and L, = (cQ)?
with ¢ € R\ Q satisfy the condition L; N Ly = {0}.

(ii) Let the setting be as in Example 3.8 (iii). Let {us: s € K} be the K-
parameter convolution semigroup defined by ps = L(X;) for s € K. Then, by the

theorem above, {j: s € K} is unique-generative.

In the following lemma we discuss the consequences of changing the location
parameters in the triplets of a K-parameter convolution semigroup. The proof is left

to the reader. Then we study the problem of non-generativeness.

Lemma 4.12. Let {us: s € K} be a K-parameter convolution semigroup on RY.
Let {vt: s € K} be a family of constants in R? such that fy§1+52 = fygl + 722 for
s, s2 € K and o}, = t4! for s € K,t > 0. Let i = p, #0s. Then {pt: s € K}
is a convolution semigroup. Moreover, {us: s € K} is unique-generative (resp. non-
generative, multiple-generative) if and only if {u?: s € K} is unique-generative (resp.

non-generative, multiple-generative).

Theorem 4.13. Let K = M}, , with d > 2. Let {us: s € K} be a nontrivial K-
parameter convolution semigroup on R such that [ |x|*ps(dz) < oo and the covari-
ance matriz vs of ps satisfies vy <y s for all s € K. Then {us} is non-generative. In
particular, the canonical M}, ;-parameter convolution semigroup defined in Example

3.9 is non-generative.

Proof. The mean my of s satisfies mg 2 = mga + my and my; = tm,. Hence, by
Lemma 4.12 we may and do assume that p, has mean zero. The covariance matrix
satisfies v 2 = vy + vs2 and vy = twg.

Step 1. Proof in the case d = 2. Suppose there exists a K-parameter Lévy process
in law {X;: s € K} on R? associated with {us}. Let

L 1 21/2 ) ) 21/2 5 2 21/2
e = e = e =
- 21/2 2 ) - 21/2 1 ) - 21/2 ) :

Let K, be the cone generated by {e',e?}. Since e' and e? have rank one, there

are ti,ty € [0,1] such that v, = tie! and v,e = t€?. This is easily seen using
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diagonalization by orthogonal matrices. It follows that for any ¢ > 0, 1 and pug2
are concentrated on L; and Lo, respectively, where L; = {(a,2%a): a € R} and
L, = {(2"2a,a): a € R}. Hence, by Theorem 4.10, the restriction {u,: s € Ko}
is unique-generative. Since {X;: s € Ky} is a Ky-parameter Lévy process in law
associated with {us: s € Ky}, it follows from Remark 4.8 that X, and X, are
independent. Let (X;); denote the jth coordinate of X;. Since ves_o1 <y €* —e! =
diag(1,0) and since X . — X 4 Xe3 o1, we have (X3 — Xo1)o = 0 a.s. Similarly,
(Xes — Xe2)1 = 0 a.s. Now, using Xz = Xy + (Xes — Xyi) for j = 1,2, we get
(Xes)1 = (Xe2)p and (Xes)a = (Xe1)g a.s. Hence (Xes)y and (Xes); are independent.
It follows that v, is diagonal, say, v,z = diag(a;,as) with a;,a3 > 0. We have
Ves_o1 = diag(t,0) with ¢ > 0 since v,s_1 <y € —e'. Now, looking at nondiagonal
entries of v, = Vs — Vps_1 and v, = t1e!, we conclude that ¢; = 0. Thus v, = 0.
Hence v,s = ves_o1 <x € — e!, which shows that as = 0. The same kind of argument
gives a; = 0 and v,2 = v,3 = 0. It follows that g1 = p.2 = pes = dp. Since the system
{e',e?, €3} is linearly independent, it is a weak basis of K. Hence, by Theorem 3.13,
is = 0g for all s € K, contradicting the assumption of nontriviality. Therefore, the
associated Lévy process in law does not exist.

Step 2. Proof in the case d > 2. Suppose that we can find a K-parameter
Lévy process in law {X,: s € K} on R? associated with {yu,: s € K}. Since {u,} is
nontrivial, there is s° € K such that v, # 0. Let p = rank(s®). Then p > 1. Using
diagonalization, we can decompose s° as s® = s' + ... + s, where, for each j > 1,
s’ € K and rank(s’) = 1. Since v = vy + -+ + vw, we have v,; # 0 for some
7 = 1. Thus we may and do assume that rank(s’) = 1 and v, # 0. There is a d x d
orthogonal matrix 7 such that rs%’ = diag(a,0,...,0) with a > 0, where 7’ is the

transpose of r. Define
Ky={s= (Sjk);'l,kzl € K: sj, =0 except for j,k € {1,2}},
K, = {r'sr: s € Ky}.

Then K, is a cone and s° € K.

Notice that cov(rX,) = rvgr’ for s € K, since cov(Xs) = vs. If s € K, then
rugr’ <k rsr' € Ky and hence rvgr’ € Ky. Therefore, if s € K, then (rX;); =0 a.s.
for j #1,2.

For u € My, let Tou € Ky be the natural extension of u and let Tu = r'(Tou)r.

Then T is an isomorphism from M, , to K;. Define X? = ((rXz,)1, (rXr,)2)" for

u € My, Then {X7,:u € M) ,} is an My ,-parameter Lévy process in law on
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R?, and such is {rXrp,: u € M) ,}. Tt follows that {X2: u € M) ,} is an M} ,-
parameter Lévy process in law on R?. Let 0 = £(X?). Then {u: u € My ,} is an
M, ,-parameter convolution semigroup on R? and cov(12) equals the restriction of
rop,r’ to the first 2 x 2 block. Since rvp,r’ <g r(Tu)r' = Tyu € Ky, we see that
cov(py) Sp, u. We have cov(uj,) # 0, where u” is chosen so that Tu’ = s°. But

this is impossible in view of Step 1. Hence, {X;: s € K} does not exist. a

Example 4.14. Let K = M, , and u, = N5(0, s). Note that M, ., has a weak basis

{e', €2, e*}, where

b (10 5 (00 5_ (11
e‘(o 0>’€_<0 1>’€_ 1 1)

Let Ky be the cone generated by {e',e? e3}. Then, from Theorem 4.10 it follows
that {us: s € Ko} is a unique-generative Ky-parameter convolution semigroup. Note
also that, by Theorem 4.7 (ii), any Ky-parameter Lévy process in law associated with

{ps: s € Ky} is identical in law with

{(V0)T+(0,V2)T + (V2 V2Tt s = sie' + s0e” + s3¢® € Ko},

8§17 $37 ° 83
where {V;! : t > 0},{V?: t > 0} and {V;*: t > 0} are independent standard Wiener
processes on R. In particular, it follows that any Kj-parameter Lévy process in law

associated with {y,: s € Ky} has a continuous modification.

Remark 4.15. Let K be a circular cone in R®. Then there is a Gaussian K-parameter
convolution semigroup on R? which is non-generative.

Indeed, by Proposition 2.10 and Remark 3.10 we may assume that K = {u =
(u1,ug, u3) " € R3: u?+u2 < u2,uz > 0}. Then, by Example 2.12, K is isomorphic to
the cone M,. Let T: K — M, , be an isomorphism. For u € K let y, = Ny(0,Tu).
Since the canonical M, ,-parameter convolution semigroup is non-generative, so is

the K -parameter convolution semigroup {t,}.

In the direction converse to Theorem 4.10 we consider the following question:
When is a K-parameter convolution semigroup for K with a strong basis multiple-

generative 7

Theorem 4.16. Let K have a strong basis {e',...,eN}. Let {us : s € K} be a
K -parameter convolution semigroup on R with triplet (A, vy, 7s). Assume that for

some i and k with i # k we have either (i) or (ii), where

(1) Aei(R?) N Agx (RY) # {0};
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(ii) vei and vy are not mutually singular.
Then {us : s € K} is multiple-generative.
To prove this result we need two lemmas, the proof of which are left to the reader.

Lemma 4.17. Assume A (R?) N A2 (RY) # {0}. Then there exist three symmetric
nonnegative-definite matrices A°, A, A% such that A° is nonzero, Ay = A° + A' and
Ap = A% 4 A2,

Lemma 4.18. Assume that the Lévy measures v, and ve2 are not mutually singular.

0

Then there exist three Lévy measures v°, v' and v?> on R, such that 1° is nontrivial,

Ve = 0 + vt and v, =10 + 12,

Proof of Theorem 4.16. Let us for simplicity assume that either (i) or (ii) holds with
t = 1 and k£ = 2. Then, by virtue of the two lemmas above, there exist three

0 is non-zero and such that

generating triplets (47,17, +7), j = 0,1, 2, such that A° or v
(Agis Veiy Yei ) = (A°+ AT 10 + 17 40 +~7) for j = 1,2. Let {V,;j: t>0},5=0,...,N,
be independent Lévy processes on R? such that £(V{) has triplet (A7,17,~7) for
j=0,1,2 and £(V{) has triplet (A, vei, Vei) for j = 3,...,N. Define {X, : s € K}
by Xy =V, +V!+--4+ V) fors =sie' +---+sye € K. Then {X,} is
a K-parameter Lévy process by Lemma 3.6 and Example 3.8, and it is associated
with {us}t. Since {V}’} is a non-trivial Lévy process, {X;:} and {X2} are not
independent. Thus, by Remark 4.8 (ii), {us: s € K} is multiple-generative. O

We have the following necessary and sufficient condition that a semigroup is
unique-generative when K has a strong basis and the semigroup is Gaussian.
Theorem 4.19. Let K have a strong basis {e',...,eN} and {us : s € K} be a K-
parameter convolution semigroup on RY. Let s be Gaussian, that is jus has generating
triplet (As,0,7s), for s € K. Then {us} is unique-generative if and only if for all
i # j we have A (RY) N A (R?) = {0}.

Proof. If for some i # j we have A, (R?)N A, (RY) # {0} then by Theorem 4.16 {1}
is multiple-generative. Conversely assume that A.:(R?) N A,; (R?) = {0} for all i # j.
Let L; = A, (R?) for j =1,...,N. Let ! = pig % 6_,,. Then ,ugej (L;) =1 for every
t > 0 and j. By Theorem 4.10 the convolution semigroup {xf} is unique-generative,
and by Lemma 4.12 the same holds for {y}. O

In another direction, we now let K be a general cone and consider the case where

(s is purely non-Gaussian.
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Lemma 4.20. Let {e',...,e"} be a weak basis of K and let {us: s € K} be a

convolution semigroup such that us has triplet (0,v,,0) for s € K. Let v =vp +---+

von. Then, for each s € K, vy is absolutely continuous with respect to v. Moreover,

the family {¢s: s € K} of densities ¢s of vs with respect to v can be chosen such that

(i) ¢er(x) + -+ + den(x) < 1 for x € RY,

(ii) ¢s(x) = 810e1 () + -+ + Snpen (x) for s € K and x € R?,

(iii) 8™ — s implies ¢gn(x) — Pg(z) for x € RY,
) &

(iv) ¢s(z) =0 for s € K and x € RY.

Proof. Let s = sje! +---+sye’ and let Ky = {s € K: s1,...,5y € Q}. Note that
e',...,eN € K,. Since vy = 51V, + --- + syvev by Theorem 3.13 it follows that v,
is absolutely continuous with respect to v. Fix a density ¢? of v; with respect to v.
Then

(4.3) @1 (2) + -+ + Gew (2) = 1, 63(2) = 5100 () + -+ + snPen (), ¢5(x) > 0

each holding for v-almost every . Let B = {x € R?: (4.3) holds for all s € Kj}.
Then v(R? \ B) = 0. Define

¢s(7) = ¢°(z) for s € Ky and z € B,
bs(x) = 5102 (x) + -+ + syp’n (z) for s € K\ Ky and 7 € B,
¢s(x) =0 for s € K and z € R? \ B.

Then, ¢ is a density of v, with respect to v; (i) and (ii) are from the definition of ¢@s;
(iii) is from (ii) since s — s if and only if s7 — s for j = 1,..., N; (iv) is from the
definition for s € K, and by approximation using (iii) for s for s € K \ K. O

Consider the family {¢;: s € K} of densities of Lemma 4.20 and define, for
se K,

(4.4) ={(t,2) R, xR*: 0 <t < ()}

Theorem 4.21. Let K be an arbitrary cone. Let {yus: s € K} be a K-parameter
convolution semigroup on R such that pg is purely non-Gaussian for all s, that is i
has triplet (0,vs,7vs). Then {us} is generative.

To construct an associated K-parameter Lévy process in law, let {J(A): A €
B(R, x R?)}, defined on a probability space (0, F, P), be a Poisson random measure
with intensity measure \(d(t,z)) = dtv(dzx), where v = va + - -+ v,n. Fors € K
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define

(45) X = [ 1@ 0) = Mlta)+ [ ol (@)I(dle0) +

Then {Xs: s € K} is a K-parameter Lévy process in law associated with {us}.
If, in addition, [4.(1 A |z])vs(dz) < oo for all s € K, then {X,: s € K} is a

K -parameter Lévy process.

The first integral on the right-hand side of (4.5) is a stochastic integral only
determined up to null sets. Hence, we may change X;(w) on a null set of w’s while
(4.5) remains true. Thus, the last statement says that it is possible to choose X (w)

for w € 2 and s € K such that all paths are K-cadlag.

Proof of the theorem. According to Lemma 4.12 we may and do assume 7, = 0 for
all s. Let D! = D,n{(t,x): |z| < 1}, D? = D,n{(t,x): |z] > 1}, flt,z) =
xlpi(t,x) and f2(t,x) = xlp(t,x). Let U} = [ fl(t,x)(J(d(t,z)) — A(d(t,z))) and
U? = [ f2(t,x)J(d(t,z)). That is, U/ is the jth term on the right-hand side of (4.5)
for y = 1,2. Using dv, = ¢dv it follows that

MD?) = vy({z: |z] > 1}) < oo,
L2t 2)A(d(t, x)) = z|*v,(dx 0.
Jure e = [ et <

Hence, U? exists as Lebesgue-Stieltjes integral with respect to J(d(t,z)) while U}
exists as stochastic integral with respect to the compensated measure J(d(t,z)) —
A(d(t,z)). Moreover, it is well-known that for s, s> € K and z € R? we have

(4.6)Eei(z’Us12_Us11> = exp/ (ei@’(fs)l?_fsll)(t’x)) —1—i{z, (fh — fsll)(t,fv)>) Ad(t,x)),
(AT)B VTR = “p/(gm@(@mmm_gAM@x»
Step 1. Let s', 52 € K with s' <x s®. Then, D, C D,» and

iz (@) if ¢a(x) <t < gp(x)
0 otherwise.

(8)  (fh = f2)(t) = Ly, (1) = {
Therefore, using ¢y2 — ¢g1 = ¢z and v o (dz) = ¢z o (x)v(dr), we find that
[ (e 1 =i (71 = g2 (e) A 2)

= /d r1fg<13 (@) (ei<z"""> —1—i(z,z)) ve_a(d).
R
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Inserting this in (4.6) we find that £(U, —U,) has triplet (0, 1{<13(2)vs2_g1 (dz), 0).
Similar arguments show that £(U% — UZ) has triplet (0, L{jz>13(2)v52—s (dz), 0).

Step 2. Let n > 2 and {s’};-1__, be K-increasing. Then Dzk,l C Dzk and
(fsj,c — fsj,c,l)(t,x) = xlDik\Dik—l(t,x) for j = 1,2 and k = 2,...,n. Hence, since the
sets D, \ D}y, ..., D\ D}, D5\ D%, ..., D2\ D?,_, are disjoint, U}, —U?,_,,j =
1,2,k =2,...,n, are independent; consequently also X — X1 = (USI,c — Uslk,l) +
(U2 —UZ%-.), k =2,...,n, are independent. Moreover, by Step 1, L(X — Xge-1) =
Jlgh g1

Step 3. Let s", s € K with s" — s. By Lemma 4.20 (iii) we have ¢g(x) — ¢s(z)
for all x € R?. Hence, 1p_, (t,z) — 1p, (¢, z) for M\-a.e. (¢,x). Moreover, by Lemma
4.20 (i),(ii),(iv) it follows that

(4.9) 0< o) < |ri| 4+ +|ry| for r =rie' +... +rye” € K.

Decompose s™ and s as s = sfel + -+ + shel¥ and s = sjel + -+ + sye. Since
sf — sjforall j=1,...,N, (4.9) shows that there exists a constant ¢ > 0 such that
Ip,(t, ), 1p,. (t,7) < 1pq(t). Since

|l =FO0D) 1 iz, (fh = O 2))] < Lz, (Fl = FH(E )P
< 312P1(fon = FO & 2) 1P < 5121 202])* 1 o<1y (2) 10,0 (1),
|ei(z,(fsn—fs)(t,:v)> _ 1| <2 1{|x|>1}(x)1[0’c} (t),

it follows from (4.6)(4.7) that £(U?, — U7) — &, for j =1,2.

Step 4. Note that by Step 2 {X,: s € K} satisfies (i)—(ii) of Definition 3.1. It
is immediate that Xo = 0 a.s. Since X, = U} + U? it follows from Step 3 that
{Xs: s € K} is continuous in probability. Thus, we have shown that {X;: s € K}
is a K-parameter Lévy process in law. Moreover, it is associated with {us: s € K}
since we have £(X;) = pu, for s € K by Step 2.

Step 5. Now assume in addition that [o,(1 A |z|)vs(dz) < oo for all s. Let
(T1,Y1), (T3, Y5), . .., be arandom sequence such that J(d(t,x)) = > dr,. i) (d(t, 7))
a.s. Then, using (4.5) we have that
(4.10) Y= Y Y- / w6y (z)v(dz)  as.

M < (Vi) st
where 3 5 s vy [Ym| < 00 a.s. We stress that X, is only determined up to
null sets by (4.10). Let us define X (w) such that all paths are K-cadlag. Let
p € N and define v = p(e! +---+¢eV) € K. Choose a null set N € F such
that 3=, 1 (w)<oun(Vim(w)) Ym(w) is absolutely convergent for all p € N and w € N*.
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Note that if s € K then there is some p € N such that s <x uP. Hence, since
¢s(7) < dur(x) by Lemma 4.20 (ii) and (iv), the series > - Y (w) is
absolutely convergent for all s € K and all w € N°. For s € K let

o) = {Zm:Tm@)@s(ym(w)) Ym(w) = [ 20s(2)v(dz)  if w € N¢

<bs (T (w)

0 ifwe N.

Note that s! < s? implies ¢, < ¢,2. Using this it follows that all paths of {X,: s €
K} are K-cadlag. In fact, the K-left limits can be calculated as follows. Let {s"} in
K\ {s} be K-increasing with s" — s. Then

Xgn — Z Y, — /x<1 zds(x)v(de)

m:Tm <psn (Yem) fOr some n

pointwise on N¢. Thus, {X;: s € K} is a K-parameter Lévy process. a

In the next result we specialize to the case d = 1.

Theorem 4.22. Let K be an arbitrary cone. Let {ys: s € K} be a K-parameter

convolution semigroup on R. Then {us} is generative.

Proof. Let (As,vs,7s) be the triplet of ps. Here A is a nonnegative number. By
the previous theorem there exists a K-parameter Lévy process in law {X!} as-
sociated with the convolution semigroup {fis}, where [ is the distribution with
triplet (0, vs,7vs). Let {Vi: ¢t > 0} be a standard Wiener process, independent of
{X!:se K} If s’ <g s% then Ag < Az, Hence, {X2: s € K} defined by X2 = V),
is a K-parameter Lévy process in law such that £(X?) has triplet (4, 0,0). Hence,
{X,} defined by X, = X!+ X2 is a K-parameter Lévy process in law associated with

{15} O

The following fact on M ,-parameter convolution semigroups is a consequence
of Theorem 4.21 combined with Theorem 4.13.

Proposition 4.23. Let K = M}, , with d > 2. Let {us: s € K} be a K-parameter
convolution semigroup on R such that [ |z|*us(dzr) < oo and vs < s for all s € K,
where v is the covariance matrix of ps. Then pg is Gaussian, that is, the Lévy

measure Vs of g 1S zero.

Proof. Let (As, vs,7s) be the triplet of ;. Decompose ps as us = p), * pll, where p
and p! are infinitely divisible with triplets (0, vy, 75) and (As, 0,0), respectively. Then
sy and g have finite second moments and the covariance matrices v, and v? of pl, ul

satisfy v, = vl + v”. Hence, v!,v) <k s. Since {yu}} is a K-parameter convolution
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semigroup there is a K-parameter Lévy process associated with it by Theorem 4.21.
But, Theorem 4.13 says that this is impossible if {y.} is nontrivial. It follows that
vy = 0. [

Remark 4.24. Let d > 1 and consider the problem of constructing a family of
probability measures {yu,: s € M} ,} on R? which is closed under convolution and
satisfies that s is the covariance matrix of ps. When d = 1 let M , = R,. Then
the latter condition is that s € R, is the variance of u,. In this case there are many
such families. In fact, any infinitely divisible distribution on R with unit variance
corresponds to a family with the desired properties.

Let d > 2. It is remarkable that, up to a change of drift, the canonical M ,-
parameter convolution semigroup is the only family with the desired properties. Pre-
cisely, if {us: s € M ,} satisfies the conditions stated above, then py = pf * 6.,
where my is the mean of u, and {uf: s € M} ,} is the canonical M}, -parameter
convolution semigroup. This follows since {ps * d_,,: s € M, ,} is a convolution

semigroup on R¢ satisfying the assumptions of the preceding proposition.

5. SUBORDINATION OF CONE-PARAMETER LEVY PROCESSES
AND CONVOLUTION SEMIGROUPS

In this section we extend the concept of subordination to the case where subor-
dinators and subordinands have parameters in K; and K5, respectively. Here K is
an N;-dimensional cone in RM and K, is an No-dimensional cone in R™2. Then we
discuss inheritance of selfdecomposability, the L,, property and stability from subor-
dinator to subordinated. As the subordinators have to be supported on Ky, we begin

with the following lemma.

Lemma 5.1. Let K, be a cone in RM2. Let p € ID(RM2) with triplet (A,v,v). Then
Supp(p) C K, if and only if

(5.1) A=0, vRY\K,) =0, / |s|v(ds) < oo, 7’ € K.
Kan{ls|<1}

Here we recall that 7° = ~ — fK20{|s\<1} sv(ds), the drift of p. The lemma follows
either by using Skorohod [25], Chapter 3, Theorem 21 or by using Proposition 2.4
and extending the proof of Theorem 21.5 of [22].

Theorem 5.2. Let {e',...,eM} be a weak basis of Ki. Let {ps: s € K1} be a K-

parameter convolution semigroup on RM2. Let (A, vy, 7s) be the triplet of ps. Then
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Supp(ps) C Ky for all s € Ky if and only if the following conditions (5.2) and (5.3)
are satisfied:
(5.2) Ay =0, vy (R \ K,) =0, and/ |s|vei (ds) < 00

Kan{ls|<1}

forj=1,..., Ny,
5.3 if s1,...,SNn, € R are such that sie* + -+ + sy, et € Ky, then
1 1

S1Y% + e+ SvagNl € K, where 7% is the drift of pe.

It {e',..., e} is a strong basis, then condition (5.3) is simply written as 7% € K
for j=1,...,Ny. If {ps: s € K;} satisfies Supp(ps) C K> for all s € K; then we call

it a Kj-parameter convolution semigroup supported on Kj.

Proof of the theorem. Suppose that Supp(ps) C K, for all s € K;. Then the triplet
(As, vs,7s) satisfies (5.1). By Theorem 3.13 we see that 77 = s17% + -+ -+ sy, 7%, for
s =siet + -+ syeM € K;. Hence (5.2) and (5.3) hold. The converse is similarly
proved. O

Corollary 5.3. Let {ps: s € K1} be a Ky-parameter convolution semigroup supported

on Ky. Then it is generative.

The proof is given by Theorem 4.21 combined with Theorem 5.2.
If there is a Kj-parameter Lévy process associated, the property Supp(ps) C Ko

is expressed as a path property.

Proposition 5.4. If {Z,: s € K} is a K -parameter Lévy process on RM2 | then the

following are equivalent.

(i) Zs € Ky a.s. for each s € K.

(i) Almost surely, Zs is (K1, Ky)-increasing as a function of s.

Proof. 1f (ii) holds, then we clearly have (i), since Z; = 0 a.s. Suppose that (i) holds.
If s, s? € K, satisfy s' <g, s%, then Z, <k, Z,> a.s., since Zp — Zg 475 4cK,
a.s. Let Kjo be the set of s € K; with rational coordinates. Almost surely, for

L and

any choice of s',s? € K satisfying s' <g, s%, Zg <k, Zs. Approximating s
s? by K,-decreasing sequences in K, and using the K;-right continuity of sample
functions, we see that, almost surely, for any choice of s!, s* € K satisfying s! <g, s,

Zg <k, Zs. That is, (ii) holds. O

32



If {Z;: s € K} is a Kj-parameter Lévy process (resp. Lévy process in law) on
RM2 satisfying (i) of Proposition 5.4 then we call it a Ky-valued K;-parameter Lévy
process (resp. Lévy process in law). Note that the preceding proposition is stated
for K;-parameter Lévy processes only; there is no analogous characterization of the
sample paths of a Ky-valued Ki-parameter Lévy process in law.

Now we introduce subordination of convolution semigroups. For any measure p
and p-integrable function f, we write pu(f) = [ f(z)u(dz).

Theorem 5.5. Let {j,: u € Ky} be a Ky-parameter convolution semigroup on RY
and {ps: s € K1} a Ky-parameter convolution semigroup supported on K,. Define a

probability measure o, on R by
(5.0 7.0 = [ ol
Ko

for bounded continuous functions f on R:. Then {o,: s € K} is a K,-parameter

convolution semigroup on RY.

We call this procedure to get {os: s € K1} subordination of {j,: v € Ky} by
{ps: s € K1}. The new convolution semigroup is said to be subordinate to {u,: u €
Ky} by {ps: s € K;}. Sometimes {y,,: v € Ko}, {ps: s € K} and {o,: s € K;} are

respectively called subordinand, subordinator and subordinated.

Proof of the theorem. If f is bounded and continuous, then g, (f) is continuous in u
by Theorem 3.13, and hence the integral in (5.4) exists. It is linear in f, nonnegative
for f > 0, and 1 for f = 1. It decreases to 0 whenever f = f, () decreases to 0 on R?
as n — oo. Thus there is a unique probability measure o, satisfying (5.4) (Dudley
[7], Theorem 4.5.2). Moreover, {o: s € K;} is a convolution semigroup. Indeed, we

have
(5.5) 5.(2) :/K u(2)pa(du), 2 ERL

from which the the property o142 = 041 x 042 is easily verified. Ast | 0, pss tends to
do, and hence 7y5(z) — 1, that is, o5 — do. d

Next we consider subordination of cone-parameter Lévy processes in law. We
have to impose the regularity condition that the processes involved (the subordinator
and the subordinand) are measurable processes. But recall from Remark 3.2 (ii)

that this is essentially no restriction since any K-parameter Lévy process in law has
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a measurable modification. Thus, we introduce subordination of a measurable K-
parameter Lévy process in law by a measurable Ko-valued Ki-parameter Lévy process

in law. This is an extension of the multivariate subordination introduced in [1].

Theorem 5.6. Let {Z;: s € K;} be a measurable Ky-valued Ki-parameter Lévy
process in law and {X,: u € Ky} a measurable Ky-parameter Lévy process in law on
R¢. Suppose that they are independent. Define Y, = Xz, where Z, = Zg,(Zy).
Then {Y,: s € K} is a measurable K,-parameter Lévy process in law on RY.

If in addition {Zs: s € K1} is a measurable Ky-valued Ki-parameter Lévy process
on Ky and {X,: u € Ky} a measurable Ky-parameter Lévy process on R?, then

{Y,: s € K1} is a measurable K-parameter Lévy process on RY.

The processes {X,: u € Ky}, {Zs: s € Ky} and {Y;: s € K;} are subordinand,
subordinator and subordinated, respectively. In this case, if we denote L£(X,) = pt,
L(Zs) = ps and L(Y;) = oy, then {o,: s € K;} is exactly the convolution semigroup
obtained by subordination of {p,: u € Ky} by {ps: s € K;}. However, we cannot
proceed in the converse direction, as some cone-parameter convolution semigroups

are non-generative.

Proof of the theorem. Since {Y;: s € K;} appears by composition of two measurable
mappings, it is itself measurable. The other properties defining a cone-parameter
Lévy process in law are essentially verified as in the first part of the proof of Theorem
3.3 of [1].

Assume that {Z;: s € K;} is a Ks-valued Kj-parameter Lévy process and
{X,: u € Ky} a Ky-parameter Lévy process on R?. Then, almost surely, {Y;: s € K1}

is K -cadlag and is hence a measurable K;-parameter Lévy process on RY. 0

Let us give the characteristic functions and the triplets of subordinated semi-
groups. For v = (vy,...,vy,)" and w = (wy,...,wy,)" in CV? we write (v,w) =
chv; vpwy. In the case of ordinary subordination (that is, K; = K, = Ry ) the fol-
lowing theorem reduces to a well-known result (see [22], Theorem 30.1). In the case
where K; = R, and K, = Rﬁz, it is in Theorems 3.3 and 4.7 of [1].

Theorem 5.7. Let {u,: u € Ky}, {ps: s € K1} and {os: s € K} be the sub-
ordinand, subordinator and subordinated convolution semigroups in Theorem 5.5.
Let {h',...,h"2} be a weak basis of Ky. Let (AL, vl oY) be the triplet of uue for
k=1,...,Ny. Let v? and % be the Lévy measure and the drift of ps for s € Ky and

34



decompose 7% as

(5.6) L= ()bt e (1) w A

Let T be the linear transformation from R™2 onto RN defined by
Tu= (uy,...,uy,) whenever Ru = uih' + - - + uy,h’™,

where R is the orthogonal projection from RM2 to the linear subspace Ly generated by
K,. Then we have the following.
(i) For any s € K,

(5.7) 0s(2) = exp VP (w), z € RY

where

(5.9 W) = [ (T - Dur(dn) + (T4 w)
)

with w = (wy,...,wy,) " given by

(5.9) wp = — Lz A2 + é gz () + il 2).

Here g(z,x) is the function in (3.1).
(ii) For any s € K the triplet (AZ,v7,77) of o, is represented as follows:

(5.10) A7 =3 (0, AL

(5.11) ﬂwzéMwﬂm+Zwmmm B € BR?\ {0}),
. 7 = VP (du Ty, (dz : ), .

(5.12) %(&J)AMM(H;W)V

(i) Fiz s € K. If fKQm{‘u|<1}|u|1/21/sp(du) < 0o and Y% = 0, then A7 = 0,
a1 121V (dz) < 00, and the drift )7 is zero.
(iv) Let K3 be a cone in R?. If Supp(u,) C Kz for all u € Ko, then Supp(os) C

K3 for all s € Ky and
N3

(5.13) 7%= k"
k=1

Proof of Theorem 5.7 (i). We start from the identity (5.5). For u = u;h! + -+ +

uNZhN2 € K, we have

(5'14) ﬁu(z) = ﬁhl(z)ul e Ny (z)“”z
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N2
= exp Zuk (—%(z,Aﬁz) +/

d
k=1 R

g(z, )V (dx) +i(v,, z))]

by Theorem 3.13. Define Tp, as (Tp,)(B) = ps(T~"(B)) for B € B(R). Let K% be
the set of w = (wy,...,wy,)" € C* such that Re (ujw; + -+ - + un,wy,) < 0 for all
Ui, ..., uy, € R satisfying u;h' + -+ - + un,h™? € K,. We claim that
(5.15) / el (Tp,)(du) = / T p (du) = exp U2 (w)  for w e K.

RN2

K>

By [22], Proposition 11.10, the triplet (A7 vT? ~4T%) of Tp, is given by the triplet
(A2, v8,7¢) of py as

AZIJ = TA/SJT,, l/sTp = [VgTil]RNZ\{O},
0= T7§+/Tu(1{|a|<1}(Tu) = L{ujcay (w)) v (du),

where T" is the transpose of T. Hence, AT? = () and

/ |a|y§’p(da):/ Tulv? (du) gconst/ |u|y§(du)+/ v (du) < oo.
<1 (Tul<1 Jul<1

|u|>1

0Tp

The drift 4277 of T'p, is represented as T~%, since

S
|al<1

=790+ [ Tullymen (o) = Lpen ()2 = | Tunz(au)

ITul<t

=T? — / Tuv?(du) = TH.
lul<1

Hence, by (5.8), [ *T% p,(du) = exp W*(iz) for € RV, If w € K}, then Re (w, Tu) <
0 for p,-almost every u and hence [ e T p (du) is finite. Now we can apply Theorem
25.17 of [22]. Thus, if w € K%, then (5.8) is definable and (5.15) holds.

Now (5.7) follows from (5.5), (5.14), and (5.15), because w of (5.9) belongs to
K% by Theorem 3.15. This proves (i). O

We prepare lemmas to prove (ii)—(iv). We say a subclass A of ID(R?) is bounded
if supy, <12, Au2), [ga(J2[* A 1)vu(dr), and |v,| are bounded with respect to p € A.
Here (A,,v,,7,) is the triplet of xr. The boundedness of A in this sense is equivalent
to precompactness (see [22], E12.5).
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Lemma 5.8. Let A be a bounded subclass of ID(R?). Then there are constants C(g),
C1, Cy, C3 such that, for all t > 0,

(5.16) sup/ p(dz) < Ce)t  fore >0,
HEA J|z|>e

(5.17) sup/ lz|2pt (dz) < Cht,

BEA Jz|<1
(5.18) sup / zp'(dr)| < Cat,

HEA lz|<1
(5.19) sup/ ||t (dz) < Cst'/?.

peA Jiz|<1
Proof. These follow from [22], Lemma 30.3, its proof, and Example 25.12. O

Lemma 5.9. Let {j,: s € K} be a K-parameter convolution semigroup on R?. Then
there are constants C'(g), Cy, Co, Cy such that, for all s € K,

(5.20) / ps(dz) < C(e)|s|  fore >0,
|z|>e

(5.21) [ el < cilsl.

jzl<1
(5.22) ‘/ zps(de)| < Cqlsl,

lz|<1
(5.23) / (2| j1s (d) < Cs] /2.

jzl<1

Proof. Fix a strictly supporting hyperplane H of K and s° € K \ {0}. Let K, =
KN (s°+ H). Then, by Proposition 2.4 (ii), Ky is a compact set. Now {yu,: s € Ko}
is a bounded subclass of ID(R?). Indeed, let {e!,...,e"} be a weak basis of K. Then
s € K is uniquely expressed as s = sje! +-- -+ sye’¥, and s;,..., sy are continuous
functions of s. Hence sup,cg, (|s1]| + -+ + |sn|) < oo. This shows boundedness of
{ps: s € Ko}, in view of (3.6) of Theorem 3.13. Since every s € K is written as
s = tr with some ¢ > 0 and r € Ky, Lemma 5.8 shows that there is C'(¢) such that

Abg ps(d) = / N pr(dz) < C(e)t.

Let ¢ = inf,cx, |r|. We have ¢ > 0, since 0 € Ky. Hence t < ¢™'|s|, and we get (5.20)

by changing a constant. The other assertions are proved similarly. ([l
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Proof of Theorem 5.7 (ii)—(iv). First let us prove (ii). We rewrite (5.7). For w =
(wy,...,wy,)" of (5.9),

N2
(T, w) = — 3 <z > () A‘,jZ>

k=1

+ [ ot (Zw;’ﬂ)k ) (da) +i <Z(72ﬂm;:,z> .

k=1 k=1
This gives the summation terms in (5.10)—(5.12). Further, for w of (5.9),

/Kz(dw,Tu) — )vP(du) = /Kz (112 T (2) — 1) v (du)

- /K () = 1) () = /K 2l / () — D ()

_ /K2 VP (du) /Rd 9(2, ) pra(dz) + i/Kz Vi (du) <z, /x<1xMU(dx)> :

Here the last equality is valid by Lemma 5.9. Define 7; by 75(B) = [,y (B)v%(du) for
B e B(R?\ {0}). Then, using Lemma 5.9, we can prove that [,,(1A|z|*)7,(dz) < oo.
Thus we get (5.10)—(5.12), where 7, gives the first term in the expression (5.11).

To show (iii), let ngﬂ{\uKl} lu|'/?v(du) < oo and % = 0. Then A7 = 0 by
(5.10). Use (5.11), (5.12) and (5.23) and notice that

[ abtan = [ ve) [ felpatan
|z[<1 K2 |z[<1
< 03/ || 20P (du) +/ VP (du) < oo
ul<1

|u|>1
and that

Wi [ wtn=az~ [ vilaw [ amdn) =0,
jal<1 K st

Thus (iii) is true.

Let us show (iv). Assume that Supp(u,) C K3 for u € K,. Since Supp(ps) C Ko
for all s € Kj, we have Supp(os) C K3 for all s € K;. Hence, by Lemma 5.1,
fl:vlgl |z|v?(dz) < oo. Thus the drift 427 of oy exists and 727 = 47 — f\x\gl xv? (dr).
The drift v%* of pu, also exists and has a similar expression. Now using (5.11) and
(5.12), we get (5.13). O

A random variable Y on R (or its distribution) is said to be of type G if YV’ 4

Z'2X where X is a standard Gaussian, Z is nonnegative and infinitely divisible, and
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X and Z are independent (see [21]). Equivalently, Y is of type G if its distribution
is the same as the distribution at a fixed time of a Lévy process on R subordinate
to Brownian motion. Barndorff-Nielsen and Pérez-Abreu [2] say that an R¢-valued
random variable Y (or its distribution) is of type extG if, for any ¢ € R?, (¢, Y) is
of type G. They say that an R?-valued random variable Y (or its distribution) is of
type multG if

(5.24) y L 712X,

where X is standard Gaussian on R?, 7 is an M, ,-valued infinitely divisible random
variable, Z'/2 is the nonnegative-definite symmetric square root of Z, and X and Z
are independent. If Y is of type multG, then Y is of type extG. Maejima and Rosinski
[17] say that a probability measure 1 on R? (or a random vector with distribution
p) is of type G (we call it type G in the MR sense) if p is symmetric, infinitely
divisible with Gaussian covariance matrix arbitrary and Lévy measure v represented
as v(B) = E[vy(X B)] for B € B(R?) where v, is a measure on R and X is standard
Gaussian on R. They show that p is of type multG if it is of type G in the MR sense,
and that type extG distributions are not always of type G in the MR sense. Type

multG is related to subordination of cone-parameter convolution semigroups.

Theorem 5.10. If {0;: t > 0} is an R, -parameter convolution semigroup on RY
subordinate to the canonical M, ,-parameter convolution semigroup {pn,: v € M ,}
by an R, -parameter convolution semigroup {p;: t > 0} supported on M, ,, then, for
any t >0, o, is of type multG. Conversely, any distribution on R? of type multG is

expressible as o1 of such an Ry -parameter convolution semigroup {oy: t > 0}.

Proof. Let {o;: t > 0} be as stated above. Then, by (5.5) and by the definition of

the canonical M ,-parameter convolution semigroup,
(5.25) 5y(z) = / U2 (du), 5 € RY.
M;rxd

Let Z; be a random variable on M} , with distribution p;, X a standard Gaussian

on R?, where X and Z, are independent. Then

- /
Eel(z,Ztl 2X> — E67<Z’th>/2 — / 67<Z’“Z>/2pt(du).
M+

dxd

Therefore o, = £(Z,*/2X), that is, o, is of type multG.
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The converse is obvious, since we can construct a convolution semigroup {p;: t >
0} supported on M} , with p; = £(Z) from a given M ,-valued infinitely divisible

random variable Z. O

Remark 5.11. Let 0 = L£(Y) be a distribution on R? of type multG which satisfies
(5.24) using Z and X and let v” and 7% be the Lévy measure and the drift of p =
L(Z). Note that v* is a measure on M, , and % € M, ,. Then, by Theorem 5.10,
o is infinitely divisible and we can apply Theorem 5.7 to find the triplet (A7, v7,~7)
of o. Thus, we obtain that

o(z) = exp [/ (e’<z’uz>/2 — )P (du) — %(z, Y2y,
M;_xd
and A° = ,Y()p, v = 0 and ]/’(B) = fM;—xd Iu,u(B)l/p(du) with p, = Nd(O,u) These

results are noticed in [2] without using subordination.

Inheritance of selfdecomposability and the L,,-property from subordinator to
subordinated in subordination of an RY?-parameter Lévy process was studied in [1].
In the rest of this section we extend their results to the cone-parameter case. Our
method of proof is simpler than that of [1]. However, since we do not consider operator
selfdecomposability and operator stability, the results here do not cover those in [1].

A distribution g on R? is said to be selfdecomposable if, for every b > 1, there is
a distribution p/ on R? such that

(5.26) i(z) =0 '2)p(z), zeRL

The class of selfdecomposable distributions on R? is denoted by Ly = Lo(R?). Thus
we also call them of class Lo. If u € Ly, then p is infinitely divisible, p’ is uniquely
determined by p and b, and g’ is also infinitely divisible.

Form =1,2,..., Ly, = L,(R?) is inductively defined as follows: p € L,,(R?) if
and only if u € Lo(R?) and, for every b > 1, pf/ € Ly,_1(R?). The class Lo, = Lo (R?)
is defined to be the intersection of L,,(R?) for m = 0,1,2,... . We have

(5.27) IDDLyDL; DD Ly D6,

where G = G(R?) is the class of stable distributions on R¢.
Definition 5.12. Let K be a cone in RM. Let {u,: s € K} be a K-parameter

convolution semigroup on R?. It is called of class L,, if, for every s € K, ju; € L,,(R?).
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Here m € {0,1,...,00}. Let 0 < o« < 2. We call {ps: s € K} strictly a-stable if, for
every s € K,

(5.28) ftas(B) = ps(a”*B) for all a > 0 and B € B(RY).

If pgs = 6o for all @ > 0, then it satisfies (5.28) for every a. Our terminology
is different from [22] in this respect. In [22] this case is excluded from the definition
of strict a-stability. If {us} is supported on a cone and ps # Jy for some s, then it
cannot be strictly a-stable for a € (1,2]. If {us} is supported on a cone and strictly

1-stable, then py is trivial for all s. These follow from Lemma 5.1.

Theorem 5.13. Let {os: s € Ky} be a Ki-parameter convolution semigroup on
R? subordinate to a Ko-parameter convolution semigroup {p,: u € Ky} by a K-
parameter convolution semigroup {ps: s € K} supported on Ky. Let 0 < a < 2.
Suppose that {p,: u € Ky} is strictly a-stable. Then the following are true.

(i) Let m € {0,1,...,00}. If {ps: s € K1} is of class Ly, then {os: s € K1} is
of class L.

(ii) Let 0 < o < 1. If {ps: s € K1} is strictly o-stable, then {os: s € K1} is

strictly ao’-stable.
We need two lemmas.

Lemma 5.14. Let K be a cone in RM™. Let u € Lo(RM) satisfying Supp(p) C K.
Then, for any b > 1, the probability measure i’ defined by (5.26) satisfies Supp(u') C
K.

Proof. We fix b > 1 and denote by y” the probability measure defined by ,z/ﬁ(z) =
f(b='2). Thus (5.26) means that p = pu'*pu". Let (A,v,v), (A", ;) and (A", " ")
be the triplets of u, i/, and p”, respectively. Then, A = A"+ A", v = v/ + " and
v =+"+7". Applying Lemma 5.1, we have
A=0, v(RM\K)=0, / sju(ds) < 00, 1" € K,
Isl<1

where 7° is the drift of 4. Therefore, we have A" =0, /(RY\K) =0, [, [s[(ds) <
00, and similarly for A” and »”. Thus g/ and p” have drifts 7°" and %", and 7° =
7" 49" Since v = b714°, we have v*' = (1 — b ')y° € K. Now we can conclude
that ' is supported on K, using Lemma 5.1 again. U
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Lemma 5.15. Let K be a cone in RM. Let {u,: s € K} be a K-parameter convolu-
tion semigroup of class Ly on R, Fiz b > 1 and define . by

(5.29) fis(2) = [ (b~ 2) 1y (2).

Then {y.: s € K} is a K-parameter convolution semigroup.

Proof. We have Jigi 2 (2) = fist(2)fis2(2) = fsiysz (b 2) 1 1 (2) 1 2(2). On the other
hand, Jig,.(2) = ﬁ51+52(b*12)ﬂ’51+52(z). Since fis(z) # 0, we have //L\’sl+s2(z) =
[ (2)fe(2). Ast |0, fi(2) — 1 and hence, by (5.29), i/,,(2) — 1. Therefore,

{: s € K} is a K-parameter convolution semigroup. O

Proof of Theorem 5.13. (i) Suppose that {p;: s € K} is of class Ly. Fix b > 1. There
are pl and p? such that ps = pl, % p! and p/7’s(z) = ps(b~12). Since Supp(ps) C Ko, we
have Supp(p),) C K, by Lemma 5.14. It is evident that Supp(p?) C K,. Therefore,
by (5.5),

5(2) = /K Ruledp(a) = / /K P A )
- / /K e )y )
- /K () [ ),

K>

Now we utilize the assumption that 7ig,(2) = fiy(a'/*2) for @ > 0. Then
(5.30) 7s(2) = 5s(b_l/az)/ it (2) pl, (du').
K>

By Lemma 5.15, [, 7i,i(2)pi(du') is the characteristic function of a subordinated
convolution semigroup. Since b'/® can be an arbitrary real larger than 1, (5.30)
shows that o5 € Ly, that is, {0s: s € K1} is of class L.

If {ps: s € Ky} is of class Ly, then {p}: s € K} is of class Ly by the definition
of the class Ly and [, 7i,1(2)p}(du') is the characteristic function of a convolution
semigroup of class Ly, which, combined with (5.30), shows that {os: s € K;} is of
class L;. Repeating this argument, we see that, if {p;: s € K;} is of class L, for
some m < oo, then {os: s € K;} is of class L,,. Finally, if {ps: s € K} is of class
Ly, then {o,: s € K} is of class L, for all m < oo, that is, it is of class L.

(ii) Assume that {ps: s € K} is strictly o/-stable. Then

Bus(2) = /K Rule)pus() = [ Beelpla)

K>
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— / ﬁu(al/(aa’)z)ps(du) — 8s(a1/(aal)z)‘
K>

This shows that {os: s € K} is strictly aa’-stable. O

Remark 5.16. Let Y be a random variable of type multG on R?. Then £(Y') can be
embedded into an R, -parameter convolution semigroup subordinate to the canonical
M, ~parameter convolution semigroup, which is strictly 2-stable. Hence we can
apply Theorem 5.13. Thus, if the M ,-valued random variable Z in (5.24) is of class
L,,, then Y is of class L,,.

Remark 5.17. The problem how much we can weaken the assumption of strict a-
stability of {y,: u € Ks} in Theorem 5.13 is open even in the case of the ordinary
subordination. In the subordination of Brownian motion with drift on R? (2-stable
but not strictly 2-stable), the selfdecomposability is inherited from subordinator to
subordinated if d = 1 (Sato [23]), but it is not always inherited if d > 2 (Takano [26]).
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