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What could be done if �(x) is discontinuous or not di�erentiable at some points? The
Langevin di�usion is then not de�ned at these points, and the conditions for Lt to have
stationary distribution � are not ful�lled. The main idea of this paper is then to use the
Langevin proposal, dL�

t = 1
2r log ��(L�

t )dt + dBt, where �
� is a smoothed approximation

of the target distribution �, and then accept with respect to the original target distribution
� in the MH algorithm. The smoothing of � makes it possible to use gradient information
of � in the proposals to better guide the state vector towards the modes of �. This may
not be possible in the case of discontinuous �: for example, if the target distribution has a
step discontinuity and is otherwise at, the Langevin di�usion is zero a.e. One might expect
that continuous but steep target distributions could give rise to slow Langevin derived MH
algorithms. Therefore, we also investigate the possible e�ect of using over-smoothed targets
in the Langevin proposal.
The approach of smoothing discontinuous �(x) is illustrated on the classical model of

Strauss (Strauss 1975), for which two di�erent ways of smoothing are proposed. Let x =
(x1; : : :xn) and xi 2 [0; 1]s and let � be the Strauss model with a �xed number of points, n,
which has density

�(x) = �n
i=1�

n
j=i+1h(dij) ; dij = kxi � xjk;

where the repulsion function h(dij) is de�ned by

h(dij) =  + (1� )h(dij)

h(dij) = I[r;R](dij)

for  2 [0; 1] and I[a;b](d) is equal to 1 if a � d � b, zero otherwise. We will use either the
Euclidean distance on Rs or the distance de�ned on the torus [0; 1]s given by

dij =

vuut sX
l=1

(min(1� jxi;l � xj;lj; jxi;l � xj;lj))2:

We take R to be the maximal value of dij , i.e.
p
s for the non-torus and 1

2

p
s for the torus

geometry.

2. Smoothed MALTA Algorithm for the Strauss model

The proposal step in the MH algorithm will be generated by a discretized version of the
Langevin di�usion

dLt =
1

2
r log �(Lt)dt+ dBt: (1)

where �L is usually chosen to be equal to �(x). However this choice of �L is not always useful.
In our example, we will obtain an almost everywhere zero drift, since r log(�(x)) = 0 a.e.
The MALA algorithm will thus coincide with the random walk MH. Instead of choosing the
target distribution � in (1), we will use a smooth approximation �� of �. We consider the
parametrised family of densities

��(x) = �n
i=1�

n
j=i+1h�;(dij)

with

h�;(dij) =  + (1� )h�(dij);
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where h� is a smoothed version of h, depending on a smoothing parameter �. We choose � to
be the angle of the tangent of h� in r. Di�erent choices of h� could be conceived. We propose
here two di�erent classes. First de�ne h� as an exponential S-shaped approximation of h

h�(d) =
1

1 + e�k(�)f(d)
; d 2 [0; R]

where the function f(d) is given by

f(d) =
R� r

R� d
� r

d
;

and the function k(�) is chosen as follows: The slope in r of h�(d) is h
0
�(r) = tan(�). An easy

calculation shows that

h0�(d) = k(�)f 0(d)h2(d)e�k(�)f(d):

Since f(r) = 0 and h�(r) =
1
2 we get

h0�(r) =
1

4
k(�)f 0(r):

But

f 0(r) =
1

r
+

1

R� r
=

R

r(R� r)
;

and thus
1

4
k(�) � R

r(R� r)
= tan(�) =) k(�) =

4

R
tan(�)r(R � r):

An alternative choice for h� is the arctangent smoother

h�(d) =
1

2

�
1 +

2

�
arctan(k(�)(x � r))

�
;

with

h0�(d) =
1� 

�

k(�)

1 + k(�)2(d� r)2
:

Here,

h0�(r) =
1

�
k(�)

so that we obtain

k(�) = � tan(�):

Our idea is to tune the smoothing parameter � to optimise the MH algorithm in terms of
speed of convergence. First we spell out details of the algorithm. At step k+1, the proposal
used in the MH algorithm is the Euler discretization of the Langevin di�usion process (1)
de�ned for ��(x) given by

Xk+1 =Xk +
1

2
r log ��(Xk) � +

p
� "k

where "k � N (0; In�s) and In�s is the identity matrix of dimension n� s.
3



We now compute the drift term in the di�usion process b(x) = 1
2r log ��(x) �, where

[b(x)]i = [r log ��(x)]i =
d

dxi

nX
k=1

nX
j=k+1

log(h�;(dkj))

=

nX
j 6=i

(1� ) d
ddij

h�(dij)

h�;(dij)

d

dxi
dij =

nX
j 6=i

b0(dij)
d

dxi
dij :

For the exponential smoother we have

b0(d) =
(1� )h2�(d)k(�)

�
R�r

(R�d)2 +
r
d2

�
e�k(�)f(d)

h�;(d)
;

while for the arctangent smoother we get

b0(d) =
(1� )k(�)

h�;(d)�(1 + k(�)2(d� r)2)
:

Next we have to distinguish between the torus and non-torus geometry. For the non-torus
case the derivatives of dij are

d

dxi
dij =

d

dxi

q
(xi � xj)T (xi � xj) = (xi � xj)

dij
:

The torus case on the other hand has derivatives

[
d

dxi
dij ]l =

1

dij
min(1� jxi;l � xj;lj; jxi;l � xj;lj)

(
sign(xi;l � xj;l) jxi;l � xj;lj < 0:5;

�sign(xi;l � xj;l) jxi;l � xj;lj � 0:5:

As mentioned in the introduction, Roberts & Rosenthal (1995) suggested an adjustment
of MALA called MALTA. In this algorithm the drift term is replaced by the truncated drift
term

bt(x) = (tr
p
�) ^ b(x);

where tr is a given truncation parameter.
In Figures 1 and 2 we plot the drift term for the two di�erent smoothing functions and

various values of �. The case � = 0 corresponds to the random walk proposal (zero drift
everywhere); for � = 90, the drift term is zero in all points d 6= r, while it is not de�ned for
d = r. We will later see that the optimal values of � will be for � close to 90�. Here, the drift
term has the largest values in a small region centred in r. This means that points separated
approximately by r are most strongly repulsed.

3. Criteria of convergence: Asymptotic variance

Suppose that we want to estimate m = E� fg(X)g for some integrable function g(x).
Under certain regularity conditions the Central Limit Theorem for Markov chains holds (see
e.g. Kipnis & Varadhan (1986)), so that as T !1,

p
T

 
1

T

TX
t=1

g(X t)�m

!
! N (0; �2)

in law, where the asymptotic variance �2 is given by �2 = 0+2
P1

k=1 k and, under station-
arity, k = Cov(g(X i); g(X i+k)) for all i.
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Figure 1. The truncated drift term for various values of the smoothing pa-
rameter � in the torus case for the exponential smoother having  = 0:1,
r = 0:3, � = 0:00625 and tr = 1:5.
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Figure 2. The truncated drift term for various values of the smoothing pa-
rameter � in the torus case for the arctangent smoother having  = 0:1,
r = 0:3, � = 0:00625 and tr = 1:5.

The asymptotic variance will be used as the criteria of convergence and for comparison
between di�erent algorithms. It can be estimated by the initial positive sequence estima-
tor (Geyer 1992)

�̂2 = ̂0 + 2̂1 +

MX
k=1

�̂k;

where �̂k = ̂2k + ̂2k+1 and M is the largest integer such that �̂k are strictly positive for
k = 1; : : : ;M . We shall compare various algorithms in terms of �̂2, preferring those for which
this is smaller. We shall tune � to minimize �̂2.
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4. Simulation study

The function g is chosen to be the number of pairwise overlaps,

g(X) =

nX
i=1

nX
j>i

1[r;R](dij);

which is the su�cient statistic of the conditional Strauss model. The asymptotic variance
is computed for di�erent values of � with the other parameters �xed. The optimal � which
minimizes the asymptotic variance is found. If the smoothed MALTA algorithm is to be
useful, the optimal value of � should be di�erent from 0� which corresponds to a random
walk proposal. Furthermore the associated �̂2� should be signi�cantly smaller than �̂20� , where
�̂� denotes the estimated asymptotic variance when the smoothed MALTA algorithm with
smoothing � is used.
There are a number of other parameters to vary, including the model parameters n, s, r

and  and the algorithm parameters � and tr. We �x tr to 1:5. Simulation studies indicate
that the results are not too sensitive to variations in tr. However, a too high value of tr could
cause the state vector to get stuck in certain point con�gurations. The parameters r and
 determine the degree of model complexity: a high value of r and a low value of  makes
it hard to sample from �. We have chosen to �x  = 0:1 and then adjust r. The other
parameters are determined in the following way. First, �x n 2 f2; 3; : : : ; g and s 2 f1; 2g. We
choose the value of r, so that a reasonable di�culty in sampling is obtained; so let

r =

(
r0(1=n)

(1=s) for the torus geometry;

r0(1=(n� 1))(1=s) for the non-torus geometry:

r0 = 1 gives approximately the largest feasible value of r in a hard core model with n points
in [0; 1]s. A larger value of r would make it very hard to place the n points. The factor r0
must be adjusted somewhat as a function of n and s to keep the same di�culty in sampling;
e.g for n equal to 3 and 10, we choose r0 to be 0:9 and 0:6 respectively. The model complexity
can be measured by the acceptance probability of the algorithm. For � we choose an optimal
�opt by simulations over a range of � values and � = 0�. So �opt is chosen as the � minimizing

�0� . The layout of the experiments is given in Table 1. The P [accept] column contains the
average acceptance probabilities of a rejection sampler with uniform proposals.

Experiment n s Torus �opt r P [accept]

1 3 1 N 0.0062 0.450 0.037
2 3 1 Y 0.0062 0.300 0.057
3 3 2 N 0.0125 0.636 0.065
4 3 2 Y 0.0250 0.520 0.012
5 5 1 N 0.0039 0.200 0.007
6 5 1 Y 0.0020 0.160 0.012
7 5 2 N 0.0039 0.400 0.016
8 5 2 Y 0.0039 0.358 0.004
9 10 1 N 0.0005 0.067 0.0009
10 10 1 Y 0.0005 0.060 0.002

Table 1. The ten experiments.
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Experiment 1 2 3 4 5 6 7 8 9 10
�̂opt 70� 70� 50� 80� 50� 80� 85� 80� 89� 80�

�̂opt 4.16 3.52 31.8 3.38 21.7 11.3 58.3 18.1 104.8 50.3
�̂0� 4.87 4.03 35.6 4.03 23.6 12.9 61.8 22.7 115.6 55.4

Table 2. The optimal values for � and � for the exponential smoother.

The results from the 10 simulation experiments is given in Figure 3 for the exponential
smoother and in Figure 4 for the arctangent smoother. The plots in the �gures summarise the
result of 10 independent experiments, each with 2� 105 iterations after a burn-in of 2� 103

iterations. Each chain produces estimates of �̂� for a range of di�erent values of �. The
average value of these ten estimates is indicated by a dot, while estimated 95% con�dence
intervals for �� are indicated by the vertical lines through each dot.
A reduction of asymptotic variance with respect to �0� is seen in all the 10 experiments.

The optimal value of � varies, but in the torus case it seems to be stable around 70�-80�,
see Table 2. The torus model with exponential smoother gives the largest reduction in as-
ymptotic variance, about 15%. The arctangent smoother gives quite similar results, however
the reduction in asymptotic variance seems to be smaller. This indicates that the smoothed
Langevin proposal is useful in a MALTA setting.
In the next example we consider the smoothing of a continuous but steep target distribution

�. We take the distribution �� for � near 90� as target distribution in the torus model with
the exponential smoother. In Figure 5, we see that for target �89� the optimal � was around
70� and there is a reduction in asymptotic variance of about 20%. Again this is an indication
that smoothing helps.
Finally, a larger simulation study is performed, using the estimated parameters obtained

for the Spanish town example (Ripley 1988). Here, n = 69, s = 2 and  and r are estimated to
0:5 and 0:0875 respectively. The experiment consists of a total of 45 chains of length 2� 105

iterations after a burn-in of 2 � 103 iterations. The torus geometry and the exponential
smoother are considered. See Figure 6 for the simulation results for di�erent values of �. The
optimum �opt seems here to be around � = 89�. This indicates that the optimal value of �
gets closer to 90� as n!1 or r! 0.

5. Concluding remarks

In the non-torus case the point pattern proposed by the smoothed MALTA algorithm is
often rejected because some points are, due to repulsion, \forced" outside the legal region
[0; 1]s. We expect therefore the smoothed MALTA algortihm to perform better on the torus
geometry. The simulation results in Figures 3 and 4 con�rm this. The simulations indicate
a reduction of approximately 15% of the asymptotic variance for the torus case when the
exponential smoother is used with respect to random walk MH. The optimal � for the torus
case and the exponential smoother seems to be stable around 70�-80� for small n, and seems to
increase (Spanish towns example) closer to 90� for larger n. The performance of the smoothed
MALTA algorithm as compared with random walk MH (corresponding to the � = 0� case),
may depend further on the other model and algorithm parameters. A larger simulation study
is needed to see the dependence of �opt on di�erent model parameters and on tr.
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The value �opt, chosen to minimize ��=0� , may not minimize �� for � 6= 0�. Our results
may therefore be improved by �nding a better �. However, a simulation study of experiment 2
showed that the optimal � did not di�er for � = 0� and � = 70�.
We conclude with a very important remark: When comparing the smoothed MALTA

algorithm with the more simpler MH algorithm with random walk proposal, we do not take
into account that the computation time of each iteration is larger. A look-up table for the
drift term, initialised at the beginning of the simulation program, does however reduce the
additional computation time considerably.

Acknowledgements: We thank Jesper M�ller for helpful comments.
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Table 1 using the exponential smoother for various values of �.

9



•

•
•

• • •

•

•

•

•
•

alpha

A
s
y
m

p
to

ti
c
 v

a
r

0 20 40 60 80
4

.5
4

.7

n =  3 ,  s =  1 ,  torus =  N

••
• •

• •

•
• •

•
•

alpha

A
s
y
m

p
to

ti
c
 v

a
r

0 20 40 60 803
.9

5
4

.1
0

4
.2

5

n =  3 ,  s =  1 ,  torus =  Y

•

•
•

• •
•

•

•
•

••

alpha

A
s
y
m

p
to

ti
c
 v

a
r

0 20 40 60 80

3
3

.0
3

4
.5

n =  3 ,  s =  2 ,  torus =  N
•• •

•
•

•

• • •

•

•

alpha

A
s
y
m

p
to

ti
c
 v

a
r

0 20 40 60 80

3
.5

3
.7

3
.9

n =  3 ,  s =  2 ,  torus =  Y

•

•
• •

•

• •
•

•

•
•

alpha

A
s
y
m

p
to

ti
c
 v

a
r

0 20 40 60 80

2
3

.0
2

4
.0

n =  5 ,  s =  1 ,  torus =  N

•• •
•

•

•

•

•

•
•

•

alpha

A
s
y
m

p
to

ti
c
 v

a
r

0 20 40 60 80

1
2

.2
1

2
.6

1
3

.0

n =  5 ,  s =  1 ,  torus =  Y

•

•

•
•

•

•

•

•

•
•

•

alpha

A
s
y
m

p
to

ti
c
 v

a
r

0 20 40 60 80

5
9

6
0

6
1

6
2

6
3

n =  5 ,  s =  2 ,  torus =  N

••
•

• •
•

•

• •

•

•

alpha

A
s
y
m

p
to

ti
c
 v

a
r

0 20 40 60 80

2
0

.0
2

1
.5

2
3

.0

n =  5 ,  s =  2 ,  torus =  Y

•

•

•
•

• •

• •
•

•

•

alpha

A
s
y
m

p
to

ti
c
 v

a
r

0 20 40 60 80

1
1

0
1

1
4

1
1

8
1

2
2

n =  10 ,  s =  1 ,  torus =  N

•
•

•
•

• • •
•

•

•

•

alpha

A
s
y
m

p
to

ti
c
 v

a
r

0 20 40 60 80

5
4

.5
5

6
.0

n =  10 ,  s =  1 ,  torus =  Y

Figure 4. Asymptotic variances �̂� for the ten experiments corresponding to
Table 1 using the arctangent smoother for various values of �.
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