On the scattering operator for the Schrödinger equation with a time-dependent potential

Arne Jensen

Department of Mathematics and MaPhySto*
Institute for Electronic Systems
Alborg University, Fredrik Bajers Vej 7E
DK-9220 Alborg Ø, Denmark
matarne@math.auc.dk

1 Introduction

In this paper we give some results on the scattering operator for the Schrödinger equation with a time-dependent potential. We consider the free Schrödinger equation

$$i\partial_t u(t,x) = -\Delta_x u(t,x), \qquad u(s,x) = u_0(x),$$
 (1)

and the full Schrödinger equation

$$i\partial_t v(t,x) = -\Delta_x v(t,x) + V(t,x)v(t,x), \qquad v(s,x) = v_0(x). \tag{2}$$

Here V is a potential depending explicitly on time. The solution to (1) is given by $u(t) = U_0(t-s)u_0 = e^{-i(t-s)H_0}u_0$, where $H_0 = -\Delta_x$ with domain the usual Sobolev space of order 2, $\mathcal{D}(H_0) = H^2(\mathbf{R}^d)$. If we assume V(t,x) a real-valued function, such that $V \in L^1(\mathbf{R}; L^{\infty}(\mathbf{R}^d))$, then associated with (2) is a unitary propagator on $L^2(\mathbf{R}^d)$, denoted by U(t,s), such that the solution to (2) is given by $v(t) = U(t,s)v_0$, see for example [8, 9] and references therein. More precisely, v(t) solves the equation in the sense that v satisfies the integral equation

$$v(t) = U_0(t - s)v_0 - i \int_s^t U_0(t - \tau)V(\tau)v(\tau) d\tau,$$
 (3)

^{*}Centre for Mathematical Physics and Stochastics, funded by a grant from the Danish National Research Foundation.

i.e. v is a mild solution to the Cauchy problem (2). The propagator satisfies U(t,t)=1 and U(t,s)U(s,r)=U(t,r) for all $t,s,r\in\mathbf{R}$. Furthermore, $(t,s)\mapsto U(t,s)$ is strongly continuous.

For this class of V one has a scattering theory associated with the solutions to the equations (1), (2). The wave operators are given by

$$W_{\pm}(s) = \underset{t \to \pm \infty}{s-\lim} U(s,t)U_0(t-s). \tag{4}$$

The limits exist on all of $L^2(\mathbf{R}^d)$ and are unitary. The scattering operator is given by

$$S(s) = W_{+}(s)^{-1}W_{-}(s). (5)$$

In the paper [3] we studied the scattering problem in the space-time framework, i.e. we considered the problem in the spaces $L^r(\mathbf{R}; L^q(\mathbf{R}^d))$ for a certain range of q, r. This approach was first used by Kato in [4] to study a class of nonlinear Schrödinger equations. In [3, Theorem 4.10] we obtained a representation formula for the scattering operator, using a purely time-dependent method of proof. In this paper we give a different derivation of this formula. We use the stationary scattering theory, in the formulation due to Kuroda [5, 6], combined with the stationary formulation of scattering theory for explicitly time-dependent potentials, in the form given by Howland [2]. For the case of potentials periodic in time the stationary scattering theory has been applied in [7] to derive a representation formula for the associated scattering matrix. The difference with the case considered here is that without a periodicity assumption there is no scattering matrix associated with the original problem, since $U_0(t)$ and S(s) do not commute for any $t \neq 0$. There is a large literature on scattering theory for Schrödinger operators with time-dependent potentials. See for example [1] and references therein.

2 Preliminaries

We start by defining various spaces and operators needed to formulate the problem. We write $\mathcal{H} = L^2(\mathbf{R}^d)$ and introduce

$$\mathcal{K} = L^2(\mathbf{R}) \otimes \mathcal{H} \cong L^2(\mathbf{R}; \mathcal{H}) \cong L^2(\mathbf{R}^{d+1}).$$
 (6)

We use the identifications of the three spaces without comment in the sequel. Let

$$\widetilde{K}_0 = -i\frac{d}{dx} \otimes I + I \otimes H_0 \tag{7}$$

with domain $H^1(\mathbf{R}) \otimes_{\text{alg}} H^2(\mathbf{R}^d)$. Then \widetilde{K}_0 is essentially self-adjoint on this domain. The closure is denoted by K_0 .

We introduce the unitary operator

$$(\Upsilon f)(t,x) = (U_0(t)f(t,\cdot))(x) \tag{8}$$

on K. Furthermore, we introduce the partial Fourier transform in the t-variable

$$(\Phi f)(\tau, x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-it\tau} f(t, x) dt.$$
 (9)

These operators are combined to yield $F_0 = \Phi \Upsilon^*$. Viewing this operator as a map from \mathcal{K} to $L^2(\mathbf{R}_{\tau}; \mathcal{H})$, we see that it defines a spectral representation for K_0 . This means that we have

$$(F_0 K_0 f)(\tau) = \tau \cdot (F_0 f)(\tau), \tag{10}$$

initially for $f \in H^1(\mathbf{R}) \otimes_{\text{alg}} H^2(\mathbf{R}^d)$. Note that this result implies $\mathcal{D}(K_0) = \{f \in \mathcal{K} \mid F_0 f \in L^{2,1}(\mathbf{R}; \mathcal{H})\}$. Here $L^{2,s}$ denotes the usual weighted space in the t-variable.

One further ingredient in Kuroda's formulation of stationary scattering theory is the trace operator. We define

$$(\gamma(\tau)f)(x) = (F_0f)(\tau, x). \tag{11}$$

This operator is well-defined on the space

$$\mathcal{K}^s = \Upsilon(L^{2,s}(\mathbf{R}; \mathcal{H})). \tag{12}$$

for any s > 1/2. It maps \mathcal{K}^s boundedly into \mathcal{H} . For s < 0 we let $\mathcal{K}^s = (\mathcal{K}^{-s})^*$ and use the natural duality induced by the scalar product on \mathcal{K} to get a scale (s > 0) $\mathcal{K}^s \hookrightarrow \mathcal{K} \hookrightarrow \mathcal{K}^{-s}$. For the sake of consistency we write $\mathcal{K} = \mathcal{K}^0$.

The limiting absorption principle holds for K_0 . Given the comments above, the proof is well-known, and is omitted.

Proposition 1. Assume s > 1/2. Then the boundary values

$$(K_0 - \tau \mp i0)^{-1} = \lim_{\varepsilon \downarrow 0} (K_0 - \tau \mp i\varepsilon)^{-1}$$
(13)

exist in operator norm on $\mathcal{B}(\mathcal{K}^s,\mathcal{K}^{-s})$. The boundary values are Hölder-continuous in τ .

Some of the results from [3] will be needed. We recall the necessary definitions, using the same notation for ease of reference. We introduce the spaces

$$L(B) = L^{\infty}(\mathbf{R}; \mathcal{H}), \qquad L(B') = L^{1}(\mathbf{R}; \mathcal{H}).$$
 (14)

There is a natural duality between these two spaces, obtained from the inner product on $L^2(\mathbf{R}; \mathcal{H})$.

We note the following result. The proof is a simple consequence of the definitions and is omitted.

Lemma 2. Let s > 1/2. We then have the continuous embeddings $K^s \hookrightarrow L(B')$ and $L(B) \hookrightarrow K^{-s}$.

For each $s \in \mathbf{R}$ define an operator $\Gamma_0(s) \in \mathcal{B}(\mathcal{H}, L(B))$ by

$$\Gamma_0(s)\varphi = U_0(t-s)\varphi. \tag{15}$$

The adjoint relative to the duality mentioned above is

$$\Gamma_0(s)^* f = \int_{-\infty}^{\infty} U_0(s-t) f(t) dt, \tag{16}$$

and $\Gamma_0(s)^* \in \mathcal{B}(L(B'), \mathcal{H})$.

We impose the following

Assumption 3. Let $V \in L^1(\mathbf{R}; L^{\infty}(\mathbf{R}^d))$ be a real-valued function.

Then, as mentioned in the introduction, we have a propagator U(t,s) associated with (2). We define four operators $G^0_+, G_\pm \in \mathbf{B}(L(B'), L(B))$ by

$$(G_{\pm}^{0}f)(t) = \int_{+\infty}^{t} U_{0}(t-s)f(s) ds, \tag{17}$$

$$(G_{\pm}f)(t) = \int_{+\infty}^{t} U(t,s)f(s) ds.$$
(18)

Lemma 4. Let V satisfy Assumption 3. Then $1 + iG_{-}^{0}V$ is invertible in $\mathcal{B}(L(B))$ with inverse given by $1 - G_{-}V$. Similarly, $1 + iG_{+}^{0}V$ is invertible with inverse given by $1 - G_{+}V$.

Proof. First we note that Assumption 3 implies $V \in \mathcal{B}(L(B), L(B'))$. Then we use that the following identities hold in $\mathcal{B}(L(B'), L(B))$:

$$G_{-}^{0} - G_{-} = iG_{-}^{0}VG_{-} = iG_{-}VG_{-}^{0},$$
(19)

$$G_{+}^{0} - G_{+} = iG_{+}^{0}VG_{+} = iG_{+}VG_{+}^{0}, (20)$$

see [3, Lemma 3.7], whose proof is valid also under Assumption 3. The remainder of the proof is now a straightforward computation. \Box

3 Stationary scattering theory

We now briefly outline the stationary scattering theory applied to our problem. We need the following lemma, cf. [2, equation (1.8)].

Lemma 5. Let $f \in \mathcal{K}^s$, s > 1/2, $\sigma \in \mathbf{R}$, and $\varepsilon > 0$. Then we have

$$((K_0 - \sigma - i\varepsilon)^{-1} f)(t) = i \int_{-\infty}^t e^{i\sigma(t-t')} e^{-\varepsilon(t-t')} U_0(t-t') f(t') dt'.$$
 (21)

Proof. We note $(K_0 - \sigma - i\varepsilon)^{-1} f = \Upsilon \Phi^* (\tau - \sigma - i\varepsilon)^{-1} \Phi \Upsilon^* f$. Since $f \in L(B')$ by Lemma 2, the result then follows using well-known results on the Fourier transform and convolutions.

We will introduce a slightly stronger assumption on V, in order to be able to apply the stationary scattering theory.

Assumption 6. Let V(t,x) be a real-valued function such that for some $\beta > 1$ we have $(1 + |t|)^{\beta}V(t,x) \in L^{\infty}(\mathbf{R}; L^{\infty}(\mathbf{R}^d))$.

Let V satisfy Assumption 6. We define $K = K_0 + V$ on \mathcal{K} , with domain $\mathcal{D}(K) = \mathcal{D}(K_0)$. Since V is a bounded self-adjoint operator on \mathcal{K} , K is self-adjoint on this domain. Briefly stated, Howland's method [2] consists in applying the scattering theory to the pair K_0, K .

To establish the connection with the results in [3], we need the following lemma.

Lemma 7. Let V satisfy Assumption 6. Assume $1/2 < s < \beta - 1/2$. Then we have the following results.

- (i) The operators $1 + iVG_{\pm}^0$ are invertible on K^s .
- (ii) Let $\sigma \in \mathbf{R}$. Then $1 + \overline{V}(K_0 \sigma \mp i0)^{-1}$ are invertible on K^s .

Proof. It suffices to consider one of the cases. Assumption 6 and the restriction $1/2 < s < \beta - 1/2$ imply that $1 + iVG_{-}^{0}$ is bounded on \mathcal{K}^{s} . Assume $f \in \mathcal{K}^{s}$ and $(1 + iVG_{-}^{0})f = 0$. Then Lemmas 2 and 5 imply f = 0. Let $g \in \mathcal{K}^{s}$. By Lemma 5 there exists $f \in L(B')$ such that $(1 + iVG_{-}^{0})f = g$. But then $f = -iVG_{-}^{0}f + g$ shows that $f \in \mathcal{K}^{s}$. To prove (ii) we start by taking limits in (21) to get

$$(K_0 - i0)^{-1} f = iG_-^0 f (22)$$

for $f \in \mathcal{K}^s$, s > 1/2. Let \mathcal{M}_{σ} denote the unitary operator of multiplication by $e^{-it\sigma}$ on \mathcal{K}^s , $s \in \mathbf{R}$. We note that

$$K_0 - \sigma = \mathcal{M}_{\sigma}^* K_0 \mathcal{M}_{\sigma}. \tag{23}$$

Using this result, part (i), and a limiting argument, part (ii) follows. □

The modified trace operators are defined by

$$\gamma_{\pm}(\tau)f = \gamma(\tau) \left(1 + V(K_0 - \tau \mp i0)^{-1}\right)^{-1} f$$
 (24)

on K^s , $1/2 < s < \beta - 1/2$, and the modified spectral representations by

$$(F_{\pm}f)(\tau) = \gamma_{\pm}(\tau)f, \tag{25}$$

initially on the same space. A standard argument then shows that F_{\pm} extend to unitary operators on \mathcal{K} .

In Howland's theory the connection between the wave operators defined in (4) and the wave operators $W_{\pm} = s\text{-}\lim_{\sigma \to \pm \infty} e^{i\sigma K} e^{-i\sigma K_0}$ is given by $(W_{\pm}f)(t) = W_{\pm}(t)f(t)$. The connection with the stationary theory presented here is summarized in the relation $W_{\pm} = F_{\pm}^* F_0$. A careful examination of the proof in [6] shows that it applies to the present case. We will omit the details.

The connection with the scattering operator defined in (5) is then given by $(Sf)(t) = (W_+^{-1}W_-f)(t) = S(t)f(t)$. On the other hand, the stationary scattering theory yields a representation for the decomposition of S in the spectral representation for K_0 given by F_0 . Using this connection we get the following result, which is the main result connecting Howland's theory with the space-time scattering theory from [3]. We have retained the formulation given in that paper.

Theorem 8. Let V satisfy Assumption 6. Then the scattering operator S(s) from (5) has a representation

$$S(s) = 1 - i\Gamma_0(s)^* V (1 + iG_-^0 V)^{-1} \Gamma_0(s).$$
 (26)

Proof. We have from the stationary scattering theory (see [5, 6]) that the scattering matrix given by $(F_0\mathsf{S}f)(\tau) = \mathsf{S}(\tau)(F_0f)(\tau)$ is represented as

$$S(\tau) = 1 - 2\pi i \gamma(\tau) \left(1 + V(K_0 - \tau - i0)^{-1} \right)^{-1} V \gamma(\tau)^*. \tag{27}$$

We now translate this representation into the terms used in [3]. Recalling the definitions of F_0 and $\gamma(\tau)$, we find that $\gamma(\tau) = \gamma(0)\mathcal{M}_{\tau}$. Combining this relation with (23) we find $S(\tau) = S(0)$, such that the scattering matrix is independent of the spectral parameter τ . As already observed by Howland [2, Remark (3), p. 325], the scattering matrix in our spectral representation is also given by multiplication by the constant operator S(0). Thus we have the relation S(0) = S(0). Now for any $f \in \mathcal{K}^s$, s > 1/2,

$$\gamma(0)f = (F_0 f)(0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} U_0(-t) f(t) dt = \frac{1}{\sqrt{2\pi}} \Gamma_0(0)^* f.$$
 (28)

Using this relation together with (22), we find

$$S(0) = 1 - i\Gamma_0(0)^* (1 + iVG_-^0)^{-1} V\Gamma_0(0).$$
(29)

From (15) follows $\Gamma_0(s) = \Gamma_0(0)U_0(-s)$. Furthermore, $S(s) = U_0(s)S(0)U_0(-s)$. Finally, we have $V(1+iG_-^0V)^{-1} = (1+iVG_-^0)^{-1}V$. Combining these results equation (26) follows.

Some applications of the formula (26) are given in [3]. We need Assumption 6 to use the stationary scattering theory in our proof. The results in [3] show that the formula is valid also under Assumption 3.

References

- [1] J. Dereziński and C. Gérard, Scattering Theory of Classical and Quantum N-Particle Systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, Heidelberg, New York, 1997.
- [2] J. Howland, Stationary scattering theory for time-dependent Hamiltonians, Math. Ann. 207 (1974), 315–335.
- [3] A. Jensen, Space-time scattering for the Schrödinger equation, Ark. Mat., in press.
- [4] T. Kato, An L^{q,r}-theory for nonlinear Schrödinger equations, Spectral and scattering theory and applications (Tokyo, Japan) (K. Yajima, ed.), Advanced Studies in Pure Mathematics, vol. 23, Kinokuniya, Tokyo, 1994, pp. 223–238.
- [5] S. T. Kuroda, Scattering theory for differential operators, I, II, J. Math. Soc. Japan **25** (1973), 75–104, 222–234.
- [6] ______, An introduction to scattering theory, Aarhus University, Mathematics Institute, Lecture Notes Series No. 51, 1980.
- [7] S. Nakamura, Integral kernels of the scattering matrices for time-periodic Schrödinger equations, J. Funct. Anal. **76** (1988), 176–192.
- [8] K. Yajima, Existence of solutions for Schrödinger evolution equations, Commun. Math. Phys. **110** (1987), 415–426.
- [9] ______, Schrödinger evolution equations with magnetic fields, J. d'Analyse Math. **56** (1991), 29–76.