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Figure 1. Experimental setup for laser cooling and trapping.

These and related questions are discussed in considerable detail in a forth-
coming paper by Bardou, Bochaud, Aspect and Cohen-Tannoudji (1999), a
preliminary version of which has kindly been provided to us by Francois Bar-
dou. (See also Bardou and Castin (1998)). We shall refer to their treatment
as the ABBC analysis.

The ABBC analysis led to the heart of the matter but through an ap-
proximate analysis, ab initio. In Sections 4 and 5 we review and extend
that work in the light of the theory of renewals and occupation times for
stochastic processes. In this we draw on well known results of that theory
as expounded, for instance, in Bingham, Goldie and Teugels (1987). Sec-
tion 2 outlines the physical setting in more detail and Section 3 speci�es
the resulting stochastic process model for a one-dimensional component of
the momentum vector. Some analogous, but simpler, models that allow of a
fairly detailed analysis are brie
y treated in Section 6, and the �nal Section
7 contains concluding remarks.

2 Laser cooling

The four most prominent cooling techniques, listed in the order they arose
chronologically, are Doppler cooling, Sisyphus cooling, VSCPT (Velocity-
Selective Coherent Population Trapping) and Raman ccoling. Doppler cool-
ing and Sisyphus cooling were capable of bringing the temperature down to
1 �K, approximately, but lower limits are not achievable by these methods
due to a recoil e�ect. With VSCPT and Raman cooling temperatures of
the order 1 nK are reached. These two methods rely heavily on the e�ects
of what in the physics literature has become to be known as 'L�evy 
ights',
and which play an important role in many other contexts in physics. In the
language of stochastics the e�ects are those associated to the properties of
the stable laws (cf. Sections 4 and 5).

For an atom subjected to VSCPT, the quantum mechanical description
of its behaviour is as a wave function  and it is this function that un-
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dergoes a random trajectory in Hilbert space, the stochastic movements
being caused by absorption and emission of photons. In this connection, see
Cohen-Tannoudji, Bardou and Aspect (1992), Castin and M�lmer (1995)
and M�lmer and Castin (1996).

The models to be described and discussed in the following refer mainly to
the Raman method. Under that type of experimental setup we have in mind
here the momentum of the atom is accurately determined, in the sense of
having a narrow probability distribution (centered on zero) and hence, due to
complementarity, the position is only vaguely determined. Correspondingly,
the stochastic processes we shall be discussing in the following sections are
to be conceived as models for the time behaviour of the momentum rather
than the position of the atom. However, this still means (recall the atomic
scales) that with high probability the position will be in a (roughly) spherical
region with a diameter of the order of 1 mm or less (the central region in
Figure 1).

Laser cooling and trapping makes it possible to measure important phys-
ical quantities with unprecedented precision and to study various types of
fundamental questions in particle physics, for instance concerning atom op-
tics, atom interferometry, atomic clocks, and high resolution spectroscopy.
The 1997 Nobel Price in physics was given for research in this area, to
Steven Chu, Claude Cohen-Tannoudji and William D. Phillips. The three
Nobel Prize Lectures, by Chu (1998), Cohen-Tannoudji (1998) and Phillips
(1998), are highly readable and informative. An earlier, less technical and
very illuminating, discussion was given by Aspect and Dalibar (1994).

For the future, the techniques hold much promise for the study of 'pure'
situations, such as systems of a small number of atoms in well-de�ned states
exhibiting quantum features.

3 Stochastic momentum model

As indicated in Sections 1 and 2, the basic description of the behaviour
of a single atom is in terms of the random 'path' of its wave function  .
Under Raman cooling (and also under VSCPT) the description can for many
purposes be reduced to the following type of model for the momentum of
the atom, as a function of t.

Let Yt be a Markov jump process with state space RD and transition
law �(x;dy) for jumps from x to y. The rate function for the waiting times
will be denoted by �; in other words, letting �(y) be the generic notation for
a waiting time in state y we have that the law of �(y) is exponential with
mean �(y)�1. We write �A(t) for the occupation time in a set A up till time
t, i.e.

�A(t) =

Z t

0
1A(Ys)ds
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Figure 2.Shape of �(y) in model type I with 
 = 2.

and Bx(�) will denote the ball in R
D with radius � and center x. We shall

refer to B0(r), for some small r, as the 'trap', this corresponding to the cold
states of the atom. Finally, let At be the random variable that is 0 if the
atom is in the trap at time t and is 1 otherwise, and de�ne qt to be the
conditional probability density of Yt given that At = 0, i.e.

qt(y) = p(y z YtjAt = 0)

The dimensions D = 1; 2 or 3 are those of physical interest, and we shall
mainly consider the one-dimensional case. The key experimental setting is
such that, up to a scaling, which is unimportant in the present context (see
further in Section 4, Footnote 3),

�(y) = cjyj
 for y 2 B0(1)

for some c > 0 and some 
 > 02. The parameter 
 is determined by the
experimental setup, the case 
 = 2 being of some special interest3. For y
outside the ball B0(1) various forms of �(y) are considered. We shall discuss
three model types:

Model type I : For some R > 1 there is a re
ecting barrier at the surface
of the ball B0(R), and �(y) = c for 1 < jyj < R.

Model type II : �(y) = c for all y with 1 < jyj.
Model type III : �(y) = 1 for 1 < jyj < R and �(y) = c(R=jyj)� for � > 0
and all y with R � jyj.

2For VSCPT cooling 
 = 2 while under the Raman technique the value of 
 is ad-
justable; in particular, experiments with 
 = 2 and 4 have been carried out.

3In some instances, however, a more realistic speci�cation of � inside the ball B0(1) is
as

�(y) = cjyj
 + c0

for c0 > 0 but very small. We shall not consider this possibility further here, but take it
up in connection with the discrete model formulation in Subsection 6.1
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Furthermore, under model types II and III �(x;dy) is of the form

�(x;dy) = �(y � x)dy

for some function �, which in the one-dimensional case may be taken as

�(�) = ��11[��=2;�=2](�)

for some positive � < 1; that is, for D = 1 the jump sizes are uniformly
distributed between ��=2 and �=24. For model type I this form is modi�ed
near the re
ecting barrier, in a natural fashion. (For model type I, only the
behaviour within the ball B0(R) is studied.)

For investigations in physics, model type I is the most important and we
shall mainly consider this. Furthermore, for simplicity, we largely restrict
attention to the one-dimensional case, i.e. D = 1.

4 The ABBC analysis

As already indicated, in the ABBC approach one considers, in momentum
space, a small ball B0(r) - the trap - centred at 0 and with radius r.

Let �1; �2; ::: and �̂1; �̂2; ::: denote the successive sojourn times in and out
of the trap, respectively, the �i-s constituting an i.i.d. sequence and likewise
for the �̂i-s. It is assumed that with su�cient accuracy one can think of
these two sequences as being independent. The degree of accuracy of the
implied approximation depends on the size of �.

It is furthermore argued that provided r << �=2 one can, to good ap-
proximation, assume that when the atom jumps into the trap from outside,
the attained momentum y will be uniformly distributed in B0(r). Letting
�(y) denote the rate of the exponential waiting time distribution in mo-
mentum state y one therefore has that the �i-s follow the distribution with
density

p(x z �) = jB0(r)j�1

Z
B0(r)

�(y)e��(y)x dy

where jB0(r)j is the volume of B0(r) and � is a generic random variable
having the same distribution as the �i-s. Let � = D=
, then

p(x z �) � ajxj�(1+�)

for some constant a. Thus, provided � < 2, the law of the �i-s belongs to
the domain of attraction of a positive �-stable distribution with a scaling
constant b depending on a. We denote the distribution function of this

4In the units chosen here, � is of the order of ~jkj where ~ is Planck's constant and k

is the optical wave-vector.
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positive �-stable law5 by S�(x; b). In particular, if 
 = 2 and D = 1, then
� = 1=2 and

p(x z �) = 1

2
r�1
(

3

2
; r2x)x�3=2

where 
(a; x) is the incomplete gamma function


(a; x) =

Z x

0
sa�1e�s ds

Hence the �i-s are in the domain of attraction of the 1
2 -stable law with scaling

constant b = 2�3r�2.

As regards what happens outside the trap, it is argued that under model
type I the �̂i-s belong to the domain of attraction of the normal law, while
under type II the domain of attraction is again that of a 1

2 -stable law with

some scaling constant b̂, as is indeed plausible in view of well-known proba-
bilistic results. Under model type III, the distribution of the �̂i-s is argued
to belong to the domain of attraction of a 1

4 -stable law when � is chosen
equal to 2.

In the calculations below we will frequently refer to the distributions
of �i and �̂i as being �-stable and �̂-stable respectively, where �̂ � � and
�̂; � 2 (0; 1). In model type II we have � = �̂ while under model type III,
�̂ < �. Mathematically, the most interesting cases are � = �̂ = 1=2 (model
type II) and � = 1=2, �̂ = 1=4 (model type III).

4.1 Occupation times

We consider here the time spent by the atom in the trap between 0 and t.

Model type I: Let �(t) denote the longest of the periods spent in the trap
before time t. For t!1, �(t) is of the order of t (cf. a well-known property
of the stable laws) and hence, in particular, �B0(r)(t)=t! 1.

Model type II: In this case

�B0(r)(t)=t!
b

b+ b̂

where b and b̂ are the scaling constants of � and �̂ , respectively.

Model type III: In this model �̂ < � and hence �B0(r)(t)=t! 0.

4.2 The 'sprinkling distributions'

To obtain more precise information on the distribution of the momentum
Yt at time t the authors derive the 'sprinkling distributions' SR and SE. In

5In a standard notation (see, e.g., Samorodnitsky and Taqqu (1994)) this law is denoted
S�(b; �; �) with � = 1 and � = 0.
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the traditional probabilistic terminology and assuming that the atom starts
outside the trap, SR and SE are, in fact, the renewal measures corresponding
to the sequences f�̂1 + :::+ �i+ �̂ig and f�̂1 + �1 + :::+ �̂i + �ig, respectively.
Denoting the corresponding renewal densities by uR and uE we have

uE(t) =

1X
i=1

pn�(t z �̂ + �)

and

uR(t) = p(t z �̂) +
Z t

0
uE(t� x)p(x z �̂)dx

The Laplace transforms of uE(t) and uR(t) are

Z 1

0
e��tuE(t) dt =

�Lf� z �̂g�Lf� z �g
1� �Lf� z �̂g�Lf� z �gg

and Z 1

0
e��tuR(t) dt =

�Lf� z �̂g
1� �Lf� z �̂g�Lf� z �g

respectively, where �Lf� z�g is the Laplace transform of the random variable
� at �.

Now consider model type I. Then �̂+� belongs to the domain of attraction
of a positive �-stable law with scale parameter b and, as the authors show
and as follows also from results of Dynkin and Lamperti (see further in
Section 5), we then have

uE(t); uR(t) � 1

b�(�)
t�(1��)

for t ! 1. In model type II �̂ belongs to the domain of attraction of a
positive �-stable law with scale parameter b̂. Thus,

uE(t); uR(t) � 1

(b̂+ b)�(�)
t�(1��)

when t ! 1. Under model type III, �̂ belongs to the �̂-stable domain,
where �̂ < �. Hence,

uE(t); uR(t) � 1

b̂�(�̂)
t�(1��̂)

when t!1.
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4.3 Trapping probabilities

Next the authors discuss the probability of �nding an atom in the trap. We
give here a similar derivation of this probability: Let Q(t) = PrfAt = 0g,
i.e. be the probability of �nding the atom in the trap B0(r) at time t. We
have

Q(t) = G(t) +

Z t

0
p(x z �̂1 + �1)Q(t� x) dx(1)

where

G(t) =

Z t

0
p(x z �̂) Prf� > t� xg dx

Relation (1) is a renewal equation, which has the solution

Q(t) =

Z t

0
G(t� x)uE(x) dx(2)

=

Z t

0
uE(t� x)

Z x

0
p(u z �̂) Prf� > x� ug du dx

The Laplace transform of Q(t) takes the form

Z 1

0
e��tQ(t) dt = �Lf� z �̂g � 1�

�Lf� z �g)
�

�
�Lf� z �̂g�Lf� z �g

1� �Lf� z �̂g�Lf� z �g
In order to study the asymptotics of Q(t) we need to distinguish between

the di�erent model types. First, consider model type I. Since �̂ has �nite
expectation and � belongs to the domain of attraction of an �-stable law
with scale b, Z 1

0
e��tQ(t) dt � ��1 � Ef�̂g

when � ! 0. Hence, when t ! 1, Q(t) � 1. In model type II both �̂
and � have distributions in the domain of attraction of an �-stable law with
� 2 (0; 1) and scale parameter b̂ and b, respectively. We have, for small �,Z 1

0
e��tQ(t) dt � b

b̂+ b
��1

which implies

Q(t) � b

b̂+ b

when t ! 1. Finally, for model type III � and �̂ have distributions in
the domain of an �-stable and an �̂-stable distribution, respectively, where
�̂ < � and �̂; � 2 (0; 1). In this case, the small � behaviour will beZ 1

0
e��tQ(t) dt � b

b̂
�(���̂)�1



Laser Cooling and Stochastics 9

which gives the large time asymptotics

Q(t) � b

b̂

1

�(1� (�� �̂))
� t�(���̂)

Note that formally for �̂ = � this expression becomes Q(t) � b=b̂, which
di�ers from the correct results as given for model type II.

4.4 Momentum distribution

Finally the authors discuss the distribution of the momentum at time t inside
the trap. We have,

p(y; 0 z Yt; At) = (2r)�1
1X
i=1

Z t

0
p(x z �̂1 + �2 + : : :+ �̂i) Prf�(y) > t� xg dx

= (2r)�1

Z t

0

1X
i=1

p(x z �̂1 + �2 + : : :+ �̂i) Prf�(y) > t� xg dx

= (2r)�1

Z t

0
Prf�(y) > t� xguR(x) dx

= (2r)�1

Z t

0
e�(t�x)�(y)uR(x) dx

= (2r)�1

Z t

0
e�(1�x

t
)t�(y)uR(

x

t
t)
dx

t
� t

= (2r)�1

Z 1

0
e�(1�u)t�(y)uR(tu) du � t

The asymptotics for p(y; 0 z Yt; At) is easily studied in terms of the asymp-
totics of uR:

uR(x) � cx�(1�~�)

where ~� = � in model types I and II and ~� = �̂ in model type III. Fur-
thermore, c = (b�(�))�1 and c = ((b + b̂)�(�))�1 in model types I and II,
respectively, and c = (b̂�(�̂))�1 in model type III. Hence, for t!1,

p(y; 0 z Yt; At) � c

2r
G~� (t�(y)) t

~�(3)

where

G�(x) =
Z 1

0
e�(1�u)xu��1 du

Our main interest lies in the large time behaviour of qt(y): First, notice
that

qt(y) = p(y z YtjAt = 0) = Q�1(t)p(y; 0 z Yt; At)
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Hence, we can give the asymptotic results for qt(y) under the three di�erent
model types appealing to the asymptotics for Q(t) derived in the subsection
above: Under model type I

qt(y) � (2rb�(�))�1 � G� (t�(y)) t�; t!1(4)

For model type II,

qt(y) � b

2rb�(�)
G� (t�(y)) t�; t!1(5)

and, �nally, for model type III,

qt(y) � �(1� (�� �̂))

2rb�(�)
G�̂ (t�(y)) t2���̂; t!1(6)

It follows that through rescaling by the transformation u = �ty, where �t is
de�ned by t�(��1

t ) = 1, one obtains a limit law for u (conditional on At = 0)
in all three cases.

5 Further analysis

We now return to the two �rst themes of Section 4 in order to discuss these
further in the light of existing probabilistic results on occupation times and
renewal theory.

5.1 Occupation times

Let us �rst consider the general momentum model introduced in Section 3.
From Ethier and Kurtz (1986), p.162, we know that Yt is a time-homogeneous
Markov process with generator given by

Af(x) = �(x)

Z
RD

(f(x)� f(y))�(x; dy)(7)

The domain of A is the space of real-valued measurable functions on R
D

which are integrable with respect to the measure �(x; dy).

Assume �(�) � 0 is bounded, and denote � := supy �(y). Introduce a
modi�cation of the transition probabilities � in the following manner:

~�(x;A) =

�
1� �(x)

�

�
�A(x) +

�(x)

�
�(x;A)(8)

Let fxkg be the Markov chain with transition law ~�. According to Ethier and
Kurtz (1986), Yt has the same �nite dimensional probability distributions
as the process Xt := xPt , where Pt is a Poisson process with intensity �
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independent of fxkg. The transition probabilites for Xt are easily derived
to be

PrfXt+s 2 A jXt = xg = e�s
1X
n=0

(�s)n

n!
Prfxn 2 A jx0 = xg(9)

Our main object of interest is relative occupation times for Yt. Denote
the occupation time in a Borel set A given that Y0 = x by

�xA(t) =

Z t

0
1A(Y

x
s ) ds(10)

The relative occupation time in question for laser cooling is

�xrel(t) := �xB0(r)
=�xBc

0
(r)(11)

We consider the occupation time distribution of Yt by exploiting the
equivalence between the processes Xt and Yt: Let A 2 B(RD ). For n 2 N0

de�ne

NA(n) = # fxi 2 A : 0 � i � ng(12)

i.e. NA(n) is the number of visits to the set A of the Markov chain fxig up
till time n. Denote the number of jumps of Xt between 0 and t by Nt and
de�ne

~NA(t) := NA(Nt) = # fxi 2 A : 0 � i � Ntg(13)

With these objects at hand, we can start to calculate an expression for
the (defective) probability density of the occupation time of Yt in a set
A. For s � t, let px0(s z �A(t)) be the (defective) probability density of
�A(t) at s when Y0 = x0 =2 A. If ~NA(t) = k we know that Xs has spent k
exponentially distributed time periods in the set A on the time interval [0; t].
These exponential waiting times are independent with intensity �, and the
sum of k periods will thus be gamma distributed with parameters k and �.
Hence,

px0(s z �A(t)) = px0(0 z ~NA(t))�0(s) +

1X
k=1

px0(k z ~NA(t))g(s; k; �)(14)

where g(s; k; �) = �k

�(k)s
k�1e��s, is the density of the gamma distribution. A

straightforward calculation with conditional probabilities shows that

px0(k z ~NA(t)) =

1X
n=k

px0(k zNA(n))p(n zNt)

= e��t
1X
n=k

(�t)n

n!
px0(k zNA(n))
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since Nt is Possion distributed with intensity �. Thus

px0(s z �A(t)) = e��t
1X
n=0

(�t)n

n!
px0(0 zNA(n))�0(s)(15)

+ e��(t+s)
1X
k=1

1X
n=k

�n+ktnsk�1

n!(k � 1)!
px0(k zNA(n))

= e��t
1X
n=0

(�t)n

n!
px0(0 zNA(n))�0(s)

+ e��(s+t)
1X
n=1

nX
k=1

�n+ktnsk�1

n!(k � 1)!
px0(k zNA(n))

= e��t
1X
n=0

(�t)n

n!
px0(0 zNA(n))�0(s)

+ e��(s+t)
1X
n=1

(�t)n

n!

nX
k=1

�ksk�1

(k � 1)!
px0(k zNA(n))

Hence, we see that the problem of calculating the occupation time of Yt is
reduced to �nding the occupation time in A for the chain fxkg.

We now consider the asymptotics for the occupation time, in the frame-
work provided by Takacs (1959): Assume we have a stochastic process which
enters states A and B alternately. The states A and B are disjoint subsets
of the state space of the process, and their union constitutes the whole
state space. The sequences of the successive sojourn times spent in the two
states are assumed to be independent positive random variables. Under some
asymptotic assumptions for the sums of the sojourn times in the two states,
Takacs (1959) provides explicit asymptotic results for the total sojourn time
in state B (or A) during the time interval (0; t). His results are directly
applicable to the laser cooling framework. We consider this in further detail:

Let state B = B0(r) where r << 1 and, as in the Section above, f�ig
denotes the sequence of sojourn times in B, while the sojourn times in state
A = Bc are denoted f�̂ig. As we saw in Section 4, the �i-s will belong to the
domain of attraction of a positive stable distribution of index � and scale
parameter b. I.e.,

lim
n!1Pr

�Pn
i=1 �i

n1=�
� x

�
= S�(x; b)(16)

Concerning the shape of the distribution of the �̂i-s, this will depend on
the choice of model. In model type I, the �̂i-s will belong to the domain of
attraction of the normal distribution:

lim
n!1Pr

�Pn
i=1 �̂i � Ef�̂gn

�n1=2
� x

�
= �(x)(17)
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where �2 is the variance of the generic variable �̂ with the same distribution
as the �̂i-s. �(x) is the standard normal distribution. In model type II, the
�̂i-s belong to the domain of attraction of a stable law of index � with scale
parameter b̂:

lim
n!1Pr

�Pn
i=1 �̂i

n1=�
� x

�
= S�(x; b̂)(18)

Finally, for model type III, the sojourn times in the 'hot' state are in the
domain of attraction of a stable law S�̂(x; b̂)

lim
n!1Pr

�Pn
i=1 �̂i

n1=�̂
� x

�
= S�̂(x; b̂)(19)

The conditions (16) and (17-19) are exactly what is needed in order to
state the following result by Takacs (1959):

Theorem 5.1 The asymptotics of �B0(r)(t) is given by

lim
t!1Pr

n�B0(r)(t)�Mjt

~Mjtmj
� s

o
= Qj(s); j = 1; 2; 3(20)

where,

Model type I. m1 = �, M1 = 1 and ~M1 = Ef�̂g. Q1(s) is the distribution
of ���1=2 where � is distributed as S�(s; b).

Model type II. m2 = 1, M2 = 0 and ~M2 = 1. Q2(s) is the distribution of

�=(� + �) where � is distributed as S�(s; b̂) and � as S�(s; b).

Model type III. m3 = �̂=�, M3 = 0 and ~M3 = 1. Q3(s) is the distribution
of ���1=2 where � is distributed as S�̂(s; b̂) and � as S�(s; b).

5.2 The 'sprinkling' distribution

Again, let f�̂ig11 and f�ig11 be independent random variables denoting the
sojourn times in the 'hot' and 'cold' states respectively. Let F (t) and F̂ (t)
be the distribution functions of �i and �̂i respectively, where we assume the
tail behaviour

1� F (t) � b`(t)

�(1� �)
� t��; t!1(21)

and

1� F̂ (t) � b̂`(t)

�(1� �)
� t��; t!1(22)

for positive constants b, b̂ and �. Note that in the case of model type II we
have � = 1=2, `(t) = 1, the constants b and b̂ being the scale parameters of
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the stable distribution. For convenience, we denote the distribution function
of � := �̂+� by F�. Further, �̂ and � are generic random variables distributed
as �̂i and �i. Introduce the two renewal processes

M̂t = max fk j �̂1 + �1 + �̂2 + : : :+ �̂k � tg(23)

Mt = max fk j �̂1 + �1 + �̂2 + : : :+ �̂k + �k � tg(24)

By convention, we let M̂t = 0 and Mt = 0 if the sets of k's to maximize are
empty. De�ne the process

St =

M̂tX
i=1

�̂i +

MtX
i=1

�i(25)

The processes M̂t and Mt decide the state of the cooling process. To see
this, introduce the times R1 = �̂1, E1 = �̂1 + �1, R2 = �̂1 + �1 + �̂2, E2 =
�̂1+ �1+ �̂2+ �2, : : : . The Ei-s denote the exit times, i.e. the times when the
process exits the cooling state. On the other hand, the Ri-s are the times
the atom returns to the cooling state. It is easy to see that if M̂t = n and
Mt = n� 1, then t 2 [Rn; En), while if M̂t = n and Mt = n, t 2 [En; Rn+1).
Thus,Mt is either equal to or one less than M̂t. In the former case the process
St is in the hot state (i.e. the waiting time to next change is distributed
as �̂n), while in the latter St is in the cooled state (i.e. waiting time to
next change is distributed according to �n+1). In the previously introduced
notation, At = 0 if and only if M̂t = Mt + 1 while At = 1 if and only if
M̂t =Mt.

We consider the asymptotic behaviour of the residual time Rt := t �
St when we are in the 'cool' state, i.e. when At = 0. Motivated by the
Dynkin-Lamperti theorem (see Bingham et al. (1987), p.361), it is natural
to consider Rt=t and show that this has a limiting distribution. We adopt the
argument in Bingham et al. (1987), p.361, to our case of two independent
sequences of waiting times: Let u � v and u; v 2 [0; 1]. We have that
ut � Rt � vt and At = 0 if and only if for some n 2 N0 and y 2 [1�v; 1�u],

nX
i=1

�i + �̂n+1 = ty

and �n+1 � t(1� y). Summing over n and integrating over y we get

Prfu � Rt=t < v; At = 0g =
Z 1�u

1�v
(1� F (t(1� y))) (F̂ � U�)(tdy)(26)

where U�(t) is the renewal measure associated to �. Observe that F̂ � U� =
UR, the 'sprinkling' distribution with density uR(t). The right hand side of



Laser Cooling and Stochastics 15

(26) can be written
Z 1�u

1�v
(1� F (t(1� y)))UR(tdy) =

Z 1�u

1�v

1� F (t(1 � y))

1� F (t)
(1� F (t))

� U�(t)
UR(tdy)

U�(t)

From Feller (1971), p. 271, we have

1� F � F̂ (t) � (b+ b̂)`(t)

�(1� �)
� t��

when t!1, and by Tauberian theory this yields

UR(t) � �(1 + �)

(b+ b̂)`(t)
� t�

when t!1. Hence, for t!1,

(1� F (t))U�(t) � b

b+ b̂

sin��

��

and
UR(ty)

U�(t)
� `(t)

`(ty)
y� � y�

implying
UR(tdy)

U�(t)
� �y��1

Finally,
1� F (t(1 � y))

1� F (t)
� 1

(1� y)�

In conclusion, we getZ 1�u

1�v
(1� F (t(1� y)))UR(tdy)!

Z 1�u

1�v

1

(1� y)�
b

b+ b̂

sin��

��
� �y��1 dy

=
b

b+ b̂

sin��

�

Z v

u
y��(1� y)�(1��) dy

Similar calculations can be worked through for the case when At = 1. Hence,
we have the following version of the Dynkin-Lamperti Theorem in the case
of two independent sequences f�ig and f�̂ig:

Theorem 5.2 Assume F and F̂ have tail behaviour as in (21) and (22).

Then the normalized residual time Rt=t := 1�St=t when we are in the 'cool'
state has a limiting distribution

lim
t!1PrfRt=t 2 (u; v); At = 0g = b

b+ b̂

Z v

u
g�(y) dy
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and, when we are in the 'hot' state,

lim
t!1PrfRt=t 2 (u; v); At = 1g = b̂

b+ b̂

Z v

u
g�(y) dy

where

g�(x) =
sin��

�
y��(1� y)�(1��)

6 Some analogous models

The approach considered in Sections 4 and 5 is based on certain approxima-
tions in relation to the basic model for the momentum, speci�ed in Section 3.
While these approximations appear highly plausible, any precise assessment
of their accuracy is not available at present.

In this section we brie
y discuss two model types that can be considered
as alternative approximations to the momentum model and that allow fairly
detailed analysis. The �rst is purely discrete and the other is of the di�usion
type.

6.1 Discrete circular models

Let x(t) be a semi-Markov process with a �nite state space S consisting of
m+ 1 points that we may view as positioned equidistantly around a circle.
We talk of x(t) as the position of the atom at time t, and one of the points in
S, denoted 0, will be considered as the 'trap'. We index the other points in
S as i = �1; :::;�k if m = 2k and as i = �1; :::;�k; k+1 if m = 2k+1. Let
qi denote the density of the waiting time distribution at site i and suppose
that q�i = qi, i = 1; :::; k. Furthermore, we let �0 be the recurrence time to
i = 0, i.e. the time it takes for the atom, having just left 0, to return to the
trap, and �0 will denote the mean value of �0.

For brevity we shall consider here only the case m = 2 and we write q
for q1. More general settings and more detailed analyses will be discussed in
a forthcoming paper. Also, we assume that the transitions between states
follow the symmetric random walk pattern, i.e. transition can take place
only to one of the two neighbouring sites on the circle, with equal probaility
1
2 . Finally, suppose the process starts at site i = 1 and we let �0(t) =R t
0 1f0g(x(s)) ds. The distribution of �0(t) then has an atom of size Prf�0 >
tg at 0 while at u > 0 the probability density of �0(t) is

p(u z �0(t)) =
1X
�=1

(Prf�0 > �g � p��(� z �0)) (t� u)q��0 (u)

+ �Q0(u)

1X
�=1

p��(t� u z �0)q�(��1)
0 (u)(27)
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where

�Q0(u) =

Z 1

u
q0(v)dv

We can mimic the ABBC treatment of model type I with c0 = 0 by
letting q0 and q be the densities of a stable law of index 1

2 and a negative
exponential law with parameter �, while the case where c0 > 0 may be
mimicked by instead letting q0 be the density of the negative exponential
distribution with a parameter �0 < �. In the latter case,

q��0 (u) = �(�)�1��0u
��1e��0u

and

p��(t z �0) = �e��t � 1
2

1X
x=0

�
x+ � � 1

x

�
1

x!
(�t=2)x(28)

It follows that (27) may be rewritten as

p(u z �0(t)) = R(t� u; u) +R0(t� u; u)(29)

where R0(t� u; u) tends to 0 at an exponential rate as t!1 and

R(t� u; u) = �0

1X
�=1

p��(t� u z �0)q��0 (u)

+ �Q0(u)
1X
�=1

p��(t� u z �0)q�(��1)
0 (u)

= (�0 + �)S(t� u; u)

with � = ��1 and

S(t� u; u) =
1X
�=1

p��(t� u z �0)q�(��1)
0 (u)

=
1

2
�0�e

�f�0u+�(t�u)g

�
1X
x=0

(�(t� u)=2)x

x!2

1X
�=0

(x+ �)!

�!

(�0u)
�

�!

=
1

2
�0�e

�f�0u+�(t�u)g

�
1X
x=0

(�(t� u)=2)x

x!
M(x+ 1; 1; �0u)
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The last factor is a special case of Kummerer's function6 M(a; c; z) de�ned
for c 6= 0;�1;�2; ::: by

M(a; c; z) = �(c)M(a; c; z)(30)

and

M(a; c; z) =

1X
s=0

a(a+ 1):::(a + s� 1)

c(c+ 1):::(c + s� 1)

zs

s!
(31)

By formulae (9.03), (9.04) and Subsection 10.4 in Olver (1974; Chapter
7) we have, for z real and tending to 1,

M(a; c; z) � za�cez=�(a)(32)

provided neither a nor 1+ a� c is a negative integer or 0. Consequently, for
t!1 we have

S(t� u; u) � 1

2
�0�e

��(t�u)
1X
x=0

(�0�u(t� u)=2)x

x!2

=
1

2
�0�e

��(t�u)I0(t
pf2�0�u(t� u)g)

where I0 is the Bessel function

I0(z) =
1X
s=0

(z2=4)s

s!2

Hence, since for z real and tending to 1

I0(z) � (2�)�1=2z�1=2ez

we �nd

S(t� u; u) � (2�)�1=2�0�e
��(t�u)f4�0�u(t� u)g�1=4t�1=2ef2�0�u(t�u)g

�1=2

All in all we therefore have

p(u z �0(t)) � (�0 + �)�0�p
2�(4�0�)1=4

(u(t� u))�1=4 � t�1=2 � e(2�0�u(t�u))�1=2��(t�u)
(33)

for t!1.

6This function is also referred to as a degenerate hypergeometric function (cf. Grads-
theyn and Ryzhik (1965; p. 1058) who use the notation �(a; c; z) instead of M(a; c; z)).



Laser Cooling and Stochastics 19

6.2 A di�usion model

We introduce a di�usion model for the atomic momentum which is a geomet-
ric Brownian motion in a neighbourhood of zero and a re
ected Brownian
motion elsewhere. The process will be re
ected at R and �R (for R > 1).
Consider the di�usion

dXt =
p
�(Xt) dBt; X0 = x � 0(34)

where

�(x) = x�1(�1;1)(x) + 1(�R;�1)[(1;R)(x) +1 � 1(�1;�R)[(R;1)(x)(35)

The di�usion process is symmetric around 0 and converges to zero a.s. when
t!1. By construction, the invariant measure of Xt is �

�1(x). This model
for the laser cooling and trapping process does not take jumps into account.
Observe that when x 2 (0; 1] the �rst passage time forXt to 1 will have heavy
tails. Indeed, since Xx

t = x exp(Bt � t=2), the �rst passage time to 1 will
be the same in distribution as the �rst passage time to zero of a Brownian
motion with drift �1=2 starting at lnx. Hence, as is well known, the tail of
the distribution will go like bt�3=2.

We consider the occupation time for Xt in [�1; 1]. It is su�cient to
consider only positive values of x since the process is symmetric around zero
and its paths will never cross the axis. Let,

�x(t) :=

Z t

0
1[0;1](X

x
s ) ds

The Laplace transform z(x) =
R1
0 exp(��t)E[exp(���x(t))] dt is a piece-

wise C2-solution to
�
x2z00(x) = 2(� + �)z(x)� 1; x 2 (0; 1)
z00(x) = 2�z(x) � 1; x 2 (1; R)

with boundary condition

z0(R) = 0

(cf. Karatzas and Shreve (1991)). The solution is: For x 2 (0; 1],

z(x) =
�

�(�+ �)
� 2

p
2� sinh((R� 1)

p
2�)

(1 +
p
1 + 8(�+ �)) cosh((R� 1)

p
2�)

�

1

1 + 2
p
2� sinh((R�1)

p
2�)

(1+
p

1+8(�+�)) cosh((R�1)
p
2�)

� exp(1
2
lnx � (1 +

p
1 + 8(�+ �))) +

(�+ �)�1
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and for x 2 (1; R].

z(x) =
��

�(�+ �)
� 1

1 + 2
p
2� sinh((R�1)

p
2�)

(1+
p

1+8(�+�)) cosh((R�1)
p
2�)

� cosh((R � x)
p
2�)

cosh((R� 1)
p
2�)

+
1

�

We can invert these transforms with respect to �:

Theorem 6.1 For x 2 (1; R] we have,

Ex
�
e���(t)

�
= 1 +

Z t

0
(e��(t�s) � 1)

�
n 1X
n=0

(�1)nqx;R;+(�) �
�
h(�;�) � q01;R;�(�)

	�n
(�)
o
(s) ds(36)

and for x 2 (0; 1],

Ex
�
e���(t)

�
= e��t +

p
x

Z t

0
(1� e��(t�s))

n 1X
n=0

(�1)nqx;R;+(�) �
�
h(�;�) � q01;R;�(�)

	�(n+1) � px(�;�)
o
(s) ds(37)

where

h(t;�) =

Z t

0
e��s

�
e�s=8

2p
2�s

+
1

4

Z s

0
e�u=8

dup
2�u

� 1

2

	 dsp
2�(t� s)

(38)

qx;R;�(t) =
1X
n=0

(�1)n
n
px<R(�)� px<R(�) � p1<R(�)

o
(�) � p�2n1<R(�)(t)(39)

px(t;�) =
1

4
e��te�t=8p 1

2
ln x<0(t=4)(40)

and px<R(t) is the density for the �rst passage time in R for a Brownian

motion starting at x < R.

We note that it is possible to invert these transforms with respect to
�. In a forthcoming paper we will do this and investigate the asymptotic
properties of the distributions.

7 Concluding remarks

We hope in the future to address some of the following points.
The ultimate aim would be to give a detailed probabilistic treatment of

the path properties of the jump process of the wave function  , which is
a stochastic process in an in�nite dimensional Hilbert space whose precise
properties are determined by quantum mechanics (cf. Section 2).
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A less ambitious aim is to analyze the basic momentum model (outlined
in Section 3) more directly, that is without the type of initial approximation
that lie in treating the successive sojourns in and out of the trap as if they
were independent. In particular, it seems of some considerable interest (in
dimensions D = 1; 2; 3) to obtain more accurate information about: (i)
the momentum distribution in the trap (ii) the e�ect of having the size of
the jumps (which is of the order of � in the notation we have adopted)
comparable to the size of the trap (iii) the relation between time behaviour
and ensemble behaviour.

Several of these points seem quite challenging, but we realize that the
interest in them may be largely mathematical rather than motivated by
essential physical questions.

Acknowledgements. We are greatly indebted to Francois Bardou, Svend
Erik Graversen, Klaus M�lmer, Jan Pedersen and Jon Wellner for extensive
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