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1 Introduction and results

This paper is the second in a series of two papers on asymptotic completeness
for (generalized) three-body quantum systems with long-range interaction. Asymptotic
completeness is henceforth abbreviated AC; an “effective” version of AC is the existence
of the limits (1.4) and (1.5) given below. For a full account of the statement we refer
the reader to our first paper [S1]. We shall in this paper prove results in the regime
“� 2 (0; 1

2
]” with � measuring the decay of the “pair potentials” at infinity as in (1.2)

(given below). All examples in the literature on AC for many-body systems seem
so far to be restricted to� greater than one half. Moreover Yafaev ([Y]) constructed
counterexamples to AC for any� 2

�
0; 1

2

�
in systems of one-dimensional particles.

On the other hand there are many papers in the literature on AC for two-body systems
with arbitrary� > 0. We have results for two different classes of potentials: 1) One-
dimensional potentials with a negative upper bound near infinity (like those considered
in [S1]). 2) Potentials (in any dimension) with a positive lower bound near infinity.

We recall the basic model and a reduction scheme for AC, see [S1] for more details.
We consider a finite family of subspacesfXaja 2 Fg of a finite dimensional Euclidean
spaceX. By definition amin; amax 2 F are given byXamin

= X andXamax = f0g,
respectively, and fora andb different fromamin the “three-body” conditionXa \Xb =
f0g is imposed. The position and momentum operators on the basic Hilbert space
H = L2(X) are denoted byx andp, respectively. The orthogonal complement ofXa

in X is denoted byXa. The corresponding components ofx and p are denoted by
xa; pa and xa; pa, respectively.

The basic Hamiltonian onH is

(1.1) H = 1

2
p2 + V ; V (x) =

P

a2F

V a(xa);
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where each “pair potential”V a is assumed to be a real-valued smooth function onXa

obeying for some� > 0 (independent ofa) and all multiindices�

(1.2) @
�
xaV

a(xa) = O
�
jxaj���j�j

�
:

We consider the propagatorUa(t) generated byHa(t) = Ha + 1

2
p2a + Ia(t; x),

whereIa(t; x) = J
�
x
t

�
Ia(x) with J an arbitraryC10 cutoff function supported inYa =

Xn
�
[b6�aXb

�
and with Ia(x) = V (x) � V a(xa). (By definition b � a , Xb � Xa.)

Clearly we have the bound

(1.3) @
�
x Ia(t; x) = O

�
t���j�j

�
uniformly in x:

There exists the asymptotic energyHa+ = lim
t!+1

Ua(t)
?
HaUa(t) (understood in the

strong resolvent sense). Let~Ua(t) denote the propagator generated byHa + 1

2
p2a +

Ia(t; xa).

The notationE
(D) denotes the spectral projection for a self-adjoint operatorD

corresponding to a Borel set
 � R.

Now, the “effective” version of AC that we are going to address in this paper is
the following statement: For all�+a 2 Ef0g

�
Ha+

�
there exists the limit

(1.4) ~�+a = lim
t!+1

~Ua(t)
�
Ua(t)�

+
a ;

and for all ~�+a 2 Ef0g(H
a) there exists the limit

(1.5) �+a = lim
t!+1

Ua(t)
� ~Ua(t)~�

+
a :

1.1 Negative potentials
In addition to (1.2) we shall need the following negativity condition of [S1] for a

(fixed) a 2 F : For somec; R > 0

(1.6) V a(xa) � �cjxaj��; jxaj � R:

Moreover we shall assume that the subspaceXa is one-dimensional. In our last set
of conditions (1.7)-(1.11) stated below we identify the part ofx denoted byxa by a
coordinate for this vector given by fixing a basis vector for the subspaceXa: Suppose

(1.7) V a(xa) = V a
1
(xa) + V a

2
(xa) + V a

3
(xa);

whereV a
1
(xa); V a

2
(xa) andV a

3
(xa) obey (1.2),

(1.8)
� Crjx

aj���2 � V a00
1 (xa) � �crjx

aj���2; xa � R;

cr; Cr > 0 and Cr < 2�1(2 + �)2cr;
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(1.9)
� Cljx

aj���2 � V a00
1 (xa) � �cljx

aj���2; xa � �R;

cl; Cl > 0 and Cl < 2�1(2 + �)2cl;

and for some� > 0

(1.10) V a0
2 (xa) = O

�
jxaj�1����

�
;

and

(1.11) V a
3 (x

a) = O
�
jxaj�

1+�

�

�
:

In (1.11) and henceforth� = 2(2 + �)�1.

Now, suppose the conditions (1.2), (1.3) and (1.6) for somea with dimXa = 1;
all conditions with the same (fixed)� 2 (0; 12 ]. Then one can introduce, cf. [S1],

(1.12)

P a+ = P a+
r + P a+

l ;

P a+
r = s� lim

t!+1
Ua(t)

�
E[t���;t�+�](x

a)Ua(t)Ef0g
�
Ha+

�
;

P a+
l

= s� lim
t!+1

Ua(t)
�
E[�t�+�;�t���](x

a)Ua(t)Ef0g
�
Ha+

�
:

It was proven that these limits are independent of (small)� > 0 and thatP a+ =
Ef0g

�
Ha+

�
. We shall show the existence of (1.4) by proving thatP a+ = 0, cf. [S1].

Our main result is the following.

Theorem 1.1Under the conditions (1.2), (1.3), (1.6)-(1.11) withdimXa = 1 and
� 2 (0; 12 ]

(1.13) Ef0g
�
Ha+

�
= 0;

in particular the existence of (1.4) holds.

The existence of (1.5) with these assumptions follows from the fact that in this case
Ef0g(H

a) = 0, cf. [O, Theorem 2.2 p. 196]. Combined with (1.13), AC follows.

Remark 1.2 For simplicity of presentation we shall prove Theorem 1.1 with the
additional assumption thatV a

2
= V

a

3
= 0. The general case may be treated in the

following fashion: First we may assumeV a

3
= 0 sinceV a

3
is “short-range”. Next we

keepV a

2
in the analysis (of Sections 2–7). We define the classical orbit in (2.3) in

terms of the “dominating” termV a

1
only. Keeping track of contributions from error

terms coming fromV a

2
yields a weaker localization than (2.4), but strong enough for

the arguments of Section 7 ((7.1) needs to be replaced by a weaker estimate).

As indicated in the above remark we devote Sections 2–7 to a proof of a slightly
simplified version of Theorem 1.1. Our basic strategy is similar to one applied to a
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different problem, although with common spirit, in [HS]. We compare the evolution of
a state�+

a
2 P a+

r H (or �+a 2 P a+
l H) with a simplified evolution in terms of a relative

wave operator. Setting up this wave operator is the content of Sections 2–6. Our
techniques at this point resemble at many points those applied in [HS]. In Section 7 we
verify conditions of [S2] for the simplified evolution. Using the relevant result of [S2]
we infer that indeed states propagated with this evolutioncannotbe localized to regions
of the configuration space that the projectionP a+

r a priori prescribes. Consequently
�+a = 0. (Notice that this is a purely quantum statement; it has no analogue in classical
mechanics.) The technique of Section 7 differs completely from the one applied at
the similar step in [HS]. We remark that one may modify the latter technique of [HS]
as to provide another approach to our second step in Section 7. However it is more
complicated. Morever we remark that neither of those approaches seem to be optimal.
For example we consider the conditions (1.8) and (1.9) to be “technical”; the condition
(2.1) stated below should suffice. As an open problem motivated by the analysis of [S1]
we mention AC for negative potentials in higher dimensions with spherical symmetry.

In Appendix A we prove bounds for classical orbits of some one-dimensional
quadratic Hamilton functions, that are needed at various points in Sections 5–7.

1.2 Positive potentials

In addition to (1.2) for a� 2 (0; 1
2
] we shall need the following positivity condition

for a (fixed) a 2 F : For some�+ 2 [�; 2�
1��

) andR > 0

(1.14) V a(xa) � jxaj��+; jxaj � R:

Our main result is the following.

Theorem 1.3Under the conditions (1.2), (1.3), (1.14) with a� 2 (0; 1
2
], the limits

(1.4) and (1.5) exist; in particular AC holds.

The proof of Theorem 1.3 is given in Section 8. It is based on some energy bounds
which may be viewed as modifications of results of [S1]. Conceptually and technically
it is much simpler than the proof of AC for negative potentials due to the fact that
there are no classical orbits (for the internal dynamics) at infinity with zero energy. To
put our result and method into perspective we also give a proof of Wang’s result for
� 2 (1

2
;
p
3 � 1], [W].

Obviously Theorems 1.1 and 1.3 can be combined to obtain asymptotic completeness
as defined in [S1] for families of pair potentials of mixed type, each either negative or
positive (at infinity) with further properties as specified in the theorems.
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2 Preliminary estimates (negative potentials)

In addition to (1.2), (1.3) and (1.6) withdimXa = 1 and� 2 (0; 1
2
], we shall in

Sections 2–6 need the concavity assumption

(2.1) V a00(xa) � 0 for jxaj � R:

Only in Section 7 the stronger conditions (1.8) and (1.9) are needed (to verify (7.4)).
Recall that we putV a

2
= V a

3
= 0, cf. Remark 1.2.

We aim at showing that for any given�+
a
2 P a+

r H indeed�+a = 0. Since our proof
can be adapted forP a+

l
we then conclude (1.13).

In this section we are going to use the freedom to changeIa(t; x) to the effect

(2.2) Ia(t; x) = Ia(t; x)F+

�
x
a

t���

�
+ Ia(t; x

a = 0; xa)F�

�
x
a

t���

�

for � > 0 chosen arbitrarily small, cf. [S1, Section 5]. (Here and henceforth we adapt
the notationF+ andF� of [S1, Definitions 2.1].) The proof of [S1, Lemma 4.5] (with
j = 1) yields the following improved (and classically “optimal”) localization (cf. the
proof of [S1, (5.6)]). We remark that we are not going to use the full strength of the
result; it is stated here only for completeness of presentation.

Lemma 2.1 Let L be the solution of the initial value problem

(2.3) d
dtL(t) =

p
�2V a(L(t)); L(0) = R; t � 0:

Then for all " > 0 and �+a 2 P a+
r H

(2.4) jjF+
�
t��"�1jxa � Lj

�
�+a (t)jj = o

�
t0
�
;

where�+a (t) = Ua(t)�
+
a .

“Proof” Given" > 0 we may assume (2.2) for a small� > 0 obeying 3

2
�� < ". We

modify the proof of [S1, (5.6)] by introducing for small� > 0 obeying 3

2
�� < 3� < "

(2.5)

�0 = �+
�

�
;


1 =
�

2
�0 + � =

�

2
� +

3

2
�;

�1 = 1� 
1 � � = ��
5

2
�;

� = �+
�

2
�� �;

�1 = 1� �+
�

2
� + 3�:
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All requirements of the proof of [S1, (5.6)] including [S1, (4.37)] are fulfilled for
the choice (2.5) with� > 0 small enough yielding to the following statement:

(2.6) lim
t!+1

jj�+a (t) �
�B
�
t; t�1

�
�+a (t)jj = 0;

where for parameters given by (2.5) andK(xa) being the inverse ofL(t)

(2.7)

�B
�
t; t�1

�
= �F0F1F2F3F4;

�F0 = F�

�
t��1 jt�K(xa)j

�
;

F1 = F+

�
xa

t�1

�
; F2 = F�

�
xa

t�0

�
; F3 = F+(t


1pa); F4 = F�

�
jt�Haj

�
:

(In the present context we dont need [S1, (4.37)] though. We can use the fact that
�+a 2 P a+

r H � Ef0g
�
Ha+

�
H and [S1, Lemma 2.3] to avoid a certain symmetrizing

under use of [S1, (4.37)].)

We shall need some operatorsrt; bt and~bt which are modelled after constructions
in [D] and [HS]:

(2.8) rt(x
a) = fr

�
f�1(xa � L)

�
; f = t

3

4 ; r(y) = hyi =
�
1 + jyj2

� 1

2 :

We compute its Heisenberg derivative (withD = d

dt
+ i[Ha(t); �])

(2.9)
bt = Drt =

1

2

�
r0
�
f�1(xa � L)

��
pa � _L

�
+ h:c:

�
+ f 0dt;

dt = fr�1

t
; _L =

d

dt
L(t):

Furthermore (with dots used again for time-derivatives)

(2.10)

Dbt = D
2rt = f�1ct + �fdt � f�3et � r0

�
f�1(xa � L)

�� @

@xa
V + �L

�
;

ct = P �

�
d2

dxa2
r

��
f�1(xa � L)

�
P; P = pa � _L�

_f

f
(xa � L);

et = 4�1

�
d4

dxa4
r

��
f�1(xa � L)

�
:

Clearly bothbt andDbt are bounded relatively topa2. Also we notice the non-
negativity ofct and the uniform boundedness (with respect tot) of the termsdt andet.

We may estimate using also the fact that

(2.11) @

@xa
V + �L = @

@xa
Ia + (xa � L)

1R
0

dsV a00(L + s(xa � L))
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and (2.1),

(2.12) Dbt � �r0
�
f�1(xa � L)

�
@

@xa Ia + C1
�f � �C2t

�min (�; 1
4
)�1:

We introduce the regularizations

(2.13)
~bt = N�1

t btN
�1
t ; ~ct = N�1

t ctN
�1
t ;

Nt = I + t�2�pa2; � > 0:

We also introduce

(2.14)
h = t1��2 = t��2�; �2 =

�

2
� + 2�;

g = t�1 ; �1 =
�

2
� + 3�:

Obviously (for future reference)f = o(h) and�2 < �3:

To start out the analysis we shall use the following weaker localization than the
one presented in Lemma 2.1:

(2.15) jj�+a (t) � F�
�
h�1rt

�
�+a (t)jj = o

�
t0
�
:

Notice that this localization is very weak as opposed to the “optimal” one of Lemma
2.1. Similarly the following localization result is very weak; the “optimal” bound
follows readily from the proof:

Lemma 2.2 Let �+
a

be given as in Lemma 2.1. Then for all small� > 0 (and
all � > 0)

(2.16) jjF+
�
g~bt

�
�+a (t)jj = o

�
t0
�
:

Proof As in the proof of Lemma 2.1 we may assume (2.2) with� > 0 small. We
use the proof of this lemma. By (2.6) it suffices to estimate

(2.17) jjg~bt �B
�
t; t�1

�
�+a (t)jj = o

�
t0
�
:

By a commutation (2.17) will follow from

(2.18) jjg
�
pa � _L

�
�B
�
t; t�1

�
�+a (t)jj = o

�
t0
�
:

To show (2.18) we may insertF+ = F+(4t

1pa) to the left and then write

F+

�
pa � _L

�
= F+

�
pa + _L

�
�1

2(Ha � (V a(xa)� V (L))):

The contribution fromHa may by commutation be shown to beO
�
t3���+��

�
, while

the one from the second term to the right isO
�
t6���+

�

2
�
�

due to the presence of the
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factor �F0 and the formula

V a(xa)� V (L) = (xa � L)

1Z
0

dsV a0(L + s(xa � L)):

For any given�+
a
2 P a+

r H we aim at proving the existence of the limit

(2.19) lim
t!+1

�U�a (t)�
+
a (t);

for some comparison dynamics�Ua(t) to be defined in Section 4 and for which a result
of [S2] can be applied (to conclude�+a = 0).

3 Integral estimates

In order to prove the existence of (2.19) we need certain integral estimates for the
full dynamicsUa(t), cf. [D] and [HS]. Henceforth we shall not use or assume (2.2).
Nevertheless we are going to apply some of the parameters of (2.5). The� is changed to

(3.1) � = � � �:

Lemma 3.1 For all small enough�; � > 0 (depending only on�) and with
F (t) = F1F2F3F4, where the factors to the right are given by (2.7) with�0; 
1; and�1
given by (2.5) and� by (3.1), and with the expectation valueh�i� given in the state
� = �+a (t) = Ua(t)�

+
a for any �+a 2 P a+

r H

(3.2)

1Z
1

�
G(t)�

�
�F 20

�

� 1
2

�
g~bt

�
~ft
�
�F 20

�

� 1
2

�
g~bt

�
G(t)

�
�+
a
(t)

dt <1;

~ft = gf�1~ct + t�1I � gN�1
t r0

�
f�1(xa � L)

�
F+

�
4
xa

t�1

��
V a0 + �L

�
N�1
t ;

G(t) = G+(t) = F+

�
h�1rt

�
N�1
t F (t) or

G(t) = G�(t) = F�

�
h�1rt

�
N�1
t F (t);

and

(3.3)

1Z

1

D
H(t)�F 2

�

�
g~bt

��
t�1��

�
2I � g~bt

�
+ t�1I

�
H(t)

E
�+
a
(t)
dt <1;

H(t) = H+(t) =
�
F 20
+

� 1
2
�
h�1rt

�
F (t) or

H(t) = H�(t) =
�
�F 20

�

� 1
2
�
h�1rt

�
F (t):
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Proof We notice that indeed the expression~ft of (3.2) is a sum of non-negative
terms, cf. (2.1) and (2.11). A similar remark is due for the integrand of (3.3).

For (3.2) we claim that the estimate withG(t) = N�1

t
F (t) follows by consid-

ering the “propagation observable” (more precisely the uniformly bounded family of
observables)

�(t) =
�
N�1

t
F (t)

��
F 2
�

�
g~bt

�
N�1

t
F (t):

Let us compute the “leading term” coming from differentiating the mid-
dle term: We introduce the modified Heisenberg derivativeDt = d

dt
+

i
h
1

2
p2 + V a(xa)F 2

+

�
4 x

a

t�1

�
+ Ia(t; x); �

i
.

(3.4) DtF
2
�

�
g~bt

�
= �

�
�F 20

�

� 1

2

�
g~bt

��
Dt

�
g~bt

���
�F 20

�

� 1

2

�
g~bt

�
+ R1(t):

Here

(3.5) jjR1(t)jj � Cjj
h
g~bt;

�
Dt

�
g~bt

��i
jj;

cf. [DG, Lemma C.4.1]. Using (3.6) given below (and concrete expressions for
the derivatives involved) we readily estimate the right hand side by a constant times
g2t2�f�2 which is in L1(dt) for � > 0 small enough.

Obviously

(3.6) Dt

�
g~bt

�
= _g~bt + gN�1

t
(Dtbt)N

�1

t
+ 2gRe

��
DtN

�1

t

�
btN

�1

t

�
:

The contribution from the first two terms on the right hand side of (3.6) to the
Heisenberg derivative of�(t) is

T1(t) +R2(t);

T1(t) = �B(t)�
n
_g~bt + gN�1

t
(Dbt)N

�1

t

o
B(t); B(t) =

�
�F 20

�

� 1

2

�
g~bt

�
N�1

t
F (t);

jjR2(t)jj 2 L1(dt):

Here we used that that functionsF1 = F+

�
x
a

t�1

�
and anyF�

�
4 x

a

t�1

�
have disjoint

support. Commutation picks up an integrable term. (In factR2(t) = O
�
t�1

�
.) As for

the contribution from the last term on the right hand side of (3.6) we compute for a
suitable real-valuedFc 2 C1

0
(R)

� 2gB(t)�Re
��
DtN

�1

t

�
btN

�1

t

�
B(t) = T2(t) +R3(t) +R4(t);

T2(t) = �4�B(t)�Fc

�
g~bt

�
t�2��1pa2N�1

t
Fc

�
g~bt

�
B(t);

jjR3(t)jj � Cjj
h
Fc

�
g~bt

�
; t�2��1pa2N�1

t

i
jj = O

�
gf�1t�1

�
= O

�
t
�

2
��

7

4
+3�

�
;

jjR4(t)jj � Cjj

�
V a(xa)F 2

+

�
4
xa

t�1

�
+ Ia(t; x); N

�1
t

�
Ntjj = O

�
t���(1+�)�1

�
:
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Clearly it follows thatjjR3(t)jj; jjR4(t)jj 2 L1(dt).

By (2.10), (2.11) and (2.12)

(3.7) T1(t) + T2(t) � �B(t)� ~ftB(t) + R(t);

where jjR(t)jj 2 L1(dt).

Next we look at the contributions

(3.8) T3 =
�
N�1

t
F (t)

�
�

F 2
�

�
g~bt

��
DtN

�1

t

�
F (t) + h:c:

and

T4 =
�
N�1
t

F (t)
�
�

F 2
�

�
g~bt

�
N�1
t
DF (t) + h:c:

to the Heisenberg derivative of�(t):

We compute

DtN
�1

t
=

d

dt
N�1

t
+ i

�
V a(xa)F 2

+

�
4
xa

t�1

�
+ Ia(t; x); N

�1

t

�
:

The first term contributes to (3.8) by a term that isO
�
t�1�2�

�
(since pa2 may be

bounded by that factorF4). Obviously by the above bound forR4(t) the second term
is integrable.

As for the termT4(t) the derivatives of the factors ofF are readily handled (i.e.
proven integrable) by using various estimates of [S1], cf. the proof of Lemma 2.1.

Straightforward computations of commutators with the middle termN�1t F 2
�

�
g~bt

�
N�1t

needed when symmetrizing expressions from the derivatives of the factorsF1 andF2
show that those contribute by integrable terms.

In combination with (3.7) we finally conclude the estimate

(3.9)
1R
1

D�
�F 20

�

� 1

2

�
g~bt

�
~ft
�
�F 20

�

� 1
2

�
g~bt

�E
N�1

t
F (t)�+a (t)

dt < 1:

To obtain (3.2) forG(t) = G�(t) it suffices by (3.9) to show the statement for
G(t) = G+(t). We show the latter and (3.3) forH(t) = H+(t) in one stroke by
considering propagation observable

�(t) = G+(t)
�
F 2
�

�
g~bt

�
G+(t):

We notice that

DF+
�
h�1rt

�
=

1

2
F 0

+

�
h�1rt

��
h�1Drt � _hh�2rt

�
+ h:c:

= h�1btF
0

+

�
h�1rt

�
�

_h

h

�
h�1rt

�
F 0

+

�
h�1rt

�
+O

�
h�2

�
;

10



tends to be negative when sandwitched by factors ofF
�

�
g~bt

�
, cf. the proof of [D,

Proposition 5.6]. The previous arguments for the contribution fromDtF
2
�

�
g~bt

�
applies

again (this term contributes by another non-positive term). We skip the straightforward
details.

To obtain (3.3) forH(t) = H
�

(t) we differentiate�(t) = G
�

(t)�F 2
�

�
t�1~bt

�
G�(t)

under use of similar computations as for the first estimate of (3.3), and we use (3.2) for
G(t) = G�(t).

4 A simplified comparison dynamics

We introduce a comparison dynamics�Ua(t) by

(4.1) i d
dt
�Ua(t) = �Ha(t) �Ua(t); �Ua(1) = I;

and

(4.2)

�Ha(t) =
1

2
p2a + �Ha(t) + �R(t; x);

�Ha(t) =
1

2
pa2 + V a(L) + (xa � L)V a0(L) + 2�1V a00(L)(xa � L)2;

�R(t; x) = Ia(t; x) + �Ra(t; xa);

�Ra = �F �(xa � L)3
1Z

0

(1� s)2

2

�
d3

dxa3
V a

�
(L + s(xa � L))ds �F ;

�F = F
�

�
4�1h�1rt

�
:

Clearly for all k 2 N [ f0g

(4.3) @kxa
�Ra = O

�
t�(3+�)�h3�k

�
;

uniformly in x.

It is known that �Ua(t) preserves the domain ofp2 + x2, see [S2, Section 4].

5 Further integral estimates

We need further integral estimates for the full dynamics. To motivate those we
consider the following “model Hamiltonian”�Ha(t) of (4.2). Let �Ua(t) denote the
corresponding propagator, i.e.i@t �Ua(t) = �Ha(t) �Ua(t) and �Ua(1) = I.

We shall introduce “radiation operators” for the generator. For that we use two
solutions�+(t) and��(t) to the Riccati equation

_� = �V a00(L)� �2

11



with the properties that for someC > 1 and all larget

(5.1) t�1 � �+(t) � Ct�1; 0 � ���(t) � Ct�1:

(See Appendix A for an elaboration.)

In terms of these solutions we define

�+ =
�
pa � _L

�
� �+(xa � L); �� =

�
pa � _L

�
� ��(xa � L);

and notice that

(5.2) �Da�+ = ��+�+; �Da�� = �����;

where �Da here refers to the Heisenberg derivative with respect to�Ha(t).

Let

N+
t =

�
�+

�2
; N�t =

�
��

�2
;

and

G(t) = F
�

�
N�t

�
F
�

�
N+

t

�
F (t);

F (t) = F
�

�
g~bt

�
F
�

�
h�1rt

�
N�1t F3F4;

whereF3 andF4 are given as in Lemma 3.1.

Lemma 5.1 With �+a (t) given as in Lemma 3.1

(5.3)
1R
1

t�1


�F (t)�F 0

�

�
N+

t

�
F (t)

�
�+
a
(t)
dt < 1;

and

(5.4)
1R
1

��(t)


F (t)�F 0

�

�
N�

t

�
F (t)

�
�+
a
(t)
dt < 1:

Proof Consider for (5.3) the propagation observable

�(t) = F (t)�F�
�
N+

t

�
F (t):

(We shall only prove (5.3); the estimate (5.4) follows in similar manner.) Computing the
Heisenberg derivative gives terms that can be treated by Lemma 3.1 after symmetrizing.
(Notice that the functionsF1 andF2 of Lemma 3.1 are one on a neighborhood of the
support of the functionF�

�
h�1rt

�
of the productF (t).) To treat the contribution

from the derivative ofF�
�
N+

t

�
we introduce the modified Heisenberg derivative

�Dt =
d
dt
+ i

h
�Ha(t); �

i
. Due to the fact that the functionF

�

�
h�1rt

�
of the productF (t)

12



and the function�F of (4.2) are disjointly supported it suffices to consider�DtF�
�
N+

t

�
:

We compute using (5.2)

�DtF�
�
N+

t

�
= �2�+F 0

�

�
N+

t

�
+ i

h
�R(t; x); F�

�
N+

t

�i
:

Clearly the last term on the right hand side isO
�
t�1��

�
+O

�
t�(3+�)�h2

�
by (4.3), in

particular integrable. We now get (5.3) by combining with (5.1).

By (2.6), (2.15) and (2.16)

jj�+a (t)�G(t)�+a (t)jj = o
�
t0
�
:

Therefore to show the existence of (2.19) it suffices to show the existence of

(5.5) lim
t!+1

�Ua(t)
�
G(t)�G(t)�+a (t):

For future reference we notice that

(5.6) jjF+

�
4�1h�1rt

�
G(t)�G(t)jj 2 L1(dt):

6 Integral estimates for the comparison dynamics

We shall need the following estimates for�Ua(t), cf. Lemmas 3.1 and 5.1.

Lemma 6.1 For all small enough�; � > 0 and all � 2 H the following estimates
hold with ��a(t) = �Ua(t)�:

(6.1)
1R
1

t�1


�F 0

�

�
N+

t

��
��a(t)

dt � Cjj�jj2;

(6.2)
1R
1

��(t)


F 0

�

�
N�

t

��
��a(t)

dt � Cjj�jj2;

(6.3)

1Z
1

�
H1(t)

�
�
�F 20

�

� 1

2

�
g~bt

�
~ft
�
�F 20

�

� 1

2

�
g~bt

�
H1(t)

�
��a(t)

dt � Cjj�jj2;

~ft = gf�1~ct + t�1I � gN�1
t r0

�
f�1(xa � L)

�
V a00(L)(xa � L)N�1

t ;

H1(t) = N�1
t F�

�
N�

t

�
F�

�
N+
t

�
;

(6.4)

1Z
1

D
H2(t)

�
F 2
�

�
g~bt

��
t�1��

�
I � g~bt

�
+ t�1I

�
H2(t)

E
��a(t)

dt � Cjj�jj2;

H2(t) =
�
�F 20

�

� 1

2

�
h�1rt

�
F�

�
N�

t

�
F�

�
N+
t

�
;

13



(6.5)

1Z
1

�
H3(t)

�
�
�F 20

�

� 1

2

�
g~bt

�
~ft
�
�F 20

�

� 1

2

�
g~bt

�
H3(t)

�
��a(t)

dt � Cjj�jj2;

~ft = gf�1~ct + t�1I � gN�1
t r0

�
f�1(xa � L)

��
V a0 + �L

�
N�1

t ;

H3(t) = F�
�
h�1rt

�
N�1

t F�
�
N�

t

�
F�

�
N+

t

�
:

Proof As for (6.1) and (6.2) we notice that the estimates follow from the proof
of Lemma 5.1.

As for (6.3) and (6.4) we consider the observables

�1(t) = H1(t)
�
F 2
�

�
g~bt

�
H1(t)

and

�2(t) = H(t)�H(t); H(t) = F�

�
g~bt

�
F�

�
h�1rr

�
H1(t);

respectively. We use the proof of Lemma 3.1, (6.1) and (6.2), the bounds

sup
t�1

jjpa2F�
�
N�

t

�
F�

�
N+

t

�
jj; sup

t�1

jj

�
xa

t

�2

F�
�
N�

t

�
F�

�
N+

t

�
jj <1;

(which compensate for energy-localization) and thatt�1 jj@xa �R(t; x)jj 2 L1(dt).

As for (6.5) we consider

�3(t) = H3(t)
�
F 2
�

�
g~bt

�
H3(t):

To treat the contribution from�DtF
2
�

�
g~bt

�
to the derivative of this observable we may

replace�Dt by D, cf. (5.6), and then use the proof of Lemma 3.1. For other derivatives
we use (6.1)-(6.4).

7 Proof of �+
a
= 0 (negative potentials)

The first step of the proof of the statement, that any given�+
a
2 P a+

r
H indeed

must vanish, is the following result.

Lemma 7.1 The limit (5.5) exists.

Proof We prove the existence of (2.19) using the integral estimates for
Ua(t) and �Ua(t) proven in Sections 3, 5 and 6. By a support property of the
factor F (t) of the productG(t) (used first in the proof of Lemma 5.1) it suffices to
considerG(t)�(DG(t)), cf. (5.6): We compute the derivative of each factor ofG(t)
and symmetrize. Then we invoke Lemmas 3.1 and 5.1 forUa(t), and (6.1), (6.2),
(6.4) and (6.5) for�Ua(t).
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The second step is to invoke [S2, Theorem 1.2]. We consider a state��+
a

for which
for all " > 0

(7.1) F+
�
t��"�1jxa � Lj

�
��+a (t) = o

�
t0
�
;

where ��+a (t) =
�Ua(t)��

+
a (cf. Lemma 2.1). We need to show that

(7.2) ��+a = 0:

For that we introduce the asymptotic velocity

(7.3) �x+ = s � C1 � lim
t!1

�Ua(t)
�
�
xa�L(t)
x+(t)

; xa
t

�
�Ua(t);

wherex+(t) = exp
tR
1

�+dt0 with �+ given as in (5.1) (see also Appendix A). Suppose

for the moment the conditions of [S2, Theorem 1.2] so that this asymptotic velocity is
well-defined and absolutely continuous w.r.t. the Lebesgue measure onX (the latter
by the conclusion of the theorem). Then sincex+(t) � t we obviously get from (7.1)
that ��+a 2 Ef0g�Xa

�
�x+

�
; whence we conclude from the stated absolute continuity that

indeed (7.2) holds.

Now to verify the conditions of [S2, Theorem 1.2] we notice that

sup
x
j@x �R(t; x)j 2 L1(dt);

cf. (4.3) and (1.3). (This bound is sufficient for the existence of�x+.) As for the second
derivatives [S2, (1.6)] we use (4.3) and the bound (A.5) to estimate@2xa

�Ra(t; xa) as
follows:

j@2xa �R
a(t; xa)j � O

�
t�2�2�

�
� x+(t)�1x�(t)�1O

�
t�1�2�

�
;

uniformly in x. The condition [S2, (1.6)] follows for this second derivative since
t�1�2� 2 L1(dt). We treat@2

x
aI(t; x) and @2

xa
I(t; x) similarly.

It remains to bound

(7.4) j@xa@xaI(t; x)j � x+(t)�1h2(t);

for someh2 2 L1(dt). For that we notice that the lower bound

(7.5) V a00(L) � �~�t�2

for some ~� � 0 implies the bound

(7.6) x+(t) � t
1+
p
1+4~�

2 ;

15



see Appendix A.

The following computations show that under assumption (1.8), (7.5) holds for some
~� � 0 with

(7.7) 1+
p
1+4~�
2 < 1 + �:

Obviously we may replace (1.8) by:

(7.8) �cr�(�+ 1)jxaj���2 � V a00(xa); xa � R; cr > 0;

(7.9) V a00(xa) � �Cr�(�+ 1)jxaj���2; xa � R; Cr > 0;

and

(7.10) Cr < 2�1(2 + �)2cr:

By integrating (7.8) (to infinity) twice we get

V a(xa) � �crjx
aj��:

Thus by the formula

t =

LZ

R

(�2V a(x))�
1

2dx

we can estimate

t �

LZ

R

�
2crx

���� 1

2dx �
�
1 +

�

2

��1
(2cr)

� 1

2L1+�

2 ;

yielding

(7.11)
�
(2cr)

1

2��1t
��

� L:

Next we insertL into (7.9) and estimate the right hand side by (7.11) yielding

(7.12) V a00(L) � �Cr

cr
�(�+ 1) 2

(2+�)2
t�2:

Finally by combining (7.10) and (7.12) we get (7.5) for some

(7.13) ~� < �(�+ 1):
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We notice that (7.13) implies (7.7).

By combining (7.6) and (7.7) we get

x+(t) � t1+���; for some� > 0:

Therefore

j@xa@xaI(t; x)j � O
�
t�2��

�
� x+(t)�1O

�
t�1��

�
;

yielding (7.4).

We have verified the conditions of [S2, Theorem 1.2] and hence proved the absolute
continuity of �x+.

8 Positive potentials

We shall prove Theorem 1.3. We proceed somewhat more general assuming (1.2)
for an arbitrary� > 0. Suppose in addition thata 2 F is given such that for some
�� > �,

(8.1) V a(xa) � �jxaj��
�

; jxaj � R:

We definehwi =
�
1 + jwj2

� 1

2 ; w 2 C. Then we have the following modification
of [S1, Lemma 2.2].

Lemma 8.1 Let ~� � 0; �; t � 1 and n 2 N. Then (with the above assumptions)
for all w 2 C

(8.2)

jjF
�
t�~�jxaj > 1

�
pa(�Ha � w)�1jj

� Cn
hwi

1

2

jImwj

�
t�~��

�

+ t�2~� + ��1
� 1

2
�( 12)

n+2

:

Proof We proceed as in the proof of [S1, Lemma 2.2]: Let 2 H with jj jj = 1
be given; put~ = (�Ha � w)�1 : Using (8.1) we obtain the following modification
of [S1, (2.16)]:

(8.3)
jjF

�
t�~�jxaj > 1

�
p ~ jj2 � C1t

�2~�jImwj�2 + 4hHa � V ai
F (�) ~ 

� C2

�
t�2~� + t�~���

�
jImwj�2 + C3jImwj

�1jjHaF (�) ~ jj:

We estimate the termjjHF (�) ~ jj on the right hand side of (8.3) as

jjHaF (�) ~ jj � C4

�
t�2~�jImwj�1 + t�~�jjF 0(�)

xa

jxaj
� pa ~ jj+ jjF (�)Ha ~ jj

�

� C5

�
t�2~�

jImwj
+ t�~�jjF 0(�)pa ~ jj+ ��1

�
jjF (�)(�Ha � w) ~ jj+ C6

jwj

jImwj

��

� C7

��
t�2~� + ��1

� hwi

jImwj
+ t�~�jjF 0(�)pa ~ jj

�
;
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and insert into the right hand side of (8.3) to obtain

(8.4)

jjF
�
t�~�jxaj > 1

�
pa ~ jj2

� C8

�
t�2~� + t�~��� + ��1

� hwi
jImwj2 +

p
C8t

�~�jImwj�1jjF 0(�)pa ~ jj

� C(t) +
p
C(t)jjF 0(�)pa ~ jj; C(t) = C8

�
t�2~� + t�~��� + ��1

� hwi
jImwj2 :

Next we write

f0 = jjF �t�~�jxaj > 1
�
pa ~ jj;

fm = jjF (m)
�
t�~�jxaj > 1

�
pa ~ jj; m 2 N;

and notice that (8.4) may be written

f2m�1 � Cm(t) +
p
Cm(t)fm;

Cm(t) = C8

�
t�2~� + t�~��� + ��1

� hwi
jImwj2 ; m = 1:

Since the same bound holds for anym � n possibly upon enlarging the constantC8,
we have the bounds

(8.5)
f2m�1 � Cn(t) +

p
Cn(t)fm;

Cn(t) = Cn

�
t�2~� + t�~��� + ��1

� hwi
jImwj2 ; m = 1; � � � ; n;

with input

(8.6) f2
n
� C

�
t�2~� + t�~��� + ��1

� 1

2 hwi

jImwj2
:

For the latter estimate we used (8.4); the last factor on the right hand side is estimated
by [S1, (2.15)] (which obviously holds in the present context too).

We introducegm = fmCn(t)
� 1

2 . Using the bound
p
a+ b � p

a+
p
b and the fact

that gm�1 � p
1 + gm we obtain the estimate

gm � n�m + g2
�(n�m)

n
; m = 0; 1; � � � ; n:

Using this bound form = 0 and (8.6) yields

f0 � C
�
t�2~� + t�~��

�

+ ��1
� 1

2 hwi 12
jImwj

�
1 +

�
t�2~� + t�~��

�

+ ��1
�
�2

�(n+2)�
:

Lemma 8.2 Suppose (8.1) and that for some positive�� < �

(8.7) I(t; x) = I(t; xa) for jxaj < 2t��:
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Suppose�+
a
2 Ef0g

�
Ha+

�
. Then with�+

a
(t) = U(t)�+

a
and positive� and� with

(8.8) � < min
�
2(�� 2�); �� 2� + ��min

�
��

2
; 1
��

;

(8.9) jjF
�
jt�Haj > 1

�
�+a (t)jj � Ct��:

Proof Following the proof of [S1, Lemma 2.3] using now Lemma 8.1 we get for
all (small) � > 0 (by chosingn large enough)

hF (j�Haj > 1)i�+
a
(t)

�
1Z

t

�C1s
�(1+�)

�
s�~��

�

+ s�2~� + ��1
� 1

2
�( 12)

n+2

ds

� C2�t
�

�
�+~�min

�
�
�

2
;1

�
(1��)

�
+ C3�

1

2
+�t��:

Let � = t� .

Theorem 8.3([W]) Under the conditions (1.2), (1.3) and (8.1) with� 2 (12 ;
p
3�1]

and �� > 2��1(1� �), the limits (1.4) and (1.5) exist.

Proof We shall only prove the existence of the limit (1.4); the existence of (1.5)
can be shown completely similarly. We may assume (8.7) for any fixed�� < �, cf. [E].
Let �� = � � � and � = 2(1� �) + 5� for a small� > 0. In addition we can assume
(8.8) (for � small enough) and

(8.10) min
�
����

2
; ��; �

2

�
> 1 � � + 2�:

By the technique used in the proof of [S1, Lemma 3.2], (8.10) and Lemmas 8.1
and 8.2 we obtain

(8.11) �+a (t) � F
�

�
jt�Haj

�
F
�

�
t���jxaj

�
F
�

�
jt�Haj

�
�+a (t) as t ! +1:

Moreover,

(8.12)
1R
1

t�1j


F
�
t�jHaj � 1

��
�+
a
(t)

jdt < 1;

cf. [S1, Lemma 2.4], and

(8.13)
1R

1

t�1j


F
�
t���jxaj � 1

��
F
�

(jt�Haj)�+a (t)
jdt < 1;
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cf. [S1, Lemma 3.4].

The analogue statements for~Ua(t) read with ~�(t) = ~Ua(t)~�:

(8.14)
1R
1

t�1j


F
�
t�jHaj � 1

��
~�(t)

jdt � Cjj~�jj2;

and

(8.15)
1R
1

t�1j


F
�
t���jxaj � 1

��
F
�

(jt�Haj)~�(t)
jdt � Cjj~�jj2:

Substituting (8.11) in the expression

~Ua(t)
�
�+a (t);

and then differentiating yields integrable terms: The one with the potentials is bounded
by

jj(Ia(t; xa)� Ia(t; x))F�
�
t���jxaj

�
jj+ jj

h
Ia(t; x); F�

�
jt�Haj

�i
jj

= O
�
t(�1��+�)+(�1+��2�)

�
= O

�
t�2�+3�

�
;

notice that the first term to the left vanishes by (8.7) and that the bound of the second
term comes about by using (8.7), (8.10) and Lemma 8.1. Clearly the final bound is
integrable.

The contribution from the derivative of the factorF�
�
t���jxaj

�
,

DF�

�
t���jxaj

�
= t���F 0

�(�)
xa

jxaj
� pa +O

�
t�2��

�
�

��

t
F 0

�
(�)(�);

is handled as follows: Using (8.10) and Lemma 8.1 again we infer that the first term
on the right hand side isO

�
t�1��

�
. Obviously the second term is integrable, cf. (8.10).

The third term is treated by (8.13) and (8.15).

The contributions from the two factorsd
dt
F�

�
jt�Haj

�
are treated by (8.12) and

(8.14) after commutations under use of (8.10) and Lemma 8.1.

Now to the regime� 2 (0; 1
2
]:

Proof of Theorem 1.3: We shall only prove the existence of the limit (1.4); the
existence of (1.5) can be shown completely similarly. We pick� > 0 so small that

(8.16) (1� �+ 2�)�+ � 2� � 3�:
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Let �� = � � � and � = 2��. We can assume (8.7).

Proceeding exactly as in the beginning of the proof of Theorem 8.3 we conclude that

(8.17) �+
a
(t) � F

�

�
t��1�2�jxaj

�
F
�

�
jt�Haj

�
�+a (t) as t ! +1:

The next result doesn’t have an analogue in the previous proof. Proceeding as the
proof of [S1, Lemma 3.1] we introduce for 2 H

~ = F1F2F3 ;

F1 = F
�
t���jxaj > 1

�
; F2 = F

�
t��1�2�jxaj < 1

�
; F3 = F

�
jt�Haj < 1

�
:

Suppose we know thatjjF1F2F3jj = O
�
t�s

�
, then we shall show the bound with

the right hand side replaced byO
�
t�s�

�

2

�
, leading inductively to the conclusion that

(8.18) jjF1F2F3jj = O
�
t�1

�
:

To do that we estimate, cf. [S1, (3.8)],

(8.19)

h2Hai ~ =

�
HaF 2

1F
2
2 + F 2

1 F
2
2H

a +
�
t���F 01F2 + t��1�2�F1F

0

2

�2�
F3 

� 2t��jjF1F2
�
t�HaF3

�
 jj jj ~ jj

+ 2t�2��jjF 01F2F3 jj
2 + 2t2(��1�2�)jjF1F

0

2F3 jj2;

and, using here (8.16),

(8.20) h2Hai � Ct�(1��+2�)�+jj ~ jj2 � Ct�2�+3�jj ~ jj2:

Combining (8.19) and (8.20) leads tojj ~ jj � Ct�s�
�

2 jj jj, whence we conclude
(8.18).

Combining (8.17) and (8.18) yields

�+a (t) � F�

�
jt�Haj

�
F�

�
t���jxaj

�
F�

�
jt�Haj

�
�+a (t):

Following now the last part of the proof of Theorem 8.3 we differentiate the
expression

~Ua(t)
�
F�

�
jt�Haj

�
F�

�
t���jxaj

�
F�

�
jt�Haj

�
�+a (t);

and pick up integrable terms: The contribution with the potentials is estimated by

jj
h
Ia(t; x); F�

�
jt�Haj

�i
jj = O

�
t(�1��+�)�(�� 3

2
�)
�
= O

�
t�(1+

1

2
�)
�
2 L1(dt);

cf. (8.7) and Lemma 8.1. The one from the Heisenberg derivative of the factor
F�

�
t���jxaj

�
is clearly integrable by (8.18). The same conclusion holds for the

contributions from the two factorsddtF�
�
jt�Haj

�
; this follows by using the bounds

(8.12) and (8.14) (with the present�) after commutations under use of (8.18) again.
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A Classical orbits

In this Appendix we shall construct solutions�+(t) and��(t) to the Riccati
equation

(A.1) _� = q(t)2 � �2

whereq(t)2 is a continuous (non-negative) function. For the exampleq(t)2 = �V a00(L)
of Section 5, cf. (2.1), we establish (5.1) using in this case the upper bound

(A.2) q(t)2 � Ct�2;

cf. [S1, (5.8)] (or (7.11)).

First we construct two solutions�+(t) and��(t) satisfying the bounds

t�1 � �+(t) and��(t) � 0:

This will be done without using (A.2).

To find �+(t) we notice that�(t) = t�1 is a solution to

_� = ��2:

Clearly we can solve (A.1) in a neighborhood oft = 1 with the initial condition
�(1) = �(1) = 1. By the standard comparison theorem (see for example [BR, Theorem
1.8]) we conclude that�(t) � t�1 for t � 1. Using the equation (A.1) we can readily
continue�(t) to the whole half-axis. The obtained solution is denoted by�+(t).

It remains to construct��(t) � 0. For that we consider the Schr¨odinger equation

(A.3) �x00(t)� V a00(L(t))x(t) = 0:

From the solutionx+(t) = exp

�
tR
1

�+dt0
�

we obtain another one, cf. [BR, Section

2.5], by the formula

x�(t) = x+(t)

1Z
t

x+
�
t0
�
�2
dt0:

Let us note the following bounds

(A.4)

0 < x�(t) = x+(t)�1
1Z
t

e

�2

t
0R

t

�
+
dt

00

dt
0

� x
+(t)�1

1Z

t

e

�2

t
0R

t

1

t00
dt

00

dt
0 = x

+(t)�1t � 1:

22



From (A.3) we getx�(t)00 � 0. Consequently ifx�(t)0 if positive for somet the
solution x�(t) will grow at least linearly contradicting (A.4). Thereforex�(t)0 � 0
and we conclude that

��(t) :=
x�(t)0

x�(t)
� 0:

We shall now show the bounds

�+(t) � C 0t�1 and� C 0t�1 � ��(t)

under the assumption (A.2).

To get the upper bound of�+(t) we introduce the function

�(t) =
1 +

p
1 + 4C

2
t�1

which satisfies�(1) � �+(1) = 1 and solves

_� = Ct�2 � �2:

By another comparison we conclude that�+(t) � �(t):

To get the lower bound��(t) � �C 00t�1 we compute using the upper bound
�+(t) � C 0t�1

��(t) = �+(t)�

0
BB@

1Z

t

e

�2

t
0R

t

�
+
dt

00

dt0

1
CCA

�1

� t�1 �

0
BB@

1Z

t

e

�2

t
0R

t

C
0

t00
dt

00

dt0

1
CCA

�1

= �2
�
C 0 � 1

�
t�1:

The proof of the bounds is completed. In particular we have verified (5.1).

For an application in Section 7 we notice that the formula

x+x� =
x+x�

x+0x� � x�0x+
=

1

�+ � ��
;

and (5.1) yield the bounds

(A.5) (2C)�1t � x+(t)x�(t) � t

for C given as in (5.1).
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