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1 Introduction

A quantum system is often described by a W ∗-algebra M with a σ-weakly continuous group of automor-
phisms τ t. Such a pair (M, τ t) is usually called a W ∗-dynamical system.

Definition 1.1 We say that (M, τ t) satisfies the return to equilibrium property if

1. there exists a unique τ t-invariant normal state ω on M;

2. if φ is any normal state on M, then

lim
t→∞φ(τ t(A)) = ω(A), A ∈ M.

The conventional wisdom (based on our everyday experience) says that the following statement should
be true in some sense.

Quasitheorem Suppose that the W ∗-dynamical system (M, τ t) describes a physical system that is

1. infinitely extended;

2. a localized perturbation of a a thermal equilibrium system;

3. sufficiently regular;

4. sufficiently generic.

Then it should satisfy the return to equilibrum property.

The main goal of our paper is the proof that a certain class of Pauli-Fierz systems satisfies the return
to equilibrium property. Pauli-Fierz systems is the name that we give to a class of some W ∗-dynamical
systems that are often used to describe the interaction of a small quantum system with a “bosonic
reservoir”. In our paper, the small system will be always described by a finite dimensional Hilbert space
K. The bosons will be described by the Fock space over the one particle space Z, denoted Γs(Z). The
bosons can be interpreted eg. as photons or phonons. Pauli-Fierz systems usually arise in physics as
simplified versions of the non-relativistic QED.

In the case of finite volume Pauli-Fierz systems, the W ∗-algebra of observables is simply B(H) for
H = K ⊗ Γs(Z). From the point of view of the classification of W ∗-algebras, such algebras are type I
factors, so they are rather simple-minded. The dynamics is generated by a certain bounded from below
operator H , called the Pauli-Fierz Hamiltonian. The thermal equilibrium state is given by the density
matrix e−βH/Tre−βH . Note however, that one does not expect the return to equilibrium property to be
true for finite volume systems.

In the thermodynamical (infinite volume) limit at positive temperature it is not possible to describe a
bosonic reservoir by a type I algebra. Instead, one has to use the so-called Araki-Woods representations,
which lead to type III algebras Mβ,l, which we call (left) Araki-Woods algebras.

Using Araki-Woods algebras we can define a one parameter family of W ∗-dynamical systems (B(K)⊗
Mβ,l, τ

t
β) , which we call thermal Pauli-Fierz systems. Note that they are defined in a canonical way given

the inverse temperature β ∈ [0,∞] and the Pauli-Fierz Hamiltonian H . For the zero temperature, that is
for β = ∞, the system (B(K)⊗M∞,l, τ

t
∞) is just the type IW ∗-algebraB(H) equipped with the dynamics

generated by H . For β ∈]0,∞[, the systems (Mβ , τ
t
β) can be interpreted as the thermodynamical limit of

the same underlying physical system. Their algebras are type III and, in general, they are non-equivalent
for distinct β. The analysis of the family of W ∗-dynamical systems (Mβ,l, τ

t
β), for β ∈]0,∞], is the main

subject of this paper.
The Pauli-Fierz systems that we consider satisfy the two first conditions that we mentioned in the

“quasitheorem”. They describe an infinitely extended system—which for β < ∞ mathematically is
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expressed in the fact that their W ∗-algebra is of type III (a rather nontrivial kind of a W ∗-algebra).
The choice of the Planck law in the Araki-Woods representation expresses the fact that the system is a
localized perturbation of the thermal equuilibrium. Nevertheless, these conditions are not sufficient to
guarantee the return to equilibrium property. It is easy to see that this property is violated eg. for free
Pauli-Fierz systems.

There are several approaches that can be used to express the “regularity” of interacting Pauli-Fierz
systems (the third condition in our “quasitheorem”). The approach that we adopted is based on the idea
of Jakšić and Pillet of gluing negative and positive frequences of the bosons [JP1, JP2]. This allows us
to define a “conjugate operator”—the generator of translations in the spectral variables. Unlike in the
original approach of Jakšić and Pillet, we do not assume the analyticity with respect to this conjugate
operator, but only the differentiability (of sufficiently high order). This is a much weaker assumption than
the analyticity and allows us to treat Pauli-Fierz systems more efficiently, especially at small temperatures.

To express the genericity of the interaction we use some simple algebraic conditions on the interaction
derived from the so-called Fermi Golden Rule. The Fermi Golden Rule describes how to compute the
eigenvalues and resonances of a self-adjoint operator to the second order. In particular, it can be used to
predict which eigenvalues will disappear when we switch the interaction on for small coupling constant
(and turn into resonances, if the system is sufficiently analytic).

It turns out that in the case of thermal Pauli-Fierz systems the computations of the Fermi Golden Rule
lead to two distinct conditions that guarantee the return to equilibrium property. The first one applies
only to the zero temperature (β = ∞) and is relatively easy to compute. What is more interesting is what
happens at positive temperatures (β < ∞). For the whole range of positive temperatures β ∈]0,∞[ the
Fermi Golden Rule gives a single condition that guarantees the return to equilibrium for sufficiently small
nonzero coupling constants. In order to check this condition, first we need to construct a certain (finite
dimensional) ∗-algebra. The definition of this ∗-algebra depends only on the Hamiltonian H and not on
the inverse temperature β. If this ∗-algebra has a trivial commutator, then for any positive temperature,
for a sufficiently small nonzero coupling constant, the return to equilibrium property holds.

If we assume the two kinds of generic assumptions (the zero-temperature and the positive temperature
one) plus a sufficient regularity of the interaction, then we can prove that the return to equlibrium is
uniform in temperature (at least for not too large temperatures). In other words, we can show that for
any β0 > 0 there exists λ0 > 0 such that for 0 < |λ| ≤ λ0 the return to equilibrium is true. This result
would be impossible to obtain using just the translation analyticity. In fact, it was this result, which was
the main motivation for us to study the Mourre theory version of the Jakšić-Pillet approach in [DJ].

Before we explain the tools that we use in our paper, let us recall some important elements of the
theory of W ∗-algebras that we will use [BR, DJP]. One of the most important concepts of the modern
theory of W ∗-algebras is the so-called standard representation [Ha] (see also [A2, Co, BR]). We say
that a quadruple (π,H, J,H+) is a standard representation of a W ∗-algebra M, if π : M → B(H) is
a ∗-representation, J is an antiunitary involution on H and H+ is a self-dual cone in H satisfying the
following conditions:
1) Jπ(M)J = π(M)′,
2) JAJ = A∗ for A in the center of M,
3) JΨ = Ψ for Ψ ∈ H+,
4) π(A)Jπ(A)H+ ⊂ H+ for A ∈ M.
It can be shown that every W ∗-algebra possesses an essentially unique standard representation.

The standard representation has several important properties. First of all, every normal state ω on
M has a unique vector representative Ω ∈ H+. Secondly, every W ∗-dynamics τ t on M has a canonical
implementation in the standard representation by a strongly continuous unitary group, so that

π(τ t(A)) = eitLπ(A)e−itL.

for a certain self-adjoint operator L. The operator L is fixed by the condition eitLH+ ⊂ H+ and is called
the Liouvillean. It encodes all the properties of τ t in a particularly convenient way. This encoding is
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described partly in the following theorem:

Theorem 1.2 1. The Liouvillean L has no eigenvalues iff the the W ∗-dynamics τ t has no invariant
states.

2. The Liouvillean L has exactly one nondegenerate eigenvalue at zero iff the W ∗-dynamics τ t has a
single invariant state.

3. Suppose L has no singular continuous spectrum, has exactly one nondegenerate eigenvalue at zero
and the corresponding eigenstate is separating for M. Then the return to equilibrium property is
true for (M, τ t).

As we see from the point 3) of the above theorem, the return to equilibrium follows from the ap-
propriate spectral properties of the Liouvillean. The main goal of this paper is to prove these spectral
properties. This proof consists of two basic steps.

First let us describe the first part. We want to show that the Liouvillean Lβ has a zero eigenvalue. In
the case of Pauli-Fierz Liouvilleans with β < ∞, this follows from our forthcoming paper [DJP], where
we extend the well known perturbation theory for KMS states due to Araki [A1, BR] to the case of
unbounded perturbations. By these results the Pauli-Fierz Lioubilleans Lβ always have an eigenvector
with the eigenvalue zero. This eigenvector represents a β-KMS state for the dynamics τ t

β . By the general
theory of KMS states, this eigenvector is always separating.

In the case β = ∞, the Liouvillean also has an eigenvector with the zero eigenvalue. This eigenvector
corresponds to the ground state of H . It is not separating for the algebra though. Therefore, even if
we prove that it is the unique eigenvector of L∞ and that L∞ has no singular continuous spectrum, we
cannot conclude that the return to equlibrium holds.

The second part of the argument is based on the paper [DJ], which was devoted to the study of
spectral properties of Pauli-Fierz operators. The results of [DJ] imply that under generic assumptions
the space of eigenvectors of Lβ is at most 1-dimensional. The main idea of the approach of [DJ] is to apply
the Mourre theory to the Pauli-Fierz operator restricted to the orthogonal complement of the vacuum
sector and then to use the Feshbach method to get spectral information about the full operator. These
results are conveniently formalized in the so-called Fermi Golden Rule Operator, that encodes the shift
of eigenvalues due to the second order perturbation theory.

Now, combining the two parts, we obtain the main result of our paper saying that Pauli-Fierz Liou-
villeans Lβ, generically, have no singular spectrum except for a single nondegenerate eigenvalue at zero.
Under some additional conditions, our results are true uniformly for β ∈ [β0,∞]

For β < ∞, β-KMS vectors are separating, as a consequence we obtain the return to equilibrium
property.

We argued above that Pauli-Fierz systems at positive temperatures should involve Araki-Woods alge-
bras and theW ∗-algebraic formalism. This point of view can be justified by invoking the thermodynamical
limit of finite volume systems. This argument can be made easily rigorous, although we are not going
to do it in this paper. Instead, in the appendix we included an extensive discussion which shows how
Araki-Woods representation and thermal Pauli-Fierz systems arise in the finite volume case. In this case,
there is no real need to use the W ∗-algebraic language at all. In fact, all the Liouvilleans Lβ are unitarily
equivalent to the operator H ⊗ −1 ⊗ H . Nevertheless, even in this case, using various representations
seems to be advantageous from the purely algebraic and computational point of view.

In order to make the problem more accessible to a wider audience, we included a whole section
where a simplified version of our main result is described. Note however, that this section is completely
independent of the rest of our paper and it can be skipped by a more advanced reader.
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1.1 Comparison with the literature

Hamiltonians similar to those considered in our paper can be traced back to a famous paper by Dirac
[Di]. Since then, they appear frequently in the physics literature [PF, He, CT]. In the recent years
there has been a revival of interest in rigorous results about these operators, starting with such papers
as [JP1, Sp2, BFS1, Sk, DG].

From the technical point of view, the results of our paper concern mainly spectral properties of a
certain class of Pauli-Fierz operators. A large part of the literature on spectral analysis of Pauli-Fierz
operators can be divided into two classes. The first uses the generator of translations as the main tool
and the second—the generator of dilations.

The idea of using the generator of translations started in the work of Jakšić and Pillet [JP1, JP2],
where it was applied to deform analytically positive temperature Pauli-Fierz Liouvilleans. The infinites-
imal version of this method based on the Mourre theory was studied in [DJ]. That paper was a technical
preparation for the present paper. In fact, in the introduction to [DJ] we roughly described the applica-
tions contained in this paper (without, however, giving exact conditions).

The generator of translations is also the main tool of the interesting paper by Merkli [M], which is
devoted to the proof of the return to equilibrium in the mean. That paper, however, does not use the
results of [DJ], instead it is based on the technique of a “modified conjugate operator” originally due
to Huebner and Spohn, elaborated later in [BFSS]. The results of Merkli have a lot of similarity with
the results of this paper. One of the differences is the fact that Merkli is interested in the return to
equlibrium in the mean, which means that he does not need to show the absence of singular continuous
spectrum. His proof is based on the virial theorem, whereas the method of [DJ], on which the present
paper is based, is based on the limiting absorbtion principle. The most important difference between our
and Merkli’s approach, however, is that whereas in our approach the main role is played by the study
of the Pauli-Fierz operator restricted to the orthogonal complement of vacuum states, Merkli works on
the whole Hilbert space. We believe that the method applied by Merkli is much more complicated and
indirect than ours. Merkli’s main result is not uniform in the temperature.

The generators of dilations in the context of massless Pauli-Fierz operators were used first by Bach-
Froehlich-Sigal in a series of papers [BFS1, BFS2, BFS3, BFSS]. In [BFS4] they applied this technique
to study the return to equilibrium uniformly in temperature. A distinctive feature of their approach is
the so-called renormalization group technique, which in this context is meant to describe an iterative
procedure based on the Feshbach method, used to control the spectrum of Pauli-Fierz operators. The
results of [BFS4] resemble closely ours and Merkli’s. Strictly speaking, however, the conditions of the
result of Bach-Froehlich-Sigal are not comparable to ours and one can find interactions which can be
treated with one method and not by the other.

[BFS4] gives conditions that guarantee the return to equilibrium uniformly in the temperature. These
conditions are different than ours. What concerns the infrared decay of the interaction, they are somewhat
less restrictive than our conditions. This appears to be due to Bach-Froehlich-Sigal’s use of the generator
of dilations, and not of translations as in our paper. Note, however, that the methods of our paper seem
more transparent than those of [BFS4].

Let us stress that the algebraic conditions on the interaction that guarantee the return to equilibrium
for small nonzero coupling constant, which are given in our paper, are very simple and natural. These
conditions seem to appear for the first time in the literature. Somewhat similar conditions in the context
of the generator of a dynamical semigroup were described by Spohn in [Sp1].

The Fermi Golden Rule Operator, that is one of the main tools of our paper, is closely related to the
generator of the so-called dynamical quantum semigroup obtained in the weak coupling limit, sometimes
called the Davies generator. The Davies generator was introduced in [Da] and was extensively studied
in the literature, eg in [Sp1]. Let us stress that the Davies generator is a different object from the Fermi
Golden Rule Operator. It has a more direct physical meaning in terms of the evolution of expectation
values. It always has a stationary state. On the other hand, the Fermi Golden Rule Operator may have
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no stationary state at all (eg. in the case of two thermal reservoirs at different temperatures). Its main
role is to describe the 2nd order correction to the eigenvalues and resonances.

One can distinguish two basic approaches to the algebraic quantum statistical physics. Either one
tries to describe a physical system by a C∗-dynamical system (a C∗-algebra with a strongly continuous
1-parameter group of ∗-automorphisms) or a W ∗-dynamical system. From the conceptual point of view
the first approach has some advantages. In fact, it was more popular in the early years of algebraic
quantum statistical physics. Unfortunately, realistic physical systems, especially those involving bosons,
often do not fit easily into the C∗-algebraic framework.

The most comprehensive exposition of algebraic quantum statistical physics is [BR]. It describes both
the C∗ and W ∗-algebraic approaches. Nevertheless, it is the C∗-algebraic approach, which is emphasized
in this monograph.

The point of view of our paper, which is purely W ∗-algebraic, owes a lot to the work of Jakšić-Pillet
[JP1, JP2]. They made it clear that the analysis of algebraic properties of quantum system can be based
on the study of spectral properties of the Liouvillean (although these ideas can be traced to earlier works,
such as [Ja]).

An extensive discussion of the algebraic framework for quantum statistical systems inspired by [JP1,
JP2] is contained also in [BFS4].

Our presentation of the algebraic approach to Pauli-Fierz systems has some points that are absent or
difficult to find elsewhere. We tried to explain the role of the standard representation and its relationship
to what we call the semi-standard representation. Our exposition of the Araki-Woods representation
and confined systems should help the reader understand how the W ∗-algebraic description of quantum
systems arises.

2 Simplified version of the main results

This section contains a self-contained description of a simplified version of the main results of this paper.
Readers who prefer a more complete exposition can skip this section altogether.

2.1 Pauli-Fierz system at zero temperature

Suppose we consider a small quantum system interacting with scalar massless bosons. We assume that
the small system is described by a finite dimensional Hilbert space K and a self-adjoint operator K. The
bosons are described by the one-particle space Rd, where ξ ∈ Rd is their momentum and |ξ| is their
energy (dispersion relation). The full Hilbert space of the system at zero temperature is K⊗Γs(L2(Rd)),
where Γs(L2(Rd)) denotes the Fock space over the 1-particle space L2(Rd), and the free Hamiltonian is

Hfr := K ⊗ 1 + 1⊗
∫
|ξ|a∗(ξ)a(ξ)dξ,

where a∗(ξ)/a(ξ) are the creation/annihillation operators of the boson of momentum ξ. We fix an
operator-valued function Rd 3 ξ 7→ v(ξ) ∈ B(K). The interaction is given by the operator

V :=
∫

(v(ξ)⊗ a∗(ξ) + v∗(ξ)⊗ a(ξ))dξ.

The full Pauli-Fierz Hamiltonian equals

H := Hfr + λV,

where λ ∈ R. Observables of our system at zero temperature are described by the W ∗-algebra

B
(K ⊗ Γs(L2(Rd))

)
(2.1)
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and the dynamics is given by
τ t(A) := eitHAeitH . (2.2)

2.2 Araki-Woods representations

Suppose now that the bosonic field has a nonzero densty given by a function

R
d 3 ξ 7→ ρ(ξ) ∈ [0,∞[.

The W ∗-algebra B(Γs(L2(Rd))) does not describe adequately such bosons any more. It needs to be
replaced by the algebra Mρ,l, the (left) Araki-Woods algebra at density ρ.

The algebra Mρ,l is constructed as follows. It is represented on the Hilbert space Γs(L2(Rd)⊕L2(Rd)).
The creation/annihillation operators corresponding to the first L2(Rd) (which describe excitations) are
denoted by a∗l (ξ)/al(ξ) and those corresponding to the second L2(Rd) (describing holes) are denoted by
a∗r (ξ)/ar(ξ). (l/r stand for left/right). Mρ,l is generated by the operators of the form

exp i
(∫

(f(ξ)(1 + ρ(ξ))
1
2 a∗l (ξ) + f(ξ)ρ(ξ)

1
2 ar(ξ) + hc)dξ

)
,

where f ∈ L2(Rd) satisfy
∫ |f(ξ)|2ρ(ξ)dξ <∞.

2.3 Pauli-Fierz systems at a nonzero density

Suppose now that the small quantum system, described by the Hilbert space K interacts with the bosons
of density ρ. Instead of the algebra (2.1), adequate at temperature zero (equivalently, at ρ = 0), they
should be described by the W ∗-algebra

B(K) ⊗Mρ,l. (2.3)

This algebra has an obvious representation in the Hilbert space K⊗ Γs(L2(Rd)⊕ L2(Rd)), which we call
the semistandard representation.

The dynamics (2.2) should now be replaced by the dynamics

τ t
ρ(A) := eitLsemi

ρ AeitLsemi
ρ , (2.4)

where the self-adjoint operator Lsemi
ρ , which we call the Pauli-Fierz semi-Liouvillean at density ρ is defined

as follows:
Lsemi

fr := K ⊗ 1 + 1⊗
∫ (|ξ|a∗l (ξ)al(ξ)− |ξ|a∗r (ξ)ar(ξ)

)
dξ;

Qsemi
ρ =

∫ (
(1 + ρ(ξ))

1
2 v(ξ)⊗ a∗l (ξ) + ρ(ξ)

1
2 v∗(ξ)⊗ ar(ξ)

)
dξ + hc,

Lsemi
ρ := Lsemi

fr + λQsemi
ρ .

Let us stress that the W ∗-dynamical system

(B(K) ⊗Mρ,l, τ
t
ρ), (2.5)

which we call the Pauli-Fierz system at density ρ, is canonically defined given H and ρ.

Remark 2.1 The physical interpretation of a Pauli-Fierz system at density ρ can be described as follows.
First we consider the finite volume version of the system (2.1) with the W ∗-dynamics (2.4). The

density matrix
Γ(ρ(1 + ρ)−1)/TrΓρ(1 + ρ)−1,
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defines a state on the W ∗-algebra B(Γs(Z)). It is a quasi-free state of density ρ. One can pass to the
thermodynamical limit looking at states that in the bosonic variables are local perturbations of this state.
This limit is equal to (2.5).

Thus if the volume was finite, all the systems (2.5) would be unitarily equivalent and completely
described by the operator H. The operators Lsemi

ρ would be unitarily equivalent for different ρ. This is no
longer true in the infinite volume case.

2.4 Pauli-Fierz systems in a standard representation

As mentioned in the introduction, every W ∗-algebra has a distinguished representation, called the stan-
dard representation. In the case of the algebra 2.3, it can be naturally realized in the Hilbert space
K ⊗K ⊗ Γs(L2(Rd)⊕ L2(Rd)). In this representation, the operator A⊗B ∈ B(K) ⊗Mρ,l is represented
as A⊗ 1K ⊗B. (K denotes the space complex conjugate to K).

Let us describe the Liouvillean of the dynamics τ t
ρ:

Lfr := K ⊗ 1⊗ 1− 1⊗K ⊗ 1 + 1⊗ 1⊗
∫ (|ξ|a∗l (ξ)al(ξ)− |ξ|a∗r (ξ)ar(ξ)

)
dξ;

Qρ =
∫

((1 + ρ(ξ))
1
2 v(ξ)⊗ 1⊗ a∗l (ξ) + ρ(ξ)

1
2 v∗(ξ)⊗ 1⊗ ar(ξ)

)
dξ + hc,

JQρJ =
∫

((1 + ρ(ξ))
1
2 1⊗ v(ξ)⊗ a∗r (ξ) + ρ(ξ)

1
2 1⊗ v∗(ξ) ⊗ al(ξ)

)
dξ + hc,

Lρ := Lfr + λQρ − λJQρJ.

Let us note that from the mathematical point of view Pauli-Fierz Hamiltonians, semi-Liouvilleans and
Liouvilleans are quite similar. They belong to the class of operators that we call Pauli-Fierz operators. A
detailed study of spectral properties of Pauli-Fierz operators has been done in our previous paper [DJ].
In this present paper we apply these results.

Remark 2.2 Let us remark that in the case of the finite volume the Liouvilleans Lρ for distinct densities
ρ are unitarily equivalent to one another. This is no longer true in the infinite volume

2.5 Thermal Pauli-Fierz systems

The most important class of Pauli-Fierz systems corresponds to the family of densities given by the
Planck law

ρ(ξ) = (eβ|ξ| − 1)−1.

Such systems are called thermal Pauli-Fierz systems at inverse temperature β. Let us restrict our attention
to such systems.

Let us change slightly the notation: instead of the subscript ρβ let us use β, thus we will write Lβ,
τ t
β instead of Lρβ

and τ t
ρβ

.
Let us describe (a simplified version of) the main result of our paper. We will use the following

notation. sp(K) will denote the spectrum of K. If k1, k2 ∈ sp(K) (that is, if k1, k2 are eigenvalues of K)
we will write vk1,k2(ξ) for the matrix elements of v(ξ) between the corresponding eigenspaces of K. If
either k1 or k2 does not belong to sp(K), we simply set vk1,k2(ξ) = 0. We will write k0 for the infimum
of the spectrum of K. The spectral projection of K onto k ∈ sp(K) will be denoted by 1k(K).

Theorem 2.3 Suppose the following conditions are satisfied:
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1. δ > 0, and for n = 0, 1, 2, 3 we have

‖ ξdn

|ξ|dξn |ξ| d−1
2 v(ξ)‖2 ≤ c

{ |ξ|3+δ−n, |ξ| < 1,
(1 + |ξ|)− 1

2−δ−n |ξ ≥ 1.

2. dim1k0 = 1 (the operator K has a nondegenerate smallest eigenvalue);

3. There exists c > 0 such that for any k ∈ sp(K), k 6= k0,∑
p∈R

(v∗)k,k−p(pω)vk−p,k(pω)pd−1dω ≥ c1k(K);

4. If B ∈ B(K) and for any ξ ∈ Rd

B
∑

k∈sp(K)

vk−|ξ|,k(ξ) =
∑

k∈sp(K)

vk−|ξ|,k(ξ)B,

B∗
∑

k∈sp(K)

vk−|ξ|,k(ξ) =
∑

k∈sp(K)

vk−|ξ|,k(ξ)B∗,

then B is proportional to the identity operator.

Then for any β0 > 0 there exists λ0 > 0 such that for 0 < |λ| ≤ λ0 and β ∈ [β0,∞], the Liouvillean
Lβ has no singular continuous spectrum and a unique eigenvalue, which is at zero and nondegenerate.
Consequently, for 0 < |λ| ≤ λ0 and β ∈ [β0,∞[, the Pauli-Fierz system (B(K) ⊗ Mβ,l, τ

t
β) satisfies the

return to equilibrium property.

3 Basic notation and facts

3.1 Miscellanea

We set C+ := {z ∈ C : Imz > 0}.
Bcl denotes the closure of a set B. In particular, C

cl
+ = {z ∈ C : Imz ≥ 0}.

We will use notation δ(p) for the Dirac delta at 0, Pp−1 for the principal value of p−1 and (p+ i0)−1

for lim↓0(p+ iε)−1. Thus if R 3 p 7→ f(p) is a continuous function, then we will write∫
f(p)δ(p)dp = f(0),∫
f(p)Pp−1dp = lim

ε↓0
(∫ −ε

−∞+
∫∞

ε )f(p)p−1dp,∫
f(p)(p+ i0)−1dp = lim

ε↓0
∫
f(p)(p+ iε)−1dp,

provided the above limits exist.
We will sometimes use the so-called Sochocki formula:

(p+ i0)−1 = Pp−1 − iπδ(p).
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3.2 Operators in Hilbert spaces

Let H be a Hilbert space with the scalar product (Ψ|Φ), Ψ,Φ ∈ H.
B(H), B+(H) and U(H) denote the set of bounded, bounded positive and unitary operators on H.
l2(H) will denote the space of Hilbert-Schmidt operators on H with the scalar product Tr(B∗A) and

l+(H) the positive Hilbert-Schmidt operators.
If Ψ ∈ H, then |Ψ) denotes the operator

C 3 λ 7→ λΨ ∈ H,
and (Ψ| := |Ψ)∗ denotes the operator

H 3 Φ 7→ (Ψ|Φ) ∈ C.

In particular, if ‖Ψ‖ = 1, then |Ψ)(Ψ| is the orthogonal projection onto Ψ.
If A is an operator on H, then sp(A) denotes its spectrum and spp(A) its point spectrum (the set of

eigenvalues of A).
If A is self-adjoint and Θ is a Borel subset of R, then 1Θ(A) denotes the spectral projection of A onto

Θ. 1p(A) denotes the projection onto the subspace spanned by the eigenvectors of A. 1ac(A) denotes the
projection onto the absolutely continuous part of the spectrum of A and 1sc(A) := 1 − 1ac(A) − 1p(A)
denotes the projection onto the singular continuous part of the spectrum.

If A is closed and Θ is an isolated subset of sp(A) (closed and open in the relative topology of sp(A)),
then 1Θ(A) denotes the spectral (Riesz) projection of A onto Θ.

If z ∈ sp(A) is an isolated point of sp(A), or A is self-adjoint, we will write 1z(A) instead of 1{z}(A).

3.3 Fermi Golden Rule Operator

In this section we introduce a general framework, which can be used to formalize 2nd order perturbation
theory of linear operators, incorporating elements of the Feshbach method.

Suppose that H is a Hilbert space with a distinguished finite dimensional subspace Hv. We set
Hv := (Hv)⊥. We will use the 2 × 2 matrix notation for operators, that is if B ∈ B(H) it will be
sometimes written as

B =

[
Bvv Bvv

Bvv Bvv

]
. (3.6)

Suppose that Lfr is a self-adjoint operator that leaves Hv invariant. Thus it can be written in the
block matrix form as

Lfr =

[
Lvv

fr 0
0 Lvv

fr

]
, (3.7)

We will often write E instead of Lvv
fr , and E for Hv. We define the subspaces

Ee := Ran1e(E), e ∈ sp(E),

We have the decomposition
E = ⊕

e∈sp(E)
Ee.

We will write
Be1,e2 := 1e1(E)B1e2(E), e1, e2 ∈ sp(E), B ∈ B(E).

Let Q be self-adjoint operator on H such that Qvv = 0 and Qvv = (Qvv)∗ is bounded.
For z 6∈ sp(Lvv

fr ) we introduce

w(z) := Qvv(z1vv − Lvv
fr )−1Qvv. (3.8)
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Let us assume that for e ∈ sp(E), there exists

lim
ε↓0

w(e+ iε)ee =: w(e+ i0)ee.

The Fermi Golden Rule Operator (abbreviated as FGRO) is defined as

Γ =
∑

e∈sp(E)

w(e + i0)ee

We will say that Γ is the FGRO associated with the triple (Hv, Lfr, Q)
In general, Γ is not self-adjoint and it is convenient to use the following notation for its real and

imaginary part:
ΓR := ReΓ = 1

2 (Γ + Γ∗), ΓI := ImΓ = 1
2i (Γ− Γ∗).

Clearly, Γ is a dissipative operator, this means that

Γ = ΓR + iΓI, (ΓR)∗ = ΓR, ΓI ≤ 0.

Besides,
Γee = w(e+ i0)ee, Γe1,e2 = 0, e1 6= e2;

EΓ = ΓE, EΓR = ΓRE, EΓI = ΓIE.

If we assume that Lvv + Qvv is essentially self-adjoint on D(Lvv) ∩ D(Qvv), then we can define the
self-adjoint operator

Lλ = Lfr + λQ,

The main application of the Fermi Golden Rule Operator Γ is to describe in a concise way the second
order perturbation predictions for the point spectrum of Lλ.

In our previous paper [DJ] we proved that under some assumptions the operator

1sp(Γ)∩R(Γ)(E + λ2Γ) (3.9)

can be used to predict the possible approximate location of eigenvalues of Lλ and to estimate from above
their multiplicity. Our present paper will heavily depend on this result.

Note also that
E + λ2Γ (3.10)

can be used to predict the approximate location and multiplicities of eigenvalues and resonances of Lλ.

3.4 Space L2(R)

In this subsection we describe some operators acting on L2(R).
Let r denote the self-adjoint operator of multiplication by the variable in R. That means

rΨ(p) := pΨ(p).

Note that throughout the paper in the context of the space L2(R), the generic name for a variable in R

will be p. On the other hand, the multiplication operator on L2(R) by its natural variable will be r.
We introduce the self-adjoint operator s on L2(R):

sΨ(p) :=
1
i
∇pΨ(p).

Note that [s, r] = i. We will write 〈s〉 := (1 + s2)
1
2 .

The following theorem is well known:
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Theorem 3.1 1) Suppose that n = 1, 2, . . . and η > n− 1
2 . Then the function

C+ 3 z 7→ 〈s〉−η(z − r)−n〈s〉−η ∈ B(L2(R))

extends from C+ to a continuous function on Ccl
+.

2) Let η > 1
2 . Then for f ∈ D(〈s〉η), there exists a unique continuous function R 7→ f(p) ∈ C which is a

representant of f . For any p ∈ R and η > 1
2 define a linear functional πp,η : L2(R) → C by

πp,ηg :=
(〈s〉−ηg

)
(p).

Then

1. πp,η is bounded;

2. R 3 p 7→ πp,η ∈ B(L2(R),C) is continuous;

3. For 1
2 < η1 ≤ η2 we have

πp,η1〈s〉η1−η2 = πp,η2 .

Remark 3.2 Define an operator πp : C(R) ∩ L2(R) → C by πpf := f(p). Then πp,η = πp〈s〉−η.

3.5 Space L2(R, E)

Let E be a Hilbert space (not necessarily separable). We say that a function R 3 p 7→ Ψ(p) ∈ E belongs
to L2(R, E) iff

1. There exists a separable subspace E0 such that for any p ∈ R, Ψ(p) ∈ E0.

2. For any Φ ∈ E , R 3 p 7→ (Φ|Ψ(p)) ∈ C is measurable.

3.
∫ ‖Ψ(p)‖2dp <∞.

Let p 7→ Ψ(p) belong to L2(R, E). We say that it belongs to N (R, E) iff Ψ(p) = 0 for almost all p ∈ R.
We define

L2(R, E) := L2(R, E)/N (R, E).

We easily see that there exists a unique unitary operator

E ⊗ L2(R) → L2(R, E),

such that Ψ⊗ f ∈ E ⊗ L2(R) is mapped onto p 7→ f(p)Ψ.
Suppose now that q ∈ B(K, L2(R)⊗ E) and 〈s〉η⊗1E q is bounded. Then for p ∈ R we can define

q(p) := 1E⊗πp,η〈s〉η q ∈ B(K, E).

Clearly, the definition of q(p) does not depend on the choice of η > 1
2 and

R 3 p 7→ q(p) ∈ B(K, E)

is a continuous function.
If f ∈ L∞(R), we have the identity

q∗f(r)q =
∫
q∗(p)f(p)q(p)dp. (3.11)

Note the estimate
‖q∗q‖ ≤

∫
‖q∗(p)q(p)‖dp =

∫
‖q(p)‖2dp. (3.12)
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3.6 Conjugate Hilbert spaces

If K is a Hilbert space, then the space K conjugate to K is any Hilbert space with a distinguished
antiunitary map

K 3 Ψ 7→ Ψ ∈ K. (3.13)

The map (3.13) is called the (external) conjugation on K.
Note that, by the Riesz lemma, K is naturally isomorphic to the dual space to K, that is to B(K,C):

K 3 Ψ 7→ (Ψ| ∈ B(K,C).

If A ∈ B(K), then A ∈ B(K) is defined as

K 3 Ψ 7→ AΨ := AΨ ∈ K.

Thus we can identify B(K) with B(K).

Remark 3.3 For typographical reasons, sometimes it is convenient to use a different notation for con-
jugation. One can denote (3.13) by

K 3 Ψ 7→ κΨ ∈ K. (3.14)

The inverse of (3.14) will also be denoted by κ. In such a case κΨ will replace Ψ for Ψ ∈ K; κAκ will
replace A for A ∈ B(K).

Remark 3.4 We say that
K 3 Ψ 7→ Ψ ∈ K (3.15)

is an (internal) conjugation on K iff 3.15 is an antilinear map on K and Ψ = Ψ. If we fix an internal
conjugation in K, then we can idenify K with K.

3.7 The identification of Hilbert-Schmidt operators with K ⊗K
We will often use the identification of the set of Hilbert-Schmidt operators, l2(K) with K ⊗ K, so that
|Φ1)(Φ2| ∈ l2(K) corresponds to Ψ1 ⊗ Ψ2 ∈ K ⊗ K. This identification can be sometimes confusing. To
avoid misunderstanding we will try to make clear which convention we use at the moment.

In particular, let us note the following identities valid for B ∈ B(K) and C ∈ K ⊗K ' l2(K):

B⊗1K C = BC, (3.16)

1K⊗B C = CB∗. (3.17)

Note that on the left of these formulas C is interpreted as an element of K ⊗K whereas on the right, as
an element of l2(K).

3.8 The ? conjugation

In this subsection we introduce a certain antilinear map ? from a dense subspace of B(K,K ⊗W) to a
dense subspace of B(K,K ⊗W).

Let v ∈ B(K,K ⊗W). We say that v is ?-conjugable iff there exists v? ∈ B(K,K ⊗W) such that

(Φ⊗ w|vΨ) = (v?Φ|Ψ⊗ w), Φ,Ψ ∈ E , w ∈ W .

(If such an operator v? exists, then it is unique.)
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Remark 3.5 Given an orthonormal basis {wi : i ∈ I} in W, any v ∈ B(K,K⊗W) can be decomposed
as

v =
∑
i∈I

Bi ⊗ |wi), (3.18)

where Bi ∈ B(K) and the sum should be understood in terms of the strong operator convergence. Note
that

v∗v =
∑
i∈I

B∗i Bi. (3.19)

v is ?-conjugable iff ∑
i∈I

BiB
∗
i (3.20)

is bounded. If this is the case,
v? :=

∑
i∈I

B∗i ⊗ |wi).

and (3.20) equals v?∗v?.

Theorem 3.6 Suppose that either K or W are finite dimensional. Then all v ∈ B(K,K ⊗ W) are
?-conjugable. If n := min

(
(dimK)2, dimW)

, then

‖v?‖ ≤ √
n‖v‖.

Clearly, dimB(K) = (dimK)2. Therefore, we can choose an orthonormal system {wi} in W with at
most n elements such that (3.18) is true. Now

‖v?‖2 =
∥∥∥ ∑

i

BiB
∗
i

∥∥∥ ≤ ∑
i

‖BiB
∗
i ‖

=
∑
i

‖B∗i Bi‖

≤ n
∥∥∥ ∑

i

B∗i Bi

∥∥∥ = n‖v‖2.

2

Remark 3.7 If W and K are infinite dimensional, it is easy to find an example of v ∈ B(K,K ⊗W)
which is not ?-conjugable.

In what follows, if ρ is an operator on W and v ∈ B(K,K ⊗W), we will write ρv instead of 1K⊗ρ v.

Proposition 3.8 1) If v is ?-conjugable, then so is v? and

v?? = v.

2) If ρ ∈ B(W), then
(ρv)? = ρv?. (3.21)

3) If B ∈ B(K), then (vB)? = B∗⊗1W v?.
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3.9 Coupling Hilbert-Schmidt operators

Suppose that K is a Hilbert space. In this subsection we describe some notation and identities related to
the space K ⊗K ⊗W ' l2(K)⊗W .

Note that this subsection, except for the definition of ⊗̌, can be skipped on the first reading.
It is useful to define the operation of “tensoring in the middle”, which will be denoted by ⊗̌. Let H1,

H2 be arbitrary Hilbert spaces. If B ∈ B(K) and A ∈ B(K ⊗H1,K ⊗H2), we define

B⊗̌A := θ⊗1H1 B⊗A θ⊗1H2 ∈ B(K ⊗K ⊗H1,K ⊗K ⊗H2), (3.22)

where θ : K⊗K → K⊗K is defined as θΨ1⊗Ψ2 := Ψ2⊗Ψ1.
In other words, if C ∈ B(K), A ∈ B(H2,H1), we set

B ⊗̌ C ⊗A := C ⊗B ⊗A.

We use Tr to denote the trace. In the context of coupled systems Tr will be reserved for the trace over
the space K. To denote the partial trace over the space W we will use tr, in particular, if C ∈ l1+(K⊗W),
then trC will be an element of l1+(K).

Proposition 3.9 Let
B ∈ l2(K), D ∈ l2(K,K ⊗W),

vl ∈ B(K,K ⊗W), vr ∈ B(K,K ⊗W).

Then the following statements hold:

1K⊗̌vl B = vlB,

1K⊗̌v∗l D = v∗l D;

1K⊗vr B = B⊗1W v?
r ,

1K⊗v∗r D = trDv?∗
r ;

(3.23)

(on the left we use the K ⊗K notation for B, D and on the right the l2(K) notation).

Proof. It is sufficient to assume that vl = C ⊗ |w) and vr = C ⊗ |w) for some C ∈ B(K), w ∈ W . Then

1K⊗̌vl = C ⊗ 1K ⊗ |w),

1K⊗̌v∗l = C∗ ⊗ 1K ⊗ (w|,
1K⊗vr = 1K ⊗ C ⊗ |w),

1K⊗v∗r = 1K ⊗ C
∗ ⊗ (w|.

(3.24)

We may also assume that D = B ⊗ |w0) for some w0 ∈ W . Using (3.16) and (3.17) we get

1K⊗̌vl B = CB ⊗ |w) = C⊗|w) B,

1K⊗̌v∗l D = C∗B (w|w0) = C∗⊗(w| B⊗|w0);

1K⊗vr B = BC∗ ⊗ |w) = B⊗1W
(
C⊗|w)

)?
,

1K⊗v∗r D = BC(w|w0) = tr
(
B⊗|w0)

(
C∗⊗(w|)?∗)

.

(3.25)

2
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Proposition 3.10 Let B ∈ B(K), and ρ ∈ B(W). For vl ∈ B(K,K ⊗W), vr ∈ B(K,K ⊗W), we have

1K⊗vr∗ ρ 1K⊗̌vl B = trρvlBv?∗
r = v?∗

l B⊗ρ∗ vr. (3.26)

1K⊗̌v∗l ρ 1K⊗vr B = trv?
l B v∗r ρ

∗ = v∗l B⊗ρ v?
r . (3.27)

For vl,1, vl,2 ∈ B(K,K ⊗W), we have

1K⊗̌v∗l,1 ρ 1K⊗̌vl,2 B = trv?
l,1v

?∗
l,2 B⊗ρ∗ = v∗l,1ρvl,2B. (3.28)

For vr,1, vr,2 ∈ B(K,K ⊗W), we have

1K⊗v∗r,1 ρ 1K⊗vr,2 B = trB⊗ρ v?
r,2v

?∗
r,1 = Bv∗r,2ρ

∗vr,1. (3.29)

Proof. We will prove only (3.26). First note that

1K⊗v?
r ρ 1K⊗̌vl B = 1K⊗v?

r ρ vlB = trρvlBv?∗
r . (3.30)

We take vl = Cl ⊗ |wl) and vr = Cr ⊗ |wr) for some Cl, Cr ∈ B(K), wl, wr ∈ W . Then the left hand
side of (3.30) equals

tr
(
Cl⊗|ρwl)B

(
Cr ⊗ |wr)

)?∗) = tr
(
Cl⊗|ρwl)B Cr⊗(wr|

)
= ClBCr tr

(
ρ|wl)(wr|

)
= ClBCr(wl|ρ∗wr)

= Cl⊗(wl| B⊗ρ∗ Cr⊗|wr) =
(
Cl ⊗ |wl)

)?∗
B⊗ρ∗ Cr⊗|wr) = v?∗

l B⊗ρ∗vr.
2

4 Representations of CCR and Fock spaces

In this section we introduce notation related to second quantization and Fock spaces and recall some
of properties of second quantization. Most of this material, especially from the first two subsections, is
quite standard, see eg. [BR], [BSZ], [DG], although various conventions about notation are used in the
literature.

4.1 Representations of CCR

Suppose that Z0 is a unitary space, that means, Z0 is a complex vector space equipped with a positive
definite sesquilinear product (·|·). Let H be a Hilbert space. A map Z0 3 z 7→ Wπ(z) ∈ U(H) is a
representation of CCR if

Wπ(z1)Wπ(z2) = e−
i
2 Im(z1|z2)W (z1 + z2), z1, z2 ∈ Z0.

It is called regular if
t 7→Wπ(tz) is strongly continuous for any z ∈ Z0,

and
If we have a regular representation of CCR, using Stone’s theorem, for z ∈ Z0, we can define the field

operators

φπ(z) :=
d
idt

Wπ(tz), (4.31)
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and the creation and annihillation operators

z(a∗π) :=
1√
2
(φπ(z)− iφ(iz)), z(aπ) :=

1√
2
(φπ(z) + iφ(iz)). (4.32)

Clearly, the field operators are self-adjoint. The creation and annihillation operators can be shown to be
closed.

The von Neumann algebra generated by Wπ(z) for z ∈ Z0 is called the von Neumann algebra associ-
ated with the representation z 7→Wπ(z).

Suppose κ is a conjugation in Z0 (an antiunitary map satisfying κ2 = 1). Let Z0,κ := {z ∈ Z0 : κz =
z}. Then the operators Wπ(z), z ∈ Z0,κ generate a commutative subalgebra in B(H). The operators in
this subalgebra will be called κ-real.

4.2 Fock spaces

Let Z is a Hilbert space. Set Γn
s (Z) := ⊗n

s Z and let

Γs(Z) :=
∞⊕

n=0
Γn

s (Z)

denote the bosonic Fock space. Ω will denote the vacuum. For z ∈ Z, the creation operator z(a∗) is
defined as

z(a∗)Ψ :=
√
n+ 1z ⊗s Ψ, Ψ ∈ Γn

s (Z).

z(a∗) extends to a closed operator. Its adjoint

z(a) := (z(a∗))∗,

is called the annihillation operator. The field and Weyl operators are defined as φ(z) := 1√
2
(z(a∗)+ z(a))

and W (z) = eiφ(z). It is well known that Z 3 z 7→W (z) ∈ U(Γs(Z)) is a regular representation of CCR.
In the usual way, we define the operators dΓ(h) : Γs(Z) → Γs(Z) for an operator h on Z and

Γ(u) : Γs(Z1) → Γs(Z2) for an operator u from Z1 to Z2.
If Z1,Z2 are two Hilbert spaces then

UΨn ⊗Ψm :=

√
(n+m)!
n!m!

Ψn ⊗s Ψm, Ψn ∈ Γn
s (Z1), Ψm ∈ Γm

s (Z2), (4.33)

defines a unitary map
U : Γs(Z1)⊗ Γs(Z2) → Γs(Z1 ⊕Z2).

U is sometimes called the exponential map.

4.3 Squeezed states

This subsection will be used only in Appendix B, and can be skipped on the first reading. In the
mathematical literature squeezed states can be traced back to the work of Friedrichs [Fr].

Let c ∈ Z ⊗s Z. The vector c can be identified with an operator c ∈ l2(Z,Z) such that c∗ = c. We
define an unbounded operator a∗ca∗ on Γs(Z) such that for Ψn ∈ Γn

s (Z)

a∗ca∗Ψn :=
√

(n+ 2)(n+ 1) c⊗Ψn. (4.34)

(Note that on the left of (4.34) we interpret c as an element of l2(Z,Z) and on the right as an element
of Z ⊗s Z). The adjoint of a∗ca∗ is denoted by ac∗a.
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Theorem 4.1 Assume that c∗c < 1.
1) The formula

Ωc := det(1− cc∗)
1
4 exp(1

2a
∗ca∗)Ω

defines a vector in Γs(Z). It is the unique vector satisfying

‖Ωc‖ = 1, (Ωc|Ω) > 0, (z(a)− cz(a∗))Ωc = 0, z ∈ Z.

2) The formula
Rc := det(1− cc∗)

1
4 exp(− 1

2a
∗ca∗)Γ(1 − cc∗)

1
2 exp(1

2ac
∗a). (4.35)

defines a unitary operator on Γs(Z).
3) Ω = RcΩc,
4)

RcW (z)R∗c = W
(
(1− cc∗)−

1
2 z + (1− cc∗)−

1
2 cz

)
.

5) If h, u are operators on Z and hc− ch
∗

= 0, ucu∗−1 = c, then

RcdΓ(h)R∗c = dΓ(h), RcΓ(u)R∗c = Γ(u).

4.4 Araki-Woods representation

In this subsection we describe the Araki-Woods representation of canonical commutation relations and
the corresponding W ∗-algebras. These representations were introduced in [AW].

Consider a Hilbert space Z. Consider the Fock space Γs(Z ⊕Z). For (z1, z2) ∈ Z ⊕Z, W (z1, z2) will
denote the corresponding Weyl perator. Let τ : Z ⊕ Z → Z ⊕Z be the flip operator, that is

Z ⊕ Z 3 (z1, z2) 7→ τ(z1, z2) := (z2, z1) ∈ Z ⊕ Z. (4.36)

Let ε be
Z ⊕ Z 3 (z1, z2) 7→ ε(z1, z2) := (z2, z1) ∈ Z ⊕ Z. (4.37)

Note that τ is linear, ε antilinear and
ε(z1, z2) = τ(z1, z2). (4.38)

Fix a positive operator ρ on Z. Let Q(ρ) ⊂ Z denote the form domain of ρ. For z ∈ Q(ρ), we define
two unitary operators acting on Γs(Z ⊕Z) as follows:

Wρ,l(z) := W
(
(1 + ρ)

1
2 z, ρ

1
2 z

)
,

Wρ,r(z) := W
(
ρ

1
2 z, (1 + ρ)

1
2 z

)
.

Let Mρ,l and Mρ,r denote the von Neumann algebras in B(Γs(Z ⊕ Z))) generated by Wρ,l(z) and
Wρ,r(z). They will be called the left and the right Araki-Woods algebras.

Theorem 4.2 1a) Z ⊃ Q(ρ) ∈ z 7→ Wρ,l(z) ∈ U(Γs(Z ⊕ Z)) is a regular representation of CCR. This
means in particular

Wρ,l(z1)Wρ,l(z2) = e−
i
2 Im(z1|z2)Wρ,l(z1 + z2).
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The corresponding field, creation and annihillation operators are affilliated to Mρ,l and are equal

φρ,l(z) = φ
(
(1 + ρ)

1
2 z, ρ

1
2 z

)
,

z(a∗ρ,l) =
(
(1 + ρ)

1
2 z, 0

)
(a∗) +

(
0, ρ

1
2 z

)
(a),

z(aρ,l) =
(
(1 + ρ)

1
2 z, 0

)
(a) +

(
0, ρ

1
2 z

)
(a∗).

1b) Z ⊃ Q(ρ) ∈ z 7→ Wρ,r(z) ∈ U(Γs(Z ⊕ Z)) is a regular representation of CCR. This means in
particular

Wρ,r(z1)Wρ,r(z2) = e
i
2 Im(z1|z2)Wρ,r(z1 + z2).

The corresponding field, creation and annihillation operators are affilliated to Mρ,r and are equal

φρ,r(z) = φ
(
ρ

1
2 z, (1 + ρ)

1
2 z

)
,

z(a∗ρ,r) =
(
ρ

1
2 z, 0

)
(a) +

(
0, (1 + ρ)

1
2 z

)
(a∗),

z(aρ,r) =
(
ρ

1
2 z, 0

)
(a∗) +

(
0, (1 + ρ)

1
2 z

)
(a).

2) We have the natural unitary identification

l2(Γs(Z)) ' Γs(Z)⊗ Γs(Z) ' Γs(Z)⊗ Γ(Z) ' Γs(Z ⊕Z). (4.39)

Let U : l2(Γs(Z)) → Γs(Z ⊕Z) denote the identification given by (4.39) and set

Γs,+(Z ⊕Z) := U∗l2+(Γs(Z)). (4.40)

Then (Mρ,l,Γs(Z ⊕Z)),Γ(ε),Γs,+(Z ⊕Z)) is a W ∗-algebra in a standard form (see introduction and eg.
[DJP]);
3) We have

Γ(ε)Wρ,l(z)Γ(ε) = Wρ,r(z).

Consequently, Mρ,l = Γ(ε)Mρ,rΓ(ε) and

Γ(ε)φρ,l(z)Γ(ε) = φρ,r(z),

Γ(ε)z(a∗ρ,l)Γ(ε) = z(a∗ρ,r), Γ(ε)z(aρ,l)Γ(ε) = z(aρ,r),

4) The vacuum expectation value of the Weyl operators (the “Schwinger function” or “generating func-
tion”) is equal (

Ω|Wρ,l(z)Ω
)

= exp
(
− 1

4 (z|z)− 1
2 (z|ρz)

)
.

5) Let h be a self-adjoint operator on Z commuting with ρ. Set

L = dΓ(h⊕ (−h)).
Let τ t acts on the Weyl operators as follows:

τ t(Wρ,l(z)) = Wρ,l(eithz).

Then τ t extends to a W ∗-dynamics on Mρ,l and L is the standard Liouvillean of τ t.
6) Ω is a (β, τ t)-KMS vector iff h is related to ρ by

h = β−1(log(ρ+ 1)− log ρ), (4.41)
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or equivalently by
ρ = (eβh − 1)−1.

We have then

(Ω|Wρ,l(z)Ω) = exp
(
− 1

4

(
z|e

βh + 1
eβh − 1

z
))
.

It is convenient to introduce the following self-adjoint operator on Z ⊕Z:

r := h⊕ (−h).
We have

τrτ = −r, εrε = −r, ULU∗ = dΓ(r).

If Ω is a (β, τ t)-KMS vector, then

UWρ,l(z)U∗ = W (|1− e−βr| 12 (z, z)),

Uφρ,l(z)U∗ = φ(|1− e−βr| 12 (z, z)),

UWρ,r(z)U∗ = W (|1− eβr| 12 (z, z)),

Uφρ,r(z)U∗ = W (|1− eβr| 12 (z, z)).

5 Abstract Pauli-Fierz operators

In this section, first we introduce the notation that we will use to describe the interaction of a second-
quantized system with another system. Then we introduce the class of Pauli-Fierz operators. We also
describe a number of results about these operators contained in the literature, notably in [DJ], which we
will use later on.

In this section we look at Pauli-Fierz operators just as certain abstract self-adjoint operators. Only
in the next two sections we will put them in the context of W ∗-dynamical systems.

5.1 Creation/annihillation operators in coupled systems

Suppose that W is a Hilbert space. Consider a bosonic system described by the Fock space Γs(W)
interacting with a “small quantum system” described by a Hilbert space E . Their composite system will
be described by the Hilbert space E ⊗ Γs(W). In this section we will describe a formalism which can be
used to describe such coupled systems.

For q ∈ B(K, E ⊗ W) we define the creation operator q(a∗) as the (unbounded) quadratic form on
E ⊗Γs(W) whose only nonzero matrix elements are between Ψn+1 ∈ E ⊗Γn+1

s (W) and Ψn ∈ E ⊗Γn
s (W),

for n = 0, 1, 2, . . . , and are equal

(Ψn+1|q(a∗)Ψn) :=
√
n+ 1(Ψn+1| q⊗1⊗n

W Ψn)

The annihillation operator q∗(a) is defined as the quadratic form on E ⊗ Γs(W) whose only nonzero
matrix elements are between Ψn−1 ∈ E ⊗ Γn−1

s (W) and Ψn ∈ E ⊗ Γn
s (W), for n = 1, 2, . . ., and are equal

(Ψn−1|q∗(a)Ψn) :=
√
n(Ψn−1| q∗⊗1⊗(n−1)

W Ψn).

Proposition 5.1 The operators q(a∗) and q∗(a) extend to closed operators that satisfy

q(a∗)∗ = q∗(a).
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Remark 5.2 Suppose that B ∈ B(E), w ∈ W and q = B ⊗ |w), so that q∗ = B∗ ⊗ (w|. Then

q(a∗) = B⊗w(a∗), q∗(a) = B∗⊗w(a).

Let us note the following obvious estimates

Lemma 5.3 For q ∈ B(E , E ⊗W) and Ψn ∈ Γn
s (W) we have

‖q(a∗)Ψn‖ ≤
√
n+ 1‖q‖‖Ψ‖, ‖q∗(a)Ψn‖ ≤

√
n‖q‖‖Ψ‖. (5.42)

For further reference note that if Ψ0 ∈ E ' E ⊗ Γ0
s (W), then

q(a∗)Ψ0 = qΨ0 ∈ E ⊗W ' E ⊗ Γ1
sW), (5.43)

and if Ψ1 ∈ E ⊗W ' E ⊗ Γ1
s (W), then

q∗(a)Ψ1 = q∗Ψ1 ∈ E ' E ⊗ Γ0
s (W). (5.44)

5.2 Essential self-adjointness of Pauli-Fierz operators

In this subsection we introduce the class of operators which play the main role in our paper. They are
describe the interaction of a small quantum system with free bosons through an interaction linear in the
field. They often appear in the physics literature, especially as a simplified version of the non-relativistic
QED. From the mathematical point of view they provide one of the simplest nontrivial classes of operators
defined in the framework of the second quantization. In the literature they appear under a variety of
names. We call this class Pauli-Fierz operators, as in [DG] and [DJ].

Suppose that E , W are Hilbert spaces. Let E be finite dimensional. Let E be a self-adjoint operator
on E , q ∈ B(E , E ⊗W) and r a self-adjoint operator on W . A self-adjoint operator on E ⊗ Γs(W) of the
form

Lfr := E ⊗ 1 + 1⊗ dΓ(r)

will be called a free Pauli-Fierz operator,

Q := q(a∗) + q∗(a)

—a Pauli-Fierz interaction and
L := Lfr + λQ

—an interacting Pauli-Fierz operator (λ is a real parameter).
We know two sets of assumptions that guarantee the essential self-adjointness of Pauli-Fierz operators:

Theorem 5.4 1) If r ≥ 0 and r−
1
2 q is bounded, then L is self-adjoint on D(Lfr).

2) If |r|q is bounded, then L is essentially self-adjoint on D(Lfr) ∩D(Q).

Proof. The proofs of both 1) and 2) can be found in [DJ]. Note, however, that 1) was well known before,
see eg. [BFS1]). 2

5.3 Fermi Golden Rule Operator for Pauli-Fierz operators

First let us describe a certain condition that is very convenient if we want to study spectral properties of
Pauli-Fierz operators. This condition is due to Jakšić-Pillet [JP1, JP2] and was used also in [DJ].
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We assume that there exists a Hilbert space G and a unitary operator U : W → L2(R)⊗ G such that
the operator UrU∗ is the operator of multiplication by the variable in R. We fix such an operator U and
identify W with L2(R)⊗ G. As in Subsection 3.4 introduce the self-adjoint operator s on L2(R)⊗ G

sΨ(p) :=
1
i
∇pΨ(p), p ∈ R. (5.45)

Let Hv := E ⊗ Γ0
s (W) be the distinguished subspace of H := E ⊗ Γs(W). Note that by using

E 3 Ψ 7→ Ψ⊗ Ω ∈ Hv,

we can identify E with Hv. Likewise, we can identify Lvv
fr with the operator E on E , (which justifies the

notation introduced already in Subsection 3.3).

Proposition 5.5 Suppose 〈s〉ηq ∈ B(E , E ⊗W) with η > 1
2 . Then the function

w(z) := Qvv(z1vv − Lvv
fr )−1Qvv

= q∗(z − E ⊗ 1− 1⊗ r)−1q,

defined for z ∈ C+ extends by continuity to Ccl
+. Moreover R 3 p 7→ q(p) ∈ B(E , E ⊗ G), defined as in

Subsection 3.5, is a continuous function.

From now on let us assume 〈s〉ηq ∈ B(E , E ⊗W) with η > 1
2 . Clearly, Lfr is a self-adjoint operator

preserving Hv, Qvv = 0 and Qvv is bounded. Moreover, the boundary values of w(z) exist. Therefore,
the FGRO Γ for the triple (E ⊗ Γ0

s (W), Lfr, Q) is well defined.
Let us introduce the notation

qe1,e2 := 1e1(E)⊗1W q 1e2(E).

Then the FGRO Γ equals

Γ =
∑

e1,e2∈sp(E)

(q∗)e1,e2(e1 − e2 + i0− r)−1qe2,e1 . (5.46)

5.4 Spectral theory of Pauli-Fierz operators

The following theorem is a consequence of the main results of [DJ].

Theorem 5.6 Suppose that η > 2, ε > 0 and c are fixed. Then there exists λ0 > 0 such that for any λ
and q ∈ B(E , E ⊗W) satisfying the following conditions:
1) 0 < |λ| < λ0;
2) L is essentially self-adjoint on D(Lfr) ∩D(Q);
3) ‖〈s〉ηq‖ ≤ c;
4) ΓI < −ε(1− 10(ΓI));
we have spsc(L) = ∅ and dim1p(L) ≤ dim 10(ΓI).

Proof. Fix for the moment q ∈ B(E , E ⊗ W) such that ‖〈s〉ηq‖ < ∞ for η > 2. By Theorems 6.2,
6.3 and 6.4 of [DJ] there exists λ0 > 0 such that, if 0 < |λ| ≤ λ0 and if L is essentially self-adjoint on
D(Lfr)∩D(Q), then spsc(L) = ∅ and dim1p(L) ≤ dim1R(Γ). But by the general properties of dissipative
operators (see Proposition 3.2 (i) of [DJ]), we have 1R(Γ) ≤ 10(ΓI). Hence dim 1p(L) ≤ dim10(ΓI).

If we check the proof of Theorems 6.2, 6.3 and 6.4, we see that the constant λ0 is uniform if q is
subject to the conditions ‖〈s〉ηq‖ ≤ c and ΓI < −ε(1− 10(ΓI)). 2
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Remark 5.7 If in the above theorem we replace 4) with
4’) ΓI < −ε;
then we can weaken its assumption and demand only that η > 1. (Note that in this case dim10(ΓI) = 0,
and thus we can conclude that L has no point spectrum).

Let us note that in [DJ] we actually prove much more than what we stated above. The following
theorem, adapted from [DJ], expresses in precise terms the intuition about the operator 1sp(Γ)∩R(Γ)(E +
λ2Γ) mentioned in (3.9). In this paper, however, we will not use this result.

(Below, for x0 ∈ R and ε > 0, we use the notation I(x0, ε) := [x0 − ε, x0 + ε]).

Theorem 5.8 Suppose that ‖〈s〉ηq‖ < ∞ with η > 2 hold. Suppose that for sufficiently small λ, L is
essentially self-adjoint on D(Lfr)∩D(Q). Let κ = 1− η−1. Then there exists λ0 > 0 and α > 0 such that
for 0 < |λ| < λ0, the following is true:
1) If e ∈ sp(E), m ∈ sp(Γee) ∩ R, then

dim1p
I(e+λ2m,αλ2+κ)(L) ≤ dim1m(Γee).

2)
spp(L) ⊂

⋃
e∈sp(E)

⋃
m∈R∩sp(Γee)

I(e+ λ2m,αλ2+κ).

6 Pauli-Fierz systems

The starting point of this section is a certain Pauli-Fierz operator, denoted H and called a Pauli-Fierz
Hamiltonian. The basic feature of H is the positivity of its bosonic energy. In the context of our paper,
this implies that H is bounded from below. Physical systems at zero temperature are described by
Hamiltonians that are bounded from below. Therefore, we reserve the name a Pauli-Fierz Hamiltonian
to Pauli-Fierz operators bounded from below.

We present some results concerning the ground state of H and the corresponding FGRO, denoted Γ.
Some of these results will be needed later in our study of positive temperature Pauli-Fierz systems.

Subsections 6.5-6.8 are devoted to Pauli-Fierz W ∗-dynamical systems at density ρ. Here ρ is a certain
positive operator commuting with the 1-particle energy h. These systems are defined in a canonical way
from the Pauli-Fierz Hamiltonian H and the density ρ. There are two natural representations of these
systems. The representation that we call the semi-standard representation used to be more common in the
literature. The standard representation acts on a larger space and looks more complicated. Nevertheless,
it is the standard representation which is more useful in the study of Pauli-Fierz systems.

In both semi-standard and standard representation the dynamics can be implemented in by a strongly
continuous unitary group. Its generators are called the semi-Liouvillean Lsemi

ρ and the Liouvillean Lρ

respectively. Both are examples of Pauli-Fierz operators.
Our main goal is the study of spectral properties of the Liouvilleans. We will describe some of these

results that follow from the literature and the previous section. In particular, we will compute the FGRO
for Lρ, denoted by Γρ.

6.1 Pauli-Fierz Hamiltonians

Throughout this section we assume that K is a self-adjoint operator on a finite dimensional Hilbert space
K, h is a positive operator on a Hilbert space Z and v ∈ B(K,K ⊗ Z). The self-adjoint operator on
K ⊗ Γs(Z)

Hfr := K ⊗ 1 + 1⊗ dΓ(h)
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will be called a free Pauli-Fierz Hamiltonian and

H := Hfr + λV,

where λ ∈ R and
V := v(a∗) + v∗(a),

will be called an interacting Pauli-Fierz Hamiltonian.
Let us list basic assumptions.

Assumption 6.A h−
1
2 v ∈ B(K,K ⊗Z).

Sometimes we will need a stronger assumption.

Assumption 6.B h−1v ∈ B(K,K ⊗Z).

Theorem 6.1 1) Suppose Assumption 6.A holds. Then the operator H is self-adjoint on D(Hfr) and
bounded from below.
2) Suppose Assumption 6.B is true. Then H has a ground state, that means

dim 1inf sp(H) ≥ 1.

Proof. In 1) we just repeat the statement of Theorem 5.4 1).
2) was proven in [Ge] (see also [AH] and [BFS1]). 2

6.2 Gluing of reservoir 1-particle spaces

Recall that the reservoir 1-particle space is denoted by Z. It is useful to consider the Hilbert space Z⊕Z
with the self-adjoint operator r := h⊕ (−h),

The most important assumption that we need is the Jakšć-Pillet gluing condition.

Assumption 6.C There exists a Hilbert space G and unitary operator U : Z ⊕Z → L2(R)⊗G such that
U∗rU is the operator of multiplication by the variable in R.

We fix the operator U as in the above assumption, and we introduce the self-adjoint operator s as in
(5.45) In what follows we will always suppose Assumption 6.C is true.

Let us note that if Z ⊕ Z is identified with L2(R) ⊗ G, then Z is identified with L2(R+) ⊗ G, since
h = 1[0,∞[(r)r. Likewise, Z is identified with L2(R−)⊗ G. Note also that

Ψ(p) := (εΨ)(−p) Ψ ∈ L2(R,G). (6.47)

defines a internal conjugation in G.
In the expression (v, 0) below we interpret 0 as an operator from K to K ⊗ Z. Thus the operator

(v, 0) has the meaning of an operator from K to K⊗Z ⊕ K⊗Z ' K⊗(Z ⊕ Z) ' K ⊗ L2(R) ⊗ G. It can
be written as a function defined for almost all p ∈ R with values in B(K,K ⊗ G):

(v, 0)(p) =

{
v(p), p > 0

0, p ≤ 0.
(6.48)

In the following assumption we have η ≥ 0.

Assumption 6.D(η)0 〈s〉η(v, 0) ∈ B(K,K⊗(Z ⊕Z)).
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6.3 Fermi Golden Rule Operator for Pauli-Fierz Hamiltonians

In this subsection we will calculate the Fermi Golden Rule Operator for the triple (K ⊗ Γ0
s (Z), Hfr, V ).

First let us fix some notation. If Kk = Ran1{k}(K), then we have a direct sum decomposition

K = ⊕
k∈sp(K)

Kk. (6.49)

We will write
Bk1,k2 := 1k1(K)B1k2(K), k1, k2 ∈ sp(K), B ∈ B(K),

and also
vk1,k2 := 1k1(K)⊗1Z v 1k2(K).

If k ∈ sp(K), we define the set of allowed transition energies

Fk := {k1 − k : k1 ∈ sp(K)}, F :=
⋃

k∈sp(K)

Fk,

and the set of allowed positive transition energies

F+
k := Fk ∩ [0,∞[, F+ :=

⋃
k∈sp(K)

F+
k .

Let k0 denote the ground state energy of K, that is

k0 := inf sp(K).

Let Hv := K ⊗ Γ0
s (Z).

Proposition 6.2 Suppose Assumption 6.D(η)0 with η > 1
2 is true. Then the function

w(z) := V vv(z1vv −Hvv
fr )−1V vv

= v∗(z −K ⊗ 1− 1⊗ h)v,

defined for z ∈ C+ extends by continuity to Ccl
+. Moreover, the function (6.48) is continuous in p ∈ R.

Proof. We apply the trick of “gluing non-physical free bosons” [DJ]. Consider the extended 1-boson
space Z ⊕ Z and define the operators r = h⊕ (−h) and q = (v, 0). Note that for z ∈ C+,

v∗(z − h)−1v = q∗(z − r)−1q.

Now the proposition follows by the same arguments as Proposition 5.5.
Exactly as in (5.46), we can compute the FGRO Γ for the triple (K ⊗ Γ0

s (Z), Hfr, V ), which is equal

Γ =
∑

k∈sp(K)

Γkk,

Γkk =
∑

p∈Fk

(v∗)k,k−p(p+ i0− h)−1vk−p,k.
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Moreover, we have

(ΓR)kk =
∑

p∈Fk

(v∗)k,k−pP(p− h)−1vk−p,k

=
∑

p∈Fk

∫
(v∗)k,k−p(p1)P(p− p1)−1vk−p,k(p1)dp1,

(ΓI)kk = −π ∑
p∈F+

k

(v∗)k,k−pδ(p− h)vk−p,k

= −π ∑
p∈F+

k

(v∗)k,k−p(p)vk−p,k(p).

(6.50)

Above we wrote the formula for ΓI and ΓR in two equivalent forms. In the first form we use the self-adjoint
operator h on Z and the real number p ∈ R. Strictly speaking, neither the proncipal value P(p− h) nor
the deltafunction δ(p − h) are well defined as self-adjoint operators. But within the context of (6.50),
these formulas are well defined by the integral expressions using the representation of v into a direct
integral with the fibers v(p1).

Let us note that ground states of K belong to the kernel of ΓI:

Proposition 6.3

(ΓI)k0k0 = 0.

In particular, Γk0k0 is self-adjoint and
Kk0 ⊂ Ker(ΓI). (6.51)

Proof. Note that q(p) = 0 for p ≤ 0. Therefore, all the terms with p ≤ 0 drop out from the formulas for
ΓI. 2

It is easy to see that for a generic interaction v, the kernel of ΓI should coincide with the subspace of
ground states of K. Let us formulate this condition as the first generic assumption that we will use in
our paper.

Assumption 6.E dimKerΓI = Kk0 .

Our second generic assumption says that the ground state of K is nondegenerate:

Assumption 6.F Kk0 = 1.

Obviously, we have:

Theorem 6.4 Suppose that Assumption 6.D(η)0 with η > 1
2 , 6.E and 6.F hold. Then dimKerΓI = 1.

6.4 Nondegeneracy of ground states of Pauli-Fierz Hamiltonians

In this subsection we formulate the main result of this section concerning Pauli-Fierz Hamiltonians. It
will say that if the interaction v is sufficiently regular and the generic assumptions 6.E and 6.F hold, then
the Pauli-Fierz Hamiltonian H for small nonzero coupling constant has a unique ground state.

Before we do this, we make an observation that the appropriate regularity of the gluing implies the
assumptions of Theorem 6.1 and hence implies the self-adjointness and the existence of a ground state
for H .
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Theorem 6.5 1) Suppose Assumption 6.D(η)0 with η > 1
2 holds. Then Assumption 6.A holds.

2) Suppose Assumption 6.D(η)0 with η > 3
2 holds. Then Assumption 6.B is true.

Proof. We use the trick described in the proof of Proposition 6.2. In particular, we use the operators q
and r introduced in the proof of this proposition.

To see 1), we note that by Assumption 6.D(η)0 with η > 1
2 , and Theorem 3.1, for any p ∈ R, the

operator q∗(p+ i0− r)−1q exists and is bounded. Setting p = 0 gives

q∗(i0 − r)−1q = v∗h−1v.

Hence, h−
1
2 v is bounded.

Similarly, to see 2), we note that by Assumption 6.D(η)0 with η > 3
2 the operator q∗(p+ i0 − r)−2q

exists and is bounded. Clearly,
q∗(i0 − r)−2q = v∗h−2v.

Hence h−1v is bounded. 2

Now we deduce spectral information on H .

Theorem 6.6 Suppose Assumptions 6.D(η)0 with η > 2, 6.E and 6.F hold. Then there exists λ0 > 0
and such that for 0 < |λ| < λ0, the following is true:
1) dim1p(H) = 1
2) spsc(H) = ∅.
3) spp(H) = inf sp(H).

Proof. We extend the space K ⊗ Γs(Z) to the space K ⊗ Γs(Z) ⊗ Γs(Z) ' K ⊗ Γs(Z ⊕ Z). Note that
K ⊗ Γs(Z) can be identified with K ⊗ Γs(Z)⊗ Γ0

s (Z), which is a subspace of K⊗ Γs(Z)⊗ Γ0
s (Z).

We consider the extended operators

Lfr := Hfr ⊗ 1− 1⊗ dΓ(h) ' K ⊗ 1 + 1⊗ dΓ(r)

Q := V ⊗ 1 ' q(a∗) + q∗(a).

We set
L := Lfr + λQ ' H ⊗ 1− 1⊗ dΓ(h).

By Theorem 6.5, H is self-adjoint on D(Hfr). Therefore, L is self-adjoint on D(Lfr). Note also that

spp(H) = spp(L), spsc(H) = spsc(L). (6.52)

Clearly, L is a Pauli-Fierz operator such that ‖〈s〉ηq‖ < ∞ for η > 2. The FGRO for the triple
(K ⊗ Γ0

s (Z ⊕ Z), Lfr, Q) is equal (after the obvious identification of Hilbert spaces) to the FGRO for
the triple (K ⊗ Γ0

s (Z), Hfr, V ), which we studied in the last subsection. By Theorem 6.4, we know that
dimKerΓI = 1. Therefore, Theorem 5.6 implies that there exists λ0 > 0 such that for 0 < |λ| ≤ λ0 we
have

dim1p(L) ≤ 1, spsc(L) = ∅.
By (6.52), this implies

dim 1p(H) ≤ 1, spsc(H) = ∅. (6.53)

By Theorem 6.4 2) we have dim1inf sp(H)(H) ≥ 1. Combining this with (6.53) we get dim1p(H) = 1
and spp(H) = inf sp(H). 2
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6.5 Semi-standard representations of Pauli-Fierz systems

In this subsection we introduce the notion of a Pauli-Fierz W ∗-dynamical system. This will be the main
subject of the remaining part of this section.

Let ρ be a positive operator on Z. The composite system consisting of B(K) and of a reservoir with
density ρ is described by the W ∗-algebra

B(K) ⊗Mρ,l, (6.54)

where Mρ,l ⊂ B(Γs(Z ⊕Z)) is the Araki-Woods W ∗-algebra introduced in Subsection 4.4.
This algebra (6.54) acts in the obvious way on K ⊗ Γs(Z ⊗Z), in fact we have

B(K) ⊗Mρ,l ⊂ B(K ⊗ Γs(Z ⊕Z)).

In this subsection we will use this representation, which we will call the semi-standard representation. In
the next subsection the same algebra will be considered in the standard representation.

Proposition 6.7 Suppose that (1 + ρ)
1
2 v ∈ B(K,K ⊗ Z) and ρ

1
2 v? ∈ B(K,K ⊗ Z). Then following

operators on K ⊗ Γs(Z ⊕Z): (
(1 + ρ)

1
2 v, 0

)
(a∗) +

(
0, v?∗ρ

1
2

)
(a),(

v∗(1 + ρ)
1
2 , 0

)
(a) +

(
0, ρ

1
2 v?

)
(a∗)

(6.55)

are affilliated to B(K)⊗Mρ,l.

Set
qρ := ((1 + ρ)

1
2 v, ρ

1
2 v?) ∈ B(K,K ⊗ (Z ⊕Z)).

We can also write qρ in terms of a direct integral of operators in B(K,K ⊗ G):

qρ(p) =

{
(1 + ρ)

1
2 v(p), p > 0,

ρ
1
2 v?(−p), p < 0;

Let Qsemi
ρ be the sum of (6.55), that is

Qsemi
ρ :=

(
(1 + ρ)

1
2 v, ρ

1
2 v?

)
(a∗) +

(
v∗(1 + ρ)

1
2 , v?∗ρ

1
2

)
(a)

= qρ(a∗) + q∗ρ(a).

The free Pauli-Fierz semi-Liouvillean is the self-adjoint operator on K⊗ Γs(Z ⊕Z) defined as

Lsemi
fr := K ⊗ 1 + 1⊗ dΓ(h⊕−h)

= K ⊗ 1 + 1⊗ dΓ(r).

The full Pauli-Fierz semi-Liouvillean of density ρ is

Lsemi
ρ := Lsemi

fr +Qsemi
ρ . (6.56)

Assumption 6.G ρ

(1 + |r|)qρ ∈ B(K,K ⊗ (Z ⊕Z)). (6.57)
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Theorem 6.8 1)
τ t
fr(A) := eitLfrAe−itLfr , A ∈ B(K) ⊗Mρ,l

defines a W ∗-dynamics on B(K)⊗Mρ,l.
2) Suppose Assumption 6.Gρ holds. Then Lsemi

ρ is essentially self-adjoint on D(Lsemi
fr ) ∩ D(Qsemi

ρ ) and

τ t
ρ(A) := eitLsemi

ρ Ae−itLsemi
ρ , A ∈ B(K) ⊗Mρ,l,

is a W ∗-dynamics on B(K) ⊗Mρ,l.

Proof. 1) is obvious. To prove 2) we note that by Assumption 6.Gρ and [DJP], we obtain the essential
self-adjointness of Lsemi

ρ . Now [DJP] implies that τ t
ρ is a W ∗-dynamics. 2

Definition 6.9 The pair
(
B(K)⊗Mρ,l, τ

t
ρ

)
will be called the Pauli-Fierz W ∗-dynamical system at density

ρ associated to the Hamiltonian H.

6.6 Standard representation of Pauli-Fierz systems

Consider the representation

π : B(K)⊗Mρ,l → B(K ⊗K ⊗ Γs(Z ⊕Z)).

defined by
π(A) := 1K⊗̌A, A ∈ B(K) ⊗Mρ,l,

where ⊗̌ was introduced in 3.22. Clearly,

π(B(K) ⊗Mρ,l) = B(K) ⊗ 1K ⊗Mρ,l.

Set J := JK ⊗ Γ(ε), where

JKΨ1 ⊗Ψ2 := Ψ2 ⊗Ψ1, Ψ1,Ψ2 ∈ K, (6.58)

and ε was introduced in 4.37. Note that

J B(K)⊗1K⊗Mρ,l J = 1K⊗B(K)⊗Mρ,r,

and if A ∈ B(K) ⊗Mρ,l, then

Jπ(A)J = 1K ⊗
(
1K⊗Γ(τ) A 1K⊗Γ(τ)

)
,

where τ was introduced in 4.36.

Theorem 6.10 (
π, K⊗K⊗Γs(Z⊕Z), J, (K⊗K)+⊗Γs,+(Z⊕Z)

)
is a standard representation of B(K) ⊗Mρ,l.

Set
Qρ := 1K⊗̌Qsemi

ρ

= 1K⊗̌
(
(1 + ρ)

1
2 v, ρ

1
2 v?

)
(a∗) + 1K⊗̌

(
v∗(1 + ρ)

1
2 , v?∗ρ

1
2

)
(a)

=
(
1K⊗̌qρ

)
(a∗) +

(
1K⊗̌q∗ρ

)
(a).
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Then
JQρJ := 1K ⊗

(
1K⊗Γ(τ) Qsemi

ρ 1K⊗Γ(τ)
)

= 1K ⊗
(
ρ

1
2 v?, (1 + ρ)

1
2 v

)
(a∗) + 1K ⊗

(
v?∗ρ

1
2 , v∗(1 + ρ)

1
2

)
(a)

=
(
1K ⊗ τqρ

)
(a∗) +

(
1K ⊗ q∗ρτ

)
(a).

Clearly Qρ is affilliated to B(K) ⊗ 1K ⊗Mρ,l and JQρJ is affilliated to 1K ⊗B(K)⊗Mρ,r.
Set

Lfr := K ⊗ 1⊗ 1− 1⊗K ⊗ 1 + 1⊗ 1⊗ dΓ(r),

and
Lρ := Lfr + λQρ − λJQρJ, (6.59)

Theorem 6.11 Suppose Assumption 6.Gρ is true. Then Lρ is essentially self-adjoint on D(Lfr) ∩
D(Qρ) ∩ D(JQρJ). Moreover, Lfr is the standard Liouvillean for τ t

fr and Lρ is the standard Liouvillean
for τ t

ρ. In particular,
π(τ t

ρ(A)) = eitLρπ(A)e−itLρ , A ∈ B(K) ⊗Mρ,l. (6.60)

Proof. (6.57) implies that (1 + |r|)τqρ ∈ B(K,K ⊗ (Z ⊕Z)). Hence

(1 + |r|)(1K⊗̌qρ − 1K⊗τqρ) ∈ B(K ⊗K,K ⊗K ⊗ (Z ⊕Z)).

Hence the essential self-adjointness of Lρ follows from Theorem 5.4 2).
Clearly,

π(τ t
ρ(A)) = eit(Lfr+λQρ)π(A)e−it(Lfr+λQρ), A ∈ B(K) ⊗Mρ,l.

Now the essential self-adjointness of Lρ and [DJP] imply that Lρ is the Liouvillean of τ t
ρ. 2

6.7 Fermi Golden Rule Operator for Pauli-Fierz Liouvilleans

The main objective of this subsection is to compute and study the FGRO for Pauli-Fierz Liouvilleans.
As we will see, they enjoy some special algebraic properties.

Let us formulate the following assumption:

Assumption 6.D(η)ρ 〈s〉ηqρ ∈ B(E , E ⊗ (Z ⊕Z)).

Let us remark in parenthesis that Assumption 6.D(η)0 introduced in Subsection 6.2 is a special case
of the Assumption 6.D(η)ρ for ρ = 0.

In this subsection we suppose that Assumption 6.D(η)ρ with η > 1
2 . Then we can apply the formalism

of FGRO’s to the triple
(K⊗K⊗Γ0

s (Z⊕Z), Lfr, Qρ−JQρJ
)
. The FGRO obtained this way will be denoted

by Γρ and will be used to study the operator Lρ.
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Define the following self-adjoint operators on K
∆R

ρ :=
∑

k∈sp(K)

∑
p∈Fk

(q∗ρ)k,k−pP(p− r)−1qk−p,k
ρ

=
∑

k∈sp(K)

∑
p∈Fk

(v∗)k,k−p(1 + ρ)P(p− h)−1vk−p,k

− ∑
k∈sp(K)

∑
p∈Fk

(v?∗)k,k+pρP(p− h)−1(v?)k+p,k,

∆I
ρ : = −π ∑

k∈sp(K)

∑
p∈Fk

(q∗ρ)k,k−pδ(p− r)qk−p,k
ρ

= −π ∑
k∈sp(K)

∑
p∈F+

k

(v∗)k,k−p(1 + ρ)δ(p− h)vk−p,k

−π ∑
k∈sp(K)

∑
p∈F+

k

(v?∗)k,k+pρδ(p− h)(v?)k+p,k

−π ∑
k∈sp(K)

(v∗)k,k(1 + ρ)δ(h)vk,k.

Set
∆ρ := ∆R

ρ + i∆I
ρ =

∑
k∈sp(K)

∑
p∈Fk

(q∗ρ)k,k−p(p+ i0− r)−1qk−p,k
ρ

=
∑

k∈sp(K)

∑
p∈Fk

(v∗)k,k−p(1 + ρ)(p+ i0− h)−1vk−p,k

− ∑
k∈sp(K)

∑
p∈Fk

(v?∗)k,k+pρ(p− i0− h)−1(v?)k+p,k.

For B ∈ l2(K) set also

Ξρ(B) := 2π
∑

k1,k2∈sp(K)

∑
p∈Fk1∩Fk2

(q∗ρ)k1,k1−p
(
B ⊗ δ(p− r)

)
(τq?

ρ)k2−p,k2

= 2π
∑

k1,k2∈sp(K)

∑
p∈F+

k1
∩F+

k2

(v∗)k1,k1−p
(
B ⊗ δ(p− h)(1 + ρ)

1
2 ρ

1
2

)
vk2−p,k2

+2π
∑

k1,k2∈sp(K)

∑
p∈F+

k1
∩F+

k2

(v?∗)k1,k1+p
(
B ⊗ δ(p− h)(1 + ρ)

1
2 ρ

1
2

)
(v?)k2+p,k2

+2π
∑

k1,k2∈sp(K)

(v∗)k1,k1

(
B ⊗ δ(h)(1 + ρ)

1
2 ρ

1
2

)
vk2,k2 .

All the formulas for ∆R
ρ , ∆I

ρ, ∆ρ and Ξρ are written in two equivalent forms. The first forms involve
the operators qρ. They are more compact than the second forms

The second forms involve the operators v and ρ. They are more directly related to the basic physical
quantities of the system. They are however less convenient. Note in particular, that in the formulas for
∆R

ρ and ∆ρ, the terms with p = 0 need to be carefully interpreted. (The singularity of P(−r)−1 and
(i0 − r)−1 is “cut” into two parts in these expressions. This problem is absent in the formulas involving
qρ).

In the formulas for ∆I
ρ and Ξρ, we singled out the terms with p = 0 (“the infrared terms”). These

terms are due to that part of interacion where the Jakšić-Pillet gluing occurs. They disappear if the
infrared behavior of the system is sufficiently mild.

In the expression for Ξρ we use τq?
ρ ∈ B

(K,K ⊗ (Z ⊕ Z)
)
. Let us note the following identities

concerning this operator:

τq?
ρ =

(
ρ

1
2 v, (1 + ρ)

1
2 v?

)
=

(
ρ

1
2 (1 + ρ)−

1
2 , ρ−

1
2 (1 + ρ)

1
2
)
qρ. (6.61)
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We can write τq?
ρ fiberwise:

τq?
ρ(p) =

{
ρ

1
2 v(p), p ≥ 0,

(1 + ρ)
1
2 v?(−p), p ≤ 0;

Theorem 6.12 If B ∈ l2(K), we have

Γρ(B) = ∆ρB −B∆∗
ρ + iΞρ(B).

The real and the imaginary part of Γρ ∈ B(l2(K)) are given by

ΓR
ρ (B) = ∆R

ρ B −B∆R
ρ ,

ΓI
ρ(B) = ∆I

ρB +B∆I
ρ + Ξρ(B).

Proof. Using (5.46) we see that

Γρ =
∑

e1,e2∈sp(K⊗1−1⊗K)(
1K⊗̌q∗ρ − 1K⊗q∗ρτ

)e1,e2(e1 − e2 + i0− r)−1
(
1K⊗̌qρ − 1K⊗τqρ

)e2,e1
,

(6.62)

where the superscripts e1, e2 correspond to the decomposition of K⊗K into the eigenspaces ofK⊗1−1⊗K.
Next note that if we now use the superscripts in sp(K) and use the decomposition of K into spectral
subspaces of K, as described in (6.49), then (6.62) can be rewritten as

Γρ =
∑

k1,k2∈sp(K)

∑
p∈Fk1∩Fk2(

1K⊗̌(q∗ρ)k1,k1−p − 1K⊗q∗ρτk1,k1+p)(p+ i0− r)−1
(
1K⊗̌qk2−p,k2

ρ − 1K⊗τqρk2+p,k2
)
.

(6.63)

Now let B ∈ l2(K). We see that Γρ(B) consists of 4 types of terms:
Type I Using (3.28), we obtain(

1K⊗̌(q∗ρ)k,k−p
)
(p+ i0− r)−1

(
1K⊗̌qk−p,k

ρ

)
B

= (q∗ρ)k,k−p(p+ i0− r)−1qk−p,k
ρ B.

Summing up the above terms over k ∈ sp(K), p ∈ Fk we obtain ∆ρB.
Type II. Using first (3.29) and then τrτ = −r, we get(

1K⊗(q∗ρτ)k,k−p
)
(−p+ i0− r

)−1(1K⊗(τqρ)k−p,k
)
B

= B(q∗ρτ)k,k−p(−p+ i0− r)−1τqk−p,k
ρ

= −B(q∗ρ)k,k−p(p− i0− r)−1qk−p,k
ρ .

Summing up the above terms over k ∈ sp(K), p ∈ Fk we obtain −B∆∗
ρ.

Type III. We use (3.27) to obtain

(1K⊗̌(q∗ρ)k2,k2−p)(p+ i0− r)−1(1K ⊗ (τqρ)k1,k1−p)B

= (q∗ρ)k2,k2−pB⊗(p+ i0− r)−1B(τq?
ρ)k1−p,k1 .
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Type IV. We use (3.26) and then τrτ = −r:
(1K⊗(q∗ρτ)

k1,k1−p(−p+ i0− r)−1(1K⊗̌qk2,k2−p
ρ )B

= (q?∗
ρ )k2,k2−pB⊗(−p+ i0− r)−1τqk1−p,k1

ρ

= (q?∗
ρ τ)k2,k2−pB⊗(−p+ i0 + r)−1qk1−p,k1

ρ

= (q∗ρ)k2,k2−pB⊗(−p+ i0 + r)−1(τq?
ρ)k1−p,k1 .

In the last step we used (6.61) and the fact that ρ commutes with h.
The sum of type III and IV terms over k1, k2 ∈ sp(K), p ∈ Fk1 ∩ Fk2 equals −iΞρ(B). 2

Set
q̃ρ

p :=
∑

k∈sp(K)

qk−p,k
ρ , τ̃ q?

ρ

p
:=

∑
k∈sp(K)

(τq?
ρ)k−p,k,

ṽp :=
∑

k∈sp(K)

vk−p,k, ṽ?
p

:=
∑

k∈sp(K)

(v?)k−p,k.

Here is another useful expression for ΓI
ρ:

Theorem 6.13 Let B1, B2 ∈ l2(K). Then

−TrB∗1ΓI
ρ(B2) = π

∑
p∈F

Tr
(
q̃ρ

pB1 −B1⊗1 τ̃ q?
ρ

p
)∗
δ(p− r)

(
q̃ρ

pB2 −B2⊗1 τ̃ q?
ρ

p
)

= π
∑

p∈F+
Tr

(
(1 + ρ)

1
2 ṽpB1 −B1⊗1 ρ

1
2 ṽp

)∗
δ(p− h)

(
(1 + ρ)

1
2 ṽpB2 −B2⊗1 ρ

1
2 ṽp

)
+π

∑
p∈F+

Tr
(
(1 + ρ)

1
2 ṽpB∗2 −B∗2⊗1 ρ

1
2 ṽp

)∗
δ(p− h)

(
(1 + ρ)

1
2 ṽpB∗1 −B∗1⊗1 ρ

1
2 ṽp

)
+πTr

(
(1 + ρ)

1
2 ṽ0B1 −B1⊗1 ρ

1
2 ṽ0

)∗
δ(h)

(
(1 + ρ)

1
2 ṽ0B2 −B2⊗1 ρ

1
2 ṽ0

)
.

(6.64)

Proof. Recall that
−∆I

ρ = π
∑
k,p

(q∗ρ)k,k−pδ(p− r)qk−p,k
ρ .

Hence
−TrB∗1∆I

ρB2 = π
∑
k,p

Tr
(
qk−p,k
ρ B1

)∗
δ(p− r)qk−p,k

ρ B2

= π
∑

k1,k2,p

Tr
(
qk1−p,k1
ρ B1

)∗
δ(p− r)(qk2−p,k2

ρ B2).

There is an alternative formula for −∆I
ρ, which follows from (3.26) and τrτ = −r:

−∆I
ρ = π

∑
k,p

tr(q?
ρ)k,k−p(q?∗

ρ )k−p,kδ(p− r)

= π
∑
k,p

tr(τq?
ρ)k,k−p(q?∗

ρ τ)k−p,kδ(p+ r)

= π
∑
k,p

tr(τq?
ρ)k−p,k(q?∗

ρ τ)k,k−pδ(p− r).

Hence
−TrB∗1B2∆I

ρ = π
∑
k,p

Tr
(
B1(τq?

ρ

)k−p,k)∗δ(p− r)B2(τq?
ρ)k−p,k

= π
∑

k1,k2,p

Tr
(
B1(τq?

ρ)k1−p,k1
)∗
δ(p− r)B2(τq?

ρ)k2−p,k2 = 0.
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Recall that
1
2Ξρ(B2) = π

∑
k1,k2,p

(q∗ρ)k1,k1−pB2⊗δ(p− r) (τq?
ρ)k2−p,k2 . (6.65)

Terms coming from Ξρ we split as

TrB∗1Ξρ(B2) =
1
2
TrB∗1Ξρ(B2) +

1
2
TrB∗1Ξρ(B2). (6.66)

The first term on the right of (6.66) we treat as follows:
1
2TrB∗1Ξρ(B2) =

∑
k1,k2,p

Tr
(
qk1−p,k1
ρ B1

)∗
δ(p− r)B2(τq?

ρ)k2−p,k2 .

Then we transform the formula (6.65), using (6.61), (3.28) and then τrτ = −r:
1
2Ξρ(B2) = π

∑
k1,k2,p

(q?∗
ρ τ)k1,k1−pB2⊗δ(p− r) qk2−p,k2

ρ

= π
∑

k1,k2,p

tr(τqρ)k1,k1−p B2 (q?∗
ρ )k2−p,k2δ(p− r)

= π
∑

k1,k2,p

trqk1,k1−p
ρ B2 (q?∗

ρ τ)k2−p,k2δ(p+ r)

= π
∑

k1,k2,p

trqk1−p,k1
ρ B2 (q?∗

ρ τ)k2−p,k2δ(p− r).

Hence the second term in (6.66) can have the form
1
2TrB∗1Ξρ(B2) = π

∑
k1,k2,p

Tr
(
B1(τq?

ρ)k2−p,k2
)∗
δ(p− r)B2q

k1−p,k1
ρ .

This ends the proof of the first identity of (6.64).
Let us prove the second identity. We have

π
∑

p∈F
Tr

(
q̃ρ

pB1 −B1⊗1 τ̃ q?
ρ

p
)∗
δ(p− r)

(
q̃ρ

pB2 −B2⊗1 τ̃ q?
ρ

p
)

= π
∑

p∈F+∪{0}
Tr

(
(1 + ρ)

1
2 ṽpB1 −B1⊗1 ρ

1
2 ṽp

)∗
δ(p− h)

(
(1 + ρ)

1
2 ṽpB2 −B2⊗1 ρ

1
2 ṽp

)
+π

∑
−p∈F+

Tr
(
ρ

1
2 ṽ?

p
B1 −B1⊗1 (1 + ρ)

1
2 ṽ?

p
)∗
δ(−p− h)

(
ρ

1
2 ṽ?

p
B2 −B2⊗1 (1 + ρ)

1
2 ṽ?

p
)
.

(6.67)

The second term on the right side of (6.67) can be transformed into

π
∑

p∈F+
Tr

(
B∗1 ⊗ 1ρ

1
2 ṽpB∗1 − (1 + ρ)

1
2 ṽpB∗1

)?∗
δ(p− h)

(
B∗2⊗1ρ

1
2 ṽp − (1 + ρ)

1
2 ṽpB∗2

)?

= π
∑

p∈F+
Tr

(
B∗1 ⊗ 1ρ

1
2 ṽpB∗1 − (1 + ρ)

1
2 ṽpB∗1

)(
B∗2⊗1ρ

1
2 ṽp − (1 + ρ)

1
2 ṽpB∗2

)∗
δ(p− h)

= π
∑

p∈F+
Tr

(
(1 + ρ)

1
2 ṽpB∗2 −B∗2⊗1 ρ

1
2 ṽp

)∗
δ(p− h)

(
(1 + ρ)

1
2 ṽpB∗1 −B∗1⊗1 ρ

1
2 ṽp

)
.

In the first step we used (ṽp)? = ṽ?
−p

, then we used (3.28) and in the last step we used the cyclicity of
trace. 2

The operators q̃ρ
p and τ̃ q?

ρ

p
can be decomposed along the fibers:

q̃ρ
p(p) =

{
(1 + ρ)

1
2 ṽp(p), p ≥ 0

ρ
1
2 ṽ?

p
(−p), p ≤ 0;

τ̃ q?
ρ

p
(p) =

{
ρ

1
2 ṽp(p), p ≥ 0

(1 + ρ)
1
2 ṽ?

p
(−p), p ≤ 0;
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Thus the identity of Theorem 6.13 can be rewritten as

−TrB∗1ΓI
ρ(B2) = π

∑
p∈F

Tr
(
q̃ρ

p(p)B1 −B1⊗1 τ̃ q?
ρ

p
(p)

)∗(
q̃ρ

p(p)B2 −B2⊗1 τ̃ q?
ρ

p
(p)

)
= π

∑
p∈F+∪{0}

Tr
(
(1 + ρ)

1
2 ṽp(p)B1 −B1⊗1 ρ

1
2 ṽp(p)

)∗
×

(
(1 + ρ)

1
2 ṽp(p)B2 −B2⊗1 ρ

1
2 ṽp(p)

)
+π

∑
p∈F+

Tr
(
(1 + ρ)

1
2 ṽp(p)B∗2 −B∗2⊗1 ρ

1
2 ṽp(p)

)∗
×

(
(1 + ρ)

1
2 ṽp(p)B∗1 −B∗1⊗1 ρ

1
2 ṽp(p)

)
+πTr

(
(1 + ρ)

1
2 ṽ0(0)B1 −B1⊗1 ρ

1
2 ṽ0(0)

)∗
×

(
(1 + ρ)

1
2 ṽ0(0)B2 −B2⊗1 ρ

1
2 ṽ0(0)

)
.

(6.68)

Let us summarize the properties of Γρ.

Theorem 6.14 1) Γρ commutes with [K, ·].
2) Γρ is dissipative, that means ΓI

ρ ≤ 0; consequently, e−itΓ is a contraction.
3) e−Γρ is completely positive (see eg. [BR]).
4) B ∈ KerΓI

ρ iff the following two commutation relations hold

(1 + ρ)
1
2 ṽp(p)B = B⊗1 ρ

1
2 ṽp(p), p ∈ F+ ∪ {0},

(1 + ρ)
1
2 ṽp(p)B∗ = B∗⊗1 ρ

1
2 ṽp(p), p ∈ F+.

(6.69)

Proof. 1) and 2) are obvious. 3) follows from the well known form of the generator of completely positive
semigroups [BR].

To see 4) note that B ∈ KerΓI
ρ iff TrB∗ΓI

ρ(B) = 0. This means that all the terms of (6.68) with
B1 = B2 = B are zero. But this is precisely the condition (6.69). 2

6.8 Pauli-Fierz systems with several reservoirs

Suppose that Zi, i = 1, . . . , n are Hilbert spaces. Suppose that hi, ρi are positive commuting self-adjoint
operators on Zi and vi ∈ B(K,K⊗Zi), for i = 1, . . . , n. We impose Assumption 6.D(η)ρi with η > 1

2 on
vi, for i = 1, . . . , n. Then we can define the FGRO for the individual systems, denoted Γi,ρi .

We can consider the composite system given by Z :=
n⊕

i=1
Zi, h :=

n⊕
i=1

hi, ρ :=
n⊕

i=1
ρi and v =

∑n
i=1 vi.

We immediately see that the following is true:

Theorem 6.15 The FGRO for the composite system equals

Γρ =
n∑

i=1

Γi,ρi .
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7 Thermal Pauli-Fierz systems

7.1 Thermal Pauli-Fierz Liouvilleans

In this section we will consider Pauli-Fierz Liouvilleans at the inverse temperature β ∈]0,∞]. The setup
of this section is very similar to the setup of the previous section. In particular, the operators K, h, v
and H , as well as the spaces K and Z are such as those introduced in Subsection 6.1.

Let 0 < β ≤ ∞. In this section we consider the family of densities

ρβ := (eβh − 1)−1, ρ∞ = 0.

Note that
1 + ρβ = (1− e−βh)−1 = eβhρβ , 1 + ρ∞ = 1. (7.70)

We change slightly the notation for various objects, replacing the subscripts ρβ by β. For instance we
will write qβ , Lβ, Lsemi

β , Mβ,l and τ t
β instead of qρβ

, Lρβ
, Lsemi

ρβ
, Mρβ ,l and τ t

ρβ
. We hope that this change

of notation will not lead to a confusion. We warn however about one confusing point: the density ρ = 0
corresponds now to inverse temperature β = ∞.

Note that
qβ = |1− e−βr|− 1

2 (v, v?),

τqβ = |1− eβr|− 1
2 (v?, v),

τq?
β = |1− eβr|− 1

2 (v, v?) = eβr/2qβ .

The following hypothesis is just assumption 6.Gρ for ρ = ρβ .

Assumption 7.Aβ

(1 + |r|)qβ ∈ B(K,K ⊗ (Z ⊕Z)).

Proposition 7.1 Let 0 < β0 ≤ β <∞. Then Assumption 7.Aβ0 implies Assumption 7.Aβ.

Proof. It is sufficient to note that the operator

|1 − e−βr|− 1
2 |1− e−β0r| 12 (7.71)

is bounded. In fact, this follows from the fact that the function

R 3 p 7→ |1− e−βp|− 1
2 |1− e−β0p| 12 ∈ R (7.72)

goes to 1 for p→∞, to 0 as p→ −∞, and is continuous. 2

The following theorem follows immediately from Proposition 7.1 and Theorem 6.11.

Theorem 7.2 Suppose Assumption 7.Aβ0 is true. Then for any β0 ≤ β < ∞, Lβ is essentially self-
adjoint on D(Lfr) ∩D(Qβ) ∩ (JQβJ).

Our aim in this section is to study the one-parameter family ofW ∗-dynamical systems
(
B(K)⊗Mβ,l, τ

t
β

)
,

called thermal Pauli-Fierz W ∗-dynamical systems.
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7.2 Existence of KMS states for thermal Pauli-Fierz systems

The dynamics τ t
fr and τ t

β possess β-KMS states. For the free dynamics it is straightforward, for the
interacting dynamics it follows from a version of Araki’s theory from [DJP].

On the level of the Liouvilleans this is expressed by the fact that both Lfr and Lβ possess certain
distinguished eigenstates called β-KMS states.

For 0 < β <∞, set γβ := e−βK/2/
√

Tre−βK . For β = ∞ we set

γ∞ := 1k0(K)/
√

Tr1k0(K),

where we recall that k0 := inf sp(K). Note that

[0,∞] 3 β 7→ γβ ∈ l1(K)

is a continuous function.

Theorem 7.3 1) For any β ∈ [0,∞], the vector γβ ⊗ Ω is a β-KMS vector for τ t
fr. Clearly, it is an

eigenvector of Lfr with the eigenvalue 0.
2) Let 0 < β0 < ∞. Suppose Assumption 7.Aβ0 is true. Then for any β0 ≤ β < ∞, γβ ⊗ Ω ∈
D(e−β(L+λQβ)/2) and the vector

e−β(L+λQβ)/2γβ ⊗ Ω. (7.73)

is a β-KMS vector for τ t
β. Consequently, it is an eigenvector of Lβ with the eigenvalue 0.

Proof. Let us prove 2). By [DJP], we need to check that

‖e−λβQβ/2γβ ⊗ Ω‖ <∞.

The next lemma verifies this hypothesis. 2

Lemma 7.4 There exists a constant c such that for any integer n,

‖Qn
β γβ⊗Ω‖ ≤ cn

√
(n+ 1)!.

Proof. Using the formulas
Qβ := 1K⊗̌qβ(a∗) + 1K⊗̌q∗β(a).

we decompose Qβ into the sum of a creation and annihilation operator. Then Qn
β γβ⊗Ω splits into the

sum of 2n terms. Applying the estimates (5.42) to each term we derive the estimate

‖Qn
β γβ⊗Ω‖ ≤ 2n

√
(n+ 1)! ‖qβ‖n. (7.74)

2

7.3 FGRO’s for thermal Pauli-Fierz Liouvilleans

Let us now consider the formalism of FGRO in the context of thermal Liouvilleans.
Let η ≥ 0 and 0 < β ≤ ∞. The following assumption is just Assumption 6.D(η)ρ for ρ = ρβ:

Assumption 7.B(η)β 〈s〉ηqβ ∈ B(K,K ⊗ (Z ⊕Z)).

Proposition 7.5 Let 0 < β0 ≤ β <∞. Then Assumption 7.B(η)β0 implies Assumption 7.B(η)β .
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Proof. We just note that the function (7.72) which we already studied in the proof of Proposition 7.1,
has all bounded derivatives. Therefore, the operator

〈s〉η|1− e−βr|− 1
2 |1− e−β0r| 12 〈s〉−η

is bounded for any η ∈ R. 2

Throughout this subsection we assume that Assumption 7.B(η)β0 with η > 1
2 holds. We will describe

the FGRO Γρ in the case ρ = ρβ , which, consistently with our notation will, be denoted Γβ . Note that a
special attention needs to be devoted to the infrared term in Γβ .

Proposition 7.6 There exists

vir := lim
p↓0

v(p)
p

1
2

= lim
p↓0

v?(−p)
p

1
2

. (7.75)

Set
ṽir

0 =
∑

p

vpp
ir .

Noting that the above operators belong to B(K,K ⊗ G) and G is equipped with an internal conjugation
(see (6.47), we have

vir = (vir)?, (ṽir
0)? = ṽir

0
. (7.76)

Moreover, ΓI
β can be written in the following two ways:

−TrB∗1ΓI
β(B2) = π

∑
p∈F+

|eβp − 1|−1Tr
(
eβp/2ṽp(p)B1 −B1 ⊗ 1 ṽp(p)

)∗
×

(
eβp/2ṽp(p)B2 −B2 ⊗ 1 ṽp(p)

)
+π

∑
p∈F+

|eβp − 1|−1Tr
(
eβp/2ṽp(p)B∗2 −B∗2 ⊗ 1 ṽp(p)

)∗
×

(
eβp/2ṽp(p)B∗1 −B∗1 ⊗ 1 ṽp(p)

)
+π

β Tr
(
ṽir

0
B∗2 −B∗2 ⊗ 1 ṽir

0
)∗

×
(
ṽir

0
B∗1 −B∗1 ⊗ 1 ṽir

0
)
.

(7.77)

Proof. For p > 0,
qβ(p) = |1− e−βp|− 1

2 v(p),

qβ(−p) = |1− eβp|− 1
2 v?(−p).

But R 3 p 7→ qβ(p) is continuous. Hence

qβ(0) = lim
p↓0

qβ(p) = β−
1
2 lim

p↓0
p−

1
2 v(p),

qβ(0) = lim
p↓0

qβ(−p) = β−
1
2 lim

p↓0
p−

1
2 v?(−p).

This implies the existence of the limits in (7.75) and the identities of (7.76).
The identity (7.77) is a modification of the identity (6.68), where we take into account the identities

(7.70) and (7.75). 2
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Let us define
N :=

{
B ∈ B(K) : B⊗1 ṽp(p) = ṽp(p)B, p ∈ F+,

B∗⊗1 ṽp(p) = ṽp(p)B∗, p ∈ F+,

B⊗1 ṽir
0 = ṽir

0
B

}
.

Proposition 7.7 N is a ∗-subalgebra of B(K) containing C1K. Moreover, for any t ∈ C, B ∈ N we
have eitKBe−itK ∈ N.

Proof. It is easy to check that N is an algebra. To see that it is preserved by ∗ we note that the first
two conditions are manifestly symmetric wrt ∗. Besides, note that (ṽir

0)? = ṽir
0 implies that

B⊗1 ṽir
0 = ṽir

0B ⇒ B∗⊗1 ṽir
0 = ṽir

0B∗.

The obvious identities
1⊗1 ṽp(p) = ṽp(p)1, 1⊗1 ṽir

0 = ṽir
01

imply that 1 ∈ N.
Note that

eitK⊗1 ṽp(p)e−itK = eitpṽp(p), p ∈ F+, eitK⊗1 ṽir
0e−itK = ṽir

0.

This implies that N is invariant wrt eitK · e−itK . 2

Theorem 7.8 KerΓI
β consists of operators of the form e−βK/2C with C ∈ N.

It is easy to see that the following assumption is satisfied for a generic intreaction v.

Assumption 7.C N = C1K.

Theorem 7.9 If Assumption 7.C is satisfied, then sp(Γβ)∩R = {0} and Ran10(Γβ) = KerΓI
β is spanned

by γβ.

Proof. (7.77) can be rewritten as

ΓI
β = π

∑
p∈F+

|eβp − 1|−1Tr
(
ṽp(p)eβK/2B1 − eβK/2B1 ⊗ 1 ṽp(p)

)∗
×e−βK ⊗ 1

(
ṽp(p)eβK/2B2 − eβK/2B2 ⊗ 1 ṽp(p)

)
+π

∑
p∈F+

|eβp − 1|−1Tr
(
ṽp(p)eβK/2B∗2 − eβK/2B∗2 ⊗ 1 ṽp(p)

)∗
×e−βK ⊗ 1

(
ṽp(p)eβK/2B∗1 − eβK/2B∗1 ⊗ 1 ṽp(p)

)
+π

β Tr
(
ṽir

0eβK/2B∗2 − eβK/2B∗2 ⊗ 1 ṽir
0
)∗

×e−βK ⊗ 1
(
ṽir

0eβK/2B∗1 − eβK/2B∗1 ⊗ 1 ṽir
0
)
.

Hence, B ∈ KerΓI
β iff

ṽp(p)eβK/2B − eβK/2B⊗1 ṽp(p) = 0,

ṽp(p)eβK/2B∗ − eβK/2B∗⊗1 ṽp(p) = 0,

ṽ0
ir(0)eβK/2B − eβK/2B⊗1 ṽ0

ir(0) = 0.
This clearly implies 1).

1) together with the assumption 7.C implies that KerΓI
β is spanned by γβ . Clearly, [∆β , γβ ] = 0.

Hence γβ ∈ KerΓR
β . Therefore, Ran10(Γβ) is spanned by γβ . This ends the proof of 2). 2
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7.4 Return to equilibrium for a fixed positive temperature

In this subsection we describe conditions that for any fixed positive temperature guarantee the return to
equilibrium property. The result will be not uniform in the temperature.

Theorem 7.10 Let 0 < β0 < ∞, η > 2. Suppose that Assumptions 7.Aβ0 , 7.B(η)β0 and 7.C are
satisfied. Let β ∈ [β0,∞[. Then there exists λ0(β) > 0 such that for 0 < |λ| < λ0(β) we have

spp(Lβ) = {0}, dim10(Lβ) = 1, spsc(Lβ) = ∅.

Proof. By Theorem 7.9 we know that for β ∈ [β0,∞[, we have dimKer(ΓI
β) = 1. Therefore, by Theorem

5.6, there exists λ0(β) such that for 0 < |λ| < λ0(β) we have

dim10(Lβ) ≤ 1, spsc(Lβ) = ∅.

But by Theorem 7.3, dim 10(Lβ) ≥ 1. 2

7.5 0-temperature Pauli-Fierz Liouvilleans

At the zero temperature, all the properties of the Liouvillean, denoted L∞, follow easily from the prop-
erties of the Hamiltonian. They are described in this subsection.

If we consider β = ∞, it is convenient to use the identification of the space K ⊗K ⊗ Γs(Z ⊕Z) with
the space

K ⊗ Γs(Z)⊗K ⊗ Γs(Z).

Under this identification, the 0-temperature Liouvillean becomes

L∞ = H ⊗ 1− 1⊗H.

The FGRO for L∞, denoted Γ∞ can be expressed in terms of the FGRO for H , denoted Γ as follows.
If Γ∞ is given by ∆∞ and Ξ∞ as in Theorem 6.12 then

∆∞ = Γ, Ξ∞ = 0.

The following theorem follows immediately from Theorem 6.6:

Theorem 7.11 Under assumptions of Theorem 6.6, there exists λ0 > 0 such that for 0 < |λ| < λ0 we
have

spp(L∞) = {0}, dim10(L∞) = 1, spsc(L∞) = ∅.

7.6 Uniform in temperature estimate on the FGRO

In this subsection we study the FGRO Γβ uniformly in the temperature. We give the conditions that
guarantee that the kernel of Γβ is spanned by the Gibbs state γβ and that on the orthogonal complement
to γβ is uniformly dissipative. The key assumptions are the two generic assumptions that were used at
the zero temperature, the is 6.E and 6.F, and the generic assumption for the positive temperature, that
is 7.C.
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Theorem 7.12 Let 0 < β0 <∞, η > 1
2 . Suppose that Assumption 7.B(η)β0 is satisfied. Then

1)
]0,∞] 3 β 7→ Γβ ∈ B(l2(K))

is a continuous function.
2) Assume in addition that 6.E, 6.F and 7.C are satisfied. Let 0 < β1. Then there exists ε > 0 such that
for β ∈ [β1,∞]

TrB∗ΓI
β(B) ≤ −ε(TrB∗B − |TrBγβ |2). (7.78)

Proof. The continuity of Γβ in β ∈]0,∞] is obvious from (7.77)
Let us consider first β = ∞. Assumptions 6.E implies that there exists ε(∞) > 0 such that

∆I
∞ ≤ −ε(∞)(1 − 1k0(K)). (7.79)

Recall that ΓI
∞(B) = ∆I

∞B + B∆I
∞. Hence, using (7.79) and at the last step using Assumption 6.F we

obtain
TrB∗ΓI∞(B) ≤ −ε(∞)

(
TrB∗(1− 1k0(K))B + TrB∗B(1− 1k0(K))

)
≤ −ε(∞)

(
TrB∗B − TrB∗1k0(K)B1k0(K)

)
= −ε(∞)(TrB∗B − |TrBγ∞|2).

Next, let us consider β < ∞. It follows from Theorem 7.9 2) that for any β ∈ [β0,∞[, there exists
ε(β) > 0 such that

TrB∗ΓI
β(B) ≤ −ε(β)(TrB∗B − |TrBγβ |2).

The compactness of [β1,∞], the continuity of [β1,∞] 3 β 7→ ΓI
β and of [β1,∞] 3 β 7→ γβ imply that one

can chose ε > 0 such that (7.78) is true. 2

7.7 Uniform in temperature return to equilibrium

In this subsection we describe the main result of this paper. We give conditions that imply that, uniformly
in the temperature for small nonzero coupling constant the Liouvillean Lβ has no singular continuous
spectrum and only one nondegenerate eigenvalue. For positive temperatures this implies the return to
equilibrium property.

One of the main ingredients of the proof is the uniform assumption on the FGRO Γβ obtained in the
previous subsection. The second ingredient is a uniform assumption on the regularity of the interaction,
which we will formulate below.

For any η and β0 let us make the following assumption

Assumption 7.D(η)β0 supβ0≤β≤∞ ‖〈s〉ηqβ‖ <∞.

Theorem 7.13 Let 0 < β0 < ∞. Suppose Assumptions 7.Aβ0 , 7.D(η)β0 with η > 2, 6.E 6.F and 7.C
are satisfied. Then there exists λ0 > 0 such that for 0 < |λ| < λ0 and β ∈ [β0,∞] we have

spp(Lβ) = {0}, dim10(Lβ) = 1, spsc(Lβ) = ∅.
Proof. By Theorem 7.2 we know that Lβ is essentially self-adjoint onD(Lfr)∩D(Q−JQJ) for β ∈ [β0,∞[
and any λ. By Theorem 6.5, we know that L∞ is self-adjoint on D(Lfr) and any λ.

By Theorem 7.12, we know that there exists ε > 0 such that for β ∈ [β0,∞] we have

ΓI
β < −ε(1− 10(ΓI)).
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By Assumption 7.D(η)β0 with η > 2 we know that

‖〈s〉η(
1K⊗̌qβ − 1K ⊗ τqβ

)‖ ≤ 2c.

Hence by Theorem 5.6, there exists λ0 > 0 such that for 0 < |λ| ≤ λ0 we have

dim1p(Lβ) ≤ dimΓI
β = 1, spsc(Lβ) = ∅.

But by Theorem 7.11 and 7.3, dim 10(Lβ) ≥ 1. 2

7.8 An infrared condition for a uniform return to equilibrium

The Assumption 7.D(η)β0 seems somewhat difficult to check in practice. Therefore, in this subsection we
will describe some other conditions, which are easier to verify in applications and imply the Assumption
7.D(η)β0 .

First of all, we would like to have a condition that involves directly v, and not the whole family qβ .
Secondly, in realistic physical systems the function [0,∞[3 p 7→ v(p) is usually smooth (even analytic)

outside p = 0. Therefore, our main concern is the point p = 0, where we can expect that v(p) go to zero
as pα for some α > 0. The assumptions stated below will try to optimize this α with our method.

Theorem 7.14 Suppose that 3 > η > 2, η′ > η, β0 > 0. Assume that for n = 0, 1, 2, 3 we have∥∥(1 + |r|)− 3
2 +η′ |r|n− 3

2−η′sn(v, v?)‖ <∞. (7.80)

Then Assumption 7.D(η)β0 holds, that means

sup
β∈[β0,∞]

‖〈s〉η|1− e−βr|− 1
2 (v, v?)‖ <∞.

The following corollaries present slightly weaker but maybe more explicit conditions that guarantee
the uniform regularity of the interaction. In both corollaries η, η′, β0, β

′
0. are as in Theorem 7.14

Corollary 7.15 Suppose that∫∞
0 (1 + p)−3+2η′p−3−2η′+2n‖ dn

dpn v(p)‖2dp <∞, n = 0, 1, 2, 3,

dn

dpn v(0) = 0, n = 0, 1, 2.
(7.81)

Then Assumption 7.D(η)β0 holds.

Proof. Since K is finite dimensional, the ? conjugation is az bounded linear map. Therefore, (7.81)
implies ∫∞

0 (1 + p)−3+2η′p−3−2η′+2n‖ dn

dpn v
?(p)‖2dp <∞, n = 0, 1, 2, 3,

dn

dpn v
?(0) = 0, n = 0, 1, 2.

(7.82)

Because of the first derivatives of v(p) and v?(p) vanish at zero, for n = 0, 1, 2, 3 we have

(
sn(v, v?)

)
(p) =

{
dn

dpn v(p), p ≥ 0;
dn

dpn v
?(−p), p ≤ 0.
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Hence

‖(1 + |r|)− 3
2+η′ |r|n− 3

2−η′sn(v, v?)‖2

= ‖(v, v?)∗sn(1 + |r|)−3+2η′ |r|2n−3−2η′sn(v, v?)‖

=
∥∥∥ ∞∫

0

p2n−3−2η′(1 + p)−3+2η′ dn

dpn v
∗(p) dn

dpn v(p)dp+
∞∫
0

p2n−3−2η′(1 + p)−3+2η′ dn

dpn v
?∗(p) dn

dpn v
?(p)dp

∥∥∥
≤

∞∫
0

p2n−3−2η′(1 + p)−3+2η′‖ dn

dpn v(p)‖2dp+
∞∫
0

p2n−3−2η′(1 + p)−3+2η′‖ dn

dpn v
?(p)‖2dp.

2

The following corollary follows easily from the previous corollary:

Corollary 7.16 Suppose that for p ∈ [0,∞[, δ > 0 and for n = 0, 1, 2, 3 we have

‖ dn

dpn v(p)‖ ≤ c

{
pη′−n+1 0 ≤ p < 1;

(1 + p)−
1
2−δ−n p ≥ 1

Then Assumption 7.D(η)β0 holds.

The proof of Theorem 7.14 is divided into a number of steps.

Lemma 7.17 Let 0 ≤ δ ≤ 1 and ξδ(p) := |p|δ(1 + |p|)−δ. Then there exists cδ such that

|ξδ(p)− ξδ(p+ t)| ≤ cδ|t|δ

(ξδ(p) is globally δ-Hölder).

Proof. The product of globally δ-Hölder functions is globally δ-Hölder. Clearly, (1 + |p|)−δ is globally
1-Hölder. Hence it is sufficient to prove the global δ-Hölder property for pδ, that is∣∣|p|δ − |p+ t|δ| ≤ cδ|t|δ. (7.83)

It is also easy to see that it suffices to prove (7.83) for p, p+ t ≥ 0.
By the concavity of p 7→ pδ, we have∣∣∣∣ p

p+ t

∣∣∣∣δ +
∣∣∣∣ t

p+ t

∣∣∣∣δ ≤ ∣∣∣∣ p

2(p+ t)
+

t

2(p+ t)

∣∣∣∣δ =
1
2δ
.

Hence
2−δ|p|δ + |t|δ ≤ |p|δ + |t|δ ≤ 2−δ|p+ t|δ,

which implies (7.83) wih cδ = 2δ. 2

Lemma 7.18 Let r, s be the operators on L2(R) introduced in Subsection 3.4. Let 0 < δ < 1, δ < δ′.
Then

‖|s|δΨ‖ ≤ c‖(1 + |r|)δ′ |r|−δ′−1Ψ‖+ c‖(1 + |r|)δ′ |r|−δ′sΨ‖.
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Proof. Set Φ := (1 + |r|)δ′ |r|−δ′Ψ. Now, using eitsr = (r + t)eits, we obtain

‖eitsΨ−Ψ‖ ≤ ∥∥(
(1 + |r + t|)−δ′ |r + t|δ′ − (1 + |r|)−δ′ |r|δ′)eitsΦ

∥∥
+‖(1 + |r|)−δ′ |r|δ′ (eitsΦ− Φ)‖2.

(7.84)

By Lemma 7.17, the first term on the right of (7.84) is estimated from above by

cmin(tδ
′
, 1)‖Φ‖.

The second term on the right of (7.84) is less than

cmin(t‖sΦ‖, ‖Φ‖).
Note that for any 0 < δ < 1 there exists cδ such that for any p ∈ R

|p|2δ = cδ

∫ ∞

0

|eitp − 1|2t−1−2δdt.

Using this identity, we obtain

‖|s|δΨ‖2 = c
∫∞
0
‖eitsΨ−Ψ‖2t−1−2δdt

≤ c(‖Φ‖+ ‖sΦ‖)2.
Next we note that

sΦ = (1 + |r|)δ′ |r|−δ′sΨ + δ′sgnr
(−(1 + |r|)δ′ |r|−δ′−1 + (1 + |r|)δ′−1|r|δ′)Ψ.

Thus
‖sΦ‖ ≤ c‖(1 + |r|)δ′ |r|−δ′sΨ‖+ c‖(1 + |r|)δ′−1|r|−δ′Ψ‖.

2

Proof of Theorem 7.14 Set θj(p) := dj

dpj |1−e−p|− 1
2 . We use Lemma 7.18 with δ = η−2 and δ′ = η′−2

and Ψ replaced with s2|1− e−βr|− 1
2 (v, v?). Then

‖|s|η|1− e−βr|− 1
2 (v, v?)‖ ≤ c‖(1 + |r|)η′−2|r|−η′+1s2|1− e−βr|− 1

2 (v, v?)‖
+c‖(1 + |r|)η′−2|r|−η′+2s3|1 − e−βr|− 1

2 (v, v?)‖

≤ c
2∑

j=0

‖(1 + |r|)η′−2|r|−η′+1βjθj(βr)s2−j(v, v?)‖

+c
3∑

j=0

‖(1 + |r|)η′−2|r|−η′+2βjθj(βr)s3−j(v, v?)‖.

(7.85)

We have

|θ0(p)| ≤ c

{ |p|− 1
2 (1 + |p|) 1

2 , p > 0

|p|− 1
2 (1 + |p|) 1

2 e−|p|/2, p < 0.

Therefore, for β ∈ [β0,∞], we have

|θ0(βp)| ≤ c

{ |p|− 1
2 (1 + |p|) 1

2 , p > 0

|p|− 1
2 (1 + |p|) 1

2 e−β0|p|/2, p < 0.
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Hence the two terms on the right hand side of (7.85) with θ0 can be estimated as

3∑
n=2

‖(1 + |r|)η′−2|r|−η′+n−1θ0(βr)sn(v, v?)‖ ≤ c
3∑

n=2
‖(1, e−β0h/2)(1 + |r|)η′− 3

2 |r|−η′+n− 3
2 sn(v, v?)‖

Next we note that
|θj(p)| ≤ c|p|− 1

2−j(1 + |p|) 1
2+je−|p|/2, j = 1, 2, . . . .

Hence for β ∈ [β0,∞]
|θj(βp)| ≤ cβ−

1
2−j |p|− 1

2−je−β′0|p|/2, j = 1, 2, . . . .

Therefore, the terms on the right hand side of (7.85) can be estimated as

2∑
j=1

‖(1 + |r|)η′−2|r|−η′+1βjθj(βr)s2−j(v, v?)‖

+
3∑

j=1

‖(1 + |r|)η′−2|r|−η′+2βjθj(βr)s3−j(v, v?)‖ ≤ β−
1
2

2∑
n=0

‖e−β′0|r|/2|r|−η′− 3
2+nsn(v, v?)‖.

2

7.9 Pauli-Fierz systems with two thermal reservoirs

Suppose that Zi, are Hilbert spaces for i = 1, 2. Suppose that hi are positive self-adjoint operators on
Zi and vi ∈ B(K,K ⊕Zi), for i = 1, 2.

Assume that βi ∈]0,∞], i = 1, 2. Consider the systems described by hi, ρβi = (eβihi − 1)−1. Then we
can define the FGRO for the individual systems, denoted Γi,βi .

We can consider the composite system given by Z := Z1 ⊕ Z2, h := hi ⊕ h2, ρ := ρβ1 ⊕ ρβ2 and
v = v1 +v2. The FGRO for the composite system will be denoted by Γβ1,β2 . By Theorem 6.15, we clearly
have

Γβ1,β2 =
n∑

i=1

Γi,βi . (7.86)

Theorem 7.19 Let β1, β2 ∈]0,∞[ and β1 6= β2. Let η > 1
2 . Let Assumptions 7.B(η)βi and 7.C be

satisfied for the systems i = 1, 2. Then KerΓ(β1,β2) = {0}.

Proof. By Theorem 7.9, KerΓI
i,βi

is spanned by γβi . But by (7.86),

KerΓI
β1,β2

= KerΓI
1,β1

∩KerΓI
2,β2

.

2

The Liouvillean of the composite system will be denoted Lβ1,β2 .

Theorem 7.20 Let β1, β2 ∈]0,∞[ and β1 6= β2. Let η > 1. Let Assumptions 7.Aβi , 7.B(η)βi and 7.C
be satisfied for the systems i = 1, 2. Then there exists λ0 > 0 such that for 0 < |λ| < λ0 we have

spp(Lβ1,β2) = ∅, spsc(Lβ1,β2) = ∅.

Proof. We apply Thorem 5.7 and 7.19. 2
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8 Examples of gluing

In the whole paper the conditions on Pauli-Fierz systems were quite abstract in order to keep the notation
as simple as possible and the models as general as possible. Nevertheless, it is not easy to see whether
concrete physical systems satisfy the assumptions of these results. In particular, it is difficult to see when
the gluing technique of Jakšić-Pillet is applicable.

In this section we will show two examples of systems where one can introduce the gluing in a natural
way. Both examples involve massless particles in a Euclidean space. In the absence of interaction such
systems “glue well”. If the interaction is present and the temperature is positive, the main problem is
the infra-red behavior of the interaction. We will see for instance, that in dimension 3, if the interaction
behaves at small momenta as |ξ|− 1

2 and satisfies the appropriate reality conditions (if it involves fields
and no conjugate fields), then the positive and negative frequencies glue well. But this is exactly the
infrared behavior of QED, as noted in [JP1].

8.1 Massless scalar particles

Let Ξ = Rd be a Euclidean space (where ξ ∈ Ξ denotes the momentum). Massless spin 0 particles are
described by the 1-particle space L2(Ξ),) with the 1-particle energy |ξ|.

The gluing map is defined as

L2(Ξ)⊕ L2(Ξ) 3 (Ψ+,Ψ−) 7→ Ψ ∈ L2(R)⊗ L2(Sd−1), (8.87)

Ψ(p, ω) :=

{
p

d−1
2 Ψ+(pω), p > 0,

(−p) d−1
2 Ψ−(−pω), p < 0.

(Above, (p, ω) ∈ R× Sd−1).
Fix the interaction Ξ 3 ξ 7→ v(ξ) ∈ B(K). Consider the Pauli-Fierz Hamiltonian

H := K ⊗ 1 + 1⊗ ∫
a∗(ξ)a(ξ)|ξ| dξ

+λ
∫ (
v(ξ)⊗ a∗(ξ) + v∗(ξ)⊗ a(ξ)

)
dξ.

Fix the density Ξ 3 ξ 7→ ρ(ξ) ∈ R+. The semi-Liouvillean at density ρ is given by

Lsemi
ρ := K ⊗ 1 + 1⊗ ∫ (|ξ|a∗l (ξ)al(ξ)−

∫ |ξ|a∗r (ξ)ar(ξ)
)
dξ

+λ
∫ (

(1 + ρ(ξ))
1
2 v(ξ)⊗ a∗l (ξ) + ρ(ξ)

1
2 v∗(ξ)⊗ ar(ξ)

)
dξ

+λ
∫ (

(1 + ρ(ξ))
1
2 v∗(ξ) ⊗ al(ξ) + ρ(ξ)

1
2 v(ξ)⊗ a∗r (ξ)

)
dξ

= K ⊗ 1 + 1⊗ ∫
pa∗(p, ω)a(p, ω) dpdω

+λ
∫ (
qρ(p, ω)⊗ a∗(p, ω) + qρ(p, ω)⊗ a(p, ω)

)
dpdω,

where

qρ(p, ω) :=

{
p

d−1
2 (1 + ρ(pω))

1
2 v(pω), p > 0

(−p) d−1
2 ρ(−pω)

1
2 v∗(−pω), p < 0.

The space L2(Ξ) is equipped with a physically motivated conjugation

κΨ(ξ) := Ψ(−ξ).
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Assume now that the interaction is given by κ-real fields (see the end of Subsection 3.4). This means

v∗(ξ) = v(−ξ). (8.88)

Assume also that the density ρ commutes with the conjugation κ, or in other words

ρ(ξ) = ρ(−ξ).
Then

qρ(p, ω) =

{
p

d−1
2 (1 + ρ(pω))

1
2 v(pω), p > 0

(−p) d−1
2 ρ(pω)

1
2 v(pω), p < 0.

In particular, assume that v(ξ) = |ξ|1− d
2 ṽ(ξ) and ρ(ξ) = (eβ|ξ| − 1)−1. Then

qρ(p, ω) :=
(

1− e−βp

p

) 1
2

ṽ(pω).

Therefore, if ṽ(ξ) is analytic, then qρ(p, ω) is analytic in p.

Remark 8.1 In relativistic quantum theory κ-real fields are usually called just “fields” and κ-imaginary
fields are called “conjugate fields”. Only “fields” appear in the interaction of Hamiltonians derived from
local Lagrangians. Therefore, (8.88) is satisfied in realistic Hamiltonians derived from models of rela-
tivistic quantum field theory, such as the usual Hamiltonian of nonrelativistic QED (see eg [BFS1] or the
introduction to [DJ]).

8.2 Massless vector particles

The case of vector particles is very similar to that of scalar particles.
Suppose that L2(Ξ,Ξ) denotes the Hilbert space of square integrable vector fields on Ξ. Massless

vector particles are described by the 1-particle space L2
tr(Ξ,Ξ), consisting of transversal vector fields on

Ξ, that is
L2

tr(Ξ,Ξ) = {Ψ ∈ L2(Ξ,Ξ) : ξ ·Ψ(ξ) = 0, ξ ∈ Ξ}.
(ξ ·Ψ(ξ) denotes the scalar product of ξ and Ψ(ξ)).

The 1-particle energy is |ξ|. The distinguished conjugation can be chosen to be

κΨ(ξ) := Ψ(−ξ).
Remark 8.2 Note that L2

tr(R
1,R1) = {0} and L2

tr(R
2,R2) is naturally isomorphic to L2(R2) by the map

L2(R2) 3 Ψ 7→ SΨ ∈ L2
tr(R

2,R2)

with
(SΨ)i(ξ) =

∑
j

Ψ(ξ)
ξj
|ξ| εij .

where εi,j is the completely antisymmetic tensor such that ε1,2 = 1.

The gluing map is defined as the unitary map

L2
tr(Ξ,Ξ) ⊕ L2

tr(Ξ,Ξ) 3 (Ψ+,Ψ−) 7→ Ψ ∈ L2(R)⊗ L2(TSd−1),

Ψ(p, ω) :=

{
p

d−1
2 Ψ+(pω), p > 0,

(−p) d−1
2 Ψ−(−pω), p < 0.

Here TSd−1 denotes the tangent bundle of the d − 1-dimensional sphere and L2(TSd−1) is the Hilbert
space of square integrable vector fields on Sd−1.

Then we repeat verbatim the constructions of the spin 0 case.
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A Abstract type I factors

According to the W ∗-algebraic approach to quantum statistical physics, a quantum system is described
by an (abstract) W ∗-algebra together with a W ∗-dynamics and normal states. These data alone can be
used to compute physical quantities. In particular, we need not assume that the W ∗-algebra acts on a
Hilbert space.

Of course, in practice it is convenient to assume that the W ∗-algebra is represented on a Hilbert
space and the dynamics is unitarily implemented. In some cases there are several natural representations
having their own advantages. One of them will be the standard representation. Often there are other
representations that are simpler.

If we consider quantum systems in a finite volume, which we will call confined quantum systems,
then it is usually sufficient to describe them by the algebra of all bounded operators on a certain Hilbert
space. In the language of the classification of W ∗-algebras they are called type I factors. Of course, such
algebras are simple-minded and no sophisticated W ∗-algebraic approach is needed to study them.

In the appendix we describe how various constructions that we used in our paper look in the case of
confined systems. In particular, we will explain the connection between the Pauli-Fierz Hamiltonian H
and the Pauli-Fierz Liouvilleans and semi-Liouvilleans.

In this section we describe a type I factor first in its minimal representation and then in its standard
representation. There are two different equivalent realizations of the standard representation with a
different notation.

A.1 Type I factors—irreducible representation

The space of normal functional on B(H) can be identified with l1(H) (trace class operators) by the
formula

ψ(A) = TrρA, ρ ∈ l1(H), A ∈ B(H). (A.89)

In particular, states are determined by positive trace one operators, called density matrices. A state
given by a density matrix ρ is faithful iff Kerρ = {0}.

If τ ∈ Aut(B(H)), then there exists W ∈ U(H) such that

τ(A) = WAW ∗, A ∈ B(H). (A.90)

If R 3 t 7→ τ t ∈ Aut(B(H)) is a W ∗-dynamics, then there exists a self-adjoint operator H on H such that

τ t(A) = eitHAe−itH , A ∈ B(H).

A state given by (A.89) is invariant wrt the W ∗-dynamics (A.90) iff H commutes with ρ. There exists
a (β, τ t)–KMS state iff Tre−βH <∞ and then it has the density matrix e−βH/Tre−βH .

A.2 Type I factor—standard representation in Hilbert-Schmidt operators

Clearly, the representation of B(H) in H is not in a standard form. To construct a standard form of
B(H), consider the Hilbert space of Hilbert-Schmidt operators on H, denoted l2(H), and two injective
representations:

B(H) 3 A 7→ πl(A) ∈ B(l2(H)), πl(A)B := AB, B ∈ l2(H);

B(H) 3 A 7→ πr(A) ∈ B(l2(H)), πr(A)B := BA∗ B ∈ l2(H).
(A.91)

Set JHB := B∗, B ∈ l2(H). Then
JHπl(A)JH = πr(A)
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and
(πl, l

2(H), JH, l2+(H)))

is a standard representation of B(H).
If a state on B(H) is given by a density matrix ρ ∈ l1+(H) then its standard vector representative

is ρ
1
2 ∈ l2+(H). If τ ∈ Aut(B(H)) is determined by W ∈ U(H), then its standard implementation is

πl(W )πr(W ). If the W ∗-dynamics τ t is given by a self-adjoint operator H , then its standard Liouvillean
is πl(H)− πr(H).

A.3 Type I factors—standard representation in H⊗H
An alternative formalism, which can be used to describe a standard form of type I factors, uses the notion
of a conjugate Hilbert space,

Under the identification described in Subsection 3.7 the representations (A.91) become

B(H) 3 A 7→ A⊗ 1H ∈ B(H⊗H);

B(H) 3 A 7→ 1H ⊗A ∈ B(H⊗H).
(A.92)

Note that the standard unitary implementation of the automorphism τ(A) = WAW ∗ is then equal
W ⊗W . The standard Liouvillean for τ t(A) = eitHAe−itH equals L = H ⊗ 1 − 1 ⊗ H . The modular
conjugation is JH defined by

JHΨ1 ⊗Ψ2 := Ψ2 ⊗Ψ1. (A.93)

The positive cone is then equal to

(H⊗H)+ := Cone{Ψ⊗Ψ : Ψ ∈ H}cl.

Remark A.1 Instead of using the conjugate space H, one can fix a conjugation c in H, as in Remark
3.4 and then define a standard representation of B(H) in H⊗H.

B Confined Bose gas

In this section we consider the W ∗-algebra B(Γs(Z)), where Z is a certain Hilbert space. As we will see,
under certain conditions on the density ρ, in this case the Araki-Woods representation is simply a special
form of the standard representation.

B.1 Confined Bose gas—irreducible representation

In this subsection we consider the algebra B(Γs(Z)) acting simply on Γs(Z). Recall that the W ∗-algebra
B(Γs(Z)) is generated by the CCR representation

Z 3 z 7→W (z) ∈ U(Γs(Z)).

Suppose that ρ is a positive operator on a Hilbert space Z. Set γ := ρ(1 + ρ)−1.

Theorem B.1
TrΓ(γ) = det(1 − γ)−1 (B.94)

Therefore (B.94) is finite iff
Trγ <∞, or equivalently, Trρ <∞. (B.95)
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Throughout this section we will suppose that (B.95) is true. Define the state ωρ on the W ∗-algebra
B(Γs(Z)) given by the density matrix

Γ(γ)/TrΓ(γ).

Let h be another self-adjoint operator on Z. Define the dynamics on B(Γs(Z)):

τ t(A) := eitdΓ(h)Ae−itdΓ(h) A ∈ B(Γs(Z)).

Clearly, ωρ is τ t-invariant iff h commutes with ρ.
The state ωρ is (β, τ t)-KMS iff

γ = e−βh.

B.2 Confined Bose Gas—standard representation

Using at the last step the exponential map, we have the identification

l2(Γs(Z)) ' Γs(Z)⊗ Γs(Z) ' Γs(Z)⊗ Γ(Z) ' Γs(Z ⊕Z). (B.96)

The W ∗-algebra B(Γs(Z)) has a standard representation in in the Hilbert space l2(Γs(Z)), as described
in Subsection A.2. It has also a standard representation in the Hilbert space Γs(Z)⊗Γs(Z), as described
in Subsection A.3. Using the identification (B.96) we can use the space Γs(Z ⊕ Z) to get a standard
representation. (Of course, all these representations are naturally unitarily equivalent).

Let us describe the last representation in detail. Let

U : Γs(Z)⊗ Γs(Z) → Γs(Z ⊕Z) (B.97)

be the unitary map defined as in (4.33). Define the representations of W ∗-algebras

B(Γs(Z)) 3 A 7→ πl(A) := U A⊗1Γs(Z) U
∗ ∈ B(Γs(Z ⊕Z)),

B(Γs(Z)) ' B(Γs(Z)) ' B(Γs(Z)) 3 A 7→ πr(A) := U 1Γs(Z)⊗A U∗ ∈ B(Γs(Z ⊕Z)).
(B.98)

Consider the representation of CCR

Z ⊕ Z 3 (z1, z2) 7→W (z1, z2) ∈ U(Γs(Z ⊕Z)). (B.99)

It is convenient to split (B.99) into 2 commuting representations of CCR

Z 3 z 7→Wl(z) := W (z, 0) = πl(W (z)) ∈ U(Γs(Z ⊕Z)), (B.100)

Z 3 z 7→Wr(z) := W (0, z) = πr(W (z)) ∈ U(Γs(Z ⊕Z)). (B.101)

The creation/annihillation operators corresponding to (B.100) will be denoted z(a∗l ), z(al); The cre-
ation/annihillation operators corresponding to (B.101) will be denoted z(a∗r ), z(ar).

The algebra πl(B(Γs(Z))) is generated by Wl(z), z ∈ Z and the algebra πr(B(Γs(Z))) is generated
by Wr(z), z ∈ Z.

Let ε be defined as in (4.37) and Γs,+(Z ⊕Z) in 4.40.

Theorem B.2 1)
(
πl,Γs(Z ⊕Z),Γ(ε),Γs,+(Z ⊕Z)

)
is a standard representation of B(Γs(Z)). More-

over, if 1Z denotes the projection onto Z, then

πl(B(Γs(Z))) = {A ∈ B(Γs(Z ⊕Z)) : A = Γ(1Z)AΓ(1Z)},
Γ(ε)πl(A)Γ(ε) = πr(A).

2) Let r := h⊕ (−h). Then dΓ(r) is the standard Liouvillean of τ t.
3) Assume (B.95). Then the standard vector representative of ωρ is

Ωρ := det(1− γ)
1
2 exp(1

2a
∗
l γ

1
2 a∗r + 1

2a
∗
rγ

1
2 a∗l )Ω. (B.102)
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Proof. 1) and 2) are straightforward. Let us prove (B.102).
In the representation of Subsection A.2, the standard vector representative of ωρ equals

(TrΓ(γ))−
1
2 Γ(γ

1
2 ).

Recall that (TrΓ(γ))−
1
2 = det(1− γ)

1
2 .

We have

Γ(γ
1
2 ) =

∞∑
n=0

(γ
1
2 )⊗sn.

Now in the representation that we use in this subsection (γ
1
2 )⊗sn corresponds to

(
√
n!)−2(a∗rγ

1
2 a∗l )

nΩ = (n!)−1(1
2a
∗
l γ

1
2 a∗r + 1

2a
∗
rγ

1
2 a∗l )

nΩ.

Hence Γ(γ
1
2 ) corresponds to

exp(1
2a
∗
l γ

1
2 a∗r + 1

2a
∗
rγ

1
2 a∗l )Ω.

Remark B.3 In (B.102), the notation of (4.35) is used. In fact,

c =
[

0 γ
1
2

γ
1
2 0

]
(B.103)

is a map c : Z ⊕ Z → Z ⊕Z satisfying c∗ = c and

cc∗ =
[

0 γ
1
2

γ
1
2 0

] [
0 γ

1
2

γ
1
2 0

]
=

[
γ 0
0 γ

]
.

Therefore,
det(1 − cc∗)

1
2 = det(1 − γ).

Thus the vector Ωρ is an example of a squeezed state considered in (4.35), that is

Ωρ = det(1− cc∗)
1
4 exp(1

2 (a∗l , a
∗
r )c(a∗l , a

∗
r ))Ω.

B.3 Confined Bose gas—standard representation in the Araki-Woods form

Define the following transformation on Γs(Z ⊕Z):

Rρ := exp(− 1
2a
∗
l γ

1
2 a∗r − 1

2a
∗
rγ

1
2 a∗l ) det(1− γ)

1
2 Γ(1− γ ⊕ 1− γ)

1
2 exp(1

2alγ
1
2 ar + 1

2arγ
1
2 al).

Theorem B.4 Rρ is a unitary operator satisfying

RρΩρ = Ω, (B.104)

RρeidΓ(r)R∗ρ = eidΓ(r), (B.105)

RρΓ(ε)R∗ρ = Γ(ε), (B.106)

RρW (z1, z2)R∗ρ = W ((1 + ρ)
1
2 z1 + ρ

1
2 z2, ρ

1
2 z1 + (1 + ρ)

1
2 z2). (B.107)

RρΓs,+(Z ⊕Z) = Γs,+(Z ⊕Z), (B.108)
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Proof. Let c be defined as in B.103. Using Remark B.3 and

Γ(1− cc∗) = Γ(1− γ ⊕ 1− γ),

we see that
Rρ := det(1− cc∗)

1
4 exp(− 1

2 (a∗l , a
∗
r )c(a

∗
l , a

∗
r ))Γ(1 − cc∗)

1
2 exp(1

2ac
∗a).

Thus Rρ is in fact the transformation Rc considered in (4.35). Therefore, (B.104) follows from Theorem
4.1 2). (B.105) and (B.106) follow from Theorem 4.1 5). (B.107) follows from Theorem 4.1 4) using

RρW (z1, z2)R∗ρ = W
(
(1− γ)−

1
2 z1 + (1− γ)−

1
2 γ

1
2 z2, (1− γ)−

1
2 γ

1
2 z1, (1− γ)−

1
2 z2

)
.

Let us prove (B.108). We check that

1
2a
∗
l γ

1
2 a∗r − 1

2a
∗
rγ

1
2 a∗l ,

Γ(1 − γ ⊕ 1− γ)
1
2 ,

1
2alγ

1
2 ar + 1

2arγ
1
2 al

map Γs,+(Z ⊕Z) ∩ Γs(Z ⊕Z) into Γs,+(Z ⊕Z). Therefore, Rρ maps Γs,+(Z ⊕Z) into itself.
A similar argument shows that R∗ρ maps Γs,+(Z ⊕Z) into itself. This proves (B.108).2

For A ∈ B(Γs(Z)) set

θρ,l(A) := Rρπl(A)R∗ρ = RρUA⊗ 1Γs(Z)U
∗R∗ρ ∈ B(Γs(Z ⊕Z)),

θρ,r(A) := Rρπr(A)R∗ρ = RρU1Γs(Z) ⊗AU∗R∗ρ ∈ B(Γs(Z ⊕Z)),
(B.109)

where πl, πr were defined in (B.98) and U in (B.97).

Theorem B.5 1) Rρ intertwines between the Wl, Wr and the Araki-Woods representations:

θρ,l(W (z)) = RρWl(z)R∗ρ = Wρ,l(z) = W ((1 + ρ)
1
2 z, ρ

1
2 z),

θρ,r(W (z)) = RρWr(z)R∗ρ = Wρ,r(z) = W (ρ
1
2 z, (1 + ρ)

1
2 z).

2)
(
θρ,l,Γs(Z ⊕ Z),Γ(ε),Γs,+(Z ⊕Z)

)
is a standard representation of B(Γs(Z)) and

θρ,l(B(Γs(Z))) = Mρ,l,

Γ(ε)θρ,l(A)Γ(ε) = θρ,r(A).

3) dΓ(r) is the standard Liouvillean of τ t.
4) Ω is the standard vector representative of ωρ.

C Confined Pauli-Fierz systems

C.1 Confined Pauli-Fierz systems—irreducible representation

We use the assumptions and notation of the Subsection 5.2. We treat B(K ⊗ Γs(Z)) as the W ∗-algebra
describing our system. We suppose Assumption 6.A.
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Recall that the Pauli-Fierz Hamiltonian is defined as the operator on K ⊗ Γs(Z)

H := K ⊗ 1 + 1⊗ dΓ(h) + λ
(
v(a∗) + v∗(a)

)
,

for K a self-adjoint operator on K, v ∈ B(K,K ⊗ Z) and h an positive operator on Z. Recall that then
H is self-adjoint and generates a W ∗-dynamics on B(K ⊗ Γs(Z)):

eitHAe−itH , A ∈ B(K ⊗ Γs(Z)). (C.110)

Definition C.1
(
B(K⊗Γs(Z)), eitH ·e−itH

)
will be called a confined Pauli-Fierz W ∗-dynamical system.

Let us fix a positive operator ρ on Z commuting with h and satisfying the condition (B.95). We
are going to see how the confined Pauli-Fierz W ∗-dynamical system looks in 2 different representations
of B(K ⊗ Γs(Z)), which describe the bosons at the density ρ, and use the Araki-Woods representation
θρ,l : B(Γs(Z)) → B(Γs(Z ⊕Z)) introduced in B.109.

C.2 Confined Pauli-Fierz system—semi-standard representation

We can use the identity representation for B(K) and the Araki-Woods representation for B(Γs(Z)). Thus
we obtain the representation

θsemi
ρ,l := 1B(K) ⊗ θρ,l : B(K ⊗ Γs(Z)) → B(K ⊗ Γs(Z ⊕Z)),

which will be called the semistandard representation of B(K ⊗ Γs(Z)). In other words, θsemi
ρ,l is defined

by
θsemi

ρ,l (A) = 1K⊗RρU A⊗1Γs(Z) 1K⊗U∗R∗ρ, A ∈ B(K ⊗ Γs(Z)),

where U was defined in (B.97).
Clearly

θsemi
ρ,l

(
B(K ⊗ Γs(Z)

)
= B(K)⊗Mρ,l.

Let Lsemi
ρ be defined as in (6.56), that is

Lsemi
ρ := K ⊗ 1 + 1⊗ dΓ(r)

+λ
(
(1 + ρ)

1
2 v, ρ

1
2 v?

)
(a∗) + λ

(
v∗(1 + ρ)

1
2 , v?∗ρ

1
2

)
(a).

The following idenities show the relationship between the Pauli-Fierz Hamiltonian and the Pauli-
Fierz semi-Liouvillean in the confined case. Let us stress that the semi-Liouvilleans Lsemi

ρ are unitarily
equivalent for different ρ.

Theorem C.2

θsemi
ρ,l

(
eitHAe−itH

)
= eitLsemi

ρ θsemi
ρ,l (A)e−itLsemi

ρ , A ∈ B(K ⊗ Γs(Z)),

Lsemi
ρ = 1K ⊗RρU

(
H ⊗ 1Γs(Z) − 1K⊗Γs(Z) ⊗ dΓ(h)

)
1K ⊗ U∗R∗ρ.
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C.3 Confined Pauli-Fierz system—standard representation

We can use the standard representation for B(K) in B(K ⊗ K) and the Araki-Woods representation for
B(Γs(Z)). Thus we obtain the representation

θρ,l : B(K ⊗ Γs(Z)) → B(K ⊗K ⊗ Γs(Z ⊕ Z)).

defined by
θρ,l(A) := 1K⊗̌θsemi

ρ,l (A), A ∈ B(K ⊗ Γs(Z)).

In other words, θρ,l is defined by

θρ,l(A1 ⊗A2) = A1 ⊗ 1K ⊗ θρ,l(A2), A1 ∈ B(K), A2 ∈ B(Γs(Z)).

One can put it in a yet different way. Introduce the obvious unitary identification

Ũ : K ⊗ Γs(Z)⊗K ⊗ Γs(Z) → K⊗K ⊗ Γ(Z ⊕Z).

Then
θρ,l(A) = 1K⊗K⊗Rρ Ũ A⊗1K⊗Γs(Z) Ũ

∗ 1K⊗K⊗R∗ρ, A ∈ B(K ⊗ Γs(Z)).

Clearly
θρ,l(B(K ⊗ Γs(Z)) = B(K)⊗ 1K ⊗Mρ,l.

Let Lρ be defined as in (6.59), that is

Lρ := K ⊗ 1K ⊗ 1− 1K ⊗K ⊗ 1 + 1K ⊗ 1K ⊗ dΓ(r)

+λ1K⊗̌
(
(1 + ρ)

1
2 v, ρ

1
2 v?

)
(a∗) + λ1K⊗̌

(
v∗(1 + ρ)

1
2 , v?∗ρ

1
2

)
(a),

−λ1K ⊗
(
ρ

1
2 v?, (1 + ρ)

1
2 v

)
(a∗)− λ1K ⊗

(
v?∗ρ

1
2 , v∗(1 + ρ)

1
2

)
(a).

The following identities give the relationship between the Pauli-Fierz Hamiltonian and the Pauli-Fierz
Liouvillean in the confined case. Let us stress that the Liouvilleans Lρ are unitarily equivalent for different
ρ.

Theorem C.3

θρ,l

(
eitHAe−itH

)
= eitLρθρ,l(A)e−itLρ , A ∈ B(K ⊗ Γs(Z)).

Lρ = 1K⊗K⊗Rρ Ũ
(
H ⊗ 1K⊗Γs(Z) − 1K⊗Γs(Z) ⊗H

)
Ũ∗ 1K⊗K⊗R∗ρ.
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