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ABSTRACT

The distribution of the length of a typical chord of a stationary random
set is an interesting feature of the set’s whole distribution. We give
a nonparametric estimator of the chord length distribution and prove
its strong consistency. We report on a simulation experiment in which
our estimator compared favorably to a reduced sample estimator. Both
estimators are illustrated by applying them to an image sample from
a yoghurt ferment. We briefly discuss the closely related problem of
estimation of the linear contact distribution. We show by a simulation
experiment that a transformation of our estimator of the chord length
distribution is more efficient than a Kaplan—Meier type estimator of the
linear contact distribution.
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1 Introduction

Consider a random closed set = C R? (Matheron, 1975) which we observe
through a bounded ‘window’ B. Important characteristics of the probability
distribution of a random set are the chord length distribution (CLD) and
the—perhaps more familiar—linear contact distribution (LCD) (Stoyan et



al. 1995 p. 206-209). These characteristics can give us some insight in the
‘architectural’ features (Delfiner 1972) of the random set, such as the shape,
size and dispersion of its various connected parts. Also, the CLD and LCD
can help us when we want to test for stationarity (translation invariance) or
for isotropy (rotation invariance).

The CLD and LCD are closely related as is established in formula (7.7)
below. With this relation, estimates for the one can be transformed into
estimates for the other. For instance, in Hansen et al. (1996) an estimator
for the LCD is developed and it is noted that an estimator for the CLD can
be obtained from it. Our primary interest is in estimation of the CLD but
we shall also argue that a transformation of our estimator of the CLD is
superior to the Kaplan—Meier estimator of the LCD of Hansen et al. (1996).
Our argument is strongly supported by simulation experiments.

The ‘classical’ definition of a chord or an intercept (Weibel, 1979, p. 315)
is a “line segment contained fully within an object and extending between
two points on the object’s surface”.

We can informally define the chord length distribution in the direction
e as the distribution of the length of the longest line segment through the
origin in the direction e which is fully contained within =, conditionally on
the event that the origin lies in =. If = is stationary and rotation invariant
then this distribution does not depend on the choice of the reference point
(the origin) or on the direction e. Hence, if we should want to test whether
= is isotropic, we could estimate the CLD in various directions and see if the
estimates differ. Note that our definition introduces a length bias; the origin
is more likely to fall in a ‘large’ part of = and hence the chord through the
origin will have a tendency to be unusually long. If we want, we can correct
for this to obtain an ‘unweighted’ CLD (see formula (2.3) below). For further
discussion on chord lengths cf. Serra (1982, Chapter X), Matheron (1975, p.
53) and Stoyan et al. (1995, pp. 207-209).

The CLD has been applied in biology to study certain features of tissue,
especially to characterize lung airspace dimensions, see Rosenthal (1989),
Lum et al. (1990) and Oldmixon et al. (1994). Estimation of the CLD can
be used also for inferential purposes in the statistical analysis of random set
models (Stoyan et al. 1995, Hansen et al. 1996).

Estimation of certain characteristics of the chord length distribution can
be done from stereological estimates of the surface to volume ratio and the
volume fraction. Such stereological estimates are obtained by straightforward
intersection and point counting methods (Stoyan et al. 1995 p. 208-209).
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These methods are simple, fast and easy to deal with, but they do have their
limitations. Stereological mean value formulas can only be used to obtain
certain low-dimensional characteristics of the CLD, whereas knowledge of
the shape of the CLD may give important additional information about the
structure of the random set under consideration.

Estimation is, of course, influenced by edge effects as the random set = is
only observed in a bounded observation window B. More specifically, when a
certain point z is used as a reference point, the chord through z could extend
beyond B. A given chord is called uncensored (u.c.) when both endpoints
are in B; singly censored (s.c.) when one of its endpoints is outside B; and
doubly censored (d.c.) when both endpoints are outside B.

Estimation from spatial data in the presence of censoring is often dealt
with by means of ‘minus sampling’ which is also known as the ‘reduced sample
method’ or the ‘border method’. In our situation this means that when we
want to estimate the probability that the length of a chord is less than r,
we restrict attention to those reference points which are further than r away
from the boundary of B. The resulting estimator can be termed the ‘reduced
sample estimator’ (Baddeley and Gill, 1997). The obvious disadvantage of
minus sampling is that much information is discarded, especially for large
values of r.

Oldmixon et al. (1994) suggest to make two separate estimates; one based
only on the uncensored chords and another one based only on the singly
censored chords. These two estimates could then be combined by taking
some convex combination of them. Oldmixon et al. (1994) do not discuss
how to do so optimally. Also, they discard doubly censored chords.

Estimation from censored observations belongs traditionally to the field
of survival analysis, where it has—among other things—resulted in the de-
velopment and study of the famous Kaplan—Meier estimator. Laslett (1982a
and b) first noted the similarity of censoring in survival studies and edge
effects in spatial statistics. Subsequently, this analogy has been exploited by
Gill (1994), Wijers (1995), van der Laan (1995), Hansen et al. (1996,1999),
Baddeley and Gill (1997) and van Zwet (1999). In particular, in Hansen et al.
(1996) a Kaplan-Meier type estimator was proposed for the linear contact
distribution. The unique correspondence between the LCD and the CLD
suggests a transformation of the estimator of the former to obtain an esti-
mator of the latter. Unfortunately, doing so involves a numerically unstable
differentiation, which is believed to cause loss of efficiency.

We want to use modern semi-parametric methods and missing data theory



but cannot do so directly. We first consider an analogous problem, derive
an NPMLE for that problem and then show that the estimator can also
be applied in the real problem. The estimator will not be the maximum
likelihood estimator in the real problem. It does—in a sense—utilize all the
available data.

The organization of this paper is as follows. In section 2, we give a more
precise definition of the chord length distribution and describe how censoring
affects its estimation. In section 3 we give a general review of nonparametric
maximum likelihood estimation for missing data models. In section 4 we then
give an estimator for the chord length distribution. We study its asymptotics
as we observe an increasing number of independent copies of the random set
ZN B. Under this regime, we prove uniform consistency of our estimator. In
section 5 we report a simulation experiment to try out our new estimator. In
section 6 we apply our estimator to protein networks in a youghurt ferment.
In section 7 we consider estimation of the linear contact distribution and
study its relation to estimation of the chord length distribution. We note
that we can transform an estimator for the chord length distibution into an
estimator for the linear contact distribution. Finally, in section 8 we report
on a simulation experiment to compare a transformation of our chord length
estimator to an estimator for the linear conatct distribution proposed in
Hansen et al. (1996). The new estimator seems best.

2 The chord length distribution

Let = be a stationary random closed set in R? and e a unit vector in R2.
The chord through a point of = in the direction e is the longest line segment
through the given point with orientation e which is fully contained within
=. We are interested in estimation of the distribution of the length of the
chord through the origin, given that the origin belongs to =. Since = is
stationary, the particular choice of reference point (in this case the origin) is
irrelevant. The ‘chord length distribution’ (CLD) is an interesting feature of
the distribution of =. The data on which we shall base our estimation will
consist of n independent realizations of = which are all observed through a
fixed compact set B.

Let &.(s,t) denote the chord in the direction e through the point (s,t) € =.
The situation is clarified in figure 1. A formal definition of the chord length
distribution is as follows. Let B be some compact set of positive area. Define,



Figure 1: The chord & )(s,t). The shaded region is (part of) the random
set =.

for all positive x
We(z) ={(s,t) € EN B : |&(s,t)| < x} (2.1)

where | (s,t)| denotes the length of the chord &.(s,t). Now define the (length
weighted) chord length distribution function as

_ E[We(z)|

Le(w) = E|=N B| (2:2)

where the expectation is with respect to the distribution of = and |.| denotes
area. It is easily seen that this definition does not depend on the choice of
B. For simplicity we fix e = (1,0) and omit e from our notation.

We call L the length weighted chord length distribution for a reason.
Recall that L may be interpreted as the distribution of the length of the
chord though the origin, given that the origin lies in =. Informally, the
origin is more likely to fall in a big part of = than in a small part. Hence
L is biased towards greater chord lengths. Consider the straight horizontal
line through the origin intersecting =, resulting in a collection of intervals of
varying lengths. Now select an interval at random in a way that does not
depend on its length. The distribution of this interval’s length is also a ‘chord



length distribution’, but this one is not wighted towards greater lengths. It
is given by
Ji 34L()
Lo(x) = 50— 2.3
o) L) 2
The subscript ‘0’ indicating ‘unweighted’ should not be confused with the
subscript ‘e’ we used earlier.

Of a chord &(s, t) through a point (s,t) € ENB we observe only £(s,t)NB.
Hence, from observation of =N B we can not in general infer W (x). However,
we do observe the length of the intersection of each chord with B and we
observe how many of each chord’s endpoints are outside of B. Define two
functions

’y(S,t) = |€(Sat)ﬂB| )
d(s,t) = # endpoints of £(s,t) outside of B. (2.5)

From observation of =N B we know, for all positive y and § = 0,1 or 2
A(y,0) ={(s,t) e EN B :y(s,t) <y, 0(s,t) =0} (2.6)
We define
E|A(y,0)|
F(y,§) = =—————=+ 2.7
(1:6) = = 25 (2.7

where again the expectation is with respect to the distribution of =. For
d=0,1,2, the F(y, ) are sub-distribution functions.

We can interpret L and F' in the following way which will be very useful
in the next section.

Lemma 1. Let (S,T) be uniformly distributed on B. If we condition on the
event (S,T) € EN B then

1. L is the distribution of [£(S,T)|;
2. F is the distribution of (y(S,T),d(S,T));
3. conditionally on £(S,T), (S,T) is uniformly distributed on £(S,T)N B.

Proof The first two statements are immediate from the definitions of L and
F. To prove the third, define, for all ¢, (N B); = {s : (s,t) € 2N B}.
Conditionally on £(S,T), T is degenerate. Also, conditional on T, it is clear
that S is uniformly distributed on (2N B)r. Now (= N B)r consists of at
least one line segments, £(S,T) N B being one of these. Hence, conditionally
on &(S,T), (S,T) is uniformly distributed on £(S,7) N B. O
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3 Nonparametric missing data problems

In this section we review some semi-parametric theory, especially with re-
gards to missing data models which are also known as information loss models
or mixture models. A standard reference on semi-parametrics is the mono-
graph by Bickel et al. (1993). Our exposition here owes much to the very
readable chapter 25 on semi-parametrics of a recent book by van der Vaart
(1998).

Let X be a random variable on some (measurable) space X with dis-
tribution @)y € Q and let C' be another random variable whose conditional
distribution given X is known to us. Let Y = ®(X, (), where ® is a known
many-to-one mapping. Y takes values in a measurable space ). Now sup-
pose we observe independent Y7, ..., Y, which are distributed as Y and from
these we want to estimate )y. We call the X; the complete data and the
Y; the incomplete or observed data. Estimation of @y € Q (or functionals
thereof) from the observations Y; is called a missing data problem.

An equivalent way to describe the situation is as follows. Consider a
Markov kernel K (dy; x). This means that K (dy; x) is a probability measure
for every x € X and K(A;z) = [, K(dy,z) is a measurable function of z
when A C YV is a measurable set. Now for all () € Q define the ‘mixture’
P =K@ by

P(dy) = KQ(dy) = /X K (dy; 2)dQ(x). (3.1)

Clearly P is a probability measure on the space ). Usually, @) is called
the ‘mixing distribution’. We suppose K is known and we observe an i.i.d.
sample Y7, ..., Y, with common distribution Py = K@)y, where (Jq is known
to lie in a class Q. The model for the distribution of a generic observation
Y is of course P = KQ = {KQ : @ € Q}. The objective, again, is to
estimate (Qg. The fact that we only observe Y and not X may cause a lack
of identifiability. We may well have that K@ = K@Q' while Q # @Q'. We shall
pay special attention to this in the next section.

Suppose we observe data Y7, ...,Y, with common distribution P, € P, where
P may be infinite dimensional. The nonparametric maximum likelihood
estimator (NPMLE) in the sense of Kiefer and Wolfowitz (1956) of P, is any



P, satisfying

/log 4% > /log 4P b vpep, (3.2)
du(P, P,) du(P, P,)

where P, is the empirical distribution of the Y7, ...,Y,. If P is not dominated
by a single sigma finite measure p, then (P, P ) must vary with its argu-
ments to dominate P and P,. For instance, we could take (P, P,) = P+ P,.
In the special missing data setup where Py = K@, we find that Qn is the
NPMLE of @y (up to identifiability) if

dKQ, dKQ
1 —dP, > lo —dP,, YQ € 0.
/ 8 QUKQ, KOn) / (K Q, KOy “

In the parametric case we usually consider the ‘score function’, i.e. the
derivative of the log likelihood. Often the maximum likelihood estimator
solves the score equations: sum of scores equals zero. The notion of a score
can be extended very neatly to the infinite dimensional case. Hence we
can also write down ‘non-parametric’ score equations. The NPMLE is of
course not fully characterized as a root of the score equations. However,
it is often easier to solve the score equations (for instance by applying the
EM algorithm) than to solve (3.2). Also, proving desirable properties of the
NPMLE such as consistency or asymptotic normality is generally done by
exploiting the fact that it solves the score equations.

Scores are defined through ‘differentiable submodels’. Following van der
Vaart (1998), we fix a P € P and consider maps ¢ — P; from a neighborhood
of 0 in [0, 00) to P such that Py = P and such that there exists a measurable
function g : X — R for which

/

where p; and p are Radon—Nikodym derivatives of P, and P with respect to a
sigma-finite measure u(P, P;), which dominates both P, and P. We call the
submodel ¢t — P, with (3.3) differentiable at P. If the integrand converges
pointwise then g = %\tzo log d P;, which is the familiar score function. Hence,
the function g in (3.3) is called the score associated with the submodel ¢ — P;.

The collection of scores associated with all differential submodels is called

1/2

2
1/2 1
3% - §gp1/2] dp—0, 110, (3:3)




the tangent set of the model P at P and denoted P(P). Lemma 25.14 in
van der Vaart (1998) asserts that from (3.3) it follows that [ gdP = 0 and
[g*dP < oo. Hence, P(P) can be identified (up to equivalence) with a
subset of LY(P) (the square integrable functions which integrate to zero).
We say that P, solves the score equations (and even call it NPMLE) if

/ gdP, = 0, Vg € P(By). (3.4)

Again we specialize to the missing data setup P = K. We first give a
few useful properties of Q@ and P = KQ.

Lemma 2. If Q is convez then so is P = KQ.

Lemma 3. Suppose that Q is conver. If Q < @' and dQ/dQ’ € Li(Q")
then t — tQ" + (1 — t)Q is differentiable at Q' with score

d@
dQ’
Lemma 4. Ift — Q; is a differentiable submodel through QQ € Q with score

function g , then t — P, = KQ; is a differentiable submodel through P =
K@ € P with score Eg(9(X)|Y).

Proof For a proof refer to Bickel et al. (1993) proposition A.5.5 or Le Cam
and Yang (1988) proposition 4. O

By lemma 4 the score equations for a missing data problem take the special
form

[ o la00ea) = T3 o (00D =0, Vo€ Q- (39

By a completely nonparametric missing data problem we mean that every
function ¢ in Lg(@n) is a score. This situation typically occurs when Q
consists of all probability measures on X'. In the nonparametric case we can
take g(z) = 14(z) — Qn(A) for any measurable set A to obtain the so-called
self consistency equations

%w=/%<<nmw = Y QuXieAy).  (36)



Solving these equations iteratively is an instance of the EM algorithm
(Dempster et al. (1977)). When we start the iterations with an initial guess
9 then all subsequent iterates will be dominated by it. Hence we can never

do better than compute a ‘sieved’ NPMLE over the model {Q € Q : Q <
(0)}

4 A consistent nonparametric estimator

We now return to the problem of estimating the chord length distribu-
tion L from n independent observations Z; N B which are all distributed
as =N B. We have no prior information about L so we initially choose
L = {all distributions on R} as our ‘model’. Let Z4, =,, ..., Z, be indepen-
dent and identically distributed as =. We observe the Z; N B. For simplicity,
let B =[0,7] x [0,1] (7 > 0). Note that doubly censored chords (of which
neither endpoint is in B) will always have length 7. Let (4, s,t) be the chord
through (s,t) in =;. Like before,

Wi(z) = {(s,t) € E;N B : [£(4, 5,t)| < x} (4.1)
y(i,s,t) = [£(i, s,t) N B (4.2)
d(i, s,t) = # endpoints of £(i, s, t) outside of B. (4.3)

Ai(y,0) ={(s,t) € ;N B :y(i,s,t) <y, §(3,s,t) =0} (4.4)

To obtain the nonparametric maximum likelihood estimator (NPMLE) of
L one should express L in terms of the law of =. Then one should compute
the NPMLE of the law of = and insert it into our expression for L. This might
be possible if we have a very simple parametric model for the distribution
of =, such as a Boolean model of discs. Without such a highly restrictive
assumption on =, maximum likelihood estimation of L appears out of the
question. We take an approach which is ‘inspired by maximum likelihood
considerations’.

Suppose we select m points independently, uniformly in each =; N B.
Thus we obtain points (S5;;,7;;) € =N B (i = 1,...,n, j = 1,...,m).
Associated with these points there are chords &(3, S,J,T ) Of these chords
we observe (possibly censored) lengths Y;; = y(i, S;;, T;;) and censoring types
A;; = 0(3, Sij, Tij). We denote the emplrlcal distribution of these observations
by Pnm.
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We first consider the special case m = 1 because the (Y1, A;;1) are indepen-
dent and identically distributed. We can describe their common distribution
F (cf. (2.7)) in a convenient way.

Imagine we fix the distribution of Z=. Then L (cf. (2.2)) and F are also
fixed distribution functions. Now, let (S, T") be a uniformly distributed point
in B. Associate with (S,7") a random variable X which is distributed ac-
cording to L. Conditional on S and X, let R be a random variable which
is uniformly distributed on the interval [S — X, S]. Now let £ be the line-
segment from (R,7T) to (R+ X,T). Note that given &, (S,7T) is uniformly
distributed on £ N B. Define Y = [N B| = |[R,R+ X]N[0,7]| and A is
the number of endpoints of ¢ that fall outside of B which is the same as the
number of endpoints of [R, R+ X] that fall outside of [0, 7]. We see that our
specific choices of B = [0,7] x [0,1] and e = (1,0) have made T irrelevant;
from (S, X, R) we can derive (Y, A)

Lemma 5. The joint distribution of Y and A s given by F as defined in

(2.7).

Proof This is an immediate consequence of Lemma 1. U

The joint distribution of (S, X, R) is of course given by

ds @

1,4(8,$,T)7L(dx) (4.5)

T

where A = {(s,z,r): [r,r + 2| N[0, 7] # 0}.
From our description of the model we can explicitly derive the distribution
of the observed data (Y, A). We introduce two very useful quantities

T —T

- dL(x) (4.6)

Gz/ ZdL(:zc) and H =
[T

00) ¥ [7,00)

and note that
Lr)+G+H=1 (4.7)
where L(77) := [/~ dL(z) := JordL(@).

We can write down the distribution of (Y, A) in terms of L restricted
0 [0,7), G and H. (Re)define functions y(s,z,r) = |[r,r + 2] N [0, 7]| and
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d(s,z,r) = the number of endpoints of [r, 7 4+ z] outside [0, 7]. Now consider
sets

S(y,0) ={(s,z,r) : y(s,z,7) =y, 0(s,z,r) =0}
={(s,z,7):x=y, 0<r<r7-—uzx}
Sy, 1) ={(s,z,7) s y(s,z,7) =1y, 0(s,xz,r) =1} = S(y,lc) US(y,rc)
S(y,le) ={(s,z,7):x >y, s<y, r=y—z}
S(y,re) ={(s,z,r):x >y, s>T7—y, =T —y}
S(r,2) ={(s,z,7) : y(s,z,r) =7, 8(s,z,7) =2}
={(s,z,r):x>71, T—x<r <0}

Integrating the distribution of (S, X, R) given in (4.5) over these sets we find,
for0<y<m,

P(dy, 0) = / . Oﬁ%m)
m y7

dsdr
z)1 ——dL(z
/:vo/so/r'sa: {0<T<TI}()7—$d()
dsdr
/ 0/ 1{0<7‘<T y}( )——L(dy) (4-8)
s r=s—y

There is no need to further evaluate this expression, but it should be noted
that it depends on L only through its restriction to [0, 7). For the distribution
of the singly censored observations we have by symmetry of right and left
censored observations

dsd dsd
P(dy,1) :/ S AL(2) = 2/ ST AL().
ANS(y,1) ANS(

Tz yre) T &

Hence, for 0 <y < 7,

dsdr
dy, / O/ 0/ 1{z>y} 1{5>T y}( )l{r =T y}( )——dL( )

[T e

2 / Y dydL(z)

T

2 ( / a L aydr(z) + %dy(}) , (4.9)

=y z
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where we used that a random variable U (say) is uniformly distributed on
[0,7) if and only if 7 — U has the same distribution.
The doubly censored observations are always of length 7.

P(Y =1.A=2)= / dsdr 1)
AnS(y,2) T T
[T dsdr
/ / 1{w>’r} 1{7’ w<r<0}( )__dL( )
z=0Js=0Jr=s—zx
[e'e) T 0
[ dadr g
z=7— Js=0Jr=r—x
*® x—-T
= dL
| Hraw
—H (4.10)

Because, by (4.7), G can be expressed in terms of L|j ) and H, we see
that the distribution of the data is fully parameterized by L|j -y and H. This
means that the model £ = {all distributions on R*} is not identified. We
could reduce £ so that it is, but then the model will no longer be completely
nonparametric. We now give a different model and a different mechanism
to create (Y;A). This new model is both completely nonparametric and
identified, while the distribution of (Y, A) remains the same.

Consider a new model £’ of all distributions on the space [0,7) U {t,1}.
By (4.7) we know that G + H < 1 and therefore we may interpret G and
H as probabilities. In fact, we identify L({1}) = P(X = ) = G and
L({{}) = P(X =1) = H. Relation (4.7) now reads

L(r )+ L({tH) + L({1}) = 1 (4.11)

We have the following missing data problem which is both completely non-
parametric and identified:

Draw X from L € L'

e if X =z € [0,7), then sample S uniformly on [0,7] and given S = s
sample R uniformly on [s — z,s]. Finally, set Y = [R, R+ X] N[0, 7]
and A equal to the number of unobserved endpoints.

e if X =1, Sample Y from 1jy,(y)2y/7> and set A =1
o if X =1, set (Y,A)=(1,2)
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It is easily verified that the distribution of the data (Y, A) thus obtained is
indeed given by formulas (4.8) to (4.10).

Recall that we have n ii.d. copies (Y;1,A;1) of (Y, A) with empirical distri-
bution P,;. The score equations for a general nonparametric missing data
problem are given by (3.6). Here, in particular, we take sets A of the form

(z,z +dz) and {I} and find for z < 7

An1 (d.’E) nl d.’E 0)

/ y/x)dLnl( ) _ Pnl(dy 1)
f (y/2)dL1(2) + (y/7) Lur({1}) ’

La({t}) = =2),
where, using (4.11),
La({t) =1-Lu(r") - Lu({f})-

Translating from estimation within the model £’ to the original model £, we
identify H,; = nl({i}) and G,1 = nl({T})

Let us now consider arbitrary m. We have observations (Yj;, A;;) (4
1,2,...,n,j=1,2,...,m). These observations are all distributed as (Y, A)
but they are certainly not independent. In spite of this, we propose as an
estimator the solution of

Lym(dz) = P, (dz, 0)
/)dan() — P dy, 1 4.12
/ f yy/x @+ /Dy D 12

where, an({T}) =1- /L\nm(Tf) - an({i})

Proposition 1. Let m > 1 be an arbitrary integer. As n tends to infinity,
Ly tends to Ly almost surely, uniformly on sets of the form [0,x] (x < 1),

{t} and {1}.

We sketch a proof, omitting technical detail. Let Pyn = KLpn, be the
common distribution of the (Y;;, A;;). The idea is to first construct a sequence

14



an which is known to converge to Py = KLy, while an > an Then we
show convergence of an to an, so that an must also converge to F,. Since
we made sure that the model is identifiable, this will imply convergence of

lA-/nm to L().
We start with an almost trivial, but important observation.

Lemma 6. As n tends to infinity, P,,, converges to Py almost surely, uni-
formly over sets of the form [0, x] X §, where x < 7 and 6 = 0,1, 2.

Proof This result follows upon noting that P,,, is just the average of
P,1,---,Pun. Each of these converges to F, in the desired sense by the
Glivenko-Cantelli Theorem. O

We now construct the comparison sequence P,,,. Define

ds dr
/ / 1{0<1‘<T y}( )
s=0Jr=s—y

and note that by (4.8) we have for the sub-distribution of the observed length
of an uncensored segment

P(dy,0) = a(y)dL(y).

Now define, for z < 7
= ——Pun(dz, 0)

nwm({1}) = Pom (A = 2).

Let Pym = KLypm. As a straightforward consequence of Lemma 6, we have

Lemma 7. As n tends to infinity, P, converges to Py almost surely, uni-
formly over sets of the form [0, x] X §, where x < 7 and 6 = 0,1, 2.

Since £’ consists of all probability measures on a given space, it is convex.
Thus the straight line ¢tL,,, + (1-— t)f/nm (0 <t <1)is a submodel of L.
Since Lym > Lym and dLyy,/dLym € L2(Lnm), it follows by Lemma 3 that
the submodel is Hellinger differentiable at Lom. By lemma 2 the straight line
tK Ly + (1-t)K Lom is a submodel of K£'. By Lemma 4 it follows that
this submodel is Hellinger differentiable as well. Moreover, by Lemma 3 it
has score (dK Ly, /dK ﬁnm) - 1.
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KL,,, is not the solution of score equations for a true likelihood of the
data (Yjj,A;;). However, it is the solution of the score equations under
the assumption that the (Yj;, A;;) are all independent. One of those score

equations is
/ dKl:"m —-1)dP,, =0. (4.14)
dKL,,,

This equation we may expand into

J G ) = KLm) + [ (S22 = 1) d L =0, (129
dK Ly, dK L,

It can be shown (cf. van de Geer (1993)) that the second summand is not
less than the Hellinger distance between K L,,, and KL,,,.

/ dK%’”” —1 | dK Ly > H(K Ly, K Lym) > 0.
dK Ly

If we can show convergence to zero of the first term of (4.15), we can conclude
that KL,,, and K Lpn converge in Hellinger distance, which is equivalent
to convergence in total variation. This is very strong convergence indeed,
and in particular it is stronger than convergence uniformly over sets of the
form [0, z] x 6. Hence convergence to zero of the first term of (4.15) implies
by lemma 7 convergence of K Lpm to KLy uniformly over sets of the form
[0, 2] x §. This, in turn, implies convergence of Lpm to Lo uniformly over sets
[0,z] (x < 7), {1} and {i}, as stated in Proposition 1. Now to show that the
first summand of (4.15) indeed converges to zero, we split it up into the the
various censoring types.

L -
/ i — | d(Ppm — K L)
dK Ly,

_ [ (ELun(dy,0) ki
— /0 (Ki : 0)) (Pom(dy, 0) — K Ly (dy, 0))

™ KLy, (dy, 1) =

N /0 (Kﬁnm(dy, 1)) Frnl 1) = K1)
™ Kf/nm(dya 2) T

* /0 (Kinm(dy, 2)) (Frnl1:2) = K (02)
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Now we chose Ly, in such a way that K Ly, (dy, 0) = P,,,(dy,0). Hence the
first term is equal to zero. Exactly the same happens with the third term.
Convergence to zero of the second term is somewhat tricky. The difficulty lies
at the point 7. However, restricting the integral to [0, o] (¢ < 7) convergence
can be obtained using Lemmas 6 and 7. Increasing o to 7 we obtain the
result for [0, 7).

This concludes our sketch of the proof of Proposition 1.

The number (m) of points that we pick in each =; N B is entirely up to
ourselves. The larger m, the smaller one would expect the variance of L,,,
to be. If (for fixed n) we ever increase m the estimator converges to

5, |4,(dz,0)
Ly(dz) = SAEE]
y/x) 47, (2) 5, [ Au(dy, 1)
/ f DAL (@) + @O SEnBl

La({1}) =

where

Lo({t}) = 1= Lo(77) = La({1}).

5 Simulations of the CLD

In this section we compare our estimator to a simple alternative. Recall
our definition of the chord length distribution in the direction e = (1,0).
L(z) = E|W(z)|/E|=N B| where W(z) = {(s,t) € EN B : |{(s,t)| < z}. It
is clear that this definition does not depend on B. From observing =N B we
cannot in general infer |W(z)|.

Define C to be the closed line segment from (—1,0) to (1,0). Let C be
the closed line segment from (—z,0) to (z,0). ‘Minkowski’ subtraction of
two sets A; and A, is defined as 4; © Ay = (A @ Ay)¢ . We shall consider
BoxC = [z,7 — z] x [0, 1], for positive x < 7. This set is called the erosion
of B by zC.

Note that W(z) N (Be zC) = {(s,t) e En(Bo zC) : |£(s,t)| < x} and
that |W(z) N (B & zC)| can be inferred from observing =N B. It is natural
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Figure 2: ‘Typical’ realizations of Boolean models

to define the following ‘reduced sample’ estimator based on an i.i.d. sample
of n copies =, =, ..., 2, of = all observed through B

ir(z) = ZiWile) N (B©0)
! Y 12in(BezC)]

We shall use a a similar, but more stable alternative

Fu(z) = > IWi(z)n(Bo zC)|/|B S zC|
>.i|Ein Bl/|B|
These estimators are ‘ratio unbiased’, meaning that they are the ratio of

unbiased estimators of the numerator and denominator appearing in the def-
inition of L(x). The are clearly (uniformly, almost surely) consistent.

(5.1)
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Figure 3: Root mean square error (RMSE) comparison of the NPMLE and
the reduced sample estimator. The thick dashed line is the estimated RMSE
of the NPMLE and the thick solid line is the estimated RMSE of the reduced
sample estimator. The thin dotted line is an average of 100 NPMLE’s, the
thin dashed line is an average of 100 reduced sample estimators. The thin

solid line is the estimand.
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In Figure 2 we see realizations of Boolean models = observed in the unit
square, B = [0,1]%. The grains are discs with a constant radius of R = 0.03
or 0.05. The underlying intensity of the Poisson process is p = 40.0 or 80.0.

We take the random set of interest to be the closure of the void of the
Boolean model Z¢. The reason for doing this, is that we know how to obtain
a closed form expression for the chord length distribution of Z¢. We use the
so called linear contact distribution function of = (Stoyan et al., 1995, p. 80)

H(z) =1 - exp(—2uRx),

where R = 0.03, 0.05 is the radius and g = 40,80 are the intensities. The
following equation relates the linear contact distribution function H of = and
the chord length distribution L of =° (Matheron, 1975, p. 53)

dH (r)

L(ry=H(r)—r . (5.2)

We have generated 100 realizations =1, =, . . ., 2199 of each Boolean model.
For each Zj we have derived the ‘NPMLE’ estimator I:gk) on the basis of (4.16)
and (4.17). We also computed the reduced sample estimator E§’“) on the ba-
sis of (5.1). The subscript “1” indicates in both cases that the estimator is
based on a single sample.

In (4.16), (4.17) and (5.1) there appear areas of sets. Because our images
are discretized we must make discrete approximations of these areas to ap-
proximate the estimators. This is straightforward. Let By = {1,2,..., N}?
be the square grid of pixels that is the discrete analog of B = [0, 1]2. Suppose
we observe Z; N By. Let (i,7) denote an element in By and let y(i,5) de-
note the observed length of the chord through (7, j) and let 6(, ) denote its
censoring type. Since we measure distances in the horizontal direction only,
y(i,7) takes values in {1/N,2/N,...;1}. Now for 0 <y < 1 and 6 =0,1,2
define

|AN (y,8)| = #{(i,7) € 1N By : y(3,) <y, 6(3,§) = d}/N?
‘El N BN| == #{(Z,]) € El N BN}/N2

Of course the |AN(y, d)| and |Z;NBy| approximate the |A;(y, )| and |E;NB]
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of (4.16) and (4.17). The EM algorithm was initiated with

~ AN((i+1)/N,0)| — |[AN(i/N
afm (i) = A D/NO = AYGNO| -y
:lﬂBN|

Tinit _ ‘A{V(LQ)‘
L) = 2 A

(1)) = 1= B (1= (1/N) - T ({3),

As a stop criterion of the EM-algorithm we simply chose a large number of
iterations, 5000, and in all cases we experienced practically no changes in the
final iterates. One could of course use more sophisticated stop criteria.

The reduced sample estimate based on =; N By is approximated by

[0y = #LEI) € By iylg) <2 DG >} ooy

#{(Z:J)EBND(27])>$} ’

where D(i,j) = (N —i)/N is the distance from (7, ) to the right boundary
of By.

All calculations are done by an extension of the routines presented in
Hansen (1996), which are available at www.math.auc.dk/~mbh/ficodifu.
One should notice that all distances in the grid are calculated using dis-
tance transformation algorithms from image analysis (Borgefors, 1984, 1986).
These provide a good approximations of Euclidean distances and are com-
putationally very efficient.

In Figure 3 we show by thin lines the pointwise averages of (1/100) >, L
and (1/100) 3", L™. In Figure 3 we also see a comparison of the estimated
root mean square errors (RMSE) of the two estimators. That is, the figure
shows

100 1/2 100 1/2
(Z(ig’”(x)—L(x))?/mo) and (Z(ig’“(x)—L(x))?/mo) .

k=1 k=1

The bias seems to be of same order for both estimators, although we notice
that the reduced sample estimator has slightly smaller bias. If we turn to the
RMSE we see that the NPMLE performs uniformly better than the reduced
sample estimator and one should also notice the NPMLE gives a rather con-
fident estimate of the whole range of the image in contrast to the reduced
sample estimator which is only available up to half the range of the image!
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Figure 5: ‘“Typical’ image of the protein network in youghurt. Physical scale
of the image is a square with sidelengt 24.73 pm.

Since, as we observed in Figure 3, the bias in both estimators is negligible,
comparison of their variances should be a good measure for their relative
performance. In Figure 4 we plot the (estimated) relative efficiency. We
notice that the variance of both estimators is of the same order, except
for very small distances where—to our surprise—the NPMLE appears much
worse. We have no explanation for the phenomenon. To the credit of the
NPMLE we point out that it yields a reasonable estimate over a much wider
range than does the reduced sample estimator.

We should point out that comparing our estimator to this very simple
reduced sample estimator is not the last word. One could surely think of
more sophisticated alternatives (such as various edge correction estimators)
that would present a sterner test.

6 Example: protein network in a yoghurt fer-
ment

The dataset to be analyzed consists of 12 microscopy images of the protein
network in a yoghurt ferment magnified x7500. It is a part of a larger data
set which was obtained to investigate the impact of heat treatment on the
microstructure of stirred yoghurt. For details see Skriver et al. (1997). This
dataset has also been analyzed in Hansen (1995), Hansen et al. (1996) and
Skriver (1995). Each picture consists of 500x500 pixels and originates from
a number of preprocessing steps performed to extract the relevant protein
structure. A typical example of the 12 images is shown in Figure 5.

On the basis of the 12 samples we computed the NPMLE L5 and the
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Figure 6: To the left estimates of the chord length distribution for the yoghurt
example, NPMLE (dotted line) and reduced sample estimator (dashed line)
are given. On the right an efficiency comparison of the NPMLE and the
reduced sample estimator for the yoghurt example is performed.

reduced sample estimator ilz. The result is shown to the left in Figure 6.
We also computed estimators l:gk) and ig’“) (k=1,2,...,12) based on single
images. On the basis of these we made pointwise estimates of the variances
of the NPMLE and the reduced sample estimator. On the right of Figure
6 we plot the relative efficiency of the NPMLE to RS estimator. We notice
that for very small distances the NPMLE is much worse. This behaviour was
also observed in Figure 4.

In Hansen et al. (1996) a Boolean model of discs with constant intensity
1 and constant disc radius R was fitted to data. This resulted in estimates
i = 80 and R = 0.03. Note that these are exactly the parameter values
we used to produce the lower left corner of Figure 2. We notice that Figure
6 and the lower left corner of Figure 3 look very much alike, although the
appearance of Figure 5 and the lower left corner of Figure 2 is quite different.

7 The linear contact distribution

Recall that = is a stationary random closed set in R? and e is a unit vector in
R2. The contact segment at a point outside Z in the direction e is the longest
line-segment, starting at that point, which does not hit =. The linear contact
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distribution (in the direction e) is the distribution of the length of the contact
segment (in the direction e) through the origin, given that the origin does
not belong to =. Let x.(s,t) denote the contact segment in the direction
e originating at (s,t) and let |x.(s,t)| denote its length. The situation is
illustrated in Figure 7.

We now formally define the linear contact distribution function. First,
define

Ve(z) = {(s,1) € B\ Z: [xc(s, )| < 7}. (7.1)
The linear contact distribution function is
E|V.(z)|
H(x) = —t (7.2)
E|B\ E|

The expectations are with respect to the distribution of Z. This definition
does not depend on B. Again, for simplicity we take e = (1,0) and drop it
from our notation. Also, we take B = [0,7] x [0,1]. We now proceed in a

(st)

Figure 7: The contact segment X(1,0)(s,t). The shaded region is (part of) the
random set =.

similar way as before. In fact, as we are running out of useful letters we shall
now re-define the functions y(s,t) and §(s,t) and the sets A(s,t). Define

y(5,t) = x(5,1) N B (7.3)
d(s,t) = # endpoints of x(s,t) outside of B (7.4)
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to indicate a contact segment’s observed length and censoring type. From
observation of =N B we ascertain for all positive y and § =0 or 1

Ay, 0) ={(s,t) € B\ Z:y(s,t) <y, 6(s,t) =}. (7.5)
We define
G(y,0) = %, (7.6)

where the expectation is with respect to the distribution of =. This definition
should not be confused with (2.7). The sets A(y, J) have a different meaning
here.

Suppose that we choose a point (S, 7") uniformly on B. Conditionally on
the event that (S,7T) € B\ Z, H is the distribution function of |x(S,T’)| and
G is the joint distribution function of y(S,T) = |x(S,T) N B| and §(S,T)
(which is the number (0 or 1) of endpoints of x(5,7T) that fall outside of B).

Now consider the following related experiment. Let (S,7') be uniformly
distributed on B and let X be independently distributed according to H.
Define x to be the line-segment between (S,7T") and (S + X, T). Define Y =
IxNB| =[S, S+X]NI[0, 7]| and let A be the number of endpoints of x outside
of B. This set-up is the familiar random censorship model. The maximum
likelihood estimator of H from observing n i.i.d. copies (Y;, A;) of (Y, A)
is the well-known Kaplan—Meier estimator. The Kaplan—Meier estimator
is a function of the empirical distribution of the (Y;,4;). In the original
problem—estimation the linear contact distribution H from observing i.i.d.
copies =Z;N B of ZN B—we replace these empirical distribution functions with
empirical ratios of areas of the form ) . |4;(y,d)|/ > ; |B\ Zi|. The resulting
estimator was introduced and studied in Hansen et al. (1996). There it is
also compared to a reduced sample estimator.

The chord lenth distribution and the linear contact distribution are very
closely related as we already noted in formula (5.2). Stoyan et al. (1987 p.
180) formulate this relation a little different. Let =¢ denote the closure of
the complement of =, which is again a stationary random closed set. Let L,
denote the unweighted chord length distribution function of Z¢ and let H be
the linear contact distribution function of = itself. Then

H(z) = /0 "(1 = Lo(#))dt/m (7.7)
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where m is the mean typical chord length

m = /mdLo(x).

First of all we note from (7.7) that H is absolutely continuous with density
h(z) = (1 — Lo(x))/m. We easily deduce

Lo(z) = 1 — h(z)/h(0). (7.8)

Now from (7.7) it also follows that h is monotone or—equivalently—that H
is concave. Non-parametric maximum likelihood estimation of a concave dis-
tribution function from right-censored observations is studied in Huang and
Zhang (1994) and Huang and Wellner (1995). Using the NPMLE derived in
these papers instead of the Kaplan—Meier estimator (and replacing empirical
distribution functions by ratios of areas) we can improve the estimator of
Hansen et al. (1996). Replacing the Kaplan—Meier estimator with its least
concave majorant will also improve the estimator.

To estimate the chord length distribution of = we can first estimate the
distribution function and the density of the linear contact distribution of =¢.
We can then apply (5.2) to obtain the weighted chord lenth distribution L
or apply (7.8) to find the unweighted version Ly. However, it seems that this
estimator will not improve the chord length estimator we obtained earlier,
as density estimation is generally awkward. It is more fruitful to work in the
other direction. First estimate the chord length distribution of Z¢ and then
use (7.7) to transform the estimate into an estimate of the linear contact
distribution of =. Intuitively, we expect such a transformation to perform
better than direct estimates of the linear contact distribution. Namely, we
can interpret a contact segment as a chord which has been subjected to
multiplicative censoring. Hence, contact segments are inherently subject to
added randomness.

To transform an estimate of L into one for H we note the following. By
(2.3) and (4.6) we have, for x < 7

"OTRTHL® Ty L) + G

Also, note that
1= / dL(t) = / FLdL(r) = / tdLo(?) / LaL(t) = m( /0 ALt +G/r)
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hence
m = (/0 dL(t) + G/7)~*

These formulas combined with (7.7) express H on the interval [0, 7) in terms
of L on the same interval and GG. These we can estimate using formulae
(4.16) and (4.17), where we recall that we indentified G with L({{}).

8 Simulations of the LCD

Suppose we observe n independent copies Z;NB of a random set ZNB. In this
section we present a simulation study to compare two estimators of the lin-
ear contact distribution. To wit, H, (the transformation of the chordlength
NPMLE) and H, (a Kaplan-Meier estimator proposed in Hansen et al.
(1996)). Similar to Section 5, we generated 100 realizations Z1,...,E1go
of each of the Boolean models illustrated in Figure 2. On basis of, say, =, we
have derived the chord length NPMLE I:gk) and transformed it into an esti-

mate I;ch) of H. For each =; we also computed the Kaplan—Meier estimate

I:II(k). The subscript “1” indicates that the estimators are based on single ob-

servations. In Figure 8 we show by thin lines the pointwise averages of FIl(k)

and H l(k). In the same figure we also see a comparison of the estimated RMSE
of the two estimators (obtained as described in Section 5). The picture is
quite clear as the bias of the two estimators seems to be of same order but the
transformed NPMLE is uniformly better than the Kaplan—Meier estimator.
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