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1 Introduction

In this paper we give some results on the scattering operator for the Schrodinger
equation with a time-dependent potential. We consider the free Schrodinger
equation

Ow(t, ) = —Agu(t, z), u(s, ) = uo(x), (1)
and the full Schrodinger equation
10w(t,x) = —Ago(t,z) + V(L 2)v(t, z), v(s,z) = vo(z). (2)

Here V' is a potential depending explicitly on time. The solution to (1) is
given by u(t) = Up(t — s)ug = e~(t=9) oy where Hy = —A, with domain
the usual Sobolev space of order 2, D(Hy) = H*(R?). If we assume V (¢, 7) a
real-valued function, such that V € LY(R; L*(R?)), then associated with (2)
is a unitary propagator on L?(R?), denoted by U(t, s), such that the solution
to (2) is given by v(t) = U(t, s)vg, see for example [8, 9] and references
therein. More precisely, v(t) solves the equation in the sense that v satisfies
the integral equation

v(t) = Up(t — s)vg — z'/s Up(t — m)V(7)v(7)dT, (3)
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i.e. v is a mild solution to the Cauchy problem (2). The propagator satisfies
U(t,t) = 1 and U(t,s)U(s,r) = U(t,r) for all ¢,s,r € R. Furthermore,
(t,s) — U(t,s) is strongly continuous.
For this class of V' one has a scattering theory associated with the solu-
tions to the equations (1), (2). The wave operators are given by
Wi(s) = 29_—)1&12 U(s, t)Uo(t — s). (4)

The limits exist on all of L?(R?) and are unitary. The scattering operator is
given by

S(s) = Wi () W_(s). (5)

In the paper [3] we studied the scattering problem in the space-time frame-
work, i.e. we considered the problem in the spaces L"(R; L?(R?)) for a certain
range of ¢, r. This approach was first used by Kato in [4] to study a class of
nonlinear Schrédinger equations. In [3, Theorem 4.10] we obtained a repre-
sentation formula for the scattering operator, using a purely time-dependent
method of proof. In this paper we give a different derivation of this for-
mula. We use the stationary scattering theory, in the formulation due to
Kuroda [5, 6], combined with the stationary formulation of scattering theory
for explicitly time-dependent potentials, in the form given by Howland [2].
For the case of potentials periodic in time the stationary scattering theory
has been applied in [7] to derive a representation formula for the associated
scattering matrix. The difference with the case considered here is that with-
out a periodicity assumption there is no scattering matrix associated with
the original problem, since Up(t) and S(s) do not commute for any ¢ # 0.
There is a large literature on scattering theory for Schrodinger operators with
time-dependent potentials. See for example [1] and references therein.

2 Preliminaries

We start by defining various spaces and operators needed to formulate the
problem. We write H = L*(R?) and introduce

K=LR)®H=L*R;H) = L*(R™). (6)

We use the identifications of the three spaces without comment in the sequel.
Let
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with domain H'(R) Ralg HQ(Rd). Then ]N&"O is essentially self-adjoint on this
domain. The closure is denoted by Kj.
We introduce the unitary operator

(YA 2) = (Uo() [ (L -))(2) (8)

on K. Furthermore, we introduce the partial Fourier transform in the -
variable

(®f)(r,z) e f(t,x)dt (9)

“ 7L

These operators are combined to yield Fy = ®T*. Viewing this operator as
a map from K to L*(R.;H), we see that it defines a spectral representation
for Ky. This means that we have

(FoRof)(7) =7 (Fof)(T), (10)

initially for f € H'(R) @a, H*(R?). Note that this result implies D(Ky) =
{f € K|Fof € L*'(R;H)}. Here L** denotes the usual weighted space in
the t-variable.

One further ingredient in Kuroda’s formulation of stationary scattering
theory is the trace operator. We define

(y(r)f)(=) = (Fof)(T, ). (11)
This operator is well-defined on the space
K* = T(L**(R;H)). (12)

for any s > 1/2. It maps K*® boundedly into H. For s < 0 we let K* = (K~*)*
and use the natural duality induced by the scalar product on K to get a scale
(s >0) K* — K = K~*. For the sake of consistency we write K = K°.

The limiting absorption principle holds for Ky. Given the comments
above, the proof is well-known, and is omitted.

Proposition 1. Assume s > 1/2. Then the boundary values

(Ko — 7 Fi0)™" =lim(Ko — 7 F ie)™" (13)

el0

exist in operator norm on B(K* K~%). The boundary values are Hélder-
continuous in T.



Some of the results from [3] will be needed. We recall the necessary
definitions, using the same notation for ease of reference. We introduce the
spaces

L(B)= L=(R;H), L(B)=L'(R;H). (14)

There is a natural duality between these two spaces, obtained from the inner
product on L*(R;H).

We note the following result. The proof is a simple consequence of the
definitions and is omitted.
Lemma 2. Let s > 1/2. We then have the continuous embeddings K* —
L(B") and L(B) — K~*.

For each s € R define an operator I'g(s) € B(H, L(B)) by

To(s)p = Us(t — s)p. (15)

The adjoint relative to the duality mentioned above is
Lo(s)" f = / Us(s —t)f(t)dt, (16)

and I'o(s)* € B(L(B'),H).
We impose the following

Assumption 3. Let V € L'(R; L=(RY)) be a real-valued funclion.

Then, as mentioned in the introduction, we have a propagator U(t,s)

associated with (2). We define four operators G, Gy € B(L(B’), L(B)) by

t

(GLA)(1) = / Ut = 9)f(5) s, (17)

(G20 = [ Uts)f(s)ds. (15)

+oo

Lemma 4. Let V salisfy Assumptlion 3. Then 1 4+ iG°V is invertible in
B(L(B)) with inverse given by 1 — G_V. Similarly, 1 +iGV is invertible
with inverse given by 1 — GLV.
Proof. First we note that Assumption 3 implies V' € B(L(B), L(B’)). Then
we use that the following identities hold in B(L(B'), L(B)):

G° -G =iG°VG_ =iG_ VG, (19)
see [3, Lemma 3.7], whose proof is valid also under Assumption 3. The
remainder of the proof is now a straightforward computation. O



3 Stationary scattering theory

We now briefly outline the stationary scattering theory applied to our prob-
lem. We need the following lemma, cf. [2, equation (1.8)].

Lemma 5. Lel f € K*, s> 1/2, 0 € R, and e > 0. Then we have

t

(Ko — o —ie) ' f)(t) = i / 7= et — ) f(tY dt. (21)
Proof. We note (Kog—o—ic)™ ' f = T®*(r —o—ic) ' ®T*f. Since f € L(B’)
by Lemma 2, the result then follows using well-known results on the Fourier
transform and convolutions. O

We will introduce a slightly stronger assumption on V', in order to be able
to apply the stationary scattering theory.

Assumption 6. Let V(t,z) be a real-valued function such that for some
B> 1 we have (1 + [t))PV (¢, z) € L®(R; L®(RY)).

Let V satisfy Assumption 6. We define K = Ky 4+ V on K, with domain
D(K) = D(Ky). Since V is a bounded self-adjoint operator on K, K is
self-adjoint on this domain. Briefly stated, Howland’s method [2] consists in
applying the scattering theory to the pair Ky, K.

To establish the connection with the results in [3], we need the following
lemma.

Lemma 7. Let V satlisfy Assumption 6. Assume 1/2 < s <3 —1/2. Then
we have the following results.

(i) The operators 1 + iVGi are tnvertible on K°.

(ii) Let 0 € R. Then 1 + V(Ko — o Fi0)~" are invertible on K*.

Proof. 1t suffices to consider one of the cases. Assumption 6 and the restric-
tion 1/2 < s < 3 —1/2 imply that 1 +:VG° is bounded on K*. Assume
f €K and (1 +iVG®)f =0. Then Lemmas 2 and 5 imply f = 0. Let
g € K*. By Lemma 5 there exists f € L(B’) such that (14 :VG")f = g.
But then f = —iVG® f + g shows that f € K*. To prove (ii) we start by
taking limits in (21) to get

(Ko —140)"'f =iG2 f (22)
for f € K%, s > 1/2. Let M, denote the unitary operator of multiplication
by e~ on K*, s € R. We note that

Ky — o0 =M, KqM,. (23)

Using this result, part (i), and a limiting argument, part (ii) follows. O
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The modified trace operators are defined by
Y (T)f =) (1+ V(Ko — 7 Fi0)7) " f (24)
on K%, 1/2 < s < 3 — 1/2, and the modified spectral representations by
(FLf)(1) = v2(7)f, (25)

initially on the same space. A standard argument then shows that F. extend
to unitary operators on K.

1

In Howland’s theory the connection between the wave operators defined
in (4) and the wave operators Wy = s-lim,_ 1. e“Re Ko is given by
(Wi f)(t) = Wx(t)f(t). The connection with the stationary theory presented
here is summarized in the relation Wy = F{F;. A careful examination of
the proof in [6] shows that it applies to the present case. We will omit the
details.

The connection with the scattering operator defined in (5) is then given
by (Sf)(t) = (WZ'W_£)(t) = S(t)f(t). On the other hand, the stationary
scattering theory yields a representation for the decomposition of S in the
spectral representation for Ky given by Fy. Using this connection we get the
following result, which is the main result connecting Howland’s theory with
the space-time scattering theory from [3]. We have retained the formulation
given in that paper.

Theorem 8. Let V satisfy Assumption 6. Then the scattering operator S(s)
from (5) has a representation

S(s) =1 —1lo(s)*V(1 +iG2V)™'To(s). (26)

Proof. We have from the stationary scattering theory (see [5, 6]) that the
scattering matrix given by (FoSf)(7) = S(7)(Fof)(7) is represented as

S(r) =1 —2min(r) (1 + V(Ko — 7 —i0)™)) ™ V()™ (27)

We now translate this representation into the terms used in [3]. Recalling
the definitions of Fy and (1), we find that v(7) = 4(0)M,. Combining
this relation with (23) we find S(7) = S(0), such that the scattering matrix is
independent of the spectral parameter 7. As already observed by Howland [2,
Remark (3), p. 325], the scattering matrix in our spectral representation is
also given by multiplication by the constant operator S(0). Thus we have
the relation S(0) = S(0). Now for any f € K*, s > 1/2,

A0 = (Fof)(0) = <= [ (=)0t = —=Tof0r S, (29



Using this relation together with (22), we find
S(0) = 1 — iTo(0)*(1 + VG2 )~ VTo(0). (29)

From (15) follows I'g(s) = I'o(0)Up(—s). Furthermore, S(s) = Uy(s)S(0)Up(—s).
Finally, we have V(1 +:G°V)~! = (1 44V G2 )~'V. Combining these results
equation (26) follows. O

Some applications of the formula (26) are given in [3]. We need Assump-
tion 6 to use the stationary scattering theory in our proof. The results in [3]
show that the formula is valid also under Assumption 3.
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