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Abstract

We show that the value function of a singular stochastic control
problem is equal to the integral of the value function of an associated
optimal stopping problem. The relation is proved to hold for a general
class of diffusions using the method of viscosity solutions.
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1 Introduction

If V(t,z) is the value function of a stochastic singular control problem, it
was observed by Bather and Chernoff [BC| that V(¢,z) = U(t,z) where
U (t, z) is the value function of an associated optimal stopping problem. They
studied a monotone follower problem for Brownian motion, later treated
by Benes et al. [BSW], and Karatzas [K1, K2]. The connection between
singular control and optimal stopping was established rigorously by Karatzas
and Shreve, [KS1, KS2], for the case of controlling a Brownian motion (so-
called monotone and reflected follower problems). Their analysis relied on
probabilistic methods. This approach was generalized by Baldursson and
Karatzas [BaK] to treat a class of geometric Brownian motions. We also
mention the interesting work by El Karoui and Karatzas [EK] where they
use a Skorohod problem approach to prove the relation between singular
control and optimal stopping for Brownian motion. Recently Boetius and
Kohlmann [BoK] applied comparison results from stochastic analysis to prove
the connection for a class of diffusion processes with a general drift but only
time-dependent diffusion term.

We will in this paper establish the relation between singular stochastic
control and optimal stopping under mild conditions for a general class of
diffusions. We shall rely in our approach on the notion of viscosity solutions.
For a wide class of stochastic control problems possessing a dynamical pro-
gramming principle, the value function is a viscosity solution of a Bellman
equation, see Crandall et al. [CIL| and Fleming and Soner [FS]. For the
singular problem in question the Bellman equation takes the form of a vari-
ational inequality. Fleming and Soner [FS, Ch. VIII], Haussmann and Suo
[HS1, HS2|, Ma [M1, M2] and Zhu [Z] have studied this problem in detail and
showed that V(¢,x) is the (unique) viscosity solution under rather general
conditions on the parameters in the problem.

The analytical method applied in our paper proves that [* U(t,z)dz is
a viscosity solution of the variational inequality associated to the singular
control problem. We rely on dynamic programming principles for optimal
stopping problems in the proof. Since the variational inequality permits a
unique viscosity solution, we can conclude that V(¢,z) = f_woo Ul(t,z)dz. We
remark that Myhre [Mh] recently obtained such a connection for a different
singular stochastic control problem using verification theorems. His approach
assumes smooth solutions to the variational inequalities. Within the frame-
work of viscosity solutions, we need only continuity of the value functions.
Conditions for when this holds are given. To prove the relation we need to
impose a condition on the structure of the continuation region for the optimal
stopping problem.



The value function U(t,z) of the associated stopping problem can itself
be considered as a viscosity solution of a variational inequality. We refer to
Pham [P] and Qksendal and Reikvam [@R] for details. This establishes a
relation between the solutions of two different variational inequalities, which
in itself may be interesting. However, this will not be investigated further
here.

We also want to mention that different kinds of singular stochastic con-
trol problems with applications to finance and biology have been studied by
several authors. We mention a few works: Akian et al. [AMS], Alvarez [A],
Alvarez and Shepp [AS], Jeanblanc-Picque and Shiryayev [J-PS] and Lungu
and Qksendal [LO1, LO2]. See also Ch. VIII in Fleming and Soner [FS] and
the references therein.

The paper is organized as follows: In Section 2 we formulate the singular
stochastic control problem and state the main assumptions on the param-
eters. The associated optimal stopping problem is considered in Section
3 where we state various required dynamic programming principles known
from the literature. We also prove uniform continuity and integrability of
the value function and state the assumption on the structure of the continu-
ation region. Finally, in Section 4, we derive the connection between optimal
stopping and singular stochastic control.

2 The singular stochastic control problem

Let (€2, F, P) be a complete probability space and F; for 0 < ¢ < T be the o-
algebra generated by the (standard) Brownian motion B, 0 < s <t. T < 00
is a fixed time horizon. We assume F; to satisfy the standard conditions
with Fr = F. Denote by A(t) the class of IR-valued Fs-adapted processes
& ={£&(s) : t < s <T} such that a.s. w

(i) £(t,w) =0,
(ii) s = &(s,w) is nondecreasing and left-continuous with right limits.

The state process to be controlled is
Xbot =g 4 / b(u, X558 du + / o(u, X\*%)dB, — &(s) (2.1)
t t
b,o :[0,T] x R — IR are assumed to be real-valued functions, continuously

differentiable in x with bounded derivatives. In addition, we assume linear
growth,

lo(t,z)| + |b(t,z)| < K(1+ |z|) (2.2)
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where K is independent of t.

Let h: [0,T] x IR — [0,00), f : [0,T] = [0,00) and g : IR — [0,00) be
measurable functions. The value function of our singular control problem is
defined as:

T
V(t,2) = inf B / h(s, X,) ds +
EEA(T) t

(s) d&(s) + g(XT)] (2.3)

(t,T]

The variational inequality associated to the singular control problem is:

min [LV(t, x)+ h(t,x); f(t) — %—Z(t’ :L‘)] =0 (2.4)
V(T,z) = g(x) (2.5)

where L is the generator for the diffusion X%*? known to be £ = % +
b(t,z) 2 + Lo%(t, x)aa—;. We define the notion of viscosity solution for (2.4)
and (2.5), (see Crandall et al. [CIL]): Denote by C'2([0,T] x IR) the space
of functions ¢ : [0,7] x IR — IR which are once continuously differentiable
in ¢ and twice continuously differentiable in zx.

Definition 2.1. Assume V (¢,z) is continuous on [0,7] x R and V(T,z) =

g(x):
(i) V(t,z) is a viscosity subsolution of (2.4) if for every ¢ € CY%([0,T] x IR)
- g - 0 - _

where (£,7) € [0,T) x IR is the maximizer of V (¢, z) — ¢(t, ).
(ii) V (¢, ) is a viscosity supersolution of (2.4) if for every ¢ € C2([0, T] x IR)
. s : 00 - _
min ( £6(7,7) + h(7, ), /() ~ S2(0.5)) <0
where (¢,Z) € [0,T) x IR is the minimizer of V (¢, z) — ¢(¢, z).
(iii) V (¢, z) is a viscosity solution of (2.4) and (2.5) if it is both a viscosity

subsolution and supersolution.

From [HS2, Th. 5.5] we have the following result for the connection be-
tween the value function V (¢, z) defined in (2.3) and the variational inequality
(2.4) and (2.5):

Theorem 2.1. Assume f(-) > 0 and Lipschitz continuous and h(-,-) bounded
and Lipschitz continuous in both variables. If g(-) = 0 then V(t,x) is the
unique viscosity solution to (2.4) for which V(T,z) = 0.
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Note that in the paper of [HS2] they consider a singular stochastic control
problem involving a continuous control in addition to the control £(¢). Our
problem is a special case of their formulation. [M1, M2], [FS] and [Z] have also
treated the singular stochastic control problem (2.3) within the framework
of viscosity solutions.

We end this section by stating the conditions on the parameter functions
which will be assumed throughout the paper:

A1: The functions h(-,-) and g(-) are continuously differentiable in z where
the derivatives h,(-,-) and ¢'(-) are positive-valued functions. A(-,-) and g(-)
are of polynomial growth in x (h(-,-) uniformly in ¢). In addition, h,(-,-)
and ¢'(-) are Lipschitz continuous, (h.(-, ) uniformly in ¢);

he(t, x) = he(t,y)| + 19'(x) — ¢'(y)| < Clz -y

for z,y € R and t € [0,T]. f(-) is Lipschitz continuous,
[f(t) = f(s)] < Clt = 5]

for t,s € [0, 7).
A2: We assume the following relation between f(-) and ¢'(-):
! < inf f(¢ 2.6
Sup g () < aut ! (t) (2.6)

A3: Both h(-,-) and g(-) vanish at —oo, i.e.
lim A(t,z) =0= lim g(x) (2.7)

T——00 T——00

for every t € [0,T].

3 The optimal stopping problem
Consider the state process X5 which we from now on simply denote X5%,
X gt / b(u, X1%) du + / o(u, X%) dB,
t t

It will be convenient to study the following optimal stopping problem in
connection with our singular control problem:

U(t,z,y) = inf Eb®Y [/ ha(s, Xs)Ysds + f(7)Yrlrcr + ¢/ (X)) Yo 1o
STS t
(31)



where the 7’s are stopping times with respect to F;. Later we shall see that
U(t,z,1) is the derivative with respect to z of V (¢, z) defined in (2.3). The
process Y*¥ solves the stochastic differential equation

Vi =yt [ b Xk [ onu, XY aB,
t t

Note that Y"' = 2 X5 (see e.g. [IW]). Obviously, Y}»! > 0 for all s € [t, T].
We shall frequently use the notation

gt z,y) = (f(O)Licr + ¢'(2)1i=1) y (3.2)

From the positivity conditions on the parameter functions we obviously
have that U(t, z,y) > 0 whenever y > 0 for all (¢,z) € [0,T] x IR. Note also
that by choosing 7 =t we get

Ut,z,y) < g(t, z,y)

For t = T we easily see that U(T, z,y) = ¢'(x)y.

3.1 Bellman principles for optimal stopping

By the regularity assumptions on ¢’ and f we have the following Bellman
principle for the optimal stopping problem (see e.g. [S, Ch. 3]): Let for e > 0

Te =10 i=1inf {s > ¢; U(s, X2%, YY) > G(s, X2, YY) + €} (3.3)

The 7.’s will be e-optimal stopping times. For all stopping times 7 < 7,
Ul(t,z,y) = E"Y [/T hy(u, Xo) Y, du+ U(T, X, YT)] (3.4)
t
For a general stopping time 7 € [t,T] we have
Ul(t,z,y) < EHY [ / ' he(u, X,)Y, du + U(T, X, YT)] (3.5)
t

Define the continuation region D to be

D ={(t,2,y) €[0,T) x B?; U(t,z,) < f(t)y } (3.6)
Observe that 7 is the exit time from the continuation region D for the process

(t+ s, X" YY), (3.4) and (3.5) imply a dynamical programming principle
for the optimal stopping problem which is due to [Kr]:
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Proposition 3.1. For any stopping time 6 € [t,T] we have,

TNO
Ult,2,y) = inf_ B [ [ bl X Yo+ 505, X, Vo)1
t

t<r<T

+U(0,X5,Y:9)19§T:| (37)

Proof. The following argument is taken from [Kr, p. 135]. We state it here
for completeness: Define Ui (¢, z,y) to be the right-hand side of (3.7). Then,

TATe
Uy (t; z, y) < Eb®Y [/ hy (UJ Xu)Yu du + g(T: X, Y;')]-'r<7'6
t
+ U(Tea XTga Yi’e)lTegT:|
TATe
< b [ / e, X,) Yo du+ U(r, X, V) 1y
t
U X VL] =
TNTe
=K [/ hw(u, Xu)Yu du + U(T/\TijT/\Tg7}/T/\T5) —¢€
t

where we have used that
9(7e, X5, Ye) SU(Te, Xi, Yr) — €
But since 7 A 7, < 7, we obtain from (3.4)
Ui(t,z,y) < U(t,z,y) — €

for all € > 0. Hence, Ui (t, z,y) < U(t,z,y).
On the other hand,

TN
U1 (t, x, y) = KiniT Et’w’y [/ hw(u, Xu)Yu du + g(T’ XT7 Y;)17<0
TS t
+ U(ea XG, }/9)10§T:|
TAG
> inf EY*¥ [/ he(u, Xy) Yy du+U(T, X7, Y:)1,<9
t

T t<r<T

+ U(9,X6,Y'a)10<7}



TN
— 3 t,z,y
= tglgé‘TE |:/t‘ hw(u,Xu)Yu du + U(T/\G,XT/\Q,Y,—/\Q)

>U(t,z,y)

where we have used (3.5) and the fact that U(t,z,y) < §(¢,z,y). Hence,
Ui(t,z,y) =U(t,z,y). O

3.2 Properties of the value function
We have the following factorization result which will be useful later:
Lemma 3.2. The value function U(t,z,y) satisfies

U(t,z,y) =yU(t,x,1) (3.8)

Proof. Note that Y = yY5!. A direct calculation shows,
Ul(t,z,y) = E"™Y {/ hy(s, Xs)Ysds + g(r, X, YT)]
t
= | [ halo X1 ds g X071
t

—F U ho(s, XU)Y2! ds + g(r, X7, Y)] v
t
== Z/U(t, z, 1)
O

We shall from now on only consider the stopping problem with y = 1, i.e.
the value function U(t,z) := U(t,z,1). Note that by choosing 7 =t we get
U(t,z) < g(t,z,1). But when t < T, g(t,z,1) equals f(t), while for ¢t =T it
is ¢'(z). Recall the assumption (2.6), which yields

Ut,z) < sup f(t) (3.9)
t€[0,T]

We prove that U(t, x) is uniformly continuous in ¢ and z (the proof is inspired
by [P]):

Proposition 3.3. U(t, z) is Lipschitz continuous in = uniformly in t.
Proof. Fix t € [0,T] and let z,y € IR. Then, by the Lipschitz continuity of
hz(s,-) and ¢'(-),

U(t,z) = U(t,y)| < sup
t<r<T

B[ / 5, XEFYYI — (s, XYY ds



1, { (g (X7 — /(X)) Y:ﬂ}]\
<C sup E[ / X%~ XYY ds
t<r<T ¢
X - styuyfﬂ]

The Cauchy-Schwarz’ inequality gives,

T
Ult2) - Ult, )] < CE[ [ Xt = X09]ds- sup v

t t<s<T

+ C sup E[|Y7€’1

t t
X5 - x|
t<r<T

< cnf sup vy B[ [ i - i asy]
t<s< t
+ CE[(Y;J)?] g [|X§:$ XL 2] 2

The Lipschitz continuity now follows by moment estimates for diffusions, see
e.g. [GS, IW]. O

The Lipschitz continuity in x is applied to prove the uniform continuity in ¢
of U(t,x):

Proposition 3.4. U(t,z) is uniformly continuous on [0,T] for each x € IR.
In fact, there exists a positive constant C' such that

U(t,2) = U(s,2)] < C (|t — 512 + |t - 5])

Proof. First note that U(t,x) is nondecreasing in ¢. Use (3.7) with 6 = s,
where 0 <t <s<T:

0<U(s,z) = Ul(t,x)

TAS
=U(s,z) —infE [[/ hy(u, XPP)YE du + g(r, X2°, VA1, o
T t
+ 1,<,U (s, X}“’”)Yst’l]

TAS
=supE [— / ho(u, X)) Yy du — 1, g (7, X7 Y1)



— L U(s, XY + U s, x)]
<supE |1, {U(s,2) — U(s, X)) Y} + 1,,U(s, )
- 1T<S§(Ti Xr?ma Y,:’l)i|

where we have used the assumption A, > 0 in the last inequality. Further-
more, by rewriting, and observing that 7 < s implies 7 < T,

U(s,z) = Ul(t,z) < supE[lsST{U(s,x) — U(s, Xb®)Yh'}
+Ledin ) - 5 X V)
+ Lreo{U(s,2) = 3(t, 3, 1)}
=supE [lng{U(s, x) — U(s, X" )Y}
+ 1o {f(t) — ()Y}
+1,.{U(s,z) — g(s,z,1)}
+ Lre{d(s,2,1) = (t, 7, 1)}
By choosing 7 = s we get U(s,z) < g(s,x,1). Hence, U(s,z)—g(s,z,1) < 0.
Furthermore, by the assumption sup, ¢'(x) < inf,cpor f(2),
9(s,2,1) = g(t,2,1) = g(s,2,1) = f(t) < f(s) = f(t)

Hence,

U(s,z) —Ult,z) < sng[lsST{U(s,fc) —U(s, X\")Y5'}
L) — F)YE
+ 1 {f(8) — ()Y}
+ Lees{f(5) = ()}

<supE|1,.,{U(s,z) — U(s, XL")Y}'}

+ 1L {(f() = f(7)Y}

+ 1T<s{(1 - Yrt’l) sup f(t)}
t€[0,T]

+ L<o{f(s) = F(1)}



Use the Lipschitz continuity of U and f to get,

U(s,2) ~ Ult,2)] < sup {CE[|m _ xte

t<r<T

Vo + Clr — ][V

1T<S

+ sup f(¥)|1— Yf’117<s] } + Clt — s|
t€[0,T]

< C sup E[\Y;“Hx — Xbe

} + C|t — s| sup E[YT“}
t<r<T

t<7<s

+ sup f(t) sup E[\l—YTt’1
t€[0,T] s<T<T

]—I—C|t—s\

By invoking known estimates regarding the dependence on the initial condi-
tion for diffusions, we get the desired continuity in ¢ (see e.g. [GS, IW]):

U(s,2) —U(t,2)| < C(jt—s['/*+ [t —s|)

We conclude,

Proposition 3.5. There exists a positive constant C' such that for t,s €
[0,T] and z,y € R,

U(t,z) — U(s,y)| < C (|t — s|'? + |t — 5| + |z — y])

Since we want to prove that the integral of U(t, z) with respect to z is
a viscosity solution of (2.4), we need to show that U(t, z) is integrable on
(—o0, z] for every z € IR. The next proposition proves this. But first we
need a lemma which shows that the process X* goes to minus infinity when
the intial condition x does, a.s. w:

Lemma 3.6. For every 0 <t<s<T

lim X% (w) = —c0
t——00

a.8. w e .

Proof. Fix 0 <t < s < T. From the Comparison Theorem VI.1.1 in [IW]
the mapping x — X* is nondecreasing a.s. w. Since the coeffiecients b(-, -)
and o(-,-) in the equation for X’* are of linear growth and continuously
differentiable with bounded derivatives, z — X5%(w) is a C'-diffeomorphism
of IR a.s. w (see [Ku] or the comment following Th. V.2.3 in [IW]). Hence,
for every constant N > 0 there exists a K > 0 such that X** < —N for
all z < —K, a.s. w. Note that N and K depends on w. This proves the
lemma. U
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Proposition 3.7. For every (t,z) € [0,T] x IR we have that

/ U(t,z)dz < o0

—0o0

Proof. First note that due to the polynomial growth conditions on A(-, -) and
g(-) we have

E UtT h(s, Xb%) ds + g(X;fim)] < O(1+ [z]™)

This is proven by using standard moment estimates diffusions (see e.g. [GS,
IW]). Choose the stopping time 7 = T to obtain

T
OSU@JJ)SEWJL/i%@XQEd&+d@&ﬁ4
t

Consider ftT he(s, X2 Vit ds + ¢'(X2*)YE'. For an z € IR we apply the
Fubini-Tonelli theorem to obtain

T T T
/ / ha(s, X5*) Y ds dz + / J(XYh dz
—oco J i

—00

T T T
- / ( / ha(s, X1 Y H! dz) ds + / g (XFYE dz
t —00 -

T xt® X5®
:/ (/ he(s,u) du ds—i—/ g'(u) du
t —o0 —0o0

T
= [ bl X0 ds g5
t

In the second last equality we made a change of variables by substituting
with u(z) = X%. Note that v/(z) = Y»'. In addition, we have applied
the assumption (2.7) and Lemma 3.6. Again appealing to the Fubini-Tonelli
theorem,

T T
/ Ut 2, 1) dz < B [ / h(s, X1<) ds + g(X%w)} < o0
t

-0

O

We introduce the continuation region for the stopping problem when y = 1:
D, = {(t, 2) € [0,7) x R; U(t,z) < f(t)} (3.10)
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D, is open by the Lipschitz condition on f(-) and the continuity of U(-, ).
Observe that (t,x) € D; implies that (¢,2,1) € D. This region will be of
crucial importance in our proof for the connection between optimal stopping
and singular stochastic control. The following assumption is made from now
on:

A4: The region D; defined in (3.10) is connected in the sense that if (¢,z) €
D then (t,z) € D for any z € (—00, x)

Remark. In [BQ] they assume that the continuation region has the shape

{(t,x) rx < a(t)}

for some function «(t). If we assume «(-) to be positive, it is easily seen that
condition (A4) holds.

4 The connection between optimal stopping
and singular stochastic control problems

Let V(t,z) be defined as in (2.3) and U(t,z) = U(t,x,1) in (3.1). The first
result links U(¢,z) to the variational inequality associated to the singular
stochastic control problem:

Theorem 4.1. Assume conditions (A1)-(A4) are satisfied. Then the func-
tion [*_Ul(t,z) dz is a viscosity solution of (2.4) with [* _U(T,z)dz = g(z).

Proof. We first observe by Prop. 3.7 and Prop. 3.4 that U(t, z) is integrable
with respect to z and that the integral is continuous in both variables. The
boundary condition g(z) is obviously satisfied since,

/:o U(T,z)dz = /:og'(z) dz = g(z)

where we have used the assumption lim, , . g(z) = 0.

We first treat the viscosity supersolution case: Let ¢ € C2([0,T] x IR)
and (£,Z) be a minimizer of [* U(t,2)dz — ¢(t,z). Without any loss of
generality we may assume that

6(,7) = /O "UlE2)de and 6(tz) < /_ U, ) de

12



Suppose (¢,z) ¢ D;. Since (f,z) is an optimum and both &(¢,z) and
[7  U(t, z) dz are differentiable at (£, z), we have

20.2) = UGG, 7) = 1(D)

In the second equality we have used that (¢,%,1) ¢ D since (¢,Z) ¢ D;. Thus
we see that the supersolution property is satisfied in this case independent of
what L£¢ + h must be. Suppose now that the maximum is inside the region
D;,. Since D; is open and assumed to have the property that (¢, z) € D; for
all z € (—o0, T), there exists a stopping time 7 which is smaller that or equal
to 7p,(t,z) for all z and not being equal to . Namely 7 = inf{7p, (¢, 2)}.
(We use the notation 7p, for the first exit time of D;). The Fubini-Tonelli
theorem and the dynamical programming principle in D give

o(t,T) = /w U(t,z)dz

—0o0

— / (EW [ / hw(s,Xs)sts+YTU(T,XT)]) dz
—0 i
:E[ / ( / hm(s,Xf’z)Yf’l) dt] +E[ / Yf’lU(T,Xf’Z)dz]
t —00 — oo

The substitution v = Xb5% in the two integrals above yields (since du =
Y;t’ldz)

z o xbe -
/ he(s, X)) Yhl ds = / he(s,u) du = h(s, X“7)

In the last equality we have used that lim, , ., X** = —oo a.s. and the
assumption lim, , o h(t,z) = 0. Equivalently, we have

z . X5
/ YU (1, XE7) dz = / U(r,u) du

-0 — 00

Hence, using that ¢(t,z) < [*__U(t, z) dz we get

8(F, 7) = B [ /t " h(s, X.) ds] 4 ER [ / Y ) du]

t —00

> RiE [/; h(s, X;) ds + ¢(r, XT)]
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Dynkin’s formula yields
0> E! [/ Lé(s, X,) + h(s, X,) ds
7

A limiting argument when 7 —  gives that Lé+h < 0. Hence, [*__U(t, z) dz
is a viscosity supersolution.

Consider now the viscosity subsolution case: Let ¢ € C2([0,T] x IR)
and (¢,Z) be a maxmizer of [* U(t,z)dz — ¢(t,x). Without any loss of
generality we may assume that

6(,7) = /O U )ds and ota) > /_ U, ) de

Since U(t,z,y) §_§(t,x,y)_we know that f(t) — %(f, Z) > 0. It remains
to show that Lo(t,Z) + h(t,Z) > 0 in order to have the viscosity superso-
lution property. Using the dynamic programming principle and the same
argumentation as above yields,

/::o (t,2)dz

U(t,
(Ew [ / h (s, X;)Ysds + Y, U(r, XT)D dz
—oo t

E5 [ /t " h(s, X,) ds + / T ) du}

—0o0

(1, z)

IN

IN

"z [ /t ! h(s, X,) ds + o(r, XT)}

Dynkin’s formula now yields,

0 < EM [[T Lo(s, Xs) + h(s, Xs) ds]

t

A limiting argument when 7 — ¢ gives that L¢o+h > 0. Hence, ffoo Ult, z)dz
is a viscosity subsolution. This completes the proof. O

We state the theorem which connects the optimal stopping problem to the
singular stochastic control problem:

Theorem 4.2. In addition to the conditions (A1)-(A4), assume that f(-) >
0 for allt € [0,T] and that h(-,-) is bounded and Lipschitz continuous in both
variables. If g(-) =0,

V(t,z) = /z Ult, z)dz

—0o0
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Proof. Under the above assumptions we know from Th. 2.1 that V(¢,z) is
the unique viscosity solution of (2.4) such that V(7,z) = 0. From Th. 4.1
we can therefore conclude that V(¢,z) = [* _U(t, z) dz. O

From this connection we immediately get that V' (¢, x) is at least continuously
differentiable in the space variable.

It is known that in many cases the optimal control £*(s) of the singular
problem behaves like a local time on the boundary of some region in [0,7") x
IR, see e.g. the works of [LO1, LO2], [BaK], [KS1, KS2] and [F'S, Ch. VIII].
This region is sometimes called the region of in-action, and is defined as

Dy = {(t.2) € [0.7) x : %—Z(t, 0) < (1)} (41)

Under the assumption of Th. 4.2, we immediately get D; = Dy, i.e. the con-
tinuation region of the stopping problem coincides with the in-action region
of the singular control problem.
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