
ISSN 1398-599X MPS-RR 1999-11 www.maphysto.dk

P
erfect

M
etro

p
o
lis-H

a
stin

g
s
sim

u
la
tio

n
o
f
lo
ca
lly

sta
b
le

p
o
in
t
p
ro
cesses

W
ilfrid

S
.
K
en
d
a
ll,

D
ep
a
rtm

en
t
o
f
S
ta
tistics,

U
n
iv
ersity

o
f
W
a
rw
ick

,

C
ov
en
try

C
V
4
7
A
L
,
U
K

J
esp

er
M
�
ller,

D
ep
a
rtm

en
t
o
f
M
a
th
em

a
tica

l
S
cien

ces,
A
a
lb
o
rg

U
n
iv
ersity,

F
red

rik
B
a
jers

V
ej
7
E
,
D
K
-9
2
2
0
A
a
lb
o
rg
,
D
E
N
M
A
R
K

M
a
rch

2
5
,
1
9
9
9

A
b
s
t
r
a
c
t

In
th
is
p
a
p
er

w
e
in
v
estig

a
te

th
e
a
p
p
lica

tio
n
o
f
p
erfect

sim
u
la
tio

n
,
in

p
a
rticu

la
r
C
o
u
p
lin

g
fro

m
T
h
e
P
a
st

(C
F
T
P
),
to

th
e
sim

u
la
tio

n
o
f
ra
n
d
o
m

p
o
in
t
p
ro
cesses.

W
e
g
iv
e
a
g
en
era

l
fo
rm

u
la
tio

n
o
f
th
e
m
eth

o
d
o
f
d
o
m
-

in
a
ted

C
F
T
P

a
n
d
a
p
p
ly

it
to

th
e
p
ro
b
lem

o
f
p
erfect

sim
u
la
tio

n
o
f
g
en
-

era
l
lo
ca
lly

sta
b
le

p
o
in
t
p
ro
cesses

a
s
eq
u
ilib

riu
m

d
istrib

u
tio

n
s
o
f
sp
a
tia

l
b
irth

-a
n
d
-d
ea
th

p
ro
cesses.

W
e
th
en

in
v
estig

a
te

d
iscrete-tim

e
M
etro

p
o
lis-

H
a
stin

g
s
sa
m
p
lers

fo
r
p
o
in
t
p
ro
cesses,

a
n
d
sh
ow

h
ow

a
va
ria

n
t
w
h
ich

sa
m
p
les

sy
stem

a
tica

lly
fro

m
cells

ca
n
b
e
co
n
v
erted

in
to

a
p
erfect

v
ersio

n
.

A
n
a
p
p
lica

tio
n
is
g
iv
en

to
th
e
S
tra

u
ss

p
o
in
t
p
ro
cess.

K
e
y
w
o
rd
s:

c
o
u
p
l
in
g
f
r
o
m

t
h
e
pa
st

(C
F
T
P
);

d
o
m
in
a
t
e
d
c
f
t
p
;
e
x
a
c
t

sim
u
l
a
t
io
n
;
l
o
c
a
l
st
a
b
il
it
y
;
m
a
r
k
o
v
c
h
a
in

m
o
n
t
e
c
a
r
l
o
;
m
e
t
r
o
p
o
l
is-

h
a
st
in
g
s;
p
e
r
f
e
c
t
sim

u
l
a
t
io
n
;
pa
pa
n
g
e
l
o
u
c
o
n
d
it
io
n
a
l
in
t
e
n
sit

y
;
r
e
-

a
l
iz
a
b
l
e
m
o
n
o
t
o
n
ic
it
y
;
spa

t
ia
l
b
ir
t
h
-a
n
d
-d
e
a
t
h
p
r
o
c
e
ss;

spa
t
ia
l
p
o
in
t

p
r
o
c
e
ss;

st
o
c
h
a
st
ic

m
o
n
o
t
o
n
ic
it
y
;
st
r
a
u
ss

p
r
o
c
e
ss.

A
M
S
S
u
b
je
c
t
C
la
ssi�

c
a
tio

n
:
6
2
m
3
0
,
6
0
g
5
5
,
6
0
k
3
5

1
In
tr
o
d
u
c
tio

n

M
a
n
y
u
sefu

l
sim

u
la
tio

n
a
lg
o
rith

m
s
fo
r
sp
a
tia

l
p
ro
cesses

a
re

in
d
irect

a
n
d
d
eliv

er
o
n
ly

a
p
p
rox

im
a
te

resu
lts,

in
th
e
sen

se
th
a
t
th
e
d
esired

d
istrib

u
tio

n
is
th
e
eq
u
i-

lib
riu

m
d
istrib

u
tio

n
o
f
a
M
a
rk
ov

ch
a
in

w
h
ich

th
e
a
lg
o
rith

m
sim

u
la
tes

fo
r
a
lo
n
g

b
u
t
n
o
t
in
�
n
ite

tim
e;
th
erefo

re
th
e
a
lg
o
rith

m
d
eliv

ers
a
sa
m
p
le
w
h
ich

is
d
raw

n
fro

m
a
d
istrib

u
tio

n
n
o
t
eq
u
a
l
to

b
u
t
o
n
ly

a
p
p
rox

im
a
tin

g
th
e
d
esired

d
istrib

u
-

tio
n
.
R
ecen

tly
a
tten

tio
n
h
a
s
b
een

g
iv
en

to
th
e
p
o
ssib

ility
o
f
ex
a
ct

sim
u
la
tio

n
o
f

sp
a
tia

l
p
ro
cesses

a
s
u
sed

in
sta

tistica
l
p
h
y
sics,

sp
a
tia

l
sta

tistics
a
n
d
sto

ch
a
stic

g
eo
m
etry

[1
6,

1
9,

2
0,

2
1,

2
3,

3
1,

3
2,

4
1],

fo
llow

in
g
o
n
fro

m
th
e
sem

in
a
l
w
o
rk

o
f
P
ro
p
p
a
n
d
W
ilso

n
[3
7].

A
M
a
rk
ov

ch
a
in

sim
u
la
tio

n
a
lg
o
rith

m
is
sa
id

to
b
e

exa
ct

if
it
is
th
e
ca
se

th
a
t
ex
a
ct

eq
u
ilib

riu
m

h
a
s
in

fa
ct

b
een

a
tta

in
ed

w
h
en

th
e

1

algorithm completes; usually the algorithm running time is then random but
is still �nite. For several reasons simulations cannot be \exact" in the precise
sense: useable random number generators always have defects (even if not yet
discovered!), while (at least for the methods we describe here) one should admit
into one's analysis the possibility that the algorithm fails to deliver an answer
within practical constraints of time (but compare [9], which provides an ex-
act simulation algorithm which overcomes this particular defect). We therefore
prefer to use the term perfect simulation for these \exact" simulation methods.

Perfect simulation is obviously appealing and potentially very useful (given
that a good random number generator is used). There is no need to worry
about whether one has used an appropriate \burn in" period before beginning
sampling; independent and identically distributed sampling is available, so that
(for example) asymptotic variances of Monte Carlo estimates can be calculated
very directly; and one can assess the approximation error incurred by a \non-
perfect" algorithm via comparison with an algorithm which is a perfect variation
of the original (a useful point if the perfect version of the algorithm is very costly
in computational terms). Note also that Murdoch and Rosenthal [35] discuss
ways of using information from perfect simulation as e�ciently as possible.

It is notable that the idea of perfect or exact simulation represents a sub-
stantial and practical contribution of modern probability theory to simulation;
a striking contrast with analytic estimates of rates of convergence which (while
of great foundational importance) can induce excessive pessimism (a recent sur-
vey is given in [7]). Perfect simulation does not estimate convergence rates, but
uses the ideas of coupling theory to deliver (in favourable cases) exactly what
is required by the practitioner: a certi�cate that the sample has indeed been
drawn from the desired distribution.

The present paper follows up the development of perfect simulation algo-
rithms for spatial point processes described in [16, 21]; while [21] uses spatial
birth-and-death processes, and [16] develops a particular Gibbs' sampler, here
we investigate the possibility of using Metropolis-Hastings algorithms for rather
general �nite point processes satisfying a certain local stability condition. In
x2 we describe a general theoretical set-up for point processes and introduce
the local stability condition. In x3 we present the �rst general formulation of
dominated CFTP. In x4 we summarize the spatial birth-and-death process setup
in [19, 21] and detail its extension to the case of locally stable point processes.
x3 and x4 also act as an introduction to the ideas used in x5, the main section
of the paper where perfect Metropolis-Hastings sampling is considered. Finally,
x6 is concerned with an application of these ideas to the particular example of
a Strauss point process, using an implementation of the algorithm in C.

Acknowledgements:

WSK's research was supported by EPSRC grant GR/L56831 and JM's by Ma-
PhySto (Centre for Mathematical Physics and Stochastics, funded by a grant
from the Danish National Research Foundation) and by the Danish Informatics
Network in the Agricultural Sciences, funded by a grant from the Danish Re-
search Councils. The collaboration producing this paper was supported by the
European Union's research network \Statistical and Computational Methods
for the Analysis of Spatial Data. ERB-FMRX-CT96-0095".

2

2 Locally stable point processes

In this section we summarize the basic notation and assumptions of point process
theory, and introduce the local stability assumption which we require for the
purposes of our exact simulation algorithm.

Let (S;B; �) be a measure space endowed with a nonzero �nite di�use mea-
sure �. (In fact the simple case of the unit interval with Lebesgue measure
is su�cient to illustrate the details which we will consider; most applications
concern the case when S is a compact subset of the plane and � is an absolutely
continuous �nite measure.) Following the now-standard construction of [5], we
consider the \Carter-Prenter exponential space"
 = fx � S : #(x) < 1g of
�nite subsets (point con�gurations) of S; here #(x) is the cardinality of the set
x � S. This is endowed with the �-�eld F generated by sets fx : #(x\B) = ng
with B 2 B; n = 0; 1; 2; : : : . For technical reasons (that is in order to establish
ergodicity results for Markov chains considered later on in the paper) we assume
that F is separable. This holds if for example S is a metric separable space and
B is its Borel �-�eld. For ease of presentation we restrict ourselves to the case of
point con�gurations without multiple points, by requiring that the measure � is
di�use; however the ideas in the sequel translate across to the case of multiple
points and also to the case of lattice processes with a `background colour' (see,
for example, [33]). We furnish (
;F) with the probability measure � which
corresponds to a Poisson point process on S with intensity measure �. Hence
if the
-valued random variable Y has the distribution of � then #(Y) follows
a Poisson distribution with mean �(S). Moreover, conditional on #(Y) = k,
the k points in Y form a binomial process; under this conditioning they are
independent and identically distributed with common distribution �(�)=�(S).

Consider the general problem of simulating a point process X on S, whose
distribution on the Carter-Prenter exponential space (
;F) has density f with
respect to �. It is assumed that f satis�es a local stability condition [12]: there
is a constant K > 0 such that

f(x [f�g) � K f(x) (2.1)

for all �nite point con�gurations x � S and all points � 2 S nx.Note that this is
stronger than Ruelle stability (which would read, f(x) � C �K#(x), and which in
turn implies that f is well de�ned, i.e. integrable with respect to �). The local
stability condition Eq. (2.1) implies that f is hereditary: f(y) > 0 whenever
f(x) > 0 and y � x. Local stability is equivalent to the hereditary condition
and a uniform bound on the Papangelou conditional intensity

`�(x; �) = f(x [f�g)=f(x) (2.2)

(de�ned to equal 0 if f(x) = 0). These conditions are satis�ed by most Markov
point processes and nearest-neighbour Markov point processes [1, 12, 31, 39]
including for example the Strauss process [18, 40], the continuum random-cluster
model [16, 25, 30, 31], the saturation and triplets processes discussed in [12] and
the area-interaction point process [2]. They are also satis�ed by the perimeter
interaction point process introduced in [24] in the special case of �xed-size disk
or rectangle grains ([19] supplies a proof), but not by the Euler interaction point
process discussed in [24].

The major issue for perfect simulation of point processes is that we must
deal with an in�nite state-space, so that there is typically no maximal element,

3

and (crucially) uniform ergodicity of associated Markov chains is the exception
rather than the rule. As pointed out in [11], the failure of uniform ergodicity
implies that coalescence of the associated
ow or stochastic recursive sequence
cannot happen in �nite time, so the standard CFTP recipe of the �nite state-
space work of [37] needs modi�cation. It turns out that we need to introduce a
special \dominating process" which acts as a kind of stochastic maximum: the
resulting dominated CFTP algorithm will provide viable perfect simulation if
the dominating process can itself be simulated in statistical equilibrium and in
reverse-time. In the language of [11], vertical CFTP (coupling of realizations
started at a �xed time for all possible initial states) is not available if uniform
ergodicity fails, but the dominating process and associated constructs provide a
way to establish when horizontal CFTP (coupling of realizations started at the
minimal state at all su�ciently early initial times) has taken place.

This is how the perfect simulation procedure of [21] di�ers from the �nite
state-space work of [37]; a further di�erence is that, following [21], we describe
perfect simulation techniques which apply when the underlying point process is
not attractive.

A particular innovation of the work presented below is the use of regeneration
at the empty set or vacant pattern con�guration ;; this observation simpli�es
the proofs of perfect simulation because typically ; is an ergodic atom of the
underlying Markov chain. We note here that Murdoch and Green [34] use
similar ideas to produce an application to Bayesian inference based on Markov
chain Monte Carlo methods: however Murdoch and Green extend what is in
e�ect the Athreya-Nummelin method of splitting the state-space, and so produce
regeneration which occurs with su�cient frequency to produce e�ective CFTP
in its own right: our use of regeneration is solely in order to produce theoretical
results on the termination of our dominated CFTP algorithm. See also [17]
who use similar ideas but in the context of certain Bayesian models for which
regeneration is feasible.

3 Perfect simulation in a general context:

dominated CFTP

We begin by describing the idea of perfect simulation for point processes in a
much more general context, which will specialize both to the context of spatial
birth-and-death processes as in x4 and also to the context of Metropolis-Hastings
algorithms as in x5.

Our aim is to deliver perfect simulation of the equilibrium distribution of a
discrete or continuous time Markov chain X = fX(t) : t � 0g taking values in
a partially-ordered state-space X . We refer to X as the target chain started at
time 0 and let � denote the partial order relation. We suppose that there is a
minimal element 0 of X such that 0 � x for all x 2 X , but we do not suppose
that X has a maximal element. We set X(0) = 0.

In the context of this paper X is the Carter-Prenter exponential space
 of
�nite subsets of S, described in the previous section, x � y means x � y, and 0
is the vacant pattern ;; the simple birth-death process example in [19] sets X
to be the set of nonnegative integers, with x � y meaning x � y, and 0 = 0.

In fact the Markov property does not play any part in this section, and it is

4

convenient to consider a rather more general case. Suppose there is an X -valued
dominating process D = fD(t) : �1 < t <1g and an associated mark process
M = fM(t) : �1 < t < 1g such that simulations of X can be obtained as
adapted functionals of (D;M) lying below D in the ordering �: for t � 0,

X(t) = F (f(D(s);M(s)) : 0 � s � tg; t) � D(t) : (3.1)

Furthermore, assume that target processes Xn = fXn(t) : �n � t � 0g begun
at Xn(�n) = 0 at times �n � 0 can be constructed similarly as adapted
functionals of (D;M): for �n � t � 0,

Xn(t) = F (f(D(s);M(s)) : �n � s � tg; t+ n) � D(t) : (3.2)

It is an exercise in probabilistic coupling techniques (see [26] for a good expo-
sition of coupling theory) to do this for Markov chains on the integers using
stochastic recursive sequences [3]. In the case of ordinary CFTP we can use
the trivial case when D is constant and equal to the maximal element: in this
case the marks provide information (typically independent Uniform[0; 1] ran-
dom variables) required to simulate the target processes and other processes
introduced below. As we will see, it is not also hard to develop such a construc-
tion for those Markov chains on Carter-Prenter space
 in which we have an
interest.

To be speci�c, we assume in the sequel (unless otherwise stated) that we
follow [37] by progressively doubling n so that

n 2 f1; 2; 4; 8; : : :g

though any strictly increasing sequence of positive integers (or numbers in the
continuous time case) may be used instead (see also Remark 3.2 below).

For each such n we also posit the existence of a pair of \sandwiching pro-
cesses": an upper bound process Un and a lower bound process Ln, with Un(�n) =
D(�n) and Ln(�n) = 0, constructed using the randomness of (D;M) in an
adapted way: for �n � t � 0,

Un(t) = F+(f(D(s);M(s)) : �n � s � tg; t+ n) ; (3.3)

Ln(t) = F�(f(D(s);M(s)) : �n � s � tg; t+ n) ; (3.4)

analogously to Eq. (3.2). For notational convenience we extend Ln, Xn, Un to
be de�ned for all negative times by setting Ln(t) = Xn(t) = 0 and Un(t) = D(t)
if t � �n, and we set

L1=2(�) = 0; U1=2(�) = D(�):

Furthermore, we require that the following sandwiching properties hold for all
s � t � 0:

Ln(t) � Xn(t) � Un(t) � D(t) ; (3.5)

Ln(t) = Un(t) if Ln(s) = Un(s) : (3.6)

We require also the following funnelling property to hold for all t � 0::

Ln(t) � L2n(t) � U2n(t) � Un(t) : (3.7)

5

Certainly such sandwiching processes exist: one example (typically very in-
e�cient for our purposes) is Ln(�) = 0, Un(�) = D(�). Suppose that for any
�n � t � 0 and x 2 X we have de�ned target processes

Xx
n(t) = F (fD(s) : �n � s � tg; t+ n;x)

with Xx
n(�n) = x and which respect the partial order so that

Xx
n(t) � Xy

n(t) whenever x � y :

Then it can be highly feasible to choose Ln = X0

n , Un = X
D(�n)
n (corresponding

to the original case of monotonic CFTP if there is a maximal element 1̂, and D
is set equal to 1̂, as in [37]), but (as we will see) it is possible by making other
choices to deal e�ectively with cases where the partial order is not respected. In
particular, we do not require that Ln and Un evolve like the target process X
(typically they need not be individually Markov even if X is). However as soon
as Ln = Un then the sandwiching properties described by Eqs. (3.5){(3.6) imply
that their common subsequent evolution follows a trajectory of Xn. By Eqs.
(3.1){(3.2), if (D;M) is time stationary, the process Xn evolves as a realization
of the target process X , and the following theorem uses this to draw strong
conclusions as to the constructive simulation of the equilibrium distribution of
X , based on simple and veri�able conditions on (D;M).

Theorem 3.1 (The dominated CFTP construction): Suppose that pro-
cesses X and Ln, Xn, Un (n = 1; 2; 4; : : :) are produced from a marked dominat-
ing process (D;M) by adapted constructions Eqs. (3.1){(3.4) so that Eqs. (3.5){
(3.7) are satis�ed. Suppose further that the random process (D;M) is stationary
in time, that X(t) converges weakly to an equilibrium distribution � as t!1,
and that 0 is an ergodic atom for D (that is to say, the probability of D visiting
0 in the time interval [0; t] converges to 1 as time t tends to 1). Set

T = inffn 2 f1=2; 1; 2; 4; : : :g : Ln(0) = Un(0)g (3.8)

so that �T is the coalescence time for simulations running up to time 0. Then
T <1 almost surely and

LT (0) = UT (0) (3.9)

follows the equilibrium distribution �.

Proof : Since 0 is an ergodic atom, it follows immediately from Eqs. (3.5){(3.6)
that T <1 almost surely. By Eq. (3.5) and Eq. (3.7), if n � T then

LT (0) � Ln(0) � Xn(0) � Un(0) � UT (0) :

But LT (0) = UT (0), so LT (0) = Xn(0) whenever n � T . Thus with probability
one, LT (0) = limn!1Xn(0) exists. By stationarity of (D;M) and the con-
structions in Eqs. (3.1){(3.2), Xn(0) has the same distribution as X(n), which
itself converges weakly towards �. Consequently, by the dominated convergence
theorem, LT (0) has distribution �. 2

6

Remark 3.2 : We have deliberately formulated Theorem 3.1 in a rather general
fashion, so as to apply to non-Markovian situations. To make this practical for
an actual simulation context we have to:

(a) identify a stationary marked dominating process (D;M) from which we
can build coupled versions of the required target processes X and Xn as
indicated in Eqs. (3.1){(3.2);

(b) identify suitable upper-and lower-sandwich processes Un, Ln constructed
from

(D;M)j[�n;0] = f(D(t);M(t)) : �n � t � 0g

so that the required sandwiching constraints Eqs. (3.5,3.6) and the fun-
nelling property Eq. (3.7) hold;

(c) have a practical way of extending the simulation of (D;M) backwards in
time.

We can then generate pairs of upper-and lower-sandwiching processes

(Ln(0); Un(0)); n = 1=2; 1; 2; 4; : : : ; T;

and return LT (0) as a perfect simulation of the equilibrium of the target process
X0. This extension of CFTP is sometimes called coupling into and then from the
past, with the cryptic abbreviation CIA-FTP. The doubling of n is a reasonably
e�cient way of searching for the time at which coalescence occurs, as pointed
out in [37]. Note that we reuse (D;M)j[�n;0] in the simulation of (D;M)j[�2n;0].

Remark 3.3 : In the rest of this paper we show how to work this out for locally
stable point processes using the relation

x � y , x � y

for �nite point con�gurations x; y, and where the minimum is the empty point
con�guration:

0 = ; :

As remarked in x2, in the point process context it is typically not practical
simply to simulate backwards till D hits the regenerative ergodic atom 0. Our
dominating processes D will be �nite-set-valued Markov chains (variously using
continuous or discrete time) which satisfy detailed balance and whose equilib-
rium distributions are easy to simulate. Moreover, we consider cases where D
experiences only a �nite number of transitions on any bounded time interval,
and a mark M(t) is only non-degenerate if D experiences a transition at time
t: conditional on D, the non-degenerate marks are conditionally independent
and the conditional distribution of M(t) depends only on the transition of D at
time t.

We shall consider situations in which requirement (b) above will easily fol-
low as soon as requirement (a) is ful�lled. For the backwards simulation of
(D;M) (see requirement (c)) we simply �rst simulate D(0). Then we exploit

7

the detailed balance (and consequent reversibility in time) of D by simulating
a forwards-time version f ~D(t) : t � 0g starting with the initial state D(0), and
setting D(�t) = ~D(t). This makes it an easy matter to extend an initial sim-
ulation of a �nal segment of D backwards in time, as required by the CFTP
algorithm. Finally, whenever needed, we attach associated simulated marks
by generating M(�t) from its conditional distribution given the current and
previous states of D at time �t.

Remark 3.4 : In the discrete time case it is possible to cast Theorem 3.1 in the
form of an argument concerning stochastic recursive sequences [3] (e�ectively a
nonlinear generalizationX(n+1) = �(X(n); D(n+1); D(n);M(n)) of the notion
of innovations in time series). We have chosen not to do this because from the
implementation point of view it can be preferable not to think of generating
the entire mark M(n) at each time realized by the CFTP algorithm, but rather
progressively to generate those parts of it which are needed as and when the
algorithm requires it. As matters turned out, the progressive method was used
in the implementation described below (x5) of CFTP in a Metropolis-Hastings'
context.

4 Perfect simulation using

spatial birth-and-death processes.

In this section we present a general discussion of how to conduct perfect simu-
lation of point processes by using spatial birth-and-death processes to perform
dominated CFTP, as described in [19, 21] and implemented there for the par-
ticular cases of the area-interaction process and the exclusion process.

4.1 Spatial birth-and-death processes.

We �rst recall a few properties of spatial birth-and-death processes as introduced
in [36].

Consider a spatial birth-and-death process fX(t) : t 2 [t0;1)g with birth
rate b and death rate d, where b � 0 and d > 0 are measurable functions
de�ned on
 � S so that the integral B(x) =

R
b(x; �) d�(�) is �nite for all

x 2
 (the hereditary condition allow us to assume that d is strictly posi-
tive). The process X is a stationary jump process which develops as follows.
Suppose that we condition on the event that X(t) = x = fx1; : : : ; xng. Let
E0; E1; : : : ; En be random variables which are mutually independent (and inde-
pendent of past history), exponentially distributed with means 1=B(x); 1=d((xn
x1); x1); : : : ; 1=d((x n xn); xn), respectively (for B(x) = 0 we set E0 =1). The
next transition happens at time t + E, where E = minfE0; E1; : : : ; Eng. If
E = E0 then X(t + E) = x [f�g represents \birth" of a point � with density
b(x; �)=B(x). If E = Ei with i > 0 then X(t) = x n fxig represents \death" of
the point xi.

Preston [36] gives su�cient conditions for existence, uniqueness and con-
vergence to equilibrium of such a spatial birth-and-death process; conditions
ensuring geometrical fast convergence are given in [29]. If detailed balance

8

[36, 38] is satis�ed for a particular density f :
! [0;1),

f(x) b(x; �) = f(x [f�g) d(x; �) > 0 whenever f(x [f�g) > 0 ;
(4.1)

then the spatial birth-and-death process is time-reversible and f is the density
of the unique stationary distribution �.

In [19, 21] (as well as in many other studies of speci�c models of spatial birth-
and-death processes in the literature) the birth rate is given by the Papangelou
conditional intensity of the target point process, while the death rate is constant
at 1, corresponding to uniform deletion of existing points:

b = `�; d = 1 : (4.2)

Then local stability of the target point process, as described by Eq. (2.1), ensures
the existence and uniqueness of the spatial birth-and-death process, and its
distribution converges (in fact geometrically fast) towards the equilibrium �.
This follows easily from the fact that the process regenerates at the state 0.
Indeed this state is an ergodic atom; with probability one, X(t) = 0 for in�nitely
many transition times t. For details, see [36] or [29].

4.2 Coupling construction

Perfect simulation can now be arranged using a construction of the form leading
to Theorem 3.1 above; similar remarks can be found in [19, 21], but the formu-
lation and arguments given here become more useful when we want to describe
perfect simulation for a wide class of locally stable point processes, whether we
use spatial birth-and-death processes as in this section, or whether we use more
general Metropolis-Hastings algorithms as studied in x5.

The dominating processD in this section is a spatial birth-and-death process
with birth rate b = K and death rate d = 1. At each birth or death time t of
D we attach as a mark a random number M(t) uniformly distributed on the
interval (0; 1). These marks are independent of each other and all other aspects
of the construction of D. In fact we ignore the marks attached to death times t
of D; these are added to the construction for a purely technical reason, simply
to ensure that (D;M) will inherit a time-reversibility property from D. Now
consideration of detailed balance shows that D is indeed time-reversible and
in equilibrium if we set D(0) to be distributed as a Poisson point process of
intensity measure K�: thus requirement (c) of Remark 3.2 is ful�lled.

As sketched in x4.1, theory shows that this dominating process has ergodic
atom 0 as required by Theorem 3.1. Assuming that D(0) has the equilibrium
distribution, the process (D;M) is stationary by virtue of the reversibility cri-
terion for D and the assignation of independent marks M(t) at the transition
times t for D.

We now have to describe how to construct target processes. Here is how a
generic target process X with equilibrium density f evolves. Suppose that for
a given time t subsequent to the time at which X is started, y � x are the
states in the dominating and target processes just before time t . Suppose that
in the dominating process a point � is born at time t, so that D(t) = y [f�g.
Then X(t) = x [f�g if M(t) � `�(x; �); otherwise there is no change and we
set X(t) = x. Suppose that in the dominating process a point � 2 y is deleted

9

at time t. In that case X(t) = x n f�g (where � may or may not be included
in x). This speci�es the construction in Eq. (3.1). Similarly we obtain target
spatial birth-and-death processes Xn begun at time �n and lying below D in
the manner set out in Eq. (3.2), with birth rate b = `�, death rate d = 1.

All we now need in order to ful�ll the conditions of Theorem 3.1 is to exhibit
pairs (Ln; Un) of lower- and upper-sandwich processes obeying Eqs. (3.5){(3.7).
In each case individual points are removed at unit exponential rate, but points
are added to Ln at the minimal rate, and to Un at the maximal rate, which
is attainable for realizations of a spatial birth-and-death process with (b; d) =
(`�; 1) and which is sandwiched between Ln, Un. If in the dominating process
a point � is born at time t and xmin; xmax are the states of Ln; Un just before
time t 2 (�n; 0], then these rates are K�min(xmin; xmax; �);K�max(xmin; xmax; �),
respectively, where

�min(xmin; xmax; �) = minf`�(x; �)=K : xmin � x � xmaxg (4.3)

�max(xmin; xmax; �) = maxf`�(x; �)=K : xmin � x � xmaxg : (4.4)

Hence, we set Ln(t) = xmin [f�g if M(t) � �min(xmin; xmax; �) and Ln(t) = xmin

otherwise, while Un(t) = xmax [f�g if M(t) � �max(xmin; xmax; �) and Un(t) =
xmax otherwise. Finally, in the case of a death D(t) n D(t�) = f�g in the
dominating process, we set Ln(t) = Ln(t�) n f�g and Un(t) = Un(t�) n f�g
(here t� refers to the \time just before time" t).

Thus birth-times are censored so that a birth occurs for Ln if and only if
births occur for all target processes lying between Ln and Un, and a birth occurs
for Un if and only if a birth occurs for at least one target process lying between
Ln and Un, and in each case the potential birth is of the individual actually born
in D. On the other hand death occurs in Ln, Un exactly when a D-death is a
death of an individual in the respective sandwiching population. In summary
the births and deaths of Ln, Un are exactly those forced by the requirements
of the sandwiching equations Eqs. (3.5){(3.6); the funnelling property Eq. (3.7)
then follows from the construction.

Remark 4.1 : It is often the case that a spatial point process model is either
repulsive or attractive in the following sense:

repulsive case: `�(x; �) � `�(y; �) whenever � =2 x � y ; (4.5)

attractive case: `�(x; �) � `�(y; �) whenever � =2 x � y : (4.6)

Examples of repulsive models include most pairwise interaction processes such
as the Strauss process, and indeed also most of the Ripley-Kelly Markov point
processes studied in the literature to date, see [31]. The continuum random-
cluster model, the saturation and triplets processes, and the area-interaction
process (see x2 for references) are all models which include both repulsive and
attractive cases. In the attractive case we have monotonicity: for xmin � x �
xmax and � =2 xmax ; Eq. (4.6) implies that

�min(xmax; xmin; �) = `�(xmin; �) � `�(x; �) � `�(xmax; �) = �max(xmax; xmin; �) ;
(4.7)

whilst the complete opposite holds in the repulsive case Eq. (4.6) as then

�min(xmax; xmin; �) = `�(xmax; �) � `�(x; �) � `�(xmin; �) = �max(xmax; xmin; �) :
(4.8)

10

The lower and upper processes are therefore individual spatial birth-and-death
processes only in the attractive case.

Note that if a locally stable point process is neither attractive nor repulsive
then the calculation of �min and �max in Eqs. (4.3){(4.4) may be computationally
expensive.

4.3 Algorithm for perfect simulation

using spatial birth-and-death processes

In this section we use pseudo-code to sketch out algorithms for perfect simulation
using spatial birth-and-death processes based on Remark 3.3 and the coupling
construction in x4.2.

The basic algorithm SBDperfect(�n) runs as follows:

SBDperfect(�n):
(D;M)j[�n;0] SBDDextend(D;M;�n)
(Ln(0); Un(0)) SBDevolve(D;M;�n)
if Ln(0) = Un(0) then

return Ln(0)
else

SBDperfect(�2n)

The pseudo-code notation is best explained by discussing this algorithm in
words. We begin by extending the current construction of the marked dominat-
ing process (D;M) backwards in time to the range [�n; 0] using a sub-procedure
SBDDextend; we then construct lower and upper processes started at time �n us-
ing sub-procedure SBDevolve; �nally we test for equality of the terminal values
Ln(0), Un(0). If they are equal then the algorithm returns the common value,
otherwise it calls itself again recursively using the extended range [�2n; 0].

Theorem 3.1 assures us that if this algorithm is carried through to comple-
tion then the returned value will in fact be distributed according to the target
equilibrium distribution. (Notice however that no such guarantee applies to
early termination of the algorithm: for this one needs to apply an entirely dif-
ferent method of perfect simulation, namely Fill's User-Interruptible algorithm
[9]; Fill's algorithm was �rst applied to point processes by [41]; see also [32].)

Notice that if SBDperfect(�n) terminates without invoking itself recur-
sively then it requires only the path (D;M)j[�n;0]; otherwise an earlier portion
of the path is required by the recursive call SBDperfect(�2n). Conceptually it
is convenient to pretend that (D;M) has already been simulated over the entire
range (�1; 0]. In practice of course we need only generate (D;M) a segment
at a time as signalled by SBDDextend(D;M,�n), extending backwards in time
as required; the time-reversed simulation is of the same spatial birth-and-death
process, started at its equilibrium distribution of a Poisson(K�) point pattern,
and with deaths independently marked by independent uniform random marks.

The implementation of SBDDextend is a straightforward matter, since it can
be achieved by extending the time-reversed dominating process forwards in time
as indicated above, and we therefore omit it.

To complete the speci�cation of this algorithm we must de�ne SBDevolve.
This conducts the coupled evolution of Ln, Un, implementing the marks-based

11

construction which was described in words just after Eqs. (4.3){(4.4) above.

SBDevolve(D;�n):
(xmin; xmax) (0; D(�n))
t first birth-death incident of D after �n
while t < 0

if D(t) = D(t�) [f�g then

m M(t)
(xmin; xmax) SBDadd(xmin,xmax,�,m)

else

f�g D(t�) nD(t)
(xmin; xmax) (xmin n f�g; xmax n f�g)

t first birth-death incident of D after t
return (xmin; xmax)

Here SBDadd(xmin; xmax; �;m) uses the mark m to compute whether or not
to add � to each of the patterns xmin, xmax:

SBDadd(xmin; xmax; �; u):
if u � �min(xmin; xmax; �) then

return (xmin [f�g,xmax [f�g)
else if u � �max(xmin; xmax; �) then

return (xmin,xmax [f�g)
else

return (xmin,xmax)

Remark 4.2 : Sometimes it is useful to �nesse the initialization of Ln(�n) =
0 in the procedure SBDevolve(D;M;�n) (in the line reading (xmin; xmax)
(0; D(�n)) above), for example by starting the lower-sandwich process in a
larger point con�guration contained inD(�n), selecting those points � inD(�n)
whose birth-marks are lower than the lowest possible value of `�(x; �)=K as x
ranges over all possible �nite subsets of S. These points are exactly those which
would have been born in any target process X evolving at the time of their
potential birth. As described in [21], in order to obtain these birth-marks we
then need to generate the dominating process further back in time up to the
occasion when the `oldest' point in D(�n) was born.

Remark 4.3 : Notice that the ergodic nature of 0 is relevant to theory
rather than practice; as noted in x1, the time needed for D to return to the
vacant pattern may be very much larger than the time T we actually need
to go back in order to obtain coalescence. In fact, although births arise at
a faster rate in the upper process than in the lower process, coalescence can
in favourable circumstances happen relatively quickly as a consequence of the
coupling between the sandwiching processes Ln and Un (for example this was
the case for experiments reported on in [19, 21]).

Remark 4.4 : The birth-decisions taken in the evolution step SBDevolve

and speci�cally SBDadd are monotonic in the Papangelou conditional intensity
`�(x; �). Consequently it is plain that the resulting perfect sample can be viewed

12

as a complicated dependent random thinning of a realization of the Poisson
process corresponding to the case of constant conditional intensity `�(x; `) =
K. Accordingly it is apparent that locally stable point processes (those with
conditional intensity satisfying Eq. (2.2)) are all obtained as thinnings of Poisson
point processes.

5 Perfect Metropolis-Hastings simulation

We now consider perfect Metropolis-Hastings simulation of locally stable point
processes, using discrete-time Markov chains rather than spatial birth-and-death
processes. For background material on Markov chain Monte Carlo for spa-
tial point processes (including the ideas of Metropolis-Hastings algorithms) the
reader is referred to [12, 13, 31] and the references therein. An excellent general
account of Markov chain theory is given in [27]. Notice that perfect simulation
for a random walk Metropolis-Hastings sampler for use in a Bayesian context
is described in [14]; another perfect Metropolis-Hastings algorithm for the au-
togamma model is discussed in [31]. However to the best of our knowledge
the following is the �rst general account applying the technique of Metropolis-
Hastings discrete-time Markov chains to perfect sampling of point processes; the
perfect Gibbs' sampling algorithm in [16] applies only on the Widom-Rowlinson
multitype point process and related models; the perfect Gibbs samplers (and
Fill type algorithms) in [32] apply only on random �eld approximations of cer-
tain spatial point processes; and the perfect slice samplers in [28] apply only
when the number of points is �xed in certain spatial point process models.
Simulated tempering algorithms introduced in [17] are also based on a general
technique for perfect Metropolis-Hastings simulation but for use in multivariate
(Bayesian) models (possibly of varying dimension) which in a certain sense can
be dominated by a random walk de�ned on a �nite state space.

5.1 Updating schemes

The simplest Metropolis-Hastings version of the algorithm in x4 translates the
time continuous approach into discrete time and allows for more than just one
point to be added or removed. \Death" corresponds to a proposal for inde-
pendent p-thinning, using a �xed probability p 2 (0; 1) for deletion of existing
points, while \birth" corresponds to a proposal to add the points from a Pois-
son point process of intensity measure pK�. However, the problem with such
a Metropolis-Hastings algorithm (and indeed with a large number of variations
which we have investigated) is that it is intrinsically non-monotonic.

This arises because of non-monotonicities in the acceptance probability for
proposals, and presents considerable obstacles for e�cient \sandwiching" argu-
ments as presented in x4. In particular we have not discovered a variant which
uses a dominating chain with a Poisson equilibrium distribution. We illustrate
this point by describing an example which does not work, but which leads on
to the variant that we adopt in this section.

Suppose for simplicity that the proposal stage of the Metropolis-Hastings
algorithm o�ers alternatives of birth or death incidents (each involving varying
numbers of points as speci�ed below), with probabilities �, 1� � respectively.
The death proposals are for p-thinning of the current con�guration x, while the

13

birth proposals employ superpositioning of a Poisson point process z of intensity
measure pK� (recall K is the local stability parameter de�ned by Eq. (2.1)).

The acceptance stage runs as follows. The probability for accepting a birth
proposal x! x [z is

�(x; z) = min

�
1;
f(x [z)

f(x)
�

(1� p)#(x)

K#(z)

�
(5.1)

while its \reversed" counterpart, the death proposal x [z ! x, is always ac-
cepted (this convenient simpli�cation is a consequence of the local stability
bound). Detailed balance considerations show that if we choose birth proposal
probability � = 1=(1+ exp(�pK�(S))) then the Metropolis-Hastings algorithm
generates a reversible Markov chain with equilibrium density f .

The di�culty for perfect simulation here is that (1 � p)#(x) in Eq. (5.1) is
a decreasing function of #(x). Dealing with point processes, we naturally use
a partial order � given by set-inclusion �, and this leads to the requirement
that at least in the upper- and lower-sandwiching processes we should have
monotonicity (in terms of set-inclusion) for accepted birth proposals. While we
can in principle use obvious extensions of Eqs. (4.3){(4.4) to assure this, it is
to be expected that the resulting dominating process will then be very large.
In particular the equilibrium distribution will be much larger than the Poisson
process of intensity measure K� (which is a reasonable comparison because of
the local stability condition, and also because the continuous-time methods of
x 4 use a dominating process which has this equilibrium).

We have considered other variations on Metropolis-Hastings dominated by
processes with Poisson equilibrium distributions, all of which run into the same
di�culty. Of course, it is possible to generate an algorithm by sampling from
a dominating spatial birth-and-death process at regular intervals, leading to a
joint equilibrium density g(x; y) with respect to the measure (in con�guration
variables x, y) given by

1[x � y] � (counting measure for x) � d�(y)

such that the marginal density for the x-component is the required target point
process density and the marginal distribution for the y-component is a Poisson
process of intensity measure K�. However this joint density will in general be
very complicated. To derive a suitable Metropolis-Hastings scheme we would
need to �nd a closed-form expression for g(x; y) up to constant of proportional-
ity, so this approach seems infeasible (except by implicit and crude discretization
of the spatial birth-and-death approach of x4, which o�ers no computational ad-
vantage).

The problem with the �rst approach of this subsection is that the dominating
process is too large to lead to a feasible algorithm, resulting from the combined
e�ect of non-monotone acceptance probabilities for birth proposals together with
frequent birth proposals. We can substantially alleviate this problem if we
explore a further variation on the Metropolis-Hastings theme, by subdividing
the space S into a �nite collection of su�ciently small disjoint B-measurable
\cells" C1; : : : ; Ck 2 B with positive cell-contents �(Ci) > 0 and such that

� the probability of having more than one point in a cell under the target
distribution is small,

14

� a transition within a cell consists either of a birth or a death of a single
point.

The algorithms considered below can then be viewed as \single-cell Metropolis-
Hastings".

To implement this we need to devise di�erent (but coupled) Metropolis-
Hastings algorithms: one algorithm to generate the target Markov chains and
another to generate the dominating Markov chain. The dominating Markov
chain is e�ectively the combination of independent random walks one for each
cell, negatively biased and re
ected at zero. The equilibrium distribution for
the dominating chain is no longer Poisson; as we shall see it is \independent
Geometric" (in equilibrium the point con�gurations in di�erent cells are inde-
pendent, with Geometric numbers of points in each cell Ci, with individual
points conditionally distributed in Ci according to the \�-uniform distribution
on Ci" given by �i(�) = �(� \ Ci)=�(Ci)).

The point con�gurations within cells are updated by visiting the cells either
at random (i.e. the next cell is selected uniformly at random) or systematically,
either visiting each cell once per turn in some �xed order (in which case the
Markov chains are not reversible) or visiting each cell in order and then revisiting
cells in reverse order (in which case the Markov chains are reversible); we use
the latter reversible systematic updating scheme below and in our examples in
x6. So one cycle consists of 2k updates in the order

C1 ! C2 ! : : :! Ck�1 ! Ck ! Ck ! Ck�1 ! : : :! C2 ! C1 : (5.2)

(It is an exercise for the reader to modify the following to deal with irreversible
systematic updating, or with reversible random updating. The reader is warned
that the perfect variant of reversible random updating requires a record to be
kept of the random order in which sites are visited.)

If f is a spatially Markov density with a �nite range of interaction R then
in principle we could obtain a speed-up by implementing a parallel processing
scheme in which cells more than R units apart are updated simultaneously (so-
called \coding sets" of cells).

5.2 Metropolis-Hastings chains

We �rst describe the forward-time (conventional) simulation algorithms for the
dominating chain D respective target chain X which we will then convert to
CFTP in x5.4.

We begin with the dominating chain D since it will eventually control ev-
erything which goes on. We keep track of the individual updates of D in cycle
t by using the extended notation

D(t; i) is the ith update in cycle t (5.3)

so that D(t; 1) is obtained from D(t) = D(t; 0) by updating in cell C1, D(t; 2)
is obtained from D(t; 1) by updating in cell C2, etc, and D(t; 2k) = D(t+ 1) =
D(t+ 1; 0). In other words, to obtain the con�guration at time (t; i) (for i = 1,
: : : 2k) we update the con�guration at time (t; i� 1) within the jth cell, where

j = minfi; 2k � i+ 1g :

15

The single-cell update employs a draw V (t; i) from a Uniform[0; 1] distribution
to determine whether birth or death is to take place, based on a parameter
pj 2 (0; 1) as follows:

draw V (t; i) from Uniform[0; 1]
if V (t; i) � pj=(1 + pj) then

arrange for birth in D at time (t; i)
else

arrange for death in D at time (t; i)

Here the V (t; i) draw is independent of all other sources of randomness, and
in particular is independent of everything in the simulation past (that is, times
before (t; i), as opposed to the algorithm past, which would involve times later
than (t; i) treated in previous recursive passes of the CFTP algorithm).

A birth is arranged as follows: we add f�(t; i)g to the current dominating
population, where the new-born point �(t; i) is drawn using the distribution
�j(�) which is the normalization of the restriction to the ith cell of the measure
�:

arrange for birth ...

draw �(t; i) from �j(�)
set D(t; i) = D(t; i� 1) [f�(t; i)g

Here again the new-born point �(t; i) is independent of all other sources of
randomness, and in particular of everything in the simulation past.

A death is arranged by deleting a point �(t; i) uniformly at random from the
current point pattern:

arrange for death ...

draw �(t; i) from FiniteUniform(D(t; i� 1) \ Cj)
set D(t; i) = D(t; i� 1) n f�(t; i)g

Here the random death �(t; i) is conditionally independent of the simulation
past given D(t; i�1) and in fact depends only on D(t; i�1)\Cj . Furthermore,
we adopt the convention that

draw � from FiniteUniform(0) (5.4)

returns f�g = 0.
This construction can be viewed as a Metropolis-Hastings algorithm where

the proposal kernel is the same as the transition kernel for the resulting Markov
chain D (in other words the acceptance probabilities of this Metropolis-Hastings
algorithm are set to be equal to 1). A straightforward analysis of detailed
balance (see [13]) shows that the equilibrium distribution for D is \independent
Geometric": for the counts in cell Cj at equilibrium we have

P [n points in Cj] = pnj (1� pj) for n = 0; 1; 2; : : :

independently in each cell.
We turn next to the Metropolis-Hastings algorithm for the target chain X .

Here we reuse the random variables V (t; i) and, in case of births, the newborn

16

points �(t; i); the two chains will be further coupled in x5.3. Using a notation as
above and considering the update of cell j at time (t; i) we make the following
assignments:

setting N(t; i� 1) = #(X(t; i� 1) \ Cj)

if V (t; i) �
pj `

�(X(t; i� 1); �(t; i))

(N(t; i� 1) + pj + 1)K
then

arrange for birth in X at time (t; i)

else if V (t; i) �
pj

N(t; i� 1) + pj
then

arrange for death in X at time (t; i)

else

do nothing

It is crucial for detailed balance here to have the \do-nothing" option. We
arrange births and deaths much as before, but coupled to what is happening in
the dominating process. For a birth we use

arrange for birth ...

set X(t; i) = X(t; i� 1) [f�(t; i)g

(coupling by re-using the birth candidate �(t; i); because of the way in which we
are re-using the mark V (t; i) the availability of �(t; i) is guaranteed) while for a
death

arrange for death ...

draw ��(t; i) from FiniteUniform(X(t; i� 1) \ Cj)
set X(t; i) = X(t; i� 1) n f��(t; i)g (5:5)

We describe the coupling of ��(t; i) below. In the \do-nothing" option, of course,
X(t; i) = X(t; i� 1) is left unchanged.

This construction has to be coupled carefully and explicitly to the single-cell
update in D. The main issue is to ensure that if X(t; i�1) = x � D(t; i�1) = �
then an x-birth can occur only if a �-birth occurs, and further to ensure that the
death of a �-point forces death of the corresponding x point should that point
be alive in X at that time. Notice in particular that x-points die in Cj at rate
#(x \ Cj)=(#(x \ Cj) + pj) while in the dominating chain they die at the rate
1=(1 + pj) (note that if x \ Cj = � \ Cj = 0 is the empty pattern then the two
chains stay in 0 with the same probability 1=(1+ pj)). However the death rate
per point of x is 1=(#(x \ Cj) + pj), which (so long as x � �) is always lower
than the corresponding death rate per point of �, namely 1=(#(�\Cj)(1+pj)).

The X chain can be viewed as the result of a Metropolis-Hastings algorithm
where at time (t; i) we propose with probability

pj=(N(t; i� 1) + pj) (5.6)

to add the �j(�)-uniform point �(t; i), and otherwise we delete a point chosen at

17

random from X(t; i� 1). Note that we always accept in case of a death, while
we only accept the birth proposal with probability

N(t; i� 1) + pj
N(t; i� 1) + pj + 1

�
`�(X(t; i� 1); �(t; i))

K
: (5.7)

Finally note that the \do-nothing" case arises when the birth proposal is made
but rejected.

Analysis of detailed balance (see [13]) shows that X has f as its equilibrium
density if the parameters are �xed to obtain

pj = �(Cj)K ; j = 1; : : : ; k : (5.8)

In the special case `� = K we �nd that f is the density of a Poisson process
of intensity measure K� and the last term in Eq. (5.7) cancels; in the gen-
eral case, this last term is never greater than 1. However, in contrast to the
case of spatial birth-and-death processes described in x4, we cannot obtain the
general construction by thinning the construction used to produce the Poisson
process of intensity measure K�: if x � y are the current states of two such
Metropolis-Hastings chains, then by Eq. (5.6) the chain coming from x has a
larger probability for proposing a birth than the chain coming from y.

In the sequel we assume the constraint in Eq. (5.8) to hold.

Remark 5.1 Convergence properties: If we consider the random updating
scheme as described in x5.1, then it can be shown that both Metropolis-Hastings
algorithms generate Markov chains which are aperiodic, Harris recurrent, and
geometrically ergodic. Moreover (useful here principally for theoretical reasons)
0 is an ergodic atom. The techniques in [13] and especially [12] apply directly
to prove these properties. Incidentally, the target chain is uniformly ergodic if
and only if the total number of points is almost surely bounded by a constant
under the equilibrium density f ; in that case one is tempted to try to truncate
in the MH-algorithm for the dominating chain (using the almost sure bound on
the number of points) to speed up convergence. However na��ve implementations
of this for CFTP will fail, since the dominating chain must be large enough to
dominate all of a class of sample realizations started from 0 at times �t for suf-
�ciently large t, and for this reason will typically fail to satisfy the upper bound.
Note however that in [11] it is shown that in the case of uniform ergodicity it is
always theoretically possible to implement perfect simulations based on classic
CFTP, without using a dominating process.

Remark 5.2 Choice of parameters pj: In our experiments we have used
constant pj = p for all j. Being a probability, the parameter p is constrained
to lie within (0; 1), and should not be too close to 1 since otherwise #D(t) will
take a very large range of values when the dominating process is in statistical
equilibrium. In x 6 we discuss some empirical �ndings about useful values for p.

If the local stability condition is replaced by the condition f(x [f�g) �
Kjf(x) for all x,�; j with � 2 Cj , then we can replace K by Kj everywhere
above and in the following when updating the jth cell; in particular, Eq. (5.8)
is replaced by the constraint

pj = �(Cj)Kj ; j = 1; : : : ; k :

This modi�cation may prove to be useful when considering perfect simulation
for inhomogeneous point processes.

18

5.3 Coupling construction

In this section we use the notation of x5.2 and consider in more detail what
should happen when updating the jth cell at time (t; i) in the dominating marked
process and in its subprocesses.

The step requiring real care is the coupling of death incidents. To concep-
tualize the actual algorithm we imagine that if D(t; i� 1) = f�1; : : : ; �mg with
m � 1, then (no matter if D experiences a death or not) at time (t; i) there is
also attached a mark �(t; i) to D(t; i) which is a random permutation used to
specify the order �D(t; i � 1) = (�1; : : : ; �m) in which the points can be deleted
at time (t; i) when considering subprocesses of D (such as Xn; Ln; Un and D
itself). Formally, conditional on D(t; i), �(t; i) is a uniformly distributed per-
mutation of the points in D(t; i� 1), and �(t; i) is conditionally independent of
the simulation past. From an implementation point of view this risks a heavy
computational demand; however, as discussed in more detail in x5.4, in the per-
fect Metropolis-Hastings algorithm we need only implement the simulation of
�(t; i) in an implicit and partial manner, since we will only require to know
some aspects of the ordering �D.

The dominating chain evolves as described in x5.2. If D experiences a death
at time (t; i) then the point to be deleted is

�(t; i) = �rst point in �D(t; i� 1)

with the convention f�(t; i)g = 0 if D(t; i� 1) = 0. This is in accordance with
the speci�cation of Eq. (5.4). The marks for the dominating process are now
speci�ed by setting M(t; i) = (V (t; i);�(t; i)). Under the assumption that D(0)
has the equilibrium distribution, we see that (D;M) is stationary. Further, 0 is
an ergodic atom of D, as required by Theorem 3.1.

A generic target Metropolis-Hastings chain X with equilibrium density f
evolves as described in x5.2 but with death candidates speci�ed as follows. If X
experiences a death at time (t; i), the point to be deleted is

��(t; i) = �rst point in �D(t; i� 1) which is contained in X(t; i� 1)

(with f��(t; i)g = 0 if X(t; i � 1) = 0). This is in accordance with the dis-
tribution in Eq. (5.5). Note that ��(t; i) = �(t; i) if D experiences a death at
time (t; i) and �(t; i) 2 X(t; i� 1). Thereby we maintain the requirement that
X(�) � D(�) and the construction of X is completed as an adapted functional
of D (see Eq. (3.1)).

In order to see how to construct target Metropolis-Hastings chains Xn begun
with value 0 at time �n, we have �rst to specify the conditional distribution of
M(t; i) given (D(t; i� 1); D(t; i)) (Remark 3.3). Then �(t; i) is still a uniformly
distributed permutation of the points in D(t; i�1), and �(t; i) is (conditionally)
independent of V (t; i) which is uniformly distributed in accordance to whether
D experiences a birth or a death at time (t; i). So let

(f�(t; i)g; f�(t; i)g) = (D(t; i) nD(t; i� 1); D(t; i� 1) nD(t; i))

specify which point has been added or which point has been deleted in the
dominating chain considered forwards in time. Then, conditional on (D(t; i �
1); D(t; i)), we require

V (t; i) is distributed as Uniform[0; 1=(1 + pj)] if f�(t; i)g 6= 0 ; (5.9)

V (t; i) is distributed as Uniform[1=(1 + pj); 1] if f�(t; i)g = 0:(5.10)

19

Notice that it is convenient to interpret the case f�(t; i)g = f�(t; i)g = 0 as a
death. Furthermore, for each target process Xn (n = 1; 2; 4; : : :),

(f�n(t; i)g; f�n(t; i)g) = (Xn(t; i) nXn(t; i� 1); Xn(t; i� 1) nXn(t; i)) :

Then for �n < t � 0, Xn experiences either \do-nothing" (more precisely the
case Xn(t; i� 1) = Xn(t; i) 6= 0) birth or death:

setting Nn(t; i� 1) = #(Xn(t; i� 1) \ Cj)

if V (t; i) �
pj l

�(Xn(t; i� 1); �(t; i))

(Nn(t; i� 1) + pj + 1)K
then

arrange birth in Xn at time (t; i)

else if V (t; i) �
pj

Nn(t; i� 1) + pj
then

arrange death in Xn at time (t; i)

else

do nothing

If Xn experiences birth at time (t; i), then D experiences birth at time (t; i),
and so we set �n(t; i) = �(t; i) and f�n(t; i)g = 0. If Xn experiences death at
time (t; i), then f�n(t; i)g = 0 and �n(t; i) is the �rst point in �D(t; i� 1) which
is contained in Xn(t; i�1) (setting f�n(t; i)g = 0 if Xn(t; i�1) = 0). Finally, in
the case of \do-nothing", f�n(t; i)g = f�n(t; i)g = 0. Thereby the construction
in Eq. (3.2) is completed.

Monotonicity of birth and death incidents in lower and upper processes
(Ln; Un) (n = 1; 2; 4; : : :) follows from the following assignments. Using the
notation of Eqs. (4.3){(4.4), for births we have the following:

if V (t; i) �
pj �

min(Un(t; i� 1); Ln(t; i� 1); �(t; i))

#(Un(t; i� 1) \ Cj) + pj + 1
then

arrange birth in Ln and Un at time (t; i)

else if V (t; i) �
pj �

max(Un(t; i� 1); Ln(t; i� 1); �(t; i))

#(Ln(t; i� 1) \ Cj) + pj + 1
then

arrange birth in Un alone at time (t; i)

else

arrange no births

and for deaths we have

20

if V (t; i) �
pj

#(Ln(t; i� 1) \ Cj) + pj
then

arrange deaths in Ln and Un at time (t; i)

else if V (t; i) �
pj

#(Un(t; i� 1) \ Cj) + pj
then

arrange death in Ln alone at time (t; i)

else

arrange no deaths

Births and deaths are implemented as follows: if we set

(f�min

n (t; i)g; f�min

n (t; i)g) = (Ln(t; i) n Ln(t; i� 1); Ln(t; i� 1) n Ln(t; i)) ;

(f�max

n (t; i)g; f�max

n (t; i)g) = (Un(t; i) n Un(t; i� 1); Un(t; i� 1) n Un(t; i))

then �min

n (t; i) = �(t; i) (respectively, �max

n (t; i) = �(t; i)) in case of birth incidence
in the lower (respectively, upper) process. Further, in case of death in Un,
�max

n (t; i) is the �rst point in �D(t; i � 1) which is contained in Un(t; i � 1).
Similarly, in case of death in Ln, �

min

n (t; i) is the �rst point in �D(t; i� 1) which
is contained in Ln(t; i� 1).

A simple induction argument shows that Eqs. (3.5){(3.7) are satis�ed, and
so Theorem 3.1 applies.

Remark 5.3 : Notice that we allow a slight ine�ciency in the way birth
probabilities for lower and upper processes are speci�ed. For example, for birth
in Ln at time (t; i), we could use the sharper upper bound given by

pj
K

min

�
`�(x; �(t; i))

#(x \ Cj) + pj + 1
: Ln(t; i� 1) � x � Un(t; i� 1)

�

and similarly for Un (where min is replaced by max).

5.4 Algorithms for perfect Metropolis-Hastings simula-

tion

The general form of the CFTP variation follows that of the algorithm for perfect
simulation using spatial birth-and-death processes:

MHperfect(�n):
Dj[�n;0] MHDextend(D;�n)
(Ln(0); Un(0)) MHevolve(D;�n)
if Ln(0) = Un(0) then

return Un(0)
else

MHperfect(�2n)

where the sub-procedures act as follows:

21

� MHDextend(D;�n) exploits reversibility to extend D backwards in time to
be de�ned over [�n; 0], and also generates the marks V (t; i) in accordance
to Eqs. (5.9){(5.10)

� the procedure MHevolve(D;�n) then generates upper- and lower-sandwich
processes working forwards in time over the range [�n; 0].

Once again the de�nition of MHDextend is straightforward, based on the re-
versibility of D and the ease with which one can simulate from its equilibrium
distribution and from Eqs. (5.9){(5.10). Note however that we also require
MHDextend to set the lower- and upper-sandwich processes Ln(t) and Un(t) to
their default values (respectively, 0 and D(t)) where they have not already been
de�ned by previous invocations of MHDextend, i.e. when �n � t < �n=2 and
n � 2.

Instead of generating the entire mark �(t; i), we choose instead to generate
the death candidates of upper and lower processes \on the
y", compatibly with
the above prescription but only generating that part of the random permuta-
tion �(t; i) required at the time. Essentially this means we have to select the
required death candidates � with the correct probabilities conditional on previ-
ous choices for earlier sandwiching processes, so as to maintain the funnelling
property Eq. (3.7). We do this largely for convenience of implementation: note
however there is also an underlying issue of realizable monotonicity which should
be born in mind. Suppose we have stochastic monotonicity of the kind observed
above; death rates per individual decrease as the population increases, but the
overall death probability increases. In general it is not possible to choose a death
candidate consistently for all possible sub-populations, using the correct condi-
tional probabilities. Consider for example a grand population of 3 individuals,
such that individual i has probability 1=2 of being chosen in the population fig,
probability 1=2 of being chosen in fi; jg, and probability 1=3 of being chosen in
the grand population fi; j; kg. As an exercise for the reader, it is not possible to
make choices of individuals in the 3C2 di�erent populations such that at most
one individual is chosen in each population, if i is chosen in fi; j; kg then it is
chosen in fi; jg, and if it is chosen in fi; jg then it is chosen in fig. This relates
to recent work on realizable monotonicity due to Fill and Machida [10].

Consider �rst any three point con�gurations x � y � z with (possible)
candidates f�xg � x, f�yg � y, f�zg � z for deaths, where we interpret f�wg =
0 as the case where there is no death-nomination for the \population" w (with
w = x, y or z). Assume that

�z 2 y) �y = �z assuming �z exists,

�y 2 x) �x = �y assuming �y exists,

�z is drawn from FiniteUniform(z) ;

x is nominated for death) �x is drawn from FiniteUniform(x) :

Conditional on the values of (x; y; f�xg; f�zg) and the fact that y is nominated
for death, we can generate �y as drawn from a FiniteUniform(y) distribution
by using

22

MHdeath(x; y; �x; �z):
if �z 2 y then

�y �z
else

draw W from Uniform[0,1]

if W � #(x)=#(y) then

�y �x
else

draw �y from FiniteUniform(y n x)
return �y

where we set #(x)=#(y) = 0 if #(y) = 0.
Now, set

(f�1=2(t; i)g; f�1=2(t; i)g) = (f�(t; i)g; f�(t; i)g) ;

and consider any n 2 f1; 2; 4; : : :g. Suppose we condition on

(i) Un experiences a death at time (t; i),

(ii) the realisation of (L1=2(s; l); U1=2(s; l); : : : ; Ln=2(s; l); Un=2(s; l)) for �n �
s � t and 1 � l � 2k with l � i when s = t,

(iii) the realisation of (Ln(s; l); Un(s; l)) for �n � s � t and 1 � l � 2k with
l < i when s = t.

Then �max

n (t; i) (the death candidate in Un at time (t; i)) follows the same con-
ditional distribution as

MHdeath(Ln=2(t; i� 1) \ Cj ; Un(t; i� 1) \ Cj ; �
min

n=2(t; i); �
max

n=2(t; i))

Suppose we in addition condition on

(iv) Ln experiences a death at time (t; i),

(v) the realisation of Un(t; i).

Note that, by construction, (iv) implies (i). Then �min

n (t; i) (the death candidate
in Ln at time (t; i)) follows the same conditional distribution as

MHdeath(Ln=2(t; i� 1) \ Cj ; Ln(t; i� 1) \ Cj ; �
min

n=2(t; i); �
max

n (t; i))

The �nal form of MHevolve is as given in Table 1. Notice that, as was made
plain in Theorem 3.1, there is no need to simulate the actual processes Xn.
The upper- and lower-sandwich processes su�ce for perfect simulation of the
equilibrium distribution at time 0.

Remark 5.4 : The actual implementation in [22] di�ers from the above
algorithm in detail, in that the marks are used in a di�erent way. The imple-
mentation systematically exploits ordering relations in the coupling (for exam-
ple, deaths in upper-sandwich processes force the existence of deaths in lower-
sandwich processes) so as where possible to avoid computation of conditions
such as whether or not

V (t; i) �
pj

#(Ln(t; i� 1) \ Cj) + pj
:

23

MHevolve(D;n):
(Ln(�n); Un(�n)) (0; D(�n))
t 1� n
while t � 0

for i = 1 : : : 2k
j minfi; 2k+ 1� ig

if V (t; i) �
pj �

max(Un(t; i� 1); Ln(t; i� 1); �(t; i))

#(Ln(t; i� 1) \ Cj) + pj + 1

then (�max

n (t; i); �max

n (t; i)) (0; �(t; i))

else if V (t; i) �
pj

#(Un(t; i� 1) \ Cj) + pj

then �max

n (t; i)
MHdeath(Ln=2(t; i� 1) \ Cj ; Un(t; i� 1) \ Cj ; �

min

n=2(t; i); �
max

n=2(t; i))

else (�min

n (t; i); �min

n (t; i)) (0;0)

if V (t; i) �
pj �

min(Un(t; i� 1); Ln(t; i� 1); �(t; i))

#(Un(t; i� 1) \ Cj) + pj + 1

then (�min

n (t; i); �min

n (t; i)) (0; �(t; i))

else if V (t; i) �
pj

#(Ln(t; i� 1) \ Cj) + pj

then �min

n (t; i)
MHdeath(Ln=2(t; i� 1) \ Cj ; Ln(t; i� 1) \ Cj ; f�min

n=2(t; i)g; f�
max

n (t; i)g)

else (�min

n (t; i); �min

n (t; i)) (0;0)

Ln(t; i) (Ln(t; i) n f�min

n g) [f�
min

n g
Un(t; i) (Un(t; i) n f�max

n g) [f�
max

n g

Table 1: Summary of subprocedure MHevolve for perfect Metropolis-Hastings
simulation of a locally stable point process.

Consequently the Uniform[0; 1] marks are used to implement events under var-
ious conditionings. However the end-result is as given above.

Remark 5.5 : In order to reduce the cost of calculations, MHevolve may
be slightly modi�ed. For instance, to avoid unnecessary calculations of �max

(�min) for the birth probability in the upper (lower) process, we can �rst check
in the upper (lower) process if a death takes place; and if not, whether the

24

dominating chain experiences a birth (since birth in the upper (lower) process
implies birth in the dominating chain); and if it does, then we �nally check if a
birth or \do-nothing" takes place in the upper (lower) process.

6 Discussion and application to the Strauss pro-

cess

In the above we have described a new algorithm which uses discrete-time Metro-
polis-Hastings methods to conduct perfect simulation of locally stable point
processes, and we have given a general formulation and theoretical framework,
and described how the continuous-time birth-and-death methods of [19, 21] �t
into this framework. The Metropolis-Hastings approach may be categorized as
\variable-cell Metropolis-Hastings" applied to independent asymmetric random
walks re
ected at the origin, one for each cell of an array of cells dividing up
the region in which the point process is being simulated.

In Remark 5.2 we commented on the issue of choice of parameters for our
Metropolis-Hastings algorithm. For a given point process in a speci�ed window,
cell-size is balanced against the parameter p = pj (which we hold constant over
all cells for the sake of simplicity) controlling the probability of proposing birth
or death in the dominating process. Here we report on numerical experiments
concerning the Poisson and Strauss point processes. A typical invocation of the
program implementing the Metropolis-Hastings algorithm to generate a Poisson
point process might be

mh-cftp -i "poisson" -n m2 -m m -z z -p p -s s ;

which would produce a point pattern over a square region S divided into n = m2

square cells of side-length z, using random number seed s, the mean number of
points in S being np. Table 2 shows mean times (in seconds, measured on a Sun
UltraSparc) taken to attain perfect simulation using various seeds, working with
various invocations of mh-cftp using a Strauss process with density proportional
to
sr(x) with reference to the Poisson process considered above. Here r = 1:5 is
the interaction radius,
 = 0:5 is the interaction parameter, and sr(x) denotes
the number of pairs of points in x which are closer to each other than the
interaction radius. Note that Eqs. (2.1,5.8) hold with K = p=z2.

As can be seen in Table 2, there is weak evidence that e�ciency is maximized
for p in the region of 0:4. However it should be noted that standard deviations
based on 30 replicates were of the order of �0:3. The particular form of the
CFTP algorithm, especially its search for coalescence using doubling, means
that this analysis is indicative only. A full analysis would be more complicated
than is really justi�ed at this exploratory stage.

The rewards of perfect simulation carry with them a number of costs. In
joint work with Burdzy one of us has begun to delineate the costs in terms of
simulation time [4]; a further cost is that considerable care is required to make
sure that the CFTP algorithm really is coalescing towards the correct process,
and hence that one really is sampling perfectly from the target distribution
rather than some other. In our implementation we have taken a number of
precautions, further details of which may be found in the associated technical
report [22]. These include: debugging code which dumps a complete trace of the

25

n m p (3dp) z (3dp) mean time

121 11 0.826 0.909 2.20
144 12 0.694 0.833 1.10
169 13 0.592 0.769 0.99
196 14 0.510 0.714 0.86
225 15 0.444 0.667 0.83
256 16 0.391 0.625 0.71
289 17 0.346 0.588 0.93
324 18 0.309 0.556 0.94
361 19 0.277 0.526 0.93
400 20 0.25 0.5 0.99

Table 2: Mean coalescence times in seconds for perfect Metropolis-Hastings
simulation of a Strauss process using mh-cftp with varying cell-width z and a
10� 10 window. Note np is held constant at 100.

lower- and upper-sandwich simulations, liberal use of the C assert facility, and
also (perhaps most important) statistical tests to examine whether the output
appears to be drawn from the correct distribution. Details of this last are given
in [22, x7], and also include an Splus analysis based on a partial likelihood
argument applied to marginal transition rates of the upper- and lower-sandwich
processes, aimed at checking that individual birth-death transitions occur at the
correct rates. The whole subject of veri�cation of simulation needs to be taken
very seriously when one is trying to attain perfect simulation!

In the present paper we have concentrated on presenting a conceptual frame-
work for dominated CFTP via Theorem 3.1, reinterpreting the construction of
[19, 21] in this framework, and describing a new implementation of dominated
CFTP for point processes using Metropolis-Hastings ideas. We have chosen not
to give general guidance on how to construct new dominated CFTP algorithms
for two reasons. Firstly, a clear conceptual framework together with two ex-
plicit examples conveys the actual
avour of the technique, and the good e�ect
could be diluted if accompanied by a number of generalities. We believe it will
be more useful for readers to examine for example our discussion of the spatial
birth-and-death process in x4, and our brief report in x5.1 of the way in which
we were led to the above implementation of perfect simulation for an MH algo-
rithm. Secondly, and more importantly, the area is still in its early phase of very
rapid development, and well-intended attempts at guidance might actually serve
to sti
e development. For example: at an earlier stage assertions were in cir-
culation that CFTP could only ever apply to uniformly ergodic situations: the
technique of dominated CFTP exactly refutes this. New application of CFTP
frequently require new conceptual ideas: for a minor example see [23], which
enlarges the state-space by adding a transient component so as to deliver CFTP
for a conditioned Boolean model. There are in fact several general frameworks
now available to \explain" CFTP (for example, the notion of stochastic recur-
sive sequences, which has been around since well before CFTP and is surveyed
in [3]; [21] hints at a continuous-time approach based on coalescing stochastic

ows as in [8]): in Theorem 3.1 we work towards a minimalist framework in
order to make opportunity for innovative algorithm design and implementation.
Note in particular that while in principle one could force the x5 MH-CFTP im-

26

Output produced by: mh-cftp -i strauss(1,0.5) -n 144 -m 12 -z 0.5 -p 0.5 -P
Cell geometry: 12 by 12 cells; cell size: 0.50 by 0.50 units

Figure 1: Output of C program mh-cftp: Strauss point process (37 points).

plementation into the framework of stochastic recursive sequences (as already
mentioned in Remark 3.4), constructing marks to record the whole possible pat-
tern of nested deaths as described in x5.3, in practice it may be conceptually
simpler, and easier from an implementation point of view, to work with the
framework of Theorem 3.1.

To illustrate the Metropolis-Hastings algorithm of x5 we describe here the
results of perfect simulation from the Strauss point process. Figure 1 is a sim-
ulation of a Strauss process with density proportional to
sr(x) with reference
to a Poisson point process of intensity 2 within a square region of side length 6
units, and where r = 1 and
 = 0:5. The square region is divided into 12� 12
square cells of size 0:5� 0:5, and we set all pj = 1=2 so that Eqs. (2.1,5.8) hold
with K = 2. The simulation was modest in computational demands: it took
30 seconds (inclusive of producing Postscript output) within 640k RAM on
an old 25MHz Acorn A440=1 with ARM3 cpu (it should be noted that the same
C program also compiled and ran on Sun workstations under Solaris and a
Pentium 230 MHz machine running Windows 95, both using the gcc compiler).

Figure 2 was produced by the same program, using the same seed for its
random-number generator, with no interaction (
 = 1), in which case the result
is a Poisson process. Note that the Poisson realization need not in general
include corresponding Strauss realizations as subsets, in contrast to what would
arise from a perfect simulation using spatial birth-and-death processes as in x4.

More ambitious simulations can certainly be produced by this program,
whether by increasing the amount of interaction between points, or by increas-
ing the interaction radius, or by enlarging the region or increasing the intensity
of the underlying Poisson point process, or indeed by writing new C functions to

27

Output produced by: mh-cftp -i poisson -n 144 -m 12 -z 0.5 -p 0.5 -P
Cell geometry: 12 by 12 cells; cell size: 0.50 by 0.50 units

Figure 2: Output of C program mh-cftp: Poisson point process (66 points)
produced using the seed which was used for the Strauss point process illustrated
above.

implement other locally-stable point processes. One should however note here
an intrinsic limitation of this particular method of perfect simulation, noted
already in [21]. If the interaction becomes too intense, and the radius of inter-
action relative to the underlying intensity becomes too large, then percolation
e�ects may be expected to set in. This will lead to extremely slow convergence
(and, incidentally, heavy dependence on edge-e�ects; see [20] for a discussion of
how to apply perfect simulation to deal with edge-e�ects in a non-percolative
situation, and see [15, 42] for extremely interesting results in a Markov random
�eld context).

It would be interesting to compare the e�ciency of the various approaches
for perfect simulation of locally stable point processes based on running spatial
birth-and-death processes as in x4.3 and Metropolis-Hastings chains as in x5.4.
This would give an interesting perspective on unpublished results of Cli�ord
and Nicholls [6]. Their results include a simulation study which indicates that
neither method dominates the other in terms of e�ciency.

Finally, note that the perfect simulation algorithms presented here are gen-
eral algorithms for locally stable point processes, and pay a price for this gen-
erality. For example, in the particular case of the Widom-Rowlinson model we
expect the Gibbs' sampler in [16] to be more e�cient than any of the algorithms
considered in the present paper.

28

References

[1] A.J. Baddeley and J. M�ller. Nearest-neighbour Markov point processes
and random sets. International Statistical Review, 57:89{121, 1989.

[2] A.J. Baddeley and M.N.M. van Lieshout. Area-interaction point processes.
Ann. Inst. Statist. Math., 47:601{619, 1995.

[3] A.A. Borovkov and S.G. Foss. Stochastically recursive sequences and
their generalizations. Siberian Advances in Mathematics, 2(1):16{81, 1992.
Translated from PRIM.

[4] K. Burdzy and W.S. Kendall. E�cient Markovian couplings: examples and
counterexamples. Research report 331, Department of Statistics, University
of Warwick, 1998. Submitted for publication.

[5] D.S. Carter and P.M. Prenter. Exponential spaces and counting pro-
cesses. Zeitschrift f�ur Wahrscheinlichkeitstheorie und verwe Gebiete, 21:1{
19, 1972.

[6] P. Cli�ord and G. Nicholls. Comparison of birth-and-death and
Metropolis-Hastings Markov chain Monte Carlo for the Strauss process.
http://www.math.auckland.ac.nz/~nicholls, 1994.

[7] L. Salo� Coste. Nash inequalities. In O.E. Barndor� Nielsen, W.S. Kendall,
and M.N.M. van Lieshout, editors, Stochastic Geometry: Likelihood and
Computation, pages 365{400, Boca Raton, 1999. Chapman and Hall/CRC.

[8] R.W.R. Darling. Constructing nonhomeomorphic stochastic
ows, volume
376. American Mathematical Society, 1987.

[9] J. Fill. An interruptible algorithm for exact sampling via Markov Chains.
Annals of Applied Probability, 8:131{162, 1998.

[10] J.A. Fill and M. Machida. Stochastic monotonicity and realizable mono-
tonicity. preprint, Department of Mathematical Sciences, Johns Hopkins
University, Baltimore, 1998.

[11] S.G. Foss and R.L. Tweedie. Perfect simulation and backward coupling.
Stochastic Models, 14:187{203, 1998.

[12] C.J. Geyer. Likelihood inference for spatial point processes. In O.E. Barn-
dor� Nielsen, W.S. Kendall, and M.N.M. van Lieshout, editors, Stochastic
Geometry: Likelihood and Computation, pages 79{140, Boca Raton, 1999.
Chapman and Hall/CRC.

[13] C.J. Geyer and J. M�ller. Simulation and likelihood inference for spatial
point processes. Scandinavian Journal of Statistics, 21:359{373, 1994.

[14] P.J. Green and D.J. Murdoch. Exact sampling for Bayesian inference:
towards general purpose algorithms. In J.M. Bernardo, J.O. Berger, A.P.
Dawid, and A.F.M. Smith, editors, Bayesian Statistics 6. Oxford University
Press, 1999. Presented as an invited paper at the 6th Valencia International
Meeting on Bayesian Statistics, Alcossebre, Spain, June 1998.

29

[15] O. H�aggstr�om and J.E. Steif. Propp-Wilson algorithms and �nitary codings
for high noise Markov random �elds, 1999. Preprint.

[16] O. H�aggstr�om, M.N.M. van Lieshout, and J. M�ller. Characterisation re-
sults and Markov chain Monte Carlo algorithms including exact simulation
for some spatial point processes. Technical Report R-96-2040, Aalborg
Mathematics Department Research Report, 1996. To appear in Bernoulli.

[17] M.B. Hansen, J. M�ller, and G. Nicholls. Perfect sampling for Bayesian
inference. (In preparation).

[18] F.P. Kelly and B.D. Ripley. A note on Strauss's model for clustering.
Biometrika, 63:357{360, 1976.

[19] W.S. Kendall. On some weighted Boolean models. In D. Jeulin, editor,
Advances in Theory and Applications of Random Sets, pages 105{120, Sin-
gapore, 1997. World Scienti�c Publishing Company.

[20] W.S. Kendall. Perfect simulation for spatial point processes. In Proc. ISI

51st session, Istanbul (August 1997), volume 3, pages 163{166, 1997.

[21] W.S. Kendall. Perfect simulation for the area-interaction point process.
In L. Accardi and C.C. Heyde, editors, Probability Towards 2000, pages
218{234, New York, 1998. Springer.

[22] W.S. Kendall and J. M�ller. Perfect implementation of a Metropolis-
Hastings simulation of Markov point processes. Research Report 348, De-
partment of Statistics, University of Warwick, 1999.

[23] W.S. Kendall and E. Th�onnes. Perfect simulation in stochastic geometry.
Research report 323, Department of Statistics, University of Warwick, 1997.
To appear in J. Pattern Recognition.

[24] W.S. Kendall, M.N.M. van Lieshout, and A.J. Baddeley. Quermass-
interaction processes: Stability properties. Advances in Applied Probability,
1999. To appear.

[25] W. Klein. Potts-model formulation of continuum percolation. Phys. Review
B (3), 26:2677{2678, 1982.

[26] T. Lindvall. Lectures on the Coupling Method. John Wiley and Sons,
Chichester, 1992.

[27] S.P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability.
Springer Verlag, New York, 1993.

[28] A. Mira, J. M�ller, and G.O. Roberts. Perfect slice samplers. In prepara-
tion, 1999.

[29] J. M�ller. On the rate of convergence of spatial birth-and-death processes.
Ann. Inst. Statist. Math., 41:565{581, 1989.

[30] J. M�ller. Discussion contribution. Scandinavian Journal of Statistics,
21:346{349, 1994.

30

[31] J. M�ller. Markov chain Monte Carlo and spatial point processes. In
O.E. Barndor� Nielsen, W.S. Kendall, and M.N.M. van Lieshout, editors,
Stochastic Geometry: Likelihood and Computation, pages 141{172, Boca
Raton, 1999. Chapman and Hall/CRC.

[32] J. M�ller and K. Schladitz. Extensions of Fill's algorithm for perfect sim-
ulation. Journal of the Royal Statistical Society, B 61, 1999. To appear.

[33] J. M�ller and R. Waagepetersen. Markov connected component �elds. Ad-
vances in Applied Probability, 30:1{35, 1998.

[34] D.J Murdoch and P.J. Green. Exact sampling from a continuous state
space. Scand. J. Stat., 25:483{502, 1998.

[35] D.J. Murdoch and J.S. Rosenthal. E�cient use of exact samples, 1999. To
appear.

[36] C.J. Preston. Spatial birth-and-death processes. Bull. Inst. Internat.
Statist., 46 (2):371{391, 1977.

[37] J.G. Propp and D.B. Wilson. Exact sampling with coupled Markov chains
and applications to statistical mechanics. Random Structures and Algo-
rithms, 9:223{252, 1996.

[38] B.D. Ripley. Modelling spatial patterns (with discussion). J. Roy. Statist.
Soc., 39:172{212, 1977.

[39] B.D. Ripley and F.P. Kelly. Markov point processes. Journal of the London
Mathematical Society, 15:188{192, 1977.

[40] D.J. Strauss. A model for clustering. Biometrika, 63:467{475, 1975.

[41] E. Th�onnes. Perfect simulation of some point processes for the impatient
user. Advances in Applied Probability, 1999. To appear.

[42] J. van den Berg and J.E. Steif. On the existence and non-existence of
�nitary codings for a class of random �elds, 1999. To appear.

31

