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Abstract

We construct spaces of smooth and generalized random variables
which can be considered as weighted L?()-spaces. Ito integration
for generalized stochastic processes is defined. The construction fol-
lows closely the standard L?(Q)-case, except for the norms which are
weighted. As an application of our results, we derive a Clark-Ocone
formula.

1 Introduction

In stochastic analysis it is well-known that random variables with finite vari-
ance (i.e. which belongs to L?(2)) admit a chaos expansion in terms of iter-
ated Wiener integrals. The integrands will be symmetric square integrable
real-valued functions which are uniquely defined by the random variable. The
variance of these variables can be represented as an infinite series of L*(IR")-
norms. In this paper we weight these norms with appropriate functions in
order to construct new Hilbert spaces of smooth random variables. The
weight functions will be a composition of a real valued (with values greater
than one) function with the Number Operator. By introducing a family of
weight functions, different countably Hilbert spaces are defined. The duals
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of these spaces will consist of generalized random variables which only ad-
mit a formal chaos expansion. Typically, the Donsker d-function will be an
element of such spaces. In the literature there exists several examples of
such constructions (see e.g. [PT]), however, a general treatment of weighted
L*(§))-spaces seems to be lacking.

In [BP] a natural generalization of the It6 integral to a space of generalized
stochastic processes was introduced. The definition of the integral followed
the lines of construction in L?(Q). However, different norms where used since
the processes belonged to the inductive limit of a sequence of “weighted”
Hilbert spaces (or rather their duals). This integral was shown to coincide
with the Hitsuda-Skorohod integral (see e.g. [HKPS] for a treatment of the
Hitsuda-Skorohod integral for Hida distributions). We will follow the ideas
in [BP] to construct an Ito integral for the spaces of generalized stochastic
processes we introduce in this paper.

As an application of our results we derive the Clark-Ocone representation
formula. For a class of spaces of generalized random variables this is shown to
hold. Other works have been done to extend the Clark-Ocone representation,
see e.g. [U], [Aa@U] and [V]. Our representation is a true generalization of
the results in these papers.

The article is organized as follows: In the next section we introduce some
necessary notation and mathematical theory. In section 3 families of weighted
L*(Q)-spaces and their duals are constructed. For stochastic processes living
in these spaces of generalized random variables we construct the It6 integral.
This is done in section 4. Finally, in section 5, we derive the Clark-Ocone
formula. For this purpose we need to extend the Malliavin derivative and
conditional expectation.

2 Mathematical preliminaries

Let (Q,F, P) be a complete probability space and let T' denote the inter-
val [0,4o] or IRy. Introduce the Hilbert space H = L*(T,B,u) where T
denotes the interval [0,%o] or IRy and B is the Borel o-algebra. We have
used the notation u for the Lebesgue measure on (7,B). Following Nu-
alart, [N], {W(h),h € H} is a centered Gaussian family of random variables
with variance |h|%2(T). This family is characterized by the random variables
W(A) = W(14) which takes independent values on disjoint subsets of 7'
Note that W(h) = fT hdW is the Wiener integral. In the sequel we shall use
the notation L*(}) for the space L*(2,G, P) where G is the o-algebra gen-
erated by {WW(A), A € B}. Elements of L*(Q2) can be expanded into a series

of multiple Wiener integrals (the so-called chaos expansion of the random



variable);

Theorem 2.1. Let f € L*(Q). Then

(1) F=> 1(fa)

n=0

where I, is the n-fold Wiener integral and f, € L*(T™) is symmetric. The
functions f, are uniquely defined by f. Moreover,

(2) IfII* = Zn!|fn|i2(w) < o0
n=0
where || - || denotes the usual norm in L*(Q).

For a proof of the chaos expansion, see e.g. [N].

In our study of weighted L?(Q)-spaces, we shall use the Number operator
N: If f € L*(Q) has the chaos expansion f =Y "7 [.(f,), the application
of N on f is defined as

o Nf= Y nh(h)

The domain of this operator, denoted Dom(N), is easily seen to be the
subspace of L*(}) for which >~°7  nln|f,|* < occ.

3 Weighted L*(2)-spaces
Define the following weighted L*(Q)-space:

Definition 3.1. Lel v : INg — [1,00) and define the space (L?), to be the
domain of the operator v(N) in L*(Q). Equip this space wilh the scalar
product (-,-)., given by

(4) (f,9)y = Zn!72(n)(fnagn)L2(T”)

Denote the norm induced by (-, ) for | - ||~

Since v > 1 we have || - || < || - |l,- Thus (L?), is a continuously embedded
subspace of L*(Q2). The following result is straightforward:



Corollary 3.2. The space (L*)., equipped with the norm || - ||, is a Hilbert
space.

We have the following characterization of (1?),:
Lemma 3.3. Let f € L*(Q). Then f € (L?), if and only if y(N)f € L*().

Proof. Straightforward calculation gives:

I (N)fI[* = Zn' ) fal? =111

O

The topological dual of (L?), is denoted (L?). We have the following result:

Proposition 3.4. The space (LQ),Y can be identified with the Hilbert space
(L?)y-1 of formal sums F =% "7 I,(F,) with the inner product norm

() [l ZN‘ n)| Fulia(my < 00

Proof. Suppose F' € (LQ)W. We first show that F' has a formal chaos repre-
sentation: Define a linear functional F, on the symmetric L*(T™) by

(Furfo) = (P~ ()

F, is a symmetric continuous linear functional on L*(7T™), and hence itself
an element of L*(T™) (since the dual of L?*(T™) can be identified by itself).

We can write the formal representation F' =" I,(F),). Moreover,

|Folrzqemy = sup  |[(Fa, fo)]

|fn|L2(Tn):1

< s (P L))

[fnlp2(pny=1
1
< LiF.

where we have denoted the operator norm in (L)%, || - |l.. We show that
F e (L?),-1: Define f =57 I,(y *(n)F,). Since y(n) > 1,

o0

1 fllv = Z“!7_2(")|Fn|%2(w)

n=0

<) Zi, -

<K HFlli



Thus f € (L?),. Let fi= F/Nfll4- Then

Zn' _2 |F |L2 Tn)

Hwa =

(S

= [ F]l,-

£l =

Hence, (L?)% is a subspace of (L?),-1.
Let F' € (L?),-1. Then we can define the application of F' on f € (L?),
by

o0

Zn' Fn;fn L2 Tn

n=0

F will obviously define a linear operator on (L?).,. Moreover, application of
the Cauchy-Schwarz inequality twice implies that

[(CF N <Y (B fa)rzgam)|

1/2
(Z nly? |fn|L2 T“)) (Z nly™ (n)|F, 72 T“))
= Sl - 1l

This shows that [’ is a continuous linear operator, and hence in (LQ); Fur-
thermore, ||F'||« < || f||,-1. Hence, || - ||« = - |[,~1, which completes the proof
of the proposition. O

1/2

From now on we will refer to (LQ),V—I as the dual of (L?),.

FExample: The Donsker § function. In this example we will give sufficient
conditions on 7 to ensure that do(B;) € (L?),-1. It is well-known (see e.g.

[PT]) that do( B:) has a chaos expansion

(6) So(By) = WZ o (%1%;;)

Assume lim, o y(n)/v(n + 1) < 1. Then it is easily seen by the ratio test
that

1 o0
So(Bo)||2- = =—
60 B2+ 2ﬂ24n 222n><oo

n=0
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and thus §o(B;) € (L?),-1.

Ezample: Domain of N. With v(n) = y/n for n > 1 and zero otherwise,
we see that (L?), coincides with the domain of N. Hence, Dom(N) can be
realized as a weighted L*(})-space.

We continue the section with introducing countably Hilbert space struc-
tures for different choices of families of weight functions v: For every g € Ny,
suppose we have a mapping v, : INg — [l,00). Furthermore, for every
n € Ny assume

(7) Ya(n) < Yot (n)

For notational simplicity we henceforth denote (L?)., by (L?),. Its topolog-
ical dual is denoted (L?)_,. The corresponding norms will be written || - ||,
and | - |4, respectivly.

Lemma 3.5. Let g < p, then the space (L?), is continuously embedded into
(L%),-

Proof. Since =, is increasing in ¢ we have || - ||, < || - ||, O

Define the space

(8) (Lo = () (L%,

geNg

equipped with the projective limit topology. Since v, > 1, (L*),, C L*(Q).
(L?)s becomes a countably Hilbert space in the sense of [GV], where its dual
is represented as

(9) (L) = |J (£%)=

geNy

with the inductive limit topology. (%), and (L?*)_., will be spaces of smooth
and generalized random variables with respect to a given family of weight
functions 7,. It will always be clear from the context which family of v,’s we
use. Note that Brownian motion B; is a smooth random variable since it has
only first chaos, and thus will have finite y,-norm for any q.

Fxample: Let ~v,(n) = exp(gn). Then we obtain the spaces (G) and (G)*
studied in [PT].



4 The generalized It6 integral

We extend the It6 integral to (L?)_... Our approach is analogous to the
classical construction in L*(2), but now with different norms. We note that
the extended It6 integral will coincide with the Hitsuda-Skorokhod integral.

Fix a family 4, which satisfies the assumption (7) above. In addition we
suppose that 7, is increasing in n, i.e.

(10) Ya(n) < yq(n +1)

Let 7 < tg. A process Fy € (L*)_, for ¢ € [0,7] will be called a generalized
simple function if

(11) ZF 1[tzytz+l) )

where {{;}; is a partition of the interval [0,7] and F) € (L?)_,. In addition
we assume Fy is adapted, i.e. supp{F,.(¢,-)} C [0,¢]*, where F,, is the n’th
chaos. Note that ¢ is assumed to be independent of ¢{. Introduce the It6
integral for generalized simple functions as

(12) /FtdBt ZF (Bi,, — B,)

The integral satisfies an isometry property:

Proposition 4.1. Let F; € (L?)_, be a simple function. Then
(13 [ Fdsiz, = [ iR, d
0 0

where 8,(n) = 7(n)1,(n + 1)
Proof. Since F; is adapted, we have by strong independence (see e.g. [BP])

PO ( tip1 T Z[n—l—l ni ® Lz, 7fi+1))

Therefore,

u/ﬂmmzmwwfﬂmw
0 0

=l Z’Yq (Bte+1 - Bti)) H2



But
'Yq(N)_l (F(i) ’ (sz‘+1 - Bti))
Z (n+1)" (FTEi)@l[ti,t,'H))

n=0

= (§,(N)v(N)'FDY (B, — By)

i1

In the last equality we have again used strong independence. Thus

| [ RABIZ, = Y B NN FO 6,83 ) PO

4,7=0

(Bl‘i+1 — By ) ’ (Bl‘]+1 - Bl‘])]
_ ZE { N)" 1F(i))2} At;

/ |6,(N)Fy||2, dt

The isometry is thus proved. O

Let F; be an adapted process in (L?)_, such that

T
(14) / |F|?, dt < oo

0

Then ~,(N)~'F; is 1td integrable in the (L?)-sense. Hence there exists a
sequence of simple stochastic processes {¢5}, in L%(Q) such that

1t = R 0, o0
0

1.e.
[ Ik = B 0, koo

It is easy to see that v,(N)¢F defines a sequence of simple processes in (L?)_,
Since §,(n) < 1 by assumption (10), ||[6,(N) - ||=4 < || -||=4- Hence, by the Ito

isometry the sequence
{/ ’Yq(N)Qbf dBt}
0 k



is Cauchy in (L*)_,. By completeness of this space we can define the Itd
integral of F} as

(15) / FydB; = lim/ v,(N)oF dB,
0 k—o0 0

(limit in (L?*)_,). Note that the It6 isometry implies that the definition of
the integral is independent of the choice of simple processes.

We prove a connection between the It6 integral in the L?(2)-sense and
our generalized 1t6 integral:

Proposition 4.2. Let Fy € (L*)_, be adapted and [ ||6,(N)F;||%, dl < .
Then

(16) / FtdBt = ")/q(N — 1)/ ’)/q(N)_lFt dBt
0 0

where the Ito integral on the r.h.s. is understood in the (L?)-sense.

Remark: The proposition tells us that we can integrate I} with respect to
Brownian motion by first pulling F} back to L*(Q) with the Number Operator
and integrating in the usual 1t6 sense. The resulting integral is then pushed

back to (L%)_,

Proof. First note that by definition

H / oF dB, - / (V) F dB| =5 0
0

0

Thus i -
(V) / 8 dB, — 1,(N) / W (N R B2, = 0
But
oo My
/ th dB, = Z’Yq(n + D)l (frlf,i@)l[fnfﬁl))
nOOO ZJM:

= Z 25 L ( (n)ff,i®1[t¢7fi+1))
n=0 =1
My,
( Z [n (Bte‘+1 - Bti))
0 =1

= 5q( ’Yq(N)th dB;

0



This implies that
SN =17 [ (N6 dBe—s 4 (N) [ (V) FeaB
0 0

in (LZ)_q when k£ — oo. But from the definition we have

/ v, (N) ¢t dB; —>/ F,dB,
0 0
Hence, the proposition follows. O

Fxample: Consider v,(n) = exp(gn). Then §,(n) = exp(—q) and thus the
[t6 isometry has the particularly simple form

H / FdBi%, = e / |2, di
0 0

The It6 integral for this special choice of 7, was treated in [BP]. Consider
v,(n) = v/nlexp(qn). We obtain a version of the Kondratiev test and gener-
alized functionals with chaos kernels in L?(IR") (recently, [K] has developed
a White Noise theory for these spaces. See also [KLS]). It is easily seen that
dy(n) = e n + 1)_1/2. The It isometry becomes

H/O Ft dBtHz_q = e_zq/o\ H(N —|— 1)_1/2Ft|‘2_q dt

Corollary 4.3. The extended Ito integral coincides with the Hitsuda-Skorokhod
integral, i.e. if Fy € (L*)_, is adapted and [ | F4||?, dt < oc then

T o0 1 . .
(17) /0 FdBi =Y (1%31&)
n=0

where Fy =307 L(FL(t,-)) and F. is the symmelrization.

Proof. Using proposition 4.2 and the definition of the Hitsuda-Skorokhod
integral (see e.g. [HKPS]), we get:

o0

T B 1 B . .
/0 qu I(N)Ft dBt = Z n——l—lln (F)/q l(n)]‘%ﬂ-})_an>
n=0

00 1 .
= 47N 1) I <1®”+1F )

(07) ~ 7
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5 The Clark-Ocone representation formula

In this section we will prove a Clark-Ocone representation formula for gener-
alized random variables. To obatian this representation, we need to extend
the definitions of the Malliavin derivative and conditional expectation. Both
definitions will be direct extensions from the L?(Q)-case. 1t6 integration of
generalized adapted stochastic processes has been defined in the previous
section.

We fix a family of v, which is increasing in both ¢ and n, i.e. which
satisfies conditions (7) and (10). Consider the following extension of the
Malliavin derivative to (L?)_:

Definition 5.1. Let F' € (L*)_o with chaos expansion F' =3 "7 I,(F,).
If for each t € T lhere exists a p € INg such that

Zn!n’yp_Q(n - 1)|Fn|%2(Tn) < o0
n=1

we define the Malliavin derivative of F' at t € T to be

(18) DiF = injn—l(Fn(tv ))

We observe that this definition coincides with the Malliavin derivative in
(the domain of definition in) L*(Q2). See e.g. [N] for more information of
the Malliavin derivative in L?(Q). We shall be particularly interested in the
case where the whole of (L?)_,, is differentiable in the sense of Malliavin
(“uniformly” in t). A sufficient condition for this to hold is the following:
For each g € N there exists a p > ¢ such that

(19) Wln —1) > \/n

Yq()

If the family 7, is chosen such that (19) holds, we have D;F € (L?)_, for
almost every ¢ € T: (Note that this p will be independent of ¢). In fact if

11



Fe(L?)-,

/T || di = / S (0= 12— 1| Falty ) sy i
n=1

n=1

< Zn' n)|Fy |L2 (™)
<P, <
Observe also that since v,(n) > 1, (19) implies
() >Vt lyn+1) > Ve +1>vn

for a p > 0. Since 7, is increasing in p we can conclude that there exists
a qo such that y,(n) > /n for all p > qo. Therefore (L?), C Dom(N) for
all p > qo, and hence (L?),, is a subspace of the domain of definition of the
classical Malliavin derivative (this domain is frequently denoted by Dy ).

Ezample: Consider v,(n) = exp(qn) or v,(n) = vnlexp(qn). Then (19) is

satisfied in both cases.

Let G; denote the o-algebra generated by Brownian motion {B;0 < s <
t}. Conditional expectation with respect to G; is defined in the following
manner:

Definition 5.2. Lelt F' € (L*)_., with chaos expansion F =3 "7 I,(F,).
Then

(20) E[F|G] = Z[ (Fn-15%)

where t € T.

This defintion is a straightforward generalization of the result in L*(2). (See
e.g. [H]).

Theorem 5.3. (The Clark-Ocone representation formula). Suppose (19)
holds and assume F € (L*)_.,. Then

(21) F:mﬂ+/EwJ@u&

12



Proof. All the objects involved in the representation are well-defined. The
proof is simply a calculation with chaos using the theory developed above. [

The Clark-Ocone formula has been extended to generalized random variables
by [U], [Aa@U] and [V]. [U] considered the class of Meyer-Watanabe distri-
butions which is contained in the distribution space (G)* discussed in [PT].
Both [Aa@U] and [V] treat generalized random variables from the spaces ob-
tained with v,(n) = v/nlexp(gn). Our general Clark-Ocone formula includes
all these cases.

Fxample: Consider again the Donsker -function with chaos expansion as
in (6). The kernel in the Clark-Ocone formula is (for s < to):

1 [o%] —1"
X = E[Dséo(BtoﬂgS] = \/MZ(QTZ)[Qn—l <(;t0)ZN’1%’2§;_1>
n=1

Hence, the representation says

1 to
22 6o(By) = —— X, dB,
( ) 0( 1‘0) \/ZFZLO + /0

In [Aa@U] the Donsker d-function is considered in connection with pricing
and hedging of digital options in mathematical finance.
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