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Abstract

Statistical inference for exponential inhomogeneous Markov point pro-
cesses by transformation is discussed. It is argued that the inhomo-

geneity parameter can be estimated, using a partial likelihood based

on an inhomogeneous Poisson point process. The inhomogeneity pa-

rameter can thereby be estimated without taking the interaction into

account, which simpli�es the statistical analysis considerably. Fur-

thermore, an easily computable test for homogeneity is presented.

Analysis of two data sets and simulation experiments support the

results.

1. Introduction

Various point process models allowing for both interaction and inhomogene-
ity have recently been suggested, cf. Baddeley et al. (2000), Brix and M�ller
(1998), Hahn et al. (2001), Jensen and Nielsen (2000, 2001) and Stoyan and
Stoyan (1998). See also Ogata and Tanemura (1986). A majority of these
model classes uses a homogeneous point process as starting point. The in-
homogeneity is introduced by letting the �rst order interaction be location
dependent or by applying a thinning, a transformation or a local scaling
of the homogeneous process. The target is modelling of data such as the
cell point pattern shown in Figure 1 (a) and the longleaf point pattern in
Figure 2 (a). Both point patterns clearly have a trend along the �rst axis.
Furthermore, there might be small-scale inhibition in the cell point pattern
and clustering in the longleaf point pattern.

In the present paper we focus on parametric likelihood inference for inho-
mogeneous Markov point processes by transformation. This model class was
introduced in Jensen and Nielsen (2000) and will henceforth be denoted TIM
models (Transformation, Inhomogeneous, Markov). A parametrized TIM
model is obtained by applying parametrized transformations fh� : � 2 �g to
a homogeneous Markov point process with density parametrized by  2 	,
say. The inhomogeneity is introduced through the transformation while the
interaction originates from the underlying homogeneous model. Accordingly,
 is called the interaction parameter while � is called the inhomogeneity
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(a) Cell pro�le centres
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(b) Back-transf. cells

Figure 1: Point pattern y of cell pro�le centres (a) and the corresponding back-transformed
point pattern x = h�1

� (y) (b). The transformation only a�ects the �rst coordinates of the

points. The transformation parameter � is the maximum likelihood estimate, �̂0 = 1:3043,
under an inhomogeneous Poisson point process model. For details, see Section 3.4.
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(a) Pine trees  
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(b) Back-transf. pines

Figure 2: Point pattern y of positions of adult longleaf pine trees in a forest (a) and
the corresponding back-transformed point pattern x = h�1

� (y) (b). The transformation

parameter � is the maximum likelihood estimate, �̂0 = �1:38663, under an inhomogeneous
Poisson point process model.
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parameter. However, in the transformed process both  and � control the
interaction. The transformed process is inhomogeneous in the intensity of
the points as well as in the strength of the interactions among the points. In
particular, the interaction range is shorter in areas where the concentration
of points is high.

For any of the inhomogeneous models to be considered, there exists a
subset 	0 � 	 in which the model is Poisson. The transformation model with
parameter space 	0 � � is a subclass consisting of inhomogeneous Poisson
point processes, called the corresponding inhomogeneous Poisson model.

Likelihood inference for � and  cannot be separated. Furthermore, for
the important class of exponential inhomogeneous transformation models,
the parameter � appears as a nuisance parameter in an exponential family
likelihood function, cf. Jensen and Nielsen (2000). Since the number of cal-
culations involved in maximum likelihood estimation increases exponentially
in the dimension of the nuisance parameters and maximum likelihood esti-
mation is already quite involved in the homogeneous case, it is desirable to
�nd an alternative estimate of �.

In Figure 1 (b) and 2 (b) the cell and the longleaf point patterns have been
transformed with an inverse transformation h�1� , which is of simple exponen-
tial form and only a�ects the �rst coordinates of the points. The value of
the inhomogeneity parameter � is �̂0, the estimate based on the correspond-
ing inhomogeneous Poisson model. Note that �̂0 is calculated under a model
where the interaction is disregarded and only the inhomogeneity is taken into
account. Motivated by the homogeneous appearance of these point patterns,
the present paper is devoted to the study of the statistical properties of �̂0.
In particular, it will be shown that �̂0 can be regarded as a moment estimator
in the class of exponential inhomogeneous transformation models.

With this simpli�ed estimation of the inhomogeneity parameter �, the
analysis of an exponential transformation model can be performed as follows.
First �̂0 is computed, which is easy and very fast to do in practice. Next,  
is estimated under the assumption that � is known and equals �̂0. Using this
two-step estimation procedure, we can �rst concentrate on �nding the appro-
priate transformation without taking the interaction into account. Secondly,
we can try to �nd a homogeneous model, using the back-transformed data
h�1
�̂0
(y) where y is the original inhomogeneous point pattern. For this pur-

pose, well-studied tools can be used such as second order statistics F;G; J;K
and the pair correlation function, see e.g. Diggle (1983), van Lieshout and
Baddeley (1996) and Stoyan et al. (1995). The analysis of homogeneous
Markov point process models is also a very thoroughly studied �eld, see e.g.
Geyer (1999) and Baddeley and Turner (2000).
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The rest of the paper is organised as follows. Basic terminology for point
processes is given in Section 2. In Section 3 we briey introduce the transfor-
mation models and the class of exponential transformations. In Section 4 we
discuss full likelihood inference in transformation models. In Section 5 we in-
vestigate the statistical properties of �̂0. A simple test for homogeneity based
on the Poisson model is given in Section 6. The focus is in Sections 3 to 6 on
the class of exponential transformations, but it is pointed out when results
apply to point processes in general. At the end of each of Sections 3 to 6, the
results are illustrated by analysis of the cell or the longleaf point patterns.
A supplementary simulation study is presented in Section 7. In Section 8,
open questions and future work are discussed. The Appendix contains some
prerequisite results for point processes with periodic boundary.

2. Point processes

2.1. Homogeneous point processes

In the present paper we consider �nite point processes de�ned on a full-
dimensional bounded subset X of Rm . Below, we summarize the notation
and concepts needed for such processes. A more detailed account can be
found in M�ller (1999) or van Lieshout (2000).

The state space for a �nite point process on X is 
X , the set of �nite
subsets of X . In what follows, we only consider point processes which have a
density with respect to the Poisson point process on X with intensity measure
�m, the Lebesgue measure in R

m .
A point process de�ned on Rm is called homogeneous (or stationary) if its

distribution is invariant under translation, cf. e.g. Stoyan et al. (1995) or van
Lieshout (2000). For a point process de�ned on a bounded set, this concept
can be modi�ed as follows.

De�nition 2.1 Let X be a point process on a full-dimensional bounded set

X � R
m with density f with respect to the Poisson point process on X with

intensity measure �m. We call X homogeneous if f is the restriction to 
X of

a function g de�ned on 
Rm which is translation invariant, i.e. g(x+c) = g(x)
for all c 2 R

m and x 2 
Rm. Here, x + c = f� + c : � 2 xg.

2.2. Markov point processes

The class of Markov point processes, see Ripley and Kelly (1977), will be
used for modelling the interaction in a point pattern. Let � be a reexive
and symmetric relation on X . A point process is Markov w.r.t. � if and only

4



if
f(x) =

Y
z�x

'(z); x 2 
X ; (1)

where ' is a clique interaction function w.r.t. �. This means that if '(z) 6=
1 then all pairs of points in the subset z are related with respect to �.
Often, it is possible to extend the de�nition of ' to 
Rm . In that case, X is
homogeneous if ' is translation invariant, cf. De�nition 2.1.

Example 2.2 (Strauss process) A simple example of a homogeneous Mar-
kov point process is the Strauss process with density, cf. Strauss (1975),

f(x) = c(�; ; r)�1�n(x)sr(x); x 2 
X ;

where n(x) is the number of points in x, sr(x) is the number of point pairs
in x with distance less than r, and c(�; ; r)�1 is the normalising constant.
The parameters ful�l � > 0, 0 <  � 1, and r > 0.

The Strauss process is Markov w.r.t. the distance relation

� � � () k� � �k < r: (2)

2.3. Processes with periodic boundary

For a homogeneous point process de�ned on a bounded set, the distribution
of the points at the boundary of X is typically slightly di�erent from the
distribution elsewhere. This phenomenon is known as edge e�ects. In the
theoretical developments presented in Section 5 below, it is important to
remove these edge e�ects. One way is to restrict attention to a set X which
can tile Rm and modify the density of a homogeneous process such that it
becomes X -periodic.

De�nition 2.3 A bounded set X � R
m is a fundamental region if there

exists a sequence fzjg � R
m such that

[j (X + zj) = R
m

(X + zj1) \ (X + zj2) = ; when j1 6= j2

f�zjg = fzjg

Example 2.4 Let X = [a1; b1)� � � �� [am; bm) be a rectangular box in R
m .

Then X is a fundamental region and the series

f(j1(b1 � a1); : : : ; jm(bm � am))g(j1;:::;jm)2Z�����Z

ful�ls the requirements in De�nition 2.3.

5



De�nition 2.5 Let X be a fundamental region and let fzjg be a sequence

ful�lling the requirements in De�nition 2.3. A function g : 
Rm ! R is

X -periodic if for all i and j

g(fx1; : : : ; xi�1; xi + zj; xi+1; : : : ; xng) = g(fx1; : : : ; xi�1; xi; xi+1; : : : ; xng):

If X is an interval, one may imagine wrapping X around a circle, combining
the two ends of the interval. A function g de�ned on all �nite subsets of
R is then X {periodic if the values of g only depend on the wrapped point
con�guration. If the function g associated with a homogeneous process, cf.
De�nition 2.1, is X {periodic, then X will be called circular. If X is a rect-
angle in R

2 , X {periodicity involves folding X into a torus.
Using X {periodicity, we can remove the edge e�ects, as shown in the

proposition below. The proof of the proposition is deferred to the Appendix.

Proposition 2.6 Let X � R
m be a fundamental region and let X be a ho-

mogeneous point process on X as in De�nition 2.1, where the function g is

X�periodic, cf. De�nition 2.5. Furthermore, let us assume that n(X) > 0
almost surely.

Then, a point Z chosen uniformly among the points in X, is uniformly

distributed in X .

As a consequence of Proposition 2.6, the mean value of averages over
points in the homogeneous point process X does not depend on the interac-
tion structure.

Corollary 2.7 Let the situation be as in Proposition 2.6. Furthermore, let

q : X ! R
l and let U denote a uniform random variable in X . Then,

E

 
1

n(X)

X
�2X

q(�)

!
= E q(U):

Proof. Let Z be chosen uniformly among the points in X. Then,

E (q(Z)jX) =
1

n(X)

X
�2X

q(�):

Hence,

E

 
1

n(X)

X
�2X

q(�)

!
= E (E (q(Z)jX)) = E q(Z) = E q(U):

6
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Figure 3: Realizations of the Strauss process on the unit square. To the left, the relation
is the distance relation. To the right, the relation is the distance relation modi�ed to
be X -periodic. To illustrate the periodicity, the point pattern has been translated with
f(i; j)g(i;j)2Z�Zand the nearest neighbourhood is plotted in grey. In both point patterns,
 = 0:01, � = 500 and r = 0:1.

At the last equality sign we have used that Z is uniformly distributed in X
as shown in Proposition 2.6. �

In the right hand-side of Figure 3, an X {periodic version of the Strauss
process is shown where X is the unit square. Instead of using the ordinary
relation �, de�ned in (2), a modi�ed relation is used

� �p � () 9j1; j2 : � + zj1 � � + zj2 : (3)

For comparison, a realization of the ordinary Strauss process is shown in the
left hand-side of Figure 3. Notice that the edge-e�ects are removed when the
relation is modi�ed.

3. Inhomogeneous point processes by transformation

In this section, we summarize the important concepts from the theory of
inhomogeneous point processes by transformation. For more details, see
Jensen and Nielsen (2000).

3.1. Transformation of point processes

Let h : X ! Y be a di�erentiable and bijective mapping between two full-
dimensional bounded subsets of Rm , and let X be a point process on X with
density fX . Then the transformed point process Y = h(X) has density

fY (y) = fX(h
�1(y))e�m(Y)��m(X )

Y
�2y

Jh�1(�); y 2 
Y ; (4)
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see Jensen and Nielsen (2000, Proposition 3.2). Here, Jh�1 is the Jacobian
of the inverse transformation h�1.

If Jh�1 is non-constant and X is a homogeneous point process, it follows
that Y is an inhomogeneous point process, cf. De�nition 2.1. Such processes
are called transformation inhomogeneous.

Let X be the homogeneous Poisson point process with intensity measure
c�m where c > 0. Then Y has density

fY (y) = e�(c�1)�m(X )cn(y)e�m(Y)��m(X )
Y
�2y

Jh�1(�)

(�)
= e�

R
Y
(c Jh�1(�)�1)d�

Y
�2y

�
c Jh�1(�)

�
;

which is the density of an inhomogeneous Poisson point process with intensity
function c Jh�1(�). At (�) we have used the fact thatZ

Y

Jh�1(�)d� = �m(X ): (5)

3.2. TIM models

The transformation result from the previous section can be used to develop
models for inhomogeneous point processes Y on Y. Let X be a homoge-
neous Markov point process with respect to a relation � and with density f
parametrized by  2 	. Furthermore, let g� : Y ! [0;1) be a parametrized
model of the inhomogeneity where � 2 � � R

l . Suppose that we can �nd for
each � a di�erentiable and bijective transformation h� : X ! Y such that

Jh�1� (�) = g�(�); � 2 Y: (6)

Then, Y = h�(X) is a Markov point process with respect to the induced
relation � given by

� � � () h�1� (�) � h�1� (�); (7)

cf. Jensen and Nielsen (2000, Corollary 3.3). We can think of � as an inho-
mogeneous version of �.

The model for Y is called a TIM (transformation inhomogeneous Markov)
model. The inhomogeneity in the model is induced by fg�; � 2 �g. The �rst
order terms in the density of Y are non-constant and proportional to g�(�),
cf. (4) and (6), and the relation is inhomogeneous and determined by the
solution to the di�erential equation (6), cf. (7).
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3.3. Exponential transformations

Let us restrict attention to the case where Y = X . We will call a transfor-
mation h� : X ! X exponential when its inverse Jacobian is of exponential
form

Jh�1� (�) = �(�)e���(�); � 2 X ; (8)

where � : X ! R
l and � 2 � � R

l . Using (5) we get,

�(�) = �m(X )�(�); where �(�)�1 =

Z
X

e���(u)du: (9)

Notice that � = 0 is the case of the identity transformation, h0(�) = �.
By combining (1), (4), and (8), we get in the particular case where X is

a Markov point process,

fY (y; �) = �(�)n(y)e��t(y)
Y

z�h�1
�

(y)

'(z); where t(y) =
X
�2y

�(�):

The model for Y is called an exponential inhomogeneous Markov model.

Example 3.1 (1{dimensional exponential transformations)
Let I � R be a bounded interval. There exists a unique di�erentiable and
increasing mapping h� of I onto itself, � 2 R

l , such that

d

du
h�1� (u) _ e���(u):

In particular, when �(u) = u and I = (0; a) we obtain the simple exponential

transformation given by

h�1� (u) = a
e� u � 1

e� a � 1
;

� 2 R. Another example is the symmetric exponential transformation with
�(u) = juj and I = (�a; a). It is closely related to the simple transformation
and takes the form

h�1� (u) = sign(u) a
e� juj � 1

e� a � 1
:

Since �a ! �a, a ! a and d=du h�1� (a) = d=du h�1� (�a), we can think of
this transformation as a di�erentiable mapping of a circle into itself. In Fig-
ure 4 we have used this transformation on the circular Strauss point process
on (��; �) with modi�ed relation (3) where � is the usual distance relation.
To emphasize the periodicity, the point patterns are plotted on the unit circle
where the points �� and � are identi�ed. This example will be used in all
the simulation experiments we will present in this paper and the process will
be denoted symmetric exponential inhomogeneous circular Strauss.
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Figure 4: Symmetric exponential inhomogeneous circular Strauss. Fixed number of points
n = 100. Circular distance relation with r = 0:05, and  as indicated. Symmetric
exponential transformation with � = 1, the mark on the bottom indicates the points
�� = �.

3.4. Data analysis, part 1

The cell data shown in Figure 1 (a) is from a tissue section of the mucous
membrane in the stomach of a healthy rat. The data have earlier been ana-
lysed in Nielsen (2000). The original image of the section has been converted
into points marking the centres of the cell pro�les. It is known that the
variation in size is small for these cells. We only consider a small window of
the original data and scale it such that X = [0; 1]� [0; 0:89]. There is a trend
in the cell intensity perpendicular to the stomach wall, and the section has
been taken along this trend. In Figure 1 (a), the trend is along the �rst axis.

In Figure 2 (a) the points mark 271 adult longleaf pine trees observed in
a 200� 200m2 area of a forest, which for convenience is rescaled to the unit
square. The data set was �rst studied in Platt et al. (1988).

One possible model for the data sets is a transformation model with
coordinate-wise transformation h�(�1; �2) = (h�1(�1); h�2(�2)) where h�1 is a
simple exponential transformation parametrized by �1 2 R, cf. Example 3.1,
and h�2 is chosen as the identity. If the underlying homogeneous process is
Poisson, the point patterns are regarded as realizations from inhomogeneous
Poisson point processes. As mentioned in the introduction, the maximum
likelihood estimate of � under this model is very easy to calculate and will
be denoted �̂0. See also Section 5.1 below.

In Figure 1 (b) and 2 (b) the two data sets have been back-transformed
using h�1

�̂0
. Both data sets appear to be homogeneous. Summary statistics

calculated for the back-transformed data sets show that the pine data is
almost Poisson with a small tendency of clustering. The cell data show
signi�cant small scale inhibition. In Nielsen (2000) a TIM model with the
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Strauss process as underlying homogeneous interaction model was used with
success. We might also choose to model the clustering in the pine data. One
of the models introduced by Geyer (1999) might be applicable.

In the sections to follow we will discuss likelihood inference for transfor-
mation models and only use the cell data for illustrations.

4. Full likelihood inference

Let h� : X ! Y be a di�erentiable and bijective mapping parametrized
by � 2 �. Let X be a homogeneous point process with density fX(�; )
parametrized by  2 	. Let Y = h�(X) and let y be an observed point
pattern. We want to estimate � and  in the transformation model class for
Y .

The likelihood function for (�;  ) decomposes as follows, cf. (4),

L(�;  ; y) = L0(�; y)Lhom( ; h
�1
� (y)); (10)

where L0(�; y) is the likelihood function for the inhomogeneous Poisson point
process with intensity function equal to Jh�1� and Lhom( ; x) = fX(x; ) is
the likelihood function for the corresponding homogeneous model when x is
observed.

Since the inhomogeneity parameter � enters into both parts of the like-
lihood decomposition (10), traditional likelihood inference on � cannot be
restricted to L0.

4.1. Exponential family densities and pro�le likelihood

Likelihood inference for point processes is tractable when the density is of
exponential family form, see e.g. Geyer (1999). However, most homogeneous
point process models studied do not have density of exponential form, but
have the property that the parameter  can be split into two components
( 1;  2) such that the density is of exponential form for �xed  2,

fX(x; ( 1;  2)) = c( 1;  2)
�1e�( 1)�t(x; 2); x 2 
X : (11)

An example is the Strauss process with distance relation determined by
r where  1 = (�; ),  2 = r, �(�; ) = (log(�); log()) and t(x; r) =
(n(x); sr(x)), see also Example 2.2.

If X has density of the form (11), then the density of Y contains the term

e�( 1)�t(h
�1
� (y); 2);

which is not an exponential family term unless  2 as well as � are �xed. It
does not make sense to introduce new homogeneous models such that � enters

11



into the density of Y as an exponential family parameter. The reason is, that
the very idea of the transformation models is to create inhomogeneous models
based on the homogeneous models broadly studied, and to take advantage
of the already well developed tools for statistical inference for homogeneous
models.

However, the properties of exponential families can still be utilized in the
analysis of a transformation model. When X has density of the form (11),
the pro�le likelihood with nuisance parameter (�;  2) becomes

L(�;  2; y) = L0(�; y) max
 1

Lhom( 1;  2; h
�1
� (y));

where Lhom( 1;  2; h
�1
� (y)) is of exponential family form for �xed (�;  2).

4.2. Data analysis, part 2

Let us illustrate the problems involved in full likelihood inference by the
cell data. We use the Strauss process as the underlying homogeneous pro-
cess. The inhomogeneity is described by a coordinate-wise transformation
h�(�1; �2) = (h�1(�1); h�2(�2)), � = (�1; �2) 2 R

2 , where both coordinate map-
pings are simple exponential, cf. Example 3.1. The nuisance parameter (�; r)
is 3{dimensional. In Jensen and Nielsen (2000, Example 5.2), a simpler ex-
ample based on simulated data was studied. Here the nuisance parameter
was 1{dimensional.

For �xed � and r, Lhom(�; ; r; h
�1
� (y)) is of exponential family form and

its maximum with respect to (�; ) is attained as the unique solution to the
likelihood equations

E �;;rn(X) = n(y)
E �;;rsr(X) = sr(h

�1
� (y));

(12)

where X is a Strauss process with parameters (�; ; r). The solution is de-
noted (�̂(�; r); ̂(�; r)). The pro�le likelihood with nuisance parameter (�; r)
becomes

L(�; r; y) = L0(�; y)Lhom(�̂(�; r); ̂(�; r); r; h
�1
� (y)): (13)

Hence, for values of (�; r) in a grid we solve the equations (12) and compute
(13) up to a constant. The grid value maximising the pro�le likelihood will
be denoted (�̂; r̂) and the maximum likelihood estimate is then (�̂; r̂; �̂; ̂) =
(�̂; r̂; �̂(�̂; r̂); ̂(�̂; r̂)).

The set of ��values to be considered can be reduced quite drastically. If
for k = 0; 1; : : :

�k(r) = f� 2 � : sr(h
�1
� (y)) = kg;
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Figure 5: Illustration of T (r) for the cell data with r = 0:0087. The tabbing between
grid points is 0.01 and 0.001 in the left and right �gure, respectively. The grey values
correspond to the di�erent �k(r) regions, the lighter the grey value the smaller the k. The
curves are level curves of L0.

then, according to Jensen and Nielsen (2000, Proposition 5.1), L(�; r; y) at-
tains its maximum for �xed r for � 2 T (r) where

T (r) =

s0(r)[
k=0

f� 2 �k(r) : L0(�; y) � L0(�
�; y); for all �� 2 �k(r)g;

and s0(r) = sr(h
�1

�̂0
(y)). The set T (r) is a �nite set with at most s0(r) + 1

elements. An illustration is shown for the cell data in Figure 5.
It therefore suÆces to tabulate the pro�le likelihood function L(�; r; y) in

f(�; r) : � 2 T (r); r 2 Rg;

where R is the chosen grid of r�values. This can be done using multiple
bridge sampling, cf. Gelman and Meng (1998). Details are provided in the
technical report Nielsen (2001). In Figure 6, the pro�le log-likelihood func-
tion logL(r; y) is plotted for the cell data where

L(r; y) = max
�2T (r)

L(�; r; y)

and
R = f0:00500; 0:00505; : : : ; 0:01000g:
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Figure 6: The pro�le log-likelihood function logL(r; y) is plotted (in full) for the cell data.

The stippled line is the partial pro�le log-likelihood when � = �̂0 is �xed. For details, see
the text.

Notice that L(�; y) is multi-modal. For r 2 R the maximum likelihood esti-
mates are

(�̂1; �̂2; r̂; �̂; ̂) = (1:304;�0:275; 0:0072; 767:6; 0:08149)

The choice of the grid R has been based on analysis of the J{function
and the pro�le pseudo-likelihood of the back-transformed data set from Fig-
ure 1 (b) which appears homogeneous, cf. van Lieshout and Baddeley (1996)
and Baddeley and Turner (2000). These analyses point to a value of r about
r0 = 0:007. The nearest neighbour distances are very small in the back-
transformed cell point pattern. The smallest observed nearest neighbour
distance is 0:00539. The 25%, 50%, 75%, and 100% quantiles are 0.01370,
0.01869, 0.02463, and 0.04806, respectively.

To be precise, the pro�le log-likelihood function plotted in Figure 6 is

logL(r; y)� logL(�̂0; r0; y) = log
L(�̂0; r; y)

L(�̂0; r0; y)
+ max

�2T (r)
log

L(�; r; y)

L(�̂0; r; y)
: (14)

The �rst term on the right hand-side of (14) is a partial pro�le log-likelihood
for � = �̂0 �xed. The partial likelihood is increasing in intervals between the
inner-point distances in the back-transformed point pattern and has down-
wards jumps at the inner-point distances. These distances are marked as
vertical lines in Figure 6 and the partial likelihood is the stippled line. The
full and the partial log-likelihood are identical below the smallest inner-point
distance 0.00539, since T (r) = f�̂0g for r � 0:00539. Therefore, in order
to �nd the maximum of L(�; y), the partial log-likelihood need only to be
evaluated in the largest r grid value below the smallest inner-point distance.
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5. Partial likelihood inference for �

In this section we investigate the statistical properties of the estimator �̂0
obtained by maximising the Poisson likelihood L0 in (10). We restrict at-
tention to exponential transformations as introduced in Section 3.3 and we
assume that Y = X .

5.1. Existence and uniqueness of �̂0
The inhomogeneous Poisson likelihood takes the form

L0(�; y) = �m(X )n(y)�(�)n(y)e��t(y) = �m(X )n(y)
�
�(�)e��

t(y)
n(y)

�n(y)
;

see (8) and (9). Recall that t(y) =
P

�2y �(�). If n(y) > 0, then the likelihood
equation for � based on L0 is

t(y)

n(y)
= �

d
d�
�(�)

�(�)
=: m(�):

Existence and uniqueness of �̂0 follow from the theory of exponential families,
cf. e.g. Barndor�-Nielsen (1978, Corollary 9.6). The results are formulated
in the proposition below.

Proposition 5.1 Let X be a homogeneous point process on a bounded set

X � R
m and suppose that n(X) > 0 almost surely. Let Y = h�(X) where

h�, � 2 �, is an exponential transformation. Suppose that the densities

f�(�)e���(�) : � 2 �g constitute a regular exponential family. Then, if C is

the convex support of the family, then m is a bijection of � onto intC. For
t(y)=n(y) 2 intC, �̂0 exists and is given by

�̂0 = m�1

�
t(y)

n(y)

�
: (15)

Note that m can be calculated as

m(�) =

R
X
�(u)e���(u)duR
X
e���(u)du

: (16)

5.2. Statistical properties of �̂0
Below, we show under regularity conditions that �̂0 is a moment estimator
of � based on t(Y )=n(Y ).
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Proposition 5.2 Let the situation be as in Proposition 5.1. Furthermore,

let X � R
m be a fundamental region, cf. De�nition 2.3, and let X be homo-

geneous as in De�nition 2.1 where the function g is X {periodic, cf. De�ni-

tion 2.5. Let the density be parametrized by  2 	.
Then,

E �; 

�
t(Y )

n(Y )

�
= m(�):

For t(y)=n(y) 2 intC, the estimator �̂0 is the unique �, satisfying

E �

�
t(Y )

n(Y )

�
=
t(y)

n(y)
;

where y is the observed point pattern and E � indicates mean value under

(�;  ) for an arbitrary  .

Proof. We use Corollary 2.7 with q = � Æ h�, and let again U denote a
uniformly distributed random variable in X . Then,

E �; 

�
t(Y )

n(Y )

�
= E �; 

1

n(X)

X
�2X

�(h�(�)) = E � (h�(U)) =

Z
X
� (h�(u))

du

�m(X )

=

Z
X
�(u)Jh�1� (u)

du

�m(X )
=

Z
X
�(u)�(�)e���(u)du = m(�):

We have used (8), (9) and (16). The conclusion follows from (15). �

If the variance of t(Y )=n(Y ) is not too large then m�1 will appear linear
and �̂0 is approximately unbiased, since, cf. (15),

E �; �̂0 = E �; m
�1

�
t(Y )

n(Y )

�
� m�1

�
E �; 

t(Y )

n(Y )

�
= �:

Suppose that � is 1{dimensional and that m is concave. Then m�1 is
convex, and from Jensens inequality we get,

E �; �̂0 = E �; m
�1(m(�̂0)) � m�1

�
E �; m(�̂0)

�
= m�1(m(�)) = �: (17)

Thus, �̂0 is a positively biased estimator of � under this condition. The size
of the bias depends, of course, on the variance of t(Y )=n(Y ).

Example 5.3 For both transformations introduced in Example 3.1, we get,
using e.g. (16),

m(�) = a
e�a

e�a � 1
�
1

�
: (18)

This function is concave for � > 0, see Figure 7.
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Figure 7: The function m given in (18).

5.3. Data analysis, part 3

The cell data set is just a small window of the original data set, which is
a long band stretching far along the second coordinate over and under the
observation window. Thus, there are no edge e�ects in the lower and upper
part of the cell data set. In the left and right hand-sides of the window,
there might be some edge-e�ects. However, since the interaction range is
very small, we can safely ignore this.

Thereby we can assume that the conditions in Proposition 5.2 are ful�lled,
and �̂0 can be regarded as a moment estimator of �. We get,

�̂0 = (1:304;�0:272):

The estimates of (r; �; ) based on Lhom(�; ; r; h
�1

�̂0
(y)) becomes

(r̂0; �̂0; ̂0) = (0:00715; 766:0; 0:08398):

Notice that the determination of this maximum likelihood estimate only in-
volves techniques from the analysis of a homogeneous process.

The estimate obtained under the partial analysis based on the moment
estimator is very close to that obtained using the full likelihood, cf. Sec-
tion 4.2. In Figure 6 the full pro�le log-likelihood is plotted as a full line and
the stippled line is the partial pro�le log-likelihood

logLhom(r; y)� logLhom(r0; y) = log
L(�̂0; r; y)

L(�̂0; r0; y)
;

where
logLhom(r; y) = logLhom(�̂(�̂0; r); ̂(�̂0; r); r; h

�1

�̂0
(y))

is the homogeneous pro�le log-likelihood for � = �̂0 �xed. The partial pro�le
log-likelihood is calculated as a part of the full pro�le loglikelihood, see (14).
The two functions have parallel behaviour.
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6. Testing hypotheses on �

Suppose that we want to test the hypothesis � 2 �H � �. A simple example
is a test for homogeneity in the class of exponential transformations where
�H = f0g since h0 is the identity, see also Jensen and Nielsen (2000). Let
(�̂H ;  ̂H) and (�̂;  ̂) be the maximum likelihood estimates under the hypoth-
esis and the model, respectively. Then, the likelihood ratio test for H takes
the form

Q =
L(�̂H ;  ̂H ; y)

L(�̂;  ̂; y)
=
L0(�̂H ; y)

L0(�̂; y)
�
Lhom( ̂H ; h

�1

�̂H
(y))

Lhom( ̂; h
�1

�̂
(y))

= Q0 �Q1; (19)

say. The ratio Q0 is explicitly known and therefore easy to calculate, whereas
Q1 has to be calculated using MCMC.

The distribution of Q under H is usually not known. One option is to
simulate the distribution of Q. But, as we have seen in Section 4, calculating
just one value of the maximum likelihood estimate under the full model is
rather time consuming and therefore the simulation of, say, 1000 values of Q
may be an overwhelming task.

Another option is to evaluate Q in a �2(d) distribution where d is the
di�erence between the dimensions of � and �H . However, we do not have
theoretical support for this procedure.

6.1. Poisson based test statistic

A simple alternative to the test statistic (19) is to use the likelihood ratio
test statistic under the corresponding Poisson model,

Qp
0 =

L0(�̂
H
0 ; y)

L0(�̂0; y)
;

where �̂H0 and �̂0 are the maximum likelihood estimates based on L0(�; y)
under the hypothesis and the model, respectively. Compare with Q0 in (19).
This suggestion is motivated by the encouraging results concerning the esti-
mation of the inhomogeneity parameter � without taking the interaction into
account.

In particular, let X = I1 � I2 be the product set of two intervals and
consider the coordinate-wise transformation h�(�1; �2) = (h�1(�1); h�2(�2)),
where both coordinate mappings are 1{dimensional exponential, cf. Exam-
ple 3.1. Then a test for homogeneity of the second coordinates is a test of
the hypothesis �H = R � f0g. Under the Poisson assumption, the estimate
of �1 is the same under H as under the general model. Thereby the Poisson
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based test statistic becomes

�2 logQp
0 = �2 log

L0((�̂01; 0); y)

L0((�̂01; �̂02); y)

= 2n(y)

�
log�1(I2)� log

Z
I2

e�̂02��(u)du+ �̂02 �
t2(y)

n(y)

�
; (20)

where t2(y) denotes the sum of the second coordinates of the data set y.
Notice that the �rst coordinates and �̂01 do not enter into the test statistic.

The distribution of Qp
0 can easily be simulated. The simulations can be

made under the homogeneous interaction model with parameter  ̂0, which is
the maximum likelihood estimate of  based on h�1(�̂01;0)(y). Notice that the

value of �̂01 plays an indirect role.

6.2. Data analysis, part 4

In the cell data, it is of interest to test for homogeneity in the second coor-
dinates. The Poisson based test statistic (20) is �2 logQp

0 = 3:02. The max-
imum likelihood estimate of the interaction parameter based on h�1(�̂01;0)(y) is
(�; ; R) = (765:1; 0:10969; 0:0072) and the exact (simulated) test probability
becomes 5:65%. This is based on 2000 realizations from the homogeneous
Strauss process. For comparison, the test probability based on 2000 homoge-
neous Poisson processes is 7:4% and the test probability based on the �2(1)
distribution is 8:22%. A similar test for homogeneity in the �rst coordinates
gives �2 logQp

0 = 83:9 corresponding to test probability 0.
It is also possible to calculate the value of the test statistic (19) for homo-

geneity in the second coordinates, based on the full likelihood function. We
get �2 logQ = 7:23. Evaluating in a �2(1) distribution, the test probability
becomes 0:72% and is thereby somewhat smaller than the one obtained using
(20). Notice that also (20) gives a small test probability although we expect
homogeneity in the second coordinates. This is probably due to the large
number (617) of points in the cell data.

For comparison, testing for homogeneity in the second coordinates of
the pine data from Figure 2 (271 points), we get Qp

0 = 0:6337 with exact
(simulated Poisson) and �2(1) test probabilities of 42:67% and 42:60%, re-
spectively.

7. Simulation experiments

In this section we will present some simulation experiments that illustrate the
theory in the previous sections and point to some interesting results regarding
the variance of �̂0.
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The simulation experiments concern the TIM model from Example 3.1,
illustrated in Figure 4, where the underlying homogeneous process is the
circular Strauss process on (��; �). The transformation is symmetric expo-
nential. Furthermore, we have conditioned on n(x) = 100 and supposed that
r is known and equal to the true value. The inhomogeneity parameter � as
well as the interaction parameter  is 1{dimensional,  =  2 (0; 1]. Recall
that  = 1 is the Poisson point process, the process without interaction, and
as  decreases, the degree of inhibition increases until the hard core process
is reached for  = 0 where no points can lie closer than r apart. Notice that
when  = 1, �̂0 is the ordinary maximum likelihood estimate.

7.1. Distribution of t(Y )=n(Y )
First, we have examined the mean and standard deviation of t(Y )=n(Y ).
These quantities have been approximated by the sample mean and sample
standard deviation over 2000 realizations from the model.

In the upper plot of Figure 8, the sample mean is plotted for � = 1 and
 = 0:01; 0:02; : : : ; 1:00. In the lower plot, the sample standard deviation is
shown. The four curves represent 4 di�erent values of the transformation
parameter � = 0:5; 1; 2; 3.

In the upper plot, we recognize the result from Proposition 5.2: the mean
of t(Y )=n(Y ) is constant and equal to m(�). The uctuations come from
the approximation. The lower plots indicate that the standard deviation in-
creases with . Hence, the more inhibition, the smaller standard deviation.
But that also corresponds with the fact, that the more inhibition, the more a
small change in the transformation parameter will inuence the relative num-
ber of neighbours. And therefore the estimated transformation parameter is
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Figure 8: Simulation experiment examining the mean and standard deviation of t(Y )
n(Y ) for

varying , and � as indicated.
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not allowed to vary very much. The same is the case when � increases.

7.2. Distribution of �̂0
Next, we study the distribution of �̂0. As known from (17), �̂0 overestimates
� since m is concave, see Figure 7. This is also found in the upper plot
in Figure 9 where the sample mean of �̂0 is plotted for  between 0 and
1. However, considering the scale on the second axis the bias is very small.
As before, the uctuations in the mean are most likely to come from the
random approximation of the mean. Still we can see an increase of the bias
with increasing , compare with the variance of t(Y )=n(Y ), see Figure 8. In
the middle plot of Figure 9, the mean and 95% envelopes are plotted for the
2000 samples of �̂0. The envelopes are the stippled lines. Notice that the
values of �̂0 in 95% of the cases fall in the interval [0:75; 1:25]. From Figure 7
we see that in this interval m can be approximated by a straight line. Using
(15), we then expect that the variance of �̂0 can be approximated by

Var�; (�̂0) �
1

m0(�)2
Var�; 

�
t(Y )

n(Y )

�
: (21)

In the lower plot of Figure 9 both the left-hand side and the right-hand side
of (21) are plotted, and we see that the approximation is very good especially
for small  for which the envelopes are more narrow.
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Figure 9: Simulation experiment examining the mean and standard deviation of �̂0 for
varying , and � = 1. In the middle plot the mean is plotted together with 95% envelopes.
In the lower plot the approximation (21) is examined.
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Finally, note that both the bias and the variance of �̂0 decrease with  so
�̂0 has better statistical properties for small .

7.3. Comparison of �̂0 and �̂
Finally, we will study the simultaneous distribution of (�̂0; �̂) where �̂ is the
maximum likelihood estimator based on the full likelihood (10).

In the eight plots in Figure 10, the interaction parameter  varies between
0 and 1. In each plot we have simulated 50 point patterns from the model and
plotted (�̂0; �̂). The true value of � is 1, which is marked by the horizontal
and perpendicular lines. The diagonal lines correspond to �̂0 = �̂.

First notice that �̂0 and �̂ are very similar. This is more pronounced for
 close to 1, where �̂0 is the true maximum likelihood estimate. The more
interaction, the more information is lost. Secondly, the variance of �̂0 and �̂
increases with . This is intuitively clear, since the smaller the , the less
variation in the position of the points. Thirdly, for  very close to 0, (�̂0; �̂)
satis�es

�̂0 � �̂ � � or � � �̂ � �̂0;

i.e. �̂ is closer to the true value than �̂0. The e�ect is however not that
impressive for larger values of . It is important to remember that the
parameters are estimated under the true model with r �xed to the true
value. This is an arti�cial restriction which never occurs with a real data set,
and of course �̂ gains from this.
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Figure 10: Comparison of �̂ and �̂0. Simulation experiment with  as indicated in each of
the eight plots, and � = 1.
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Thus, these simulation studies indicate that �̂0 is close to �̂. Furthermore,
the statistical properties of both estimators seem to be better the smaller the
.

8. Discussion

The present paper concerns statistical inference for transformation inhomo-
geneous point processes. The idea of modelling inhomogeneity by trans-
formation has also been applied in other areas of spatial statistics, cf. e.g.
Perrin (1997). Transformation models for point processes yield not only in-
homogeneity in the intensity of points but also in the strengths of interactions
among points. For point processes de�ned in Rm ; m � 2; the neighbourhoods
induced by the transformation will, except in trivial cases, be anisotropic
(non-circular). This might just be what one wants if the point pattern has
actually been formed by deformation. Otherwise transformation models may
be used as approximations in cases where a precise model of the neighbour-
hoods is not important. In particular, we stress that the analysis of the cell
data by a transformation model has been included in the paper for illustrative
purposes. If it is important to use isotropic neighbourhoods then the inho-
mogeneous Markov point processes by location dependent scaling, presented
in Hahn et al. (2001), may be a good alternative. For circular point processes
on R, anisotropy is not a question at all and the transformation models may
generally be very useful models for describing correlated directions.

In the present paper it is argued that the inhomogeneity parameter �
can be estimated, using the partial likelihood L0 based on an inhomoge-
neous Poisson point process. The statistical analysis can thereby be simpli-
�ed. Most importantly, the analysis can be made into a two-step procedure
where �rst the inhomogeneity parameter is estimated and then the back-
transformed point pattern is analysed as a homogeneous point process. The
likelihood analysis of a homogeneous process is already time-consuming, es-
pecially if the estimation of the interaction range r is taken into account. In
our analysis this step was the real time-killer.

It is expected that Proposition 5.2 can be used to prove a consistency
result for �̂0. Let us suppose that � is a 1{dimensional parameter. Then,
from (15) it follows that

�̂0 = � +
1

m0(~�)

�
t(y)

n(y)
�m(�)

�
;

where j ~��� j�j �̂0�� j. Proposition 5.2 implies that m(�) is the mean value
of t(Y )=n(Y ). Thus, if Var�; t(Y )=n(Y ) tends to 0 when X is expanding to
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R
m , then �̂0 will converge in probability to �. The details of this reasoning

have still to be fully investigated.

9. Appendix: Proof of Proposition 2.6

Let X � R
m be a fundamental region (De�nition 2.3). Let X be a homo-

geneous point process in X (De�nition 2.1) with density fX which is the
restriction to 
X of a translation invariant and X -periodic (De�nition 2.5)
function gX de�ned on 
Rm . Suppose also that n(X) > 0 almost surely.
Under these conditions we will in this appendix show that a point Z chosen
uniformly among the points in X is uniformly distributed in X .

First we derive a formula for the density of Z. Let F be a measurable
subset of X , and let � be the distribution of the unit rate Poisson point
process on R

m . Using fX(;) = 0, and the well-known expansion of the
distribution of the Poisson point process, see e.g. M�ller (1999, Section 2),
we get

P(Z 2 F )

=

Z

X

P (Z 2 F jX = x)fX(x)�(dx)

=

Z

X

1

n(x)

X
�2x

1(� 2 F )fX(x)�(dx)

=
1X
n=1

e��m(X ) 1

n!

Z
X

� � �

Z
X

1

n

nX
i=1

1(xi 2 F )fX(fx1; : : : ; xng)dxn � � �dx1

(a)
=

1X
n=1

e��m(X ) 1

n!

Z
X

� � �

Z
X

1(x1 2 F )fX(fx1; : : : ; xng)dxn � � �dx1

=

Z
F

 
1X
n=1

e��m(X ) 1

n!

Z
X

� � �

Z
X

fX(fz; x2; : : : ; xng)dxn � � �dx2

!
dz

In (a) we have interchanged the inner sum and the integrals and used that
all the terms in the new inner sum is equal to, say, the �rst one.

The density of Z is the expression in brackets which can be rewritten as

fZ(z) = 1(z 2 X )
1X
n=1

e��m(X ) 1

n!

Z
X

� � �

Z
X

gX(fz; x2; : : : ; xng)dxn � � �dx2:

Denote the sum gZ(z). The function gZ is de�ned on R
m .

In order to show that Z is uniformly distributed in X , we show that
gZ is constant, i.e. that gZ(z + c) = gZ(z) for any c 2 R

m . This is done
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by showing that all terms in the sum are constant. For n = 1, the term
is exp(��m(X ))gX(fzg), which is constant since gX is translation invariant.
For n � 2,Z

X

� � �

Z
X

gX(fz + c; x2; : : : ; xng)dxn � � �dx2

(a)
=

Z
X+c

� � �

Z
X+c

gX(fz + c; x2; : : : ; xng)dxn � � �dx2

=

Z
X

� � �

Z
X

gX(fz + c; x2 + c; : : : ; xn + cg)dxn � � �dx2

(b)
=

Z
X

� � �

Z
X

gX(fz; x2; : : : ; xng)dxn cdotsdx2:

In (b) we have used that gX is translation invariant. Now it only remains to
show (a). Since the order of the integrals can be interchanged, similar results
are to be shown for each integral. For the i'th integral, 2 � i � n, we have,Z

X+c

gX(fz + c; x2; : : : ; xi�1; xi; xi+1; : : : ; xng)dxi

(c)
=

X
j

Z
(X+c)\(X+zj)

gX(fz + c; x2; : : : ; xi�1; xi; xi+1; : : : ; xng)dxi

=
X
j

Z
(X+c�zj)\X

gX(fz + c; x2; : : : ; xi�1; xi + zj; xi+1; : : : ; xng)dxi

(d)
=

X
j

Z
(X+c�zj)\X

gX(fz + c; x2; : : : ; xi�1; xi; xi+1; : : : ; xng)dxi

(e)
=

Z
X

gX(fz + c; x2; : : : ; xi�1; xi; xi+1; : : : ; xng)dxi:

At (c) we have used that X is a fundamental region and at (d) we have used
that gX is X -periodic. Finally, at (e) we have used that [j(X +c�zj) = R

m .
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