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1 Introduction and results

This paper is the second in a series of two papers on asymptotic completeness
for (generalized) three-body quantum systems with long-range interaction. Asymptotic
completeness is henceforth abbreviated AC; an “effective” version of AC is the existence
of the limits (1.4) and (1.5) given below. For a full account of the statement we refer
the reader to our first paper [S1]. We shall in this paper prove results in the regime
“n € (0, %]" with 1 measuring the decay of the “pair potentials” at infinity as in (1.2)
(given below). All examples in the literature on AC for many-body systems seem
so far to be restricted tp greater than one half. Moreover Yafaev ([Y]) constructed
counterexamples to AC for any € (0, %) in systems of one-dimensional particles.

On the other hand there are many papers in the literature on AC for two-body systems
with arbitrary i > 0. We have results for two different classes of potentials: 1) One-
dimensional potentials with a negative upper bound near infinity (like those considered
in [S1]). 2) Potentials (in any dimension) with a positive lower bound near infinity.

We recall the basic model and a reduction scheme for AC, see [S1] for more details.
We consider a finite family of subspacg&,|c € F} of a finite dimensional Euclidean
spaceX. By definition ayin, amax € F are given byX, . = X andX,_ .. = {0},
respectively, and fot andb different froma,,i, the “three-body” conditionX, N X, =
{0} is imposed. The position and momentum operators on the basic Hilbert space
H = L*(X) are denoted by: andp, respectively. The orthogonal complementof
in X is denoted byX“. The corresponding components :ofand p are denoted by
T, Pa and z®, p®, respectively.

The basic Hamiltonian ofi is

(L1 H=3"+V; V()= X V"),
aEF



where each “pair potentiall’* is assumed to be a real-valued smooth functionXdn
obeying for some: > 0 (independent ofi) and all multiindices’

1.2) 9Lve(?) = 0<|:ca|—u—|@|).

We consider the propagatdr,(t) generated byH,(t) = H® + ip? + I,(t, ),
wherel,(t,z) = J(%)1,(z) with J an arbitraryCg® cutoff function supported iy, =
X\ (UpgaXp) and with I, (z) = V(z) — V*(2®). (By definitionb C « & X° C X.)
Clearly we have the bound

(1.3) I, (t,2) = O(t_”"ﬁ') uniformly in z.

There exists the asymptotic enerdgyf't = th—IEl Ua(t)*H*U,(t) (understood in the

strong resolvent sense). L&t (¢) denote the propagator generated By + 02+
I,(t, xq).

The notationEq(D) denotes the spectral projection for a self-adjoint operator
corresponding to a Borel sét C R.

Now, the “effective” version of AC that we are going to address in this paper is
the following statement: For al} € Eyqy (H") there exists the limit

(1.4) oFf = lim U, () Ua(t)o7;

li o
t——+00
and for all o} ¢ E1(H?) there exists the limit

(1.5) of = lim Ua(t) Ua(t)o7-

1.1 Negative potentials

In addition to (1.2) we shall need the following negativity condition of [S1] for a
(fixed) a« € F: For somec,R > 0

(1.6) V4(z*) < —c|z®|7#, |2%| > R.

Moreover we shall assume that the subspac¢eis one-dimensional. In our last set
of conditions (1.7)-(1.11) stated below we identify the partroflenoted byz* by a
coordinate for this vector given by fixing a basis vector for the subsp&ceSuppose

(L.7)  Ve(at) = Vi) + Vi (@) + Vi (a®),
where V*(z*), Vi*(z*) and Vi*(z*) obey (1.2),
i Cr|xa|—u—2 < Vla”(l‘a) < _CT|$a|—u—2; 74 > R,

(1.8)
¢, Cr>0and C, < 2752 + p)%e,,



(1 9) _ Cl|1_a|—,u—2 < Vla//(ma> < _Cl|ma|—p—2; 7% < —R,
. ¢, C;r>0and () < 2_1(2 + ,U)2Cl,

and for somee > 0
(1.10) V3'(2%) = O(|2*|717#7),
and
(1.11) Vi(a) = 0<|:ca|—1ai).
1

In (1.11) and henceforthy = 2(2 + u)~ .

Now, suppose the conditions (1.2), (1.3) and (1.6) for sanveith dim X“ = 1;
all conditions with the same (fixed) € (0, %]. Then one can introduce, cf. [S1],

Pa+:Pf++P1a+>
(112) P == m Ua(t) Blpoe g (0)Ualt) gy (HF),

t——+oo
Pla+ =S — tl}?oo Ua(t)*E[_taJre’_tafe](SCa)Ua(t)E{O} (Ha+).
It was proven that these limits are independent of (smaly 0 and thatP*" =
E{o; (H*"). We shall show the existence of (1.4) by proving ti#4t™ = 0, cf. [S1].

Our main result is the following.

Theorem 1.1 Under the conditions (1.2), (1.3), (1.6)-(1.11) withm X* = 1 and

1€ (0,3

(1.13) B (H*T) = 0;

in particular the existence of (1.4) holds.

The existence of (1.5) with these assumptions follows from the fact that in this case
B (H*) =0, cf. [O, Theorem 2.2 p. 196]. Combined with (1.13), AC follows.

Remark 1.2 For simplicity of presentation we shall prove Theorem 1.1 with the
additional assumption thdty = V5' = 0. The general case may be treated in the
following fashion: First we may assunig’ = 0 sinceVy' is “short-range”. Next we
keep V3" in the analysis (of Sections 2—7). We define the classical orbit in (2.3) in
terms of the “dominating” terni/* only. Keeping track of contributions from error
terms coming fromV;' yields a weaker localization than (2.4), but strong enough for
the arguments of Section 7 ((7.1) needs to be replaced by a weaker estimate).

As indicated in the above remark we devote Sections 2—7 to a proof of a slightly
simplified version of Theorem 1.1. Our basic strategy is similar to one applied to a
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different problem, although with common spirit, in [HS]. We compare the evolution of

a statep € P*TH (or ¢ € P/'H) with a simplified evolution in terms of a relative
wave operator. Setting up this wave operator is the content of Sections 2—6. Our
techniques at this point resemble at many points those applied in [HS]. In Section 7 we
verify conditions of [S2] for the simplified evolution. Using the relevant result of [S2]
we infer that indeed states propagated with this evolutenmotbe localized to regions

of the configuration space that the projecti®fit a priori prescribes. Consequently

¢+ = 0. (Notice that this is a purely quantum statement; it has no analogue in classical
mechanics.) The technique of Section 7 differs completely from the one applied at
the similar step in [HS]. We remark that one may modify the latter technique of [HS]
as to provide another approach to our second step in Section 7. However it is more
complicated. Morever we remark that neither of those approaches seem to be optimal.
For example we consider the conditions (1.8) and (1.9) to be “technical”; the condition
(2.1) stated below should suffice. As an open problem motivated by the analysis of [S1]
we mention AC for negative potentials in higher dimensions with spherical symmetry.

In Appendix A we prove bounds for classical orbits of some one-dimensional
quadratic Hamilton functions, that are needed at various points in Sections 5-7.

1.2 Positive potentials

In addition to (1.2) for au € (0, %] we shall need the following positivity condition
for a (fixed)a € F: For someu™ € [p, 12_—*‘“) andR > 0

(1.14) Ve(a®) > oo, [2°] > R.

Our main result is the following.

Theorem 1.3Under the conditions (1.2), (1.3), (1.14) withyae (0, %], the limits
(1.4) and (1.5) exist; in particular AC holds.

The proof of Theorem 1.3 is given in Section 8. It is based on some energy bounds
which may be viewed as modifications of results of [S1]. Conceptually and technically
it is much simpler than the proof of AC for negative potentials due to the fact that
there are no classical orbits (for the internal dynamics) at infinity with zero energy. To
put our result and method into perspective we also give a proof of Wang'’s result for
IS (%7\/5_ 1]! [W]

Obviously Theorems 1.1 and 1.3 can be combined to obtain asymptotic completeness
as defined in [S1] for families of pair potentials of mixed type, each either negative or
positive (at infinity) with further properties as specified in the theorems.



2 Preliminary estimates (negative potentials)

In addition to (1.2), (1.3) and (1.6) withim X* = 1 and x € (0, %], we shall in
Sections 2—6 need the concavity assumption

2.1)  Ve(z%) < 0 for 2% > R.

Only in Section 7 the stronger conditions (1.8) and (1.9) are needed (to verify (7.4)).
Recall that we put’y’ = V3' = 0, cf. Remark 1.2.

We aim at showing that for any givefl € P?"H indeedo, = 0. Since our proof
can be adapted fon‘* we then conclude (1.13).

In this section we are going to use the freedom to chapgex) to the effect

a

2.2) IL(t,x) = Ja(t,x)&(tf—,e) V(a0 = O,xa)F_<tf—1)

for ¢ > 0 chosen arbitrarily small, cf. [S1, Section 5]. (Here and henceforth we adapt
the notationF’, and F_ of [S1, Definitions 2.1].) The proof of [S1, Lemma 4.5] (with

j = 1) yields the following improved (and classically “optimal”) localization (cf. the

proof of [S1, (5.6)]). We remark that we are not going to use the full strength of the
result; it is stated here only for completeness of presentation.

Lemma 2.1 Let L be the solution of the initial value problem
(2.3) LL(t) = /—2V(L(t)), L(0) = R; t > 0.
Then for all: > 0 and ¢} € P*tH
4) |[Fs (2" ~ L)oF ()] = oft?),
where ¢; (t) = Ua(t)oq -

“Proof” Givene > 0 we may assume (2.2) for a smalt> 0 obeying%ue <e. We
modify the proof of [S1, (5.6)] by introducing for smatl > 0 obeying%ﬂe <30 <e¢

g
(10:(1+—,

,u
3

legao+0:ga+§a,

5

(25) Oq:l—"yl—O':Oé—§O',

i
b=p+ —a—o,
I 2a o

ﬁlzl—ﬂ+g&+30.



All requirements of the proof of [S1, (5.6)] including [S1, (4.37)] are fulfilled for
the choice (2.5) withv > 0 small enough yielding to the following statement:

(2.6) | Tim_|log(t) = B(t,t")ef ()] = o,

where for parameters given by (2.5) aAdx*) being the inverse of.(t)
B@ﬁﬁ:%ﬂ&&m;

@.7) Fo=F- (t_ﬁlﬁ - K(x“)|)7
Fi=F, <g> Fy=F_ <t%c:> By = P ("), B = F_ (| H)).

(In the present context we dont need [S1, (4.37)] though. We can use the fact that
¢F € PPYH C Ego1(H*")H and [S1, Lemma 2.3] to avoid a certain symmetrizing
under use of [S1, (4.37)].)

O

We shall need some operatorsb, andb;, which are modelled after constructions
in [D] and [HS]:

1
2

2.8 ") =fr(f7@=L); f = t,r(y) = (y) = (1+[y]*)*.

We compute its Heisenberg derivative (with = % + i[Hgy(t),-])

29) by = Dry = %(r/(df_l(xa — L)) <pa — L) + h.c.) + fdy;
dy = frit, L= %L(t).

Furthermore (with dots used again for time-derivatives)

Db, = D%y = fle, + fdy — fPe — T/(f_l(xa B L>) <8ia

V+f/>;
d2
dxaQT

(=1 df;?”) (Fa - 1).

Clearly bothb; and Db; are bounded relatively tp*?. Also we notice the non-
negativity ofc; and the uniform boundedness (with respect)tof the termsd; ande;.

We may estimate using also the fact that

(2.10) QZP%: )q”@ﬂ—L»Rfuqﬂ—L——@“—m,

.. 1
(211) 2V +L= 21,4+ %= L) [dsV(L + s(z* — L))
0



and (2.1),
(2.12) Db > —/(f1 (2" = L)) 2 o + Cof > —Cyt~ ™0 ()1,
We introduce the regularizations

(2.13) by = Nt‘lbt_J;ft_l,Qét = N7 te N7
Ny =T1T+t""p", v>0.

We also introduce

h=tlmr =229, p) = ga + 20,
g=1t" p1 = ga+3a.

Obviously (for future referencej = o(h) andps < ps.

To start out the analysis we shall use the following weaker localization than the
one presented in Lemma 2.1:

2.15) |l () — F-(h~"r) ot (1)) = olt°).

Notice that this localization is very weak as opposed to the “optimal” one of Lemma
2.1. Similarly the following localization result is very weak; the “optimal” bound
follows readily from the proof:

Lemma 2.2 Let ¢} be given as in Lemma 2.1. Then for all small> 0 (and
all v > 0)

(2.16) ||F+<95t)¢I(t)|| = o(t").

Proof As in the proof of Lemma 2.1 we may assume (2.2) witkh 0 small. We
use the proof of this lemma. By (2.6) it suffices to estimate

(2.17) lgheB(t,t")of (D] = o(t7).
By a commutation (2.17) will follow from
(218) |lg(p* = L) B(t.t%) 67 (]| = o(").
To show (2.18) we may inseft, = F, (4" p*) to the left and then write
. -1
Fe(p" = L) = Fe(s"+ 1) 2(H" = (V*(®) = V(D))).

The contribution fromH* may by commutation be shown to lgg(#3—¢+#), while
the one from the second term to the righi()<t6“_”+%a) due to the presence of the



factor Fy and the formula

Ve(x®) = V(L dsV(L + s(z® — L)).

O\H

For any giveny € P%'H we aim at proving the existence of the limit

(2.19) | lim Uz(H)of (1),

for some comparison dynamiés,(¢) to be defined in Section 4 and for which a result
of [S2] can be applied (to concludg™ = 0).

3 Integral estimates

In order to prove the existence of (2.19) we need certain integral estimates for the
full dynamicsU,(t), cf. [D] and [HS]. Henceforth we shall not use or assume (2.2).
Nevertheless we are going to apply some of the parameters of (2.5): i$lohanged to

31) 6=p-o.

Lemma 3.1 For all small enougho,r > 0 (depending only on:) and with
F(t) = FiFyF3Fy, where the factors to the right are given by (2.7) with 71, and a;
given by (2.5) and by (3.1), and with the expectation valtq% given in the state
¢ = ¢g(t) = Ua(t)oy forany oy € PItH

7<G(t)*<_FE’)§(gét)ﬁ(_pgf)%<ggt)(;(t>> gt < oo

¢d (1)

B2 fi=gf e+t I —gN Y (" — L) Fy <4§1> (V“’ + L) N7

G(t) = G4(t) = Fr. (b7 lr ) NTLF(t) or

@
—~
~
N—r
I
IQ
—~
~
SN—r
I

F_(h'r) N7 (1),

and

(33) 1 a
£) = He(t) = (FZ)? (™ 'r) F(¢) or

170<H(t)*F2 (gét) (t_l—a (2[ — gét) - t_lj)H(t)>¢+(t)dt < o0;
H(
H(t) = (1) = (~F2)* (17'r) F()



Proof We notice that indeed the expressignof (3.2) is a sum of non-negative
terms, cf. (2.1) and (2.11). A similar remark is due for the integrand of (3.3).

For (3.2) we claim that the estimate withi(t) = N, 'F(t) follows by consid-
ering the “propagation observable” (more precisely the uniformly bounded family of
observables)

o(t) = (N7 LF(1))" F2 <gz§t)N;1F(t).

Let us compute the “leading term” coming from differentiating the mid-

dle term: We introduce the modified Heisenberg derivatiy = % +

z’[%pQ +Va(z)F2 (4;1) + I (t, x), } :
(3.4) D,F2 (gét) - —(—FE’)%<gBt) (Dt <gét)) (—FE’)%<gBt) 4 Ri(1).
Here

35) IRl < Cll[gbr, (De(g8) ) ]I

cf. [DG, Lemma C.4.1]. Using (3.6) given below (and concrete expressions for
the derivatives involved) we readily estimate the right hand side by a constant times
g*t* f=2 which is in L!(dt) for v > 0 small enough.

Obviously
(36) Di(gbt) = b + gN7 (Dyby) N7 + 2gRe( (DN )N

The contribution from the first two terms on the right hand side of (3.6) to the
Heisenberg derivative ob(t) is

Ti(t) + Ra(t);

N

Ti(t) = —B(t)*{gét + gNt_l(Dbt)Nt_l}B(t), B(t) = (-F¥) (gét)Nt—lF(w,
| Ro(t)]| € L' (dt).

Here we used that that functions, = F+<taal) and anyF_< til) have disjoint

support. Commutation picks up an integrable term. (In fagtt) = O(¢~>°).) As for
the contribution from the last term on the right hand side of (3.6) we compute for a
suitable real-valued’, € C5°(R)

— 2gB(t)"Re( (DN, )b N, 1) B(t) = To(t) + Rs(t) + Ra(t);
To(t) = —4vB(t)'F, <gbt)t w12 Nl g <gbt)B()

1Rs()]| < C|[F. (gbt) N || = O(gf 7Y = O tEemiE),

|Ra(8)]| < €| |V (a < >+1( v), Nt_l]NtH:O<t_”_(1+“)0‘1).



Clearly it follows that||R3(t)||, ||R4(t)|| € L(dt).
By (2.10), (2.11) and (2.12)

(3.7) Ti(t) + Tu(t) < —B(t)* fiB(t) + R(1),

where ||R(t)|| € L(dt).
Next we look at the contributions

(38) Ty = (N7'F(t) F? (gét) (DN7Y)E(t) + hec.
and
Ty = (N7 'F (1) F2 (gh ) NT'DE(t) + he.

to the Heisenberg derivative df(¢):
We compute

d . ‘ -
DN = N i [Va(wa>F3 <4f7> Hlalt) N 1]'

The first term contributes to (3.8) by a term that@{¢~'~2") (since p”> may be
bounded by that factoFy). Obviously by the above bound fdt4(¢) the second term
is integrable.

As for the termT)(t) the derivatives of the factors df are readily handled (i.e.
proven integrable) by using various estimates of [S1], cf. the proof of Lemma 2.1.

Straightforward computations of commutators with the middle tar F2 <g§t N7t

needed when symmetrizing expressions from the derivatives of the fdctard F,
show that those contribute by integrable terms.

In combination with (3.7) we finally conclude the estimate

(o]

(3.9) f<(—Fz’)%<g§t)ft(—Fz’)%<ggt)> dt < oo,

1 NER()$d (1)

To obtain (3.2) forG(t) = G_(t) it suffices by (3.9) to show the statement for
G(t) = G4+(t). We show the latter and (3.3) fal (1) = H(¢) in one stroke by
considering propagation observable

D (t) = G4 (1) F2 (gh) G (1),
We notice that

DF, (h_lrt) = %Fi (h_lrt) (h_lDTt — hh_QTt) + h.c.
=h71 b, F (R ) — %(h—lrt)ﬂ(h—lrt) +0(h™?),

10



tends to be negative when sandwitched by factorg«])(gét), cf. the proof of [D,

Proposition 5.6]. The previous arguments for the contribution fiym2 g;q@) applies

again (this term contributes by another non-positive term). We skip the straightforward
details.

To obtain (3.3) forH(t) = H_(t) we differentiate®(t) = G_(t)"F2 (t1b; ) G_(t)
under use of similar computations as for the first estimate of (3.3), and we use (3.2) for
G(t) = G_(1). O

4 A simplified comparison dynamics

We introduce a comparison dynamits(t) by
(4-1) diﬁ ( ) F[a(t)ﬁa(t% ﬁa(l) =1,

and

4.2)  R(t,x) = L(t, >+R“< >

F=F_ (470 n).
Clearly for allk € N U {0}
4.3) R = O(t_(3+“)0‘h3_k),

uniformly in z.
It is known thatl’,() preserves the domain of + 22, see [S2, Section 4].

5 Further integral estimates

We need further integral estimates for the full dynamics. To motivate those we
consider the following “model HamiltonianH(¢) of (4.2). LetU%(t) denote the
corresponding propagator, i.69,U%(t) = H*(t)U"(t) andU%(1) = I.

We shall introduce “radiation operators” for the generator. For that we use two
solutionsa™(t) anda~(¢) to the Riccati equation

— _VaI/(L> - a?

11



with the properties that for som@ > 1 and all larget
(5.1) tl<at@t) <ot 0< —a (t) <Ot

(See Appendix A for an elaboration.)
In terms of these solutions we define

nt = (pa — L) — oﬂL(xa —L),n = (pa — L) —a (2% = L),
and notice that
(5.2) Doyt = —atyt, DT = —a 7y,

whereD? here refers to the Heisenberg derivative with respedit¢t).
Let

and
G(t) = F- (Nt_)F— (N;L)F(t);
F(t) = F-(gb) F- (h™"r) N B,

where F3 and F; are given as in Lemma 3.1.

Lemma 5.1 With ¢ (¢) given as in Lemma 3.1

dt < oo,

(5.3) :fot—1<—F(t)*F'— (V) E®) g0

and
(5.4) :foa_(t)<F(t)*F’_ (ND)F (1)) gyt < 00

Proof Consider for (5.3) the propagation observable

D(t) = F(t)"F-(N;") F(2).

(We shall only prove (5.3); the estimate (5.4) follows in similar manner.) Computing the
Heisenberg derivative gives terms that can be treated by Lemma 3.1 after symmetrizing.
(Notice that the functiong’; and F> of Lemma 3.1 are one on a neighborhood of the
support of the functionF_ (h~!r;) of the productF(¢).) To treat the contribution

from the derivative of F_(N;") we introduce the modified Heisenberg derivative

D, =4 +z‘[f{a(t), } Due to the fact that the functioR_ (»~'r;) of the productF'(¢)

12



and the function?' of (4.2) are disjointly supported it suffices to consid@sF_ (N,"):
We compute using (5.2)

D/ F- (N) = =20 FL(NF) +i | R(t, @), F- (N7") .

Clearly the last term on the right hand sidedgt—'*) + O(t_(3+ﬂ)°‘h2) by (4.3), in
particular integrable. We now get (5.3) by combining with (5.1).
O

By (2.6), (2.15) and (2.16)
o (1) — Gt)ot ()] = o(t°).

Therefore to show the existence of (2.19) it suffices to show the existence of
(55)  lim Ua(t) G ()G ()0 (1)
For future reference we notice that

(5.6) ||Fy (4711 G() G(1)|| € Li(dt).

6 Integral estimates for the comparison dynamics

We shall need the following estimates foF, (), cf. Lemmas 3.1 and 5.1.

Lemma 6.1 For all small enoughr, v > 0 and all ¢ € ‘H the following estimates
hold with ¢,(t) = U,(t)¢:

(6.1) 1ft_1<—F’_(Nt+)>(5a(t)dt < gl

©2) [ (O(FLN)) ot < Cli

[ (e R () AP () me) aescla

dalt)
63
fo=gf e+t —gNTY (F7 @ = D) V(L) (z* — L)N;,

Hy(t) = NP (N7) F- (N7,

(6.4) / gbt) (t_l_” (I - g@) + t‘ll) HQ(t)>$a(t)dt < C||o||*
' 1

Hy(t) = <—Fz'>%<h—1n>F- (N7)E-(NF),

13



[ {0 (2 (o) ) () mo)ai< e
dalt
6.5 ! .
fo=gf e+t T —gNTW (T (@ = L)) (V“’ + L) N,
Hs(t) = F_ (R~ r )Ny VFC (NT) o (NGF).
Proof As for (6.1) and (6.2) we notice that the estimates follow from the proof
of Lemma 5.1.

As for (6.3) and (6.4) we consider the observables
D1(t) = Hi(t)F2 (gby ) Ha(2)

and
Oo(t) = H() H(t); H(t) = F_ (ggt)F_(h_ln)Hl(t),

respectively. We use the proof of Lemma 3.1, (6.1) and (6.2), the bounds

a\ 2

a - € -

sup 7 (N7 ) P- (V) sup | (25 ) - (N P (7)) <

t>1 t>1

(which compensate for energy-localization) and tfal|0,. R(t, z)|| € L'(dt).
As for (6.5) we consider

@3(t) = Hy(t) F2 (b ) H ().

To treat the contribution fronb); F (gét) to the derivative of this observable we may
replaceD; by D, cf. (5.6), and then use the proof of Lemma 3.1. For other derivatives
we use (6.1)-(6.4).

O

7 Proof of ¢ = 0 (negative potentials)

The first step of the proof of the statement, that any givgne P*"H indeed
must vanish, is the following result.

Lemma 7.1 The limit (5.5) exists.

Proof We prove the existence of (2.19) using the integral estimates for
U,(t) andU,(t) proven in Sections 3, 5 and 6. By a support property of the
factor F'(t) of the productG(¢) (used first in the proof of Lemma 5.1) it suffices to
considerG(t)"(DG(t)), cf. (5.6): We compute the derivative of each factorcaft)
and symmetrize. Then we invoke Lemmas 3.1 and 5.1Ugft), and (6.1), (6.2),
(6.4) and (6.5) forl,(t).

14



O

The second step is to invoke [S2, Theorem 1.2]. We consider ang;tater which
forall = > 0

(7.0)  Fy(t== Mt = LI)F (1) = o(t°),

where g (t) = U, (t)¢} (cf. Lemma 2.1). We need to show that
(7.2) ¢F = 0.

For that we introduce the asymptotic velocity

ot N S AT
(7.3) @ =5~ Cao — lim ()" (2750, %) Uu(h),
4
wherex™(t) = exp [ adt’ with o™ given as in (5.1) (see also Appendix A). Suppose

for the moment thé conditions of [S2, Theorem 1.2] so that this asymptotic velocity is
well-defined and absolutely continuous w.r.t. the Lebesgue measu’e (he latter

by the conclusion of the theorem). Then sinc&(t) > ¢ we obviously get from (7.1)
that q?j € Efq)xx, (ﬁ); whence we conclude from the stated absolute continuity that
indeed (7.2) holds.

Now to verify the conditions of [S2, Theorem 1.2] we notice that

sup |0, R(t, z)| € L'(dt),

cf. (4.3) and (1.3). (This bound is sufficient for the existencéof) As fotthe second
derivatives [S2, (1.6)] we use (4.3) and the bound (A.5) to estimat&(t,»%) as
follows:

02 R (t,2%)| < O(t727%) <zt (t) e~ (1) 'O (t717%),

uniformly in . The condition [S2, (1.6)] follows for this second derivative since
t=17% ¢ L1(dt). We treatd.I(t, ) and &2 I(t,z) similarly.
It remains to bound

(7.8) 10000, I(t,2)| < ™ (8) " ha(0),

for somehy € L'(dt). For that we notice that the lower bound
(75) V(L) > —jut~?

for someji > 0 implies the bound

(7.6) at(t) < T

15



see Appendix A.

The following computations show that under assumption (1.8), (7.5) holds for some
i > 0 with

(7.7) HAHE 14
Obviously we may replace (1.8) by:

(7.8)  —cop(pe+ 1)at[7#7% > V¥ (2); 2 > R, ¢ > 0,
(7.9) V(a%) > —Cop(u+ D)a®| =% 2% > R, Cy > 0,

and
(7.10) C, < 2742+ p)’c,.
By integrating (7.8) (to infinity) twice we get
V(a®) < —ep ||,

Thus by the formula

t= [ (=2V(x)) 2da

T~

we can estimate

N p\ L —5rl+k
(2¢,27#) 2da < (14 Z) (2¢,)7 2Lz,

t <
- 2

Ve —

yielding
(7.12) ((2@)%@—%)@ < L.

Next we insertL into (7.9) and estimate the right hand side by (7.11) yielding

) all > G 2 5 -2
(7.12) V(L) > =+ 1) et

Finally by combining (7.10) and (7.12) we get (7.5) for some

(7.13) ji < p(p+1).

16



We notice that (7.13) implies (7.7).
By combining (7.6) and (7.7) we get
2 (t) < t77ET¢ for somee > 0.
Therefore
10000, I(t,2)] < O(t727F) <at(t)'O(t7179),
yielding (7.4).

We have verified the conditions of [S2, Theorem 1.2] and hence proved the absolute
continuity of &+.

8 Positive potentials

We shall prove Theorem 1.3. We proceed somewhat more general assuming (1.2)
for an arbitrarypy > 0. Suppose in addition that € F is given such that for some

o>,
8.1) Vo(z%) > —|a%|7*", || > R.

We define(w) = (1 + |w|2)%; w € C. Then we have the following modification
of [S1, Lemma 2.2].

Lemma 8.1Leta > 0, x,t > 1 andn € N. Then (with the above assumptions)
forall w € C

| F (2] > 1)p*(kH* —w) ™|
(8.2)

VI

()

N

< ¢, )
7 Imuw|

<t‘d“_ +¢720 4 n—l)

Proof We proceed as in the proof of [S1, Lemma 2.2]: ket H with ||| =1
be given; put) = (kH* — w)_lw. Using (8.1) we obtain the following modification
of [S1, (2.16)]:

1F (782 > 1)pi]? < Crt=23 Imw| =2 + 4(H* = V) 5

(8.3) '
' < Cy (t‘%“ + t_d’“‘f) [Imw| ™2 + Cs[Imuw| ™[ HOF(-)d|].

We estimate the terrfiH F'(-):|| on the right hand side of (8.3) as

a

e Pl < o (25 mul S S+ PO

§C5<t_2d +t—d||F’<->p%||+n‘1(llF<-><ﬁH“—W"+Cﬁ . ))

lImuw] |Imuw|
< r (72 ) i S (),

17



and insert into the right hand side of (8.3) to obtain

15 (¢« > 1)p |2

< —2& | 4—ap 1) {w) -t —1) 1 (N,
< Cq (t P gk )||mw|2 +/Cst ™ [Imuw| 7| F' () p*ad|
(w)

< W)+ VEDIF O dll; C(t) = C (725 + 75 417 mwp?’

(8.4)

Next we write
fo = I1F (=2 > 1)p"¢,
o = [|FU (7% > 1)p*d||; m € N,
and notice that (8.4) may be written

1 < Con(t) + V/Con(t) frns

_ —26 | 4—ap” —1)_(w) _
Conl?) Cg<t FET g )||mw|2’m 1.

Since the same bound holds for amy < n possibly upon enlarging the constari,
we have the bounds

fro1 S Cnlt) + V/Co(t) fm

Cn(t) = Cp (t‘%“ + 1T 4 Ii_l) (w) cm=1,,m,
[Imw|?

(8.5)

with input

8.6) f2< c(t—Qd A ﬁ_l)gﬂ%.

For the latter estimate we used (8.4); the last factor on the right hand side is estimated
by [S1, (2.15)] (which obviously holds in the present context t0o).

We introducey,,, = fan(t)_%. Using the bound/a + b < \/a + Vb and the fact
that g,,—1 < +/1+ ¢,, We obtain the estimate

Jm §n—m+gg(n7m); m=0,1,---.n.
Using this bound form = 0 and (8.6) yields

26 o 1 %(wﬁ 26 i 1 —27
f0§C<t_“+t_a” +/€_) I 1+(t_a+t_a“ +/€_) .

Lemma 8.2 Suppose (8.1) and that for some positive< 1

(8.7) I(t,x) = I(t,x,) for 27| < 2t

18



Supposes; € E (Ht). Then withf(t) = U(t)¢;f and positives and o with
(8.8) 6 < min (2(/L —20), /4t — 20 + @& min (%, 1)),

8.9) |[F(|t°H"| > 1)oF(t)|| < Ct°.

Proof Following the proof of [S1, Lemma 2.3] using now Lemma 8.1 we get for
all (small) e > 0 (by chosingn large enough)

(F(|eH"| > 1)) 4t
< //@Cls_(H”) (s_d’“‘i + 572 4 K_l)a—(a) ds
¢

—| p+a min <;,1) (1—6)) 1,
< Cynt < ’ + ORI,

Let k = 19 .
O

Theorem 8.3([W]) Under the conditions (1.2), (1.3) and (8.1) wjthe (%, V3 —1]
and = > 2p~1(1 — p), the limits (1.4) and (1.5) exist.

Proof We shall only prove the existence of the limit (1.4); the existence of (1.5)
can be shown completely similarly. We may assume (8.7) for any fixedu, cf. [E].
Letd = p—e andé = 2(1 — p) + 5¢ for a smalle > 0. In addition we can assume
(8.8) (for ¢ small enough) and

(820) min (%-,4,3) > 1 —pu+2e

By the technique used in the proof of [S1, Lemma 3.2], (8.10) and Lemmas 8.1
and 8.2 we obtain

(8.11) of(t) ~ F_(|t°H|)F_(t~%[a®|) F- ([t° H*|) ¢ (t) ast — +oc.
Moreover,

(8.12) :fot—1|<F(t6|Ha| ~ 1)) it < o0,

cf. [S1, Lemma 2.4], and

(8.13) [t [(F(r%2°| ~ 1)), it < o,
1

(|t Hel)a (¢
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cf. [S1, Lemma 3.4].
The analogue statements fo,(t) read witho(t) = U, (t)o:

(8.14) 1ft_1|<F(t5|Ha| ~1))pldt < CllolP,
and

(8.15) 1ft_1|<F(t_5‘|xa| ~ 1)) g e renimldt < ClIoI

Substituting (8.11) in the expression
Ua(t) 68 (1),

and then differentiating yields integrable terms: The one with the potentials is bounded
by

1t 0) = Lot )= (47| ||+ 1] Lot ), £ (1017 |

_ O<t(—1—,u+6)+(—1+,u—26)) _ O(t—2,U«+36)

)

notice that the first term to the left vanishes by (8.7) and that the bound of the second
term comes about by using (8.7), (8.10) and Lemma 8.1. Clearly the final bound is
integrable.

The contribution from the derivative of the factét (¢“#|z“|),

xa

DF_ (t—d|:ca|) =t OF ()i - p" + O(t‘w) - %F'_(-)(-),

|24

is handled as follows: Using (8.10) and Lemma 8.1 again we infer that the first term
on the right hand side i@(t_l_e). Obviously the second term is integrable, cf. (8.10).
The third term is treated by (8.13) and (8.15).

The contributions from the two factorg F_(|t°H%|) are treated by (8.12) and
(8.14) after commutations under use of (8.10) and Lemma 8.1.

[
Now to the regimeu € (0, 1]:

Proof of Theorem 1.3: We shall only prove the existence of the limit (1.4); the
existence of (1.5) can be shown completely similarly. We pick 0 so small that

(8.16) (1 —p+26)ut < 24 — 3e.
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Let @ = p — e andd = 2a. We can assume (8.7).
Proceeding exactly as in the beginning of the proof of Theorem 8.3 we conclude that

(8.17) ¢F(t) = F_(t+~172% 2% ) F_(|[t° H*|) ¢S (t) ast — +oo.

The next result doesn’t have an analogue in the previous proof. Proceeding as the
proof of [S1, Lemma 3.1] we introduce far € 'H

U = PPy
P = F(t_d|x“| > 1), Fy = F(t" 72" < 1), F3 = F<|t5Ha| < 1).

Suppose we know thatF; F> F3|| = O(t~%), then we shall show the bound with

the right hand side replaced @/(t—s—a), leading inductively to the conclusion that
(8.18) [|[FiFpFs|| = O(t7).

To do that we estimate, cf. [S1, (3.8)],

a a2 12 212170 —a o/ p—1—2¢ ! 2
(2H"); = ( H'F}F} + FAF3H + <t FlFy+1t F1F2)
Fsep

©19 _sipp, (#me B ) w114

+ 22| Fl By Fa| P + 262071729 | Fy B Fa| |2,
and, using here (8.16),
(8.20) (2H?), > Ct=Ummt29u™ g2 > O3 || 2,

Combining (8.19) and (8.20) leads tp)|| < Ct=*73|¢
(8.18).
Combining (8.17) and (8.18) yields

o t) ~ P (1) E- (2] F- (1 ) o (1),

Following now the last part of the proof of Theorem 8.3 we differentiate the
expression

Ua(t)*F_(|t5Ha|)F_ (t—d|xa|)F_ (|t6Ha|)¢;(t),
and pick up integrable terms: The contribution with the potentials is estimated by
I [Ia(t, 2), F_ (|t6Ha|)] | = o(t<—1—#+5>—(#—%€>) - o(t—(H%e)) e LM (dt),

cf. (8.7) and Lemma 8.1. The one from the Heisenberg derivative of the factor
F_ (t_d|x“|) is clearly integrable by (8.18). The same conclusion holds for the
contributions from the two factorg: F_(|t* H%|); this follows by using the bounds
(8.12) and (8.14) (with the presefi} after commutations under use of (8.18) again.

L]

, whence we conclude
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A Classical orbits

In this Appendix we shall construct solutions™(¢) anda~(¢) to the Riccati
equation

(A.1) & = q(t)? — a?

whereq(t)* is a continuous (non-negative) function. For the examplef = — V(L)
of Section 5, cf. (2.1), we establish (5.1) using in this case the upper bound

(A2) q(t)* < O,

cf. [S1, (5.8)] (or (7.11)).
First we construct two solutions™(¢) anda~(¢) satisfying the bounds

t~! < a™(t) anda(t) < 0.

This will be done without using (A.2).
To find a*(¢) we notice that3(t) = t~! is a solution to

f=—p

Clearly we can solve (A.1) in a neighborhood tof= 1 with the initial condition
a(1) = (1) = 1. By the standard comparison theorem (see for example [BR, Theorem
1.8]) we conclude that(t) > ¢t=! for t > 1. Using the equation (A.1) we can readily
continuea(t) to the whole half-axis. The obtained solution is denotechiyt).

It remains to construat—(¢) < 0. For that we consider the Saudihger equation

(A.3) —a"(t) — V(L(t))a(t) = 0.

t
From the solutionz™(t) = exp <f a+dt’> we obtain another one, cf. [BR, Section
1

2.5], by the formula
2= (t) = a7 (1) /x+ () at".
4

Let us note the following bounds

0< 2 (1) :x+(t)_1/e L
(A.4) !
o0 _2f t}/dt”
<ar)7! /e : dt! = 2T ()"t <1

22



From (A.3) we getr—(t)” > 0. Consequently if:~(¢)" if positive for somet the
solution 2~ (¢) will grow at least linearly contradicting (A.4). Therefore (t) < 0
and we conclude that

a(t) = <0.

We shall now show the bounds
at(t) <C't™land - C't7t < a™ (1)

under the assumption (A.2).
To get the upper bound af*(¢) we introduce the function

_1+VTHAC

3 = =5

which satisfies3(1) > a™(1) = 1 and solves
B=Ct™?— 2

By another comparison we conclude that(¢) < ().
To get the lower boundv—(t) > —C”t~! we compute using the upper bound
at(t) < Ot !

¢ -1

o —2foc+dt"
a~(t)=at(t) - j/e ¢ dt’
¢
¢ -1
® 2 [ Gar
>t - /e ¢ | =-2(C"—1)t7".

t

The proof of the bounds is completed. In particular we have verified (5.1).
For an application in Section 7 we notice that the formula

4o xta~ 1
T X = = s
gtz —x 2zt at —a”

and (5.1) yield the bounds
(A.5) 20) 't < at(H)a (1) <t
for C' given as in (5.1).
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