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ABSTRACT. We give necessary and sufficient conditions for convergence
of series of centered gamma random variables. Those series provide dis-
tributions from the Lévy class L of the selfdecomposable probability dis-
tributions. Relations to Dirichlet series and the background driving Lévy
processes (BDLP’s) are investigated.

1. The gamma random variable and its selfdecomposability
property.

The well-known gamma random variables (rv) γα,λ are defined by their
densities

λα/Γ(α)xα−1 exp(−λx)1(0,∞)(x),(1)

where α > 0, λ > 0 are called shape and scale parameters, respectively, and
Γ(z) is the Euler gamma function Γ(z) :=

∫∞
0
xz−1 exp(−x)dx, <z > 0,

satisfying the equation zΓ(z) = Γ(z + 1). Of course, γ1,λ is the exponential
rv. (Note: in the sequel we use the same notation for gamma rv and gamma
probability density.) Furthermore, it can be easily seen that

E [γα,λ ] = α/λ; E [γ2
α,λ ] = α(α+ 1)/λ2; γα,λ

d
= λ−1γα,1;(2)

∗Research supported in part by the grant No. 2P03A02914 from KBN, Warsaw, Poland

1



and also that its charateristic function is

E [exp(itγα,λ)] = (1− it/λ)−α = exp

[∫ ∞
0

(eitx − 1)αe−λx/xdx

]
, t ∈ R,(3)

where E [·] denotes the expected value with respect to probability P, and
d
=

means equality in distribution. From (3) we see that

(4) γα,λ is infinitely divisible (ID) and its Lévy spectral measure M

(in the Lévy-Khintchine formula) has density αe−λx/x1(0,∞)(x).

Recall also here that the class ID of all infinitely divisible distributions is
a closed convolution semigroup (in weak topology) and it coincides with the
class of all processes Y with stationary and independent increments starting
from 0, with probability 1. If additionally Y has cadlag paths we refer to it
as a Lévy process.

For 0 < c < 1 let us define

ψc(t) := (1− ict)/(1− it) = c1 + (1− c)/(1− it), t ∈ R,

which by (3) is a characteristic function (convex combination of 1 and charac-
teristic function of γ1,1)). More precisely, ψc is ID with Lévy spectral measure
x−1(exp(−x) − exp{−c−1x})1(0,∞)(x)dx. Consequently, for each 0 < c < 1
we have a factorization γ̂α,λ(t) = γ̂α,γ(ct)ψ

α
c (t/λ) (the selfdecomposability

property). Consequently γ̂α,λ belongs to class L of all selfdecomposable
characteristic functions defined as follows

φ ∈ L iff ∀(0 < c < 1)∃(char.f. φc) φ(t) = φ(ct)φc(t).(5)

The class L is a closed subsemigroup in ID and coincides with the limiting
distributions of normalized partial sums of independent but not necessar-
ily identically distributed rv’s. In terms of random rv’s selfdecomposability
means that rv X has probability distribution (or char. f.) in class L iff

X
d
= cX + Xc, for each 0 < c < 1, where Xc is independent of X; cf. [7]

Chapter 3. Stable laws are the primary examples of class L distributions
but it is much larger and includes many classical distributions from mathe-
matical statistics like t-Student, F-Fisher, log-normal, etc.; Cf. [6] for other
examples. The fundamental characterization of the class L is via the integral
functionals of some Lévy processes. That fact is crucial for the consideration
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in this paper. Namely, for class L distributions or rv’s the following random
integral representation (RIR) holds true:

X ∈ L iff X
d
=

∫ ∞
0

e−sdY (s),(6)

where Y is a Lévy process unique in distribution with finite logarithmic mo-
ment E [log(1+|Y (1)|)] <∞. One refers to Y as the BDLP forX (background
driving Lévy process). If φ is char. f. of X and ψ is char. f. of Y (1) then
(6) equivalently reads as follows

logφ(t) ∈ L iff log φ(t) =

∫ 1

0

logψ(tu)u−1du,(7)

cf. [5], [6], [7]. For the gamma rv we have that its BDLP Y is the compound

Poisson process Y (t) =
∑Nα(t)

n=1 γ
(n)
1,λ , where γ

(n)
1,λ , n = 1, 2, . . . are independent

copies of gamma rv γ1,λ and Nα(t) is Poisson process with intensity α; cf.
[5], formula (11) and [6] formula (2.2) (note the misprints!). Consequently
Y (1) has compound Poisson distribution with (finite) Lévy spectral measure
N with density

dN(x) = αλ exp(−λx)1(0,∞)(x)dx(8)

[do not confuse here a Lévy spectral measure N with Poisson process N(t)!].
All in all we have the following:

PROPOSITION 0. Gamma rv’s γα,λ are are selfdecomposable without
Gaussian part and admit representations:

(9) γ̂α,λ(t) = (1− it/λ)−α = exp

{∫ ∞
0

(eitx − 1)αe−λx/xdx

}
= exp

{∫ 1

0

[∫ ∞
0

(eitux − 1)αλe−λxdx

]
du/u

}
.

This summurizes the study of a single gamma variable. In the next section
we will consider sequences of independent gamma random variables.
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2. Series of independent gamma rv’s.
In the sequel γαn,λn denotes a sequence of independent gamma rv’s. By

(2) they belong to L2(Ω,F ,P), i.e., to the Hilbert space of square integrable
rv’s with the usual L2 norm. Thus Xn → X in L2 if E [|Xn − X|2] → 0.
Consequently we get:

PROPOSITION 1. A series
∑∞

n=1(γαn,λn−αn/λn) of centered gamma rv’s
converges in L2(Ω,F ,P) iff

∑∞
n=1 αn/λ

2
n <∞.

Proof. From the stochastic independence and (2) we get that

E (
m∑
n=k

γαn,λn − αn/λn)2 =
m∑
n=k

αn/λ
2
n(10)

and therefore the completeness of L2(Ω,F ,P) gives the proof.

PROPOSITION 2.

(1) If
∑

n αn/λ
2
n < ∞ then

∑
n(γαn,λn − αn/λn) converges in distribu-

tion.

(2) Let denote λ∞ := limn→∞ λn and assume that
∑

n(γαn,λn − αn/λn)
converges in distribution. Then

∑
n αn/λ

2
n < ∞ if λ∞ > 0; and∑

n αn <∞ if λ∞ = 0.

Proof. Since L2 convergence implies convergence in probability which in turn
implies convergence in distribution therefore part (1) follows from part (ii) in
Proposition 1. For part (2), let us observe that by Proposition 0, formula (9),
if S is the sum of the series in question, then it has Lévy spectral measure

dM(x) =
∞∑
n=1

αne
−λnx/x1(0,∞(x)dx.(11)

(in particular the series converges for all x > 0 ). Since Lévy spectral mea-
sures integrate x2 in each finite neighbourhood of zero, we have

(12)

∫
|x|<1

x2dM(x) =
∑
n

αn/λ
2
n

∫ 1

0

λnxe
−λnxλndx =

∑
n

αn/λ
2
n

∫ λn

0

ue−udu < ∞.
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The last integral has a limit 2 when λn → ∞ which allows to conclude the
first case in part (2). Similarly, when λn → 0 then the integral divided by
λ2
n tends to 1/2 which justifies the second case. The proof is complete.

REMARK 1. One may try to prove the previous result by the Kolmogorov
Three Series Theorem. However, it leads to series of incomplete gamma
functions.

COROLLARY 1. Let αn > 0, λn > 0 be such that infn λn > 0. Then for

Sm :=
m∑
n=1

(γαn,λn − αn/λn)

the following are equivalent:

(a)
∑

n αn/λ
2
n converges;

(b) (Sm) converges in L2(Ω,F ,P);

(c) (Sm) converges in distribution;

(d) the series h(x) :=
∑

n αne
−λnx converges for all x > 0, and the integral∫ 1

0
xh(x)dx <∞.

Proof. First of all note that for the claim in Proposition 2 (ii) it is enough
to know that (λn) are bounded away from zero. Further, (a) implies (b)
by Proposition 1, and (b) always implies (c). If S is the limit of Sm in
distribution then, by Proposition 0, h(x)/x1(0,∞)(x) is the density of the
Lévy spectral measure of S. Thus it integrates x2 in any finite neighourhood
of zero. Thus (c) implies (d). The integrability condition in (d) via (12)
implies (a).

COROLLARY 2. For the sequence of partial sums

Sm :=
m∑
n=1

(γαn,λn − αn/λn),

of independent and centered gamma rv with infn λn > 0 the following condi-
tions are equivalent:

(1) (Sm) converges a.s.;
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(2) (Sm) converges in probability;

(3) (Sm) converges in distribution;

(4) (Sm) converges in L2(Ω,F ,P)

(5) M := supm|Sm| ∈ L2(Ω,F ,P)

(6) K := supn|γαn,λn − αn/λn| ∈ L2(Ω,F ,P).

Proof. Of course, the first three conditions are equivalent for any series with
independent summands, due to the Lévy Theorem; cf. for instance [2], The-
orem 2.10. Condition (3) is equivalent to (4) by Corollary 1. Finally (4),(5)
and (6) are equivalent by Hoffmann-Jørgensen’s Theorem; cf. Theorem 2.11
in [2].

3. Dirichlet series.
In complex analysis and notably in the analytic number theory an im-

portant role is played by the so called generalized Dirichlet series. These are
series of the following form:

w(z) :=
∑
n

ane
−λnz, <z > sc,(13)

where the coefiicients an are complex numbers and the exponents

0 < λ1 < λ2 < . . .→∞.

Of course, Dirichlet series can be viewed as a generalization of power series
and a special case of the Laplace transform. For λn = logn we obtain
ordinary Dirichlet series and in particular the Riemann zeta function. For
our purpose here let us recall that (13) converges in half planes, i.e. there
exist sc (possible ±∞) such that (13) converges for all z ∈ C with <z > sc
and diverges for all z with <z < sc. The line <z = sc is referred to as
the abscisa of convergence of the Dirichlet series. The functions w(z) are
holomorphic in the half plane of convergence. Analogously one defines the
line <z = sa as the abscissa of absolute convergence; cf. for more details
[1] Chapter 8, [8] Chapter 9 or the original work of Harald Bohr in [3] on
Dirichlet series and almost periodic functions.
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COROLLARY 3. If the series
∑

n |an|/λ2
n < ∞ converges then the gen-

eralized Dirichlet series
∑

n ane
−λnz converges absolutely for <z > 0. If

additionally the series
∑

n |an| diverges then limm→∞ (
∑m

n=1 |an|)
1/λm = 1.

Proof. The first part follows from Corollary 1 (a) and (d). The second we
get from [1] Theorem 8.3.

Of course, we have similar statements for ordinary Dirichlet series, i.e.
when λn = logn.

REMARK 2. Note that having absolutely converging Dirichlet series w(z)
we have class L distributions with w(x)/x1(0,∞)(x) as the density of the
Lévy spectral measure M provided the integrabilty condition in Corollary
1(d) is satisfied. Moreover, −w′(x) is the density of the corresponding
measure N from the BDLP Y (N is the Lévy spectral measure of Y (1)).
Conversely, converging series of centered gamma rv’s provide examples of
summable Dirichlet series in <z > 0. Cf. [5] for some examples.

4. Thorin’s class T . Generalized gamma distributions (called also
Thorin’s class T -distributions) are defined via a formula for the moment
generating function; see [4], formula (3.1.1) on page 29. For our purpose
here it is enough to quote the following fact:

T is the smallest class of distributions on R
+ that contains (shifted) gamma

distributions and is closed with respect to convolutions and weak limits;

cf.[4],Theorem 3.1.5. Furthermore, the so called Pick functions (complex
analysis) are the main analytic tool. These are functions ψ(z) that are an-
alytic in the upper complex half-plane =z > 0 and have nonnegative imagi-
nary part there; cf. [4], page 20 for more details. From our point of view we
obviously have that:

converging series of centered gamma variables have distributions in T ;(14)

their Lévy spectral measures have densities given by Dirichlet series of the
form (13) or their BDLP Y are infinite series of compound Poisson processes.
To conclude what part of class T we get from weak limits of infinite series
of centered gamma random variables we need to describe limits of sequences
of Dirichlet series of the form (13). One can also ask when densities h(x),
x > 0, of Lévy spectral measures M (in class L) admit expansion in form
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of a Dirichlet series (13), with coefficients λn not neccesarily increasing to
infinity. Equivalently, one may ask which holomorphic functions f(z), in the
half plane <z > 0 with h(x) > 0, for x > 0, and satisfying the integrability
condition of Lévy spectral mesures, have representation in terms of Dirichlet
series. It seems that the original works of Harald Bohr on almost periodic
functions and Dirichlet series are still the best reference when one tries to
answer those questions.
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