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Abstract

The class of multivariate distributions all of whose one-dimensional projections
are of type (G is discussed and examples of such distributions presented. In the course
of this, we introduce a new representation of the cumulant function of the symmetric
multivariate stable laws as well as multivariate extensions of the Inverse Gaussian and
the symmetric Normal Inverse Gaussian laws. A concept of weak infinite divisibility
of random matrices is introduced and this leads to further examples.
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1. Introduction

Marcus (1987) introduced the concept of type GG random variables and processes and this
has been further studied by Rosinski (1991) (see also Maejima and Samorodnitsky (1999)
and references therein). In the present paper we consider a related concept that we term
type G. This coincides with type GG in the case of one-dimensional random variates.

Recall that a random variable z is said to be of type G if in law z is of the form z./s
where z and s > 0 are independent random variables with s being infinitely divisible and
z having the standard normal distribution. We refer to z/s as a G-representation of x.

The notion of random variables of type (G is closely related to that of subordination of
Brownian motion, and it is of considerable import in connection with statistical modelling
for instance in finance, cf. Barndorff-Nielsen and Shephard (2000a,b).

We shall say that a random vector x = (21, ..., ,,) and its distribution are of type G if
for any deterministic vector ¢ = (1, ..., ¢,,) the law of ¢ - & = ¢121 + ... + ¢ is of type
GG. Our aim is to study properties of the class of multivariate type G distributions.

If a multivariate distribution D is of type G and if for all ¢ € R? the Lévy measure of
5. in the G-representation z,/s. of ¢ x is known, then insight into the nature of D can
be obtained by simulating the one-dimensional projected laws of D using the techniques
discussed in the surveys given by Asmussen (1998; Sect. VIII.2) and Rosinski (2000).
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Section 2 provides various elementary properties and examples of type G random vec-
tors including a new representation of the characteristic function of the symmetric mul-
tivariate stable law as well as multivariate extensions of the Inverse Gaussian and the
Normal Inverse Gaussian laws. Section 3 extends the discussion to stochastic processes
of type G and includes examples of subordinated and stationary processes of this type.
In Section 4 we introduce a concept of weak infinite divisibility of nonnegative definite
random matrices and show that it provides additional examples of type G laws covering
some multivariate distributions commonly used in statistics.

In the sequel we shall use the following notation for characteristic functions and cu-
mulant transforms of a random variate =

x{¢1z} =E{“}
C{¢ t 2} = log E{e"*"}

K{# 1z} =log E{e~""}

with straightforward extensions of the notation to more general random variates. Vectors
will be taken as row vectors.

2. Type G : elementary properties and examples

The definition of distributions and random vectors of type G was given in Section 1. Let
Gy denote the family of m-dimensional type G laws and let G = U°G,,,. If z has law in
G,» then we say that z is of type G,,.

The following proposition summarizes elementary properties of type G laws.

Proposition 2.1

a) Linear transformations of type G distributions are again type G.

b) Let z € G,, and y € G, and suppose that x and y are independent. Then
(1;7 y) S g’m+n-

¢) Sums of independent type G variates are type G.

d) The class G is closed under convergence in law.

PROOF  The proofs of a) and b) are trivial.

c) It suffices to consider the sum of just two variates, z and y, of class G,,. We must
show that ¢- (z +y) = ¢-x + ¢y is of class G; and one sees that it is enough to prove
that if z and y are one-dimensional with independent (G-representations z1,/s; and z3,/s9,
respectively, then z + y is type G. But

e 4y o /Er + 25 = 2(s) + 59) '/



with z a normal standard random variate independent of (s1, s2).

d) Consider a sequence of vectors z, of class G,,, converging in law to a random vector
x, and let z,./s, be a G-representation of x,. Then, by assumption,

x{Ctzn} = x{¢ix}

for all ( € R™ and on the other hand we have

C(¢ $au} = K{5ICF 1.}

It follows that K{# { s,} converges for all # > 0 to some function x(#) where x(0) =
C{0fx} = 0. Hence & is necessarily the cumulant function of a nonnegative random
variable s, i.e. k() = K{0 1 s}, which implies

_ 1
C{¢ta} = R{51Cl £ o)
ie. xisof type G. O

Let M} be the closed cone of m x m nonnegative definite matrices. Let S be a
nonnegative definite random matrix with law Q and let S'/? be its symmertric square

root. Then, for z a standard normal vector in R™ independent of S, a random vector =
law

such that 2 = 252 will have probability density
pa) = [ enleD)QU) 2.1
M,

where ¢, (2;Y) denotes the probability density function of the m-dimensional normal
distribution with mean 0 and variance matrix ¥. If furthermore S is infinitely divisible
and K is the cumulant function of 5, then for every ( € R™

C{Cta} = R{5(TC 1), (2:2)

In this case, which constitutes an immediate generalization of type G, we say that = has
G-representation zS'/?. The proposition below shows, inter alia, that if an m-dimensional
random vector x has a G-representation then it is of type G,,. Note that if x has G-
representation 25"/ with S diagonal then the law of ¢ - z depends on ¢ through |c|? only.

Proposition 2.2 Let z be an m-dimensional random vector having a G-representation
282, Suppose that the infinitely divisible nonnegative definite random matrix S with
law @ has Lévy measure V concentrated on M} and that there is no nonnegative definite

matrix A # 0 such that P{S > A} = 1. Then z is a type G infinitely divisible random
vector with probability density p of the form (2.1) and Lévy density u given by

u(z) = /M+ o (2 X)V(dE). (2.3)



PRrROOF It follows trivially that for ¢ € R™, ¢-x is one dimensional type G and therefore

x 1s type G.
Since S is infinitely divisible there exists an M -valued Lévy process S(t¢) such that

S(1) " S Tor each t > 0, by formula (2.2)

I0{Cte) = IR{CTCES)
K{5CTCES()
TN

where (1) faw 2S5(t)'/2, for z a standard normal vector independent of S(¢). This verifies

the infinite divisibility of z.

In proving (2.3), without loss of generality we may assume that = has no Gaussian
component, i.e. the characteristic triplet of = is of the form (0,0,0). Now, on the one
hand, since x is a symmetric infinitely divisible random vector we have

C{ctz} = (cos(c-z) — 1)U(dz). (2.4)

Rm™

On the other hand, by the Lévy-Khintchine representation of infinitely divisible distribu-
tions on cones as given by Skorohod (1991, p. 156-157), we have

_ 1 1
K{zcTct S} = —/ (1-— e_5T’"(CT°E))V(dE).
2 Mj-n

Recalling further that for a given ¥ € M}

ez = / cos(c- z)p,, (z;¥)dz (2.5)

which implies

1 — e—3e%eT — / (1 —cos(c-x))p,,(x; ¥)dx

we find

K{%CTC IS = — / / (1 —cos(c-x))p,,(x; ¥)dzV(dY)
M}, JRm
= / (cos(c-x) — 1)/ 0, (x; X)V(dE)dz. (2.6)
m M%
The result then follows from (2.2), (2.4), (2.6) and the uniqueness of the Lévy measure. 0O

Remark 2.1 Let # be an m-dimensional random vector having a G-representation
282 Then for any n x m matrix C' the random vector z5/2CT has the G-representation



ani/c% where S, ¢ = C'SCT is an infinitely divisible n x n nonnegative definite symmetric
random matrix.

Below we present some important examples of infinitely divisible nonnegative definite
random matrices and of type G random vectors having the GG—representation.

Example 2.1 Matriz a—stable laws We now consider results on stable random ma-
trices. Let M,, be the Hilbert space of m x m real symmetric matrices with inner product
< A,B >=tr(AB). An M,,—valued random element S is said to have an a-stable distri-
bution (see Samorodnitsky and Taqqu (1994, Remark 3, p. 66)) if and only if 0 < a < 2
and for every ¥ € M,,

<1 . : Ctr(X¥0)] dr )
. wrtr(¥0) 1
C{x 15} = /SMm/ {e l—irg— 32 1(d0) +itr(300),

where SM,, is the unit sphere of MW, Oy € M,, and I is a finite measure on SM,,

For 0 < o < 1, one has fo 1+T2 7“0‘ < 00, and the centering term can be absorbed in
the constant term. Supposing further that F is concentrated on the unit sphere SM} of
the closed cone M, as a special case of the above formula for C{X 1 S} we therefore have
for every ¥ € M}

o« dr .
Cc{xi S} = / / (err(=9) 1) 32 T(d0) = / (BN 1) V(dA), (2.7
sMm}, Jo M,

where V(dA) = {-T(d©),A = rO,r = ||A|| = {tr(AA)}'/2,© = A/r and V is such that
f||A||<1 IIAl V(d/\) < 00. Then, from Skorohod (1991, p. 156-157), (2.7) is the cumulant

function of an infinitely divisible symmetric nonnegative definite random matrix S such

that for ¥ € M}

— &0 —rtr(X0) dT
K{Eis}:—/sw/o (1-¢7") S5 T(e).

Finally, by usual integration techniques we have [~ [ —rtr(E0) _ 1] flfa = —[tr(X0)]*.
Thus we have shown that for any 0 < o < 2 there exists an oz/‘)—stable —and hence

infinitely divisible— nonnegative definite symmetric random matrix S such that for ¥ €

M+

K{¥1S}= —/ +[tr(2®)]°‘/2F(d®). (2.8)

Example 2.2 Multivariate symmetric a—stable laws have a G—representation as
we now show. Let S be an a/2—stable nonnegative definite symmetric random matrix
with cumulant function (2.8) and take z = 2S5'/? for z a standard normal vector in R™
independent of S. Then, by Proposition 2.2, z is a type G random vector and, by (2.2)



and (2.8) we find that x is a multivariate symmetric a—stable random vector such that
for every ( € R™

Cfctah = RUGeTCES) = —5y [ 0ChT(@e), 29)

In particular, when S is of the form sl (i.e. I' is concentrated on the identity matrix),
where s an a/2—stable positive variable, we obtain the multivariate sub-Gaussian law as
presented in Samorodnitsky and Taqqu (1994, Section 2.5).

We observe that (2.9) gives a new parametrization of the multivariate symmetric

a—stable distributions in terms of the measure I" on Sl\/I;}*1 as an alternative to the usual

b
representation

C{c 0} =R{5¢TCH Sy =~z [ 16-01 ola0)

where ¢ is a symmetric measure on the unit sphere S,, of R™(see Samorodnitsky and

Taqqu (1994, Th. 2.4.3).

Example 2.3 Multivariate extensions of the Inverse Gaussian and symmetric Normal
Inverse Gaussian laws?

A matrix extension of the Inverse Gaussian distribution may now be obtained as follows.
Let S be an a/2—stable nonnegative definite random matrix with cumulant function (2.8),
let ¥ € M/ and let R be a random matrix with density relative to the law of S given by

p(r;X) = exp{—tr(r3) — K{Z 1 5}} (2.10)

and cumulant transform

K{®tR}=K{®+X 1S} -K{Z1S} (2.11)

In other words, the law of R is determined by exponential tilting from the law of S.

For any natural exponential family of probability laws P, an element of P is infinitely
divisible if and only if all elements of P are infinitely divisible. Hence R is an infinitely
divisible nonnegative definite symmetric random matrix. Furthermore,

For information on the Inverse Gaussian and Normal Inverse Gaussian distributions see for instance
Barndorff-Nielsen and Shephard (2000a,b) and references therein.



K{®i R} = /‘+umz®ﬂwﬁxan-:/ [tr((Z 4 ©)0)]*/T(dO)

SM;,

_ ~ —rtr(T0) dr
_ LM$A (1—e )FEETM®)
~ —rtr((49)0) dT
- /5le /o <1 - ) r1+a/2r(d®)
_ e —rtr($0) —rtr(X0) d?“
S I A (R Py )

_ _/“ (1- ) vide) (2.12)
M,
where V(d2) = ﬁdrﬂd@) is a Lévy measure, with r? = tr(Q7Q) and © = Q/r.
In the case @ = 1 R follows a matrix extension of the Inverse Gaussian distribution,
where ¥ € M} and T, a finite measure on the sphere SM | are parameters. We note that
if C' is a nonsingular m x m deterministic matrix then the random matrix C RC'T follows

again this matrix extension of the Inverse Gaussian distribution but now with parameters
(CHTEC~ and T(C~'d - (C~HT). This generalises an elementary rule for the Inverse
Gaussian (in one dimension).

Using Proposition 2.2 we have that if z is a standard normal vector in R™ independent
of R, then = zR'/? has a multivariate type G distribution with cumulant function

Cfctat= [ ) rae) - [ (54 3OO IWO). (213
SM, SMj,
and Lévy density
00 e—rtr(E@)
u(z; X, 1) = /SM$/O c,om(x;r(ﬂ)mdrF(d(ﬂ). (2.14)

The resulting law constitutes a generalization of the symmetric Normal Inverse Gaussian
distribution to dimensions greater than one.
We finally observe that for a real 7

1

C{ric-z}= [tr(£0)]*/21(dO) — / [tr((S + =72cT¢)@)]*/21(dO).  (2.15)
SM, SM7, 2

In particular, taking I' concentrated on the matrix d='/2 (T({1}) = 4), ¥ = y?Tand o = 1

we obtain

1
C{ric-a}=3dv[1 {1+ 57_2d_1/2ccT72}1/2], (2.16)

which shows that in this case the one-dimensional marginal distributions are Normal In-

. . law . . .
verse Gaussian (in other words, = zs'/?, where s has a one dimensional Inverse Gaussian

distribution independent of the standard normal variate z).



3. Type G stochastic processes

An n-dimensional stochastic process x(t) will be said to be of type G if all finite dimensional
laws of z(t) are type G, in other words if for any ¢; < ... < t, we have that (z(t1),...,z(t,)) €
gTTL'

3.1. Subordinated processes

Multivariate subordinated processes are studied systematically in Barndorff-Nielsen, Ped-
ersen and Sato (2000). Let {7'(t)};>0 be a d-dimensional subordinator, i.e. T is a Lévy

process with values in Ri, (where Ro; = [0,00)). Furthermore, let {X(#)}i0 where
X(t) = (X1(t),..., Xa(t)) and the components X;(t),..., X4(t) are independent Lévy pro-
cesses, of dimension nq, ..., ng, respectively. Then

V(1) = (Xi(Ta (1)), ., Xa(Ta(1)))

constitutes a Lévy process of dimension n; + - -+ 4+ ny.

If Xi(t) is n;—dimensional Brownian motion, for ¢ = 1,...,d, then the multivariate
subordinated process Y'(t) is of type G and for each t,Y(¢) has a G-representation, as is
easily checked.

3.2. Stationary processes of type §

In this section we consider a class of strictly stationary processes constructed in Barndorff
-Nielsen and Pérez-Abreu (1999), showing that they are of type G.

Let F be an arbitrary one-dimensional distribution function and suppose (v,w) is a
bivariate stochastic process of the form y(F(-)) where y(t) = (y1(t),y2(t)) is a bivariate
Lévy process such that y(1) has a G-representation (z1, z3)4/s where s is one-dimensional.
Then a process x = {z(l)},.g is well-defined by

z(t) = /_OO cos(At)v(dA) + /OO sin(At)w(dA) (3.1)

[e.e] — 00

where the integrals are interpreted in the sense of integration with respect to independently
scattered random measures. It was proved in Barndorff -Nielsen and Pérez-Abreu (1999)
that the process x is strictly stationary and infinitely divisible and that for ¢; < --- < ¢,

Clers s em (1) s a(tn)} = /_Oo K {%w, NE: 5} F(d) (3.2)
where ¢ = (¢1, ..., ),
B ) = €11y s 1)
and

O(t1, oy tim) = {cos(A(t; — tg)); e, =1,..m}



a symmetric nonnegative definite matrix.
Moreover, for any one-dimensional distribution D of type G there exists a strictly
stationary process z of the above kind having D as the one-dimensional marginal law.
We now show that the finite dimensional distributions of any such process are of type

G. Let z = ((t1),...,2(tm)), then by (3.2)

C{Cte -z} = /_Z K {%@ f (e, )\)s} Fd\) (3.3)

and the result follows by Proposition 2.1.
Since ¢ -z in (3.3) is type (& is has a G-representation z,/s.. An expression for the

Lévy measure V. of s. in terms of the Lévy measure V' of s is obtained by noting that,
writing 6 for %(2,

K(ops)=— [ (- vy

which together with (3.3) yields

-
—
S
bt
®
h
—
I

/Oo K{(c, \)0 1 s}F(d))

= [ [ a-erenvagra

=~ [0-e [ visenaor@y

o0

from which it follows that

Vo) = [ Ve g Py, 3:4)

By the usual Lamperti transformation, given a strictly stationary process z, one can
construct an H—selfsimilar process x*(¢) = tz(logt). Then if z is given by (3.1), the
selfsimilar process z* is itself of type G. For a suitable choice of the distribution function
F, it was shown in Barndorff-Nielsen and Perez-Abreu (1999) that the corresponding
selfsimilar process x* has second order stationary increments.

3.3. A general class and its relation to type G processes

We now present a class of examples that includes the type G processes studied by Rosinski
(1991) and references therein, showing that they are as well type G processes in our sense.
It is enough to look at the multivariate distributions of the finite dimensional distributions.

Let v be a o-finite measure on the space of nonnegative definite matrices M} and let
s be a an infinitely divisible positive random variable with cumulant function K{- 1 s}



and Lévy measure V. Suppose that there exists a random vector z in R™ whose cumulant
transform is given by

C{Ciz}= Am K {%g‘ﬂ(T I 5} v(dQ). (3.5)

Note that the expression (2.9) for the cumulant function of the multivariate symmetric
a-stable law is a special case of (3.5).
We may rewrite (3.5) as

C{cix}z/w K{%@Tisﬂ}f/(dﬂ)-

and, by the infinite divisibility of s, there must exist an infinitely divisible nonnegative
definite random matrix S such that

K{%ng“iS} :/WK{%gT@sQ}y(dﬂ).

It follows that = has a G-representation 2S'/? and is therefore of type G (cf. Proposition
2.2).

Furthermore, the Lévy measure of = is given by
wa)= [ [ entmeviagan).
Mt Jo

In the case where v is concentrated on matrices of the form y”y, v may be thought of
as a measure on R™ and we then have

cictar = [ R{G@m s buia) (3.6)

which is the definition of a type ¢ multivariate distribution as given by Rosinski (1991).
The corresponding Lévy measure of x is

o) = [ [ Tt aviaentan

4. Weak infinite divisibility and type G laws

As shown by Proposition 2.2, if S is an m x m nonnegative definite symmetric random ma-
trix and z is an m-dimensional standard normal random vector independent of z then z5'/?
is of type G provided S is infinitely divisible. However, many useful nonnegative definite
random matrices are not infinitely divisible. The Wishart matrix is a well known example.
A weaker condition on S than infinite divisibility is sufficient to imply the type G property.

10



Definition 4.1 A random m x m matrix S and its distribution are said to be weakly
infinitely divisible if for any constant vector ¢ the one dimensional random variable ¢Se’
is infinitely divisible.

Trivially, infinite divisibility of S implies weak infinite divisibility.

Example 4.1 Wishart distribution It was shown by Lévy (1948) that the Wishart
distribution is not infinitely divisible (see also Gindikin (1975) and Shanbhag (1988)).
However, the distribution is weakly infinitely divisible. To show this it is enough to consider
the standard Wishart distribution. Thus let 2y, ..., z, be independent and m-dimensional
random vectors having the standard normal distribution and let W,, = zfz; + ... 4+ 21 2,.

To see that W, is weakly infinitely divisible it is enough to prove that zIz, is weakly

infinitely divisible, which follows since for any ¢ € R™ we have cz] z;¢T = (czT)?, which

)
follows a Gamma distribution.

Proposition 4.1 A multivariate random variable z is of type G if it has the repre-

sentation = = 251/2 where S is a weakly infinitely divisible random matrix with values in
M and z is a standard normal vector in R™ independent of S.

PROOF  Since ¢Se¢? is an infinitely divisible positive random variable, via conditioning

on S we find

MCta-ep = x{(125"%"}
1
= Eexp{—§C2cScT}
_ 1
= exp K{§§2 teScy
which shows that ¢ -z & w(eSeT)?, for w a standard normal variable independent of S,

and hence x is of type G. O

Example 4.1  Wishart distribution (continued) Let S = W, where W,, was defined
above. Then, by Proposition 4.1, x = W% s of type G.
The cumulant function of W, is

K{01W,} = —g log det (I, + 20)
and hence for the cumulant function of z we find
C{C o = R{GCTCH W) = — 2 logdet(Li+ ¢"C) = — S log(1 4 [c[). (4.)
For n = 2 this is the cumulant function of the bivariate Laplace distribution.

Since (4.1) depends on ¢ through [¢|* only and since the one-dimensional Laplace dis-
tribution is of type G, with a G-representation z,/s where s follows the generalized inverse

11



Gaussian law G1G(1,0,1) (cf. Barndorff-Nielsen (1977)), we find that x possesses a G-

representation z5'/? with S = sI where [ is the identity matrix.

Example 4.2 The Inverse Wishart distribution is weakly infinitely divisible. In fact,
if S'is a nondegenerated nonnegative definite random m x m matrix such that S™' follows
a Wishart distribution, i.e. S itself has an inverse Wishart law, then for any r x m matrix
C of rank r (r < m) the law of C'SCT is inverse Wishart, cf. for instance Eaton (1983;
p. 330). In particular then, if C' = ¢, a vector of dimension of m, we have that ¢Sc” has
a reciprocal gamma distribution and this is infinitely divisible (cf. Barndorff-Nielsen and
Halgreen (1977), see also Halgreen (1979)). Furthermore, it follows from these remarks
and those at the end of the previous example that also in the present setting we have that
z has a G-representation of the form zS'/? with S = sI.

Remark 4.1 It was pointed out to us by M. Eaton, that a nonnegative definite random

matrix S which is orthogonally invariant (OSOT 'S for every orthonormal matrix O)
is weakly infinitely divisible if and only if the first diagonal element sy; of S is infinitely
divisible. Then, since the Wishart and the Inverse Wishart distributions are orthogonally
invariant, this provides another proof of the weak infinite divisibility of these laws.

Example 4.3 The multivariate t distribution (as defined for instance in Johnson
and Kotz (1972; p.144)) is the law of a random vector = having a G-representation z5~"/2
where S follows a Wishart distribution. In consequence of the result of the previous ex-
ample and Proposition 4.1 we find that x is of type G.

Example 4.4 Let (w;,w2) be a two dimensional Gaussian random vector with zero
mean and covariance matrix X. It has been shown in Vere Jones (1968) that the bivariate

Gamma distribution of (wi,w3) is infinitely divisible. Let s be a positive 1/2 stable
random variable and let y = 51/2(w%,w§). Let yi,...,y, be n independent copies of y.

Then S = yly; 4+ ... + yly, is a weakly infinitely divisible nonnegative definite random
matrix. Indeed, it is enough to show that cy”yc” = (c-y)? is infinitely divisible. Observing
that (c-y)? = s(c;wi+caw3)? = sq® where q is positive and infinitely divisible it follows, by
a result of Barndorf-Nielsen, Pedersen and Sato (2000), that the product s¢* is infinitely
divisible.

In its general form, the probability density function of the bivariate gamma law is

(¢1¢2 _ 1)>\[ 2 —(A=1)/2 =4 w1 —1hyme
TR A1 (2@ (2122) e .

The exponential form of this implies that if z is defined as 25'/? with S as above then
the characteristic function of ¢+ z does not depend on ¢ solely through |¢|* (in contrast to
what was the case in Examples 4.1 and 4.2).

12
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