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Abstract

We extend the Malliavin derivative to a space of generalized ran-
dom variables which have a (formal) chaos expansion with kernels from
the space of tempered Schwartz distributions. The extended derivative
has to be interpreted in the sense of distributions. Many of the prop-
erties of the standard Malliavin derivative are proved to hold for the
extension as well. In addition, we derive a representation formula for
the extended Malliavin derivative involving the Wick product and a
centered Gaussian random variable. We apply our results to calculate
the Malliavin derivative of a class of stochastic differential equations
of Wick type.

1 Introduction

The object of this paper is to extend the Malliavin derivative to generalized
random variables which do not admit a chaos expansion with regular kernel
functions. The space of Kondratiev distributions is considered, where the
generalized random variables have singular kernel functions in their (formal)
chaos expansion. In fact, the kernels are tempered (Schwartz) distributions
(see [AKS, KLS] and section 2 below). We define the Malliavin derivative
for Kondratiev distributions.

Ustunel, [U], has extended the Malliavin derivative to the space of Meyer-
Watanabe distributions. In this case the derivative is understood in a dis-

tributional sense. Recently, Aase, @ksendal and Ubge, [Aa)U] defined the
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Malliavin derivative to a slightly bigger space G* of generalized random vari-
ables, where the elements admit square integrable kernels in their chaos ex-
pansion (see [PT] for a definition). The Malliavin derivative is introduced by
adapting the definition for square integrable random variables.

The starting point of our extension is the duality relation between Sko-
rohod integration and Malliavin differentiation (see (2.13) below). We use
this duality relation to find a representation of the Lebesgue integral of the
Malliavin derivative of a square integrable random variable F. It can be
written as the difference of two random variables. The former variable in the
difference is F' times a centered Gaussian random variable. The latter being
the Wick product of F' with the same Gaussian variable. The representa-
tion is calculated using the S-transform, which maps random variables into
functionals on the Schwartz space of rapidly decreasing functions. We utilize
this representation for the generalization of the Malliavin derivative to Kon-
dratiev distributions. The derivative will be a continuous linear functional
on the product space of Schwartz functions and Kondratiev test functions.
Hence, by our definition it is no longer a regular stochastic process as in
the case of square integrable random variables (see e.g. [N]). However, the
extension coincides with the standard Malliavin derivative on its domain of
definition.

We give an outline of the paper. In section 2 the basic concepts of the
White Noise Analysis is introduced. Section 3 defines the Malliavin deriva-
tive for Kondratiev distributions and prove that the extension coincides with
the standard Malliavin derivative for square integrable random variables.
Several properties of the extended Malliavin derivative which generalize clas-
sical results are proved. We continue with proving a product formula for
the Malliavin derivative of the Wick product of two Kondratiev distributions
in section 4. Such a result enables us to calculate the extended Malliavin
derivative of a Skorohod integral. Finally in section 5 we apply our results
to a class of stochastic differential equations of Wick-type. Such equations
are known to have solutions in the Kondratiev space (see e.g. [BDP, V]).

2 Mathematical preliminaries

We give the necessary background from White Noise Analysis. The interested
reader is refered to [HKPS] and [AKS, KLS] for a complete account on the
theory presented below.

Let S(IR"™) denote the space of Schwartz functions on [R™ and S'(IR") its
topological dual, the space of tempered (Schwartz) distributions. Introduce



the norms

|fl2p = [(A®")" fl20
on the space S(IR"), where p € INg and | - |20 :=| - |2 is norm of L?(IR"). A
is a second order differential operator given by

2

Define the Hilbert spaces Sp(an) as the completion of S(IR") in the norm
|- |2p. S—p(IR™) denotes its dual. It is well-known that the Schwartz space is
the projective limit of S,(/R") and the tempered distributions the inductive
limit of S_,(IR"). We will use the notation (-,-) for the dual pairing. For
F e S'(IR") and f € S(IR™) we shall also make use of the notation F(f) for
the action of F' on f. Introduce the probability space (S'(IR),F,u) where
F is the o-algebra induced by the weak topology. The Gaussian probability
measure 4 is defined by the Bochner-Minlos theorem by

/Qexp ((w, f)) dp(w) = eXP(_%U@)

From this we observe that the coordinate processes w — (w, f) with f €
S(IR) and w € S'(IR) are centered Gaussian variables with variance |f|3. By
a limiting argument one can define Brownian motion as the pairing

(2.1) Bi(w) = (w, 10,)

)=
(the limit taken in (L?) := L*(S'(IR),F,u)) The coordinate processes will
sometimes be denoted W (f)(w) := (w, > If & € (L?), then it has a chaos

expansion
&= I(f"
n=0

where f(*) are symmetric elements of L2(IR") and I, the n-fold Wiener-Ité
integral on [R". The norm is given by

o0

191E2y = > !l ™

n=0

We define the Kondratiev test functions and distributions, which will con-
stitute our spaces of smooth and generalized random variables, respectively:
Denote by (S)} the Hilbert space of random variables ¢ € (L?) with chaos

expansion
b= L(f™
n=0



so that

o0

161130 = D ()™,

n=0

The dual space is denoted (S):;. Define the space of Kondratiev test func-

tions to be the projective limit of (S);. Its dual is the inductive limit of

(S):; and is denoted (S)7!. (S8)~' is called the space of Kondratiev distri-
butions, where the elements have formal chaos expansions with kernels given
as symmetric tempered distributions. Moreover, if ® € (S)™!, then

o = i L(F™)
n=0

where the F(") are symmetric elements of S’(IR"). For a p € IN,,

191151 =D IF™ L,
n=0

By ((:,-)) we shall denote the dual pairing between the Kondratiev distribu-
tions and test functions. Moreover, if ® and ¢ are defined as above,

(2.2) (D, 0)) = in!(F(”),f(”)>

n=0

Note that we can define the product of a Kondratiev distribution & with
a Kondratiev test function v, ® - ¢. From [HKPS, AKS] this is again a

Kondratiev distribution, with action on (S)?,
(2.3) (Y- ®,0)) = ((®,¢-¢))
Expectation can be generalized to the Kondratiev distributions as the pairing
(2.4) E[o] = ((®,1))
Consider the S-transform on (§)~! defined by
(2.5) SO(£) == ((®, exp((- €) — 1/2[¢[30)))

where ¢ € S(IR) with norms [£|z, < 1. The S-transform is a bijection onto
a space of so-called U-functionals (see e.g. [HKPS, AKS, KLS] for more

information on this). In the sequel we will use the following short-hand
notation for the normalized exponential exp((-,£) — 1/2[¢[3 )

Exp((-,€)) = exp((-,€) — 1/2/¢]%,)

4



The Wick product ¢ of two Kondratiev distributions ®, ¥ is defined via the
S-transform:

(2.6) Po¥ =8"(50-3V)
In terms of chaos expansions, we have

(2.7) oV = Z Lgm (F(n)®G(m))

where @ = 3° [n(F(”)) and U =3 [n(G(”)). & stands for the symmetrized
tensor products of tempered distributions. The following translation formula
for Wick products with ExpW ( f) is useful (see [B, prop. 13] for a proof). If
® € (L?) and f € S(IR),

(2.8) b(w) o ExpW(f)(w) = ®(w — [) - ExpW([)(w)

Integration of a time parametrized Kondratiev distribution ®; is inter-
preted in the sense of Pettis, i.e.

([ ocaton = [ (@i

whenever the right-hand side exists. The Skorohod integral can be general-
ized to Kondratiev distributions by the relation

(29) / q)t(SBt = / q)t o Wt dt
R R

where Wy = [1(d;), d; is the Dirac-§ function. W; is called the white noise, i.e.
the time derivative of Brownian motion B,. It is well-known that W; € (S)~".
The Skorohod integral factorizes constants in the following way:

(2.10) / OV, 0B, =0 <>/ U6 B,
R R
We end this section recalling some notation and results for the Malliavin
derivative of square integrable random variables (a nice and complete account
can be found in Nualart, [N], or Ustunel, [U]). For X € (L?),let D, X denote
the Malliavin derivative of X. The domain for the operator D is denoted by
D12 where we have the following characterization of this subspace of (I?)

(see e.g. [N]):

(2.11) XeDize Y nnl|ff, < oo

n=1



with X = 3 1,(f"™). Moreover, if X € D, the Malliavin derivative has

chaos expansion

(2.12) DX = f: nl,_(f™(,1))

The duality relation between the Malliavin derivative and Skorohod integra-
tion can be stated as

(2.13) E {CD-/R\IJJBS} :/RE[DSCI)-\I/S] ds

whenever D;® and f R V.6 B, are well-defined and elements of (LQ).

3 The Malliavin derivative of generalized ran-
dom variables

We define the extended Malliavin derivative of a Kondratiev distribution:

Definition 3.1. For ® € (S)™' define the extended Malliavin derivative of
b, denoted D, to be

(3.1) DO=0-W—boW

where ® - W — ® o W is the functional on the product space S(IR) x (S)!
(equipped with the product topology) given by

(3.2) (&-W—0oW)(f,¢):={®-W(])=PoW([),4))

The following proposition says that the Malliavin derivative of a Kon-

dratiev distribution is a continuous linear functional on S(IR) x (S)':

Proposition 3.2. Let & € (S)™'. Then D® is a conlinuous linear func-
tional on S(IR) x (S)' (i.e. is an element of the dual of this space). More-

over,

a) For any f € S(IR) we have
DO(f) = W(f)—@oW(f)e(S)

defined by
(DO(f),0)) = (& - W(f) = W([),$))

Jor every ¢ € (S)*.



b) For any ¢ € (S)' we have
(D2, ¢)) = ((@-W —®oW,9)) € S'(IR)

defined by
(D®, 9))(f) = ((@-W(f) = ® o W(]), )

for every f € S(IR)
Proof. The linearity of DF is straightforward since W(f+g) = W(f)+W (g).

The proof of the continuity of the functionals goes by a norm estimation on
(& -W(f) —®oW(f),¢) for f € S(IR) and ¢ € (S)': Consider first
((®-W(f),#)). Using Cauchy-Schwarz together with norm estimates for the
product ® - W(f) (see e.g. [HKPS] for the case of Hida distributions. The

estimate for Kondratiev distributions follow similarly):

[{((@ - W(f), oN| = [{{(&, W(])- &)l
SN[ ®fl2, g -1 [W(S) - Bll2.0.1
<N ®ll2i=g=1 W (NlzipallEll2,p.0
= [ ®l2—g =1 1S L2 l[ 2,01
where p > k + ¢ for a constant k (see e.g. [HKPS, remark, p. 89]). Consider

now ((® o W(f),¢)): From norm estimates on the Wick product (see e.g.
[KLS, prop. 11]), we have

[{((@ o W(f), oD < [|® o W(f)ll2—g-1lll2.01
< Hq)HZ—q,—l|f|27pH¢H2,q71

By the triangle inequality and compatibility of the norms we have the con-
tinuity of D®.
Results a and b follow immediately from the estimates above. O

The next theorem shows that our extension of the Malliavin derivative to
the space of Kondratiev distributions is a true generalization of the Malliavin
derivative:

Theorem 3.3. Assume ® € Dy 5. Then
Dd = Do

Thus, the Malliavin derivative coincides with the extended Malliavin deriva-
tive on the domain Dy ;.



Proof. Consider the duality relation (2.13) with ¥, = f(s )EXpW(f) for
f.€ € S(IR): The left-hand side of (2.13) gives (using (2.10) and (2.8)),

E{¢Aj@mwwww&]:E@@Wﬂommwgm

oo i) o

= S(D-W(f)—®oW(S)) (€

The right-hand side of (2.13) is equal to

/RE[DSCI) - f(s)ExpW (&)]ds = /Rf(s)S(DSCI))(f)ds

The result follows by uniqueness of the S-transform. O

We consider some examples:

FEzample: Appealing to theorem (3.3), the extended Malliavin derivative of
Brownian motion at time ¢, By, is simply equal to 1jg4(-). We can calculate
this using the definition of D instead:

DBi(f) = B, - W(f) — By o W(J)
= BioW()+ [ Jlsds = BoW(s
= (10,0, f)

thus reproving the theorem for the case of Brownian motion.

The next example calculates the Malliavin derivative of white noise, Wi,
which is known to be a Kondratiev distribution (even a Hida distribution,

see [HKPS]),

Example: From section 2 we have the chaos representation of Wi,
Wi(w) = (w, d;)

where §; is the Dirac-d function. We find the Malliavin derivative of white
noise, DW;:

DWi(f) = Wi W(f) = Wy o W([)
— W, o W(S) + f(1) — Wi o W(J)
= f(t)
:<5t,f>



Hence, we have DW; = §;. An informal calculation using the standard
Malliavin derivative Dy would give D;W; = §,(s). However, this calculation
is now justified in the extended sense.

From our definition of the extended Malliavin derivative we are able to prove
that D; can be understood as differentiation with respect to time. However,
the derivative must be interpreted in a weak sense since we essentially differ-
entiate Brownian motion. The next proposition proves the result using the
duality relation and the S-transform.

Proposition 3.4. Let F' € Dy 5. Then

d

where B, is the standard Brownian motion.

Proof. Use W, = 179 4(s)ExpW (&) for £ € S(IR) in the duality relation (2.13)
to obtain a left-hand side equal to:

E [F / t ExpW@)csBs} — B[F (Byo BxpW (€))
{ <Bt / £(s )ExpW@)}
— S(F-Bi— FoB)(€)

Here again we have used (2.10) and (2.8). The right-hand side is seen to be

/OtE [DsF - ExpW(€)]ds = /OtS (DsF) (€)ds

=S (/Ot Dsts> (€)

By uniqueness of the S-transform we have proved the proposition. O

We proceed with discussing some properties of the operator D. From
(2.12) we know that the Malliavin derivative of a random variable X € D 5
with chaos expansion X = " I,(f(™) can be written

DX = f: nl,_(f™(,1))

We will show an analogous relation for the extended Malliavin derivative. But

first we need some notation: Let F(" € S'(IR") (i.e a symmetric tempered

9



distribution on IR"). For a g € S(IR), define F"(-,g) to be an element of
SI(Bn_l) by

(3.4) (FU(, ), f071) i= (FW, f7DEg)

for any f"=1) ¢ S(IR"™"). Thus we can introduce the notation F{(- o)
where we “fix the last argument of F'(*” with the interpretation

(FU(-0), f"7V) € S'(IR)
This tempered distribution has the action on S(IR) defined by (3.4). The

next result shows that the extended Malliavin derivative operates on chaos
much in the same fashion as D;.

Proposition 3.5. Let the Kondratiev distribution ® have the chaos expan-
sion ® = S I,(F™). Then

(3.5) Do(o) =Y nlyy (FU(:,0))
Hence, for ¢ =S L,(f") € (S)! and g € S(IR)

(3.6) (DB(g), 8)) = 3" nll ), [+ 5g)

P700f Consider ® = [,(F™): We calculate D®(g) in terms of chaos. Let
= Y L,(f™), then, using the formula for the product of two random
varlables (see e.g. [HKPS])

{(®-W(g),0)) = ((®, () )

= pl(FM| =D Gg)
+n (n+1) / FOFI( s)g(s) ds)
and
((®oWl(g),9)) = (n+1)! <F 1&g, )
=(n+1) /f”+1 ,5)g(s) ds)
Thus we see that
Do(g) = nl(F™, f*=Vg)
= nl(F"(, g), f*7Y)

By summing over all chaos we get the desired result. O

10



Even though the above result demonstrates the nice property of reducing
chaos and “fixing one argument in the kernel”, we can formulate a simple
duality property for the Malliavin derivative using the Wick product instead.

Proposition 3.6. Let ® € (S)7' and g € S(IR). Then

(3.7) (D®(g),9)) = (8,9 0 W(g)))

Proof. Consider ® = I,(F™). From prop. (3.5) we have
DO(g) = nlur(FU(-,9))

But then,

n(n — 1)’<F(”), fV&g)
(@, Lo (F" "V Bg)))
((®,¢0W(g)))

(Do(f), )

O

Remark: Note that the duality relation (3.7) could have been used to define
the extended Malliavin derivative D.

The duality relation (3.7) can be reformulated such that we see a closer
connection to (2.13):

33) (D2(9),8)) = (@, [ gls)o5B.)

R

From [U] we know that the chaos kernel functions f") € L*(IR") for a
random variable X = " I,(f) € (L?) can be characterized by the Malli-

avin derivative. We have the following formula

1
SN @y, wn) = SE[Dyy Doy - - Dy, X]
n.

The next proposition provides us with a similar formula for the chaos kernels
of a Kondratiev distribution. However, in this case the representation will
be an equality in the sense of distributions.

Proposition 3.7. If® € (S)™! have chaos expansion ® = > I,(F™), then

1
() — L pip
(3.9) F = —E[D"9]

n.

11



Proof. By induction on (3.7) with ¢ = 1 we get

(D00 B Bga). 1)) = (0, (0.5 Bgn)

= <F(”),g1®--'®gn>
where ¢1,...,9, € S(IR). O

We discuss localization properties of the extended Malliavin derivative.
Consider the time-parametrized Kondratiev distribution ®;, ¢t € [0,7'], with
chaos ®; = ) In(Ft(n)). In [DPV, def.5.7] adaptedness of ®; with respect to
the o-algebra F; generated by the Brownian motion By, 0 < s < ¢, is defined
in terms of the S-transform. Their definition holds for Hida distributions,
but can easily extended to the case of Kondratiev distributions: ®, is called
Fi-adapted, if, for all f € S(IR) and all g € S(IR) with support in the
complement of [0,7] so that |f + ¢|s, < 1 for all p >0,

(3.10) S(®:)(f +9) = S(®)(f)

This definition implies that the tempered distributions Ft(n) have support on
those f € S(IR™) such that

supp f C [0,]"

From this we derive that D®,(f) = 0 whenever f has support outside the
interval [0, ¢] since, in that case,

-~

(FC ), f070) = (B, 008 ) =0

4 The Malliavin derivative and the Wick prod-
uct

In this section we will show that the product rule holds for the Malliavin
derivative of a Wick product of two Kondratiev distributions. In the space
of Kondratiev distributions the ordinary product is of course not well-defined.
However, the Wick product of two Kondratiev distributions is again a Kon-
dratiev distribution. We are going to apply the (Wick) product rule to cal-
culate the extended Malliavin derivative of a Skorohod integral, which will
prove to be the direct analogue of the standard case. Some results in con-

nection with Wick Calculus (see [KLS]) will be discussed.

12



Theorem 4.1. Let ®, ¥ € (S)~'. Then
(4.1) D(®oT)=Dd oW+ oDV

Proof. Consider ® = I,(F®™) and ¥ = I,(G"™). Let 3 L.(f™) be a
Kondratiev test function and g € S(IR). By the formula for the product of
two random variables (see e.g [HKPS]), we have

= Z ]m+1(f(m)®9) + Z mfm_1(f(m)®1g)
m=0

m=1
f™&ig() / se
Thus, we have

{(® - W(g),4)) = {{®,W(g) - $))
= nl(F®, fOD&g) + nl(n + 1)(F™, fr+DE,g)
= (n = DYnFOB1g, f70) + (n + DUFP g, D)

where

In the last equality we have used the identities

(FOBg, D) = (F, f 08, g)
(FO@1g, f7V) = (FW, [V 8g)
These calculations justify the following representation of the chaos for & -

W(g):
- W(g) = L1 (FMBg) + nl(FME1g)

We now calculate ¥ o (¢ - W(g)):

-~

Uo(®-W(g)) = Ligmr (FMR9)BE™) + nlpmey (FME19)BG™)
=00V oW(g) + Ingmor (nGUIE(FME,9))

The same calculation yields
Do (V-W(g) =00V oW(g)+ Lnpm (mFME(GM™E9))
Again by a similar calculation we get

(@0 W) - W(g) = lnsm(F ”)®G ) (9)
—DoUo W( )+ In+m (4 m)(FPRGM)E,9)

13



However, it can be shown that
(n + m)(p(n)@g(m))®lg — mF(n)@(g(m)@)lg) + n(_;(m)@(F(n)@lg)
Therefore

(@oW) - W(g)=DoWoW(g)+®o(¥-W(g)
+To(0-W(g))—200WoW(g)

From this we get

(@oW) - W(g)—(PoW)oW(g) =00 (V- -W(g))—®o(¥oW(g))
+Wo(®-W(g))—Vo(doW(g))

The theorem now follows by summing over all chaos. O

An immediate consequence of the product rule is the following: For n € IN
we have

(4.2) D (0°") = nd°"~Y o DO

In [KLS] so called Wick analytic functions are introduced. Let o(z) be an
analytic function on the complex plane with power series expansion

=0

3

Then we can define the Wick version of it by

o0

(4.3) o (®) =) a, o

n=0
From theorem 12 in [KLS], a°(®) € (S)~'. Relation (4.2) gives
(4.4) Do (®) = (¢')°(®) o DP

where ¢’ is the derivative of 0. We are going to consider Wick analytic
functions in section 4.

We proceed with calculating the Malliavin derivative of a Skorohod inte-
gral:

Proposition 4.2. Assume that ®; € (S)™" for every s € IR and that ®,0W;
is integrable on IR in the sense of Pettis. Furthermore, assume for every
g € S(IR) that D®,(g) o W, and ®sg(s) are integrable in the sense of Pettis.
Then

(4.5) D(/RCI>55BS> (o):/RD@S(o)éBer/Rq)S-ods

14



Proof. Let g € S(IR). Observe that

D(/RCI)SéBS> @):D(/Rcbsowsds) (9)
:(/RCI)SOT/VSaLs)-W(g)—(/Rq)sOWsd5><>W(9)

:/}R((q)sows)-W(g)—(<1>s<>Ws)<>W(g)) ds
:/RD(CI)SOWS)(g)dS

The product rule (4.1) gives

D(/RCI>55BS> /ch )<>st+/<1> o DW,(g) ds

/ Do,(g) 6B, + /
R
/ Dd,(g)0B;s + / bg(s
R
Hence, the proposition is proved. O

5 Application to stochastic differential equa-
tions of Wick type

As an application of our results we will calculate the extended Malliavin
derivative of the solution to a class of stochastic differential equations of
Wick-type. We restrict ourselves to the equation

t
(5.1) O, =z —I—/ o°(P5)0B;
0

where o is a Wick analytic function introduced above. From [BDP, V] we
know that under certain conditions on ¢ a unique solution ®; exists in the
space of Kondratiev distributions. Our concern here will be to find an ex-
pression for the extended Malliavin derivative.

We first show that the solution ®; of (5.1) is adapted in the general sense
defined earlier: Let f,g € S(IR) such that |f + g|s, < 1 forall p > 0. An
application of the S-transform to (5.1) gives

SO g =+ [ oSO +0) () + ols)) ds

15



But if g has support in the complement of [0, ¢] we have

t

5:2) SOlf+9)=a+ [ o (SOAS+9)) f(5)ds
0

Adaptedness of ®; then follows since

S®(f +9) =S®(f)

by uniqueness of (5.2). This implies that D®;(g) = 0 due to the localization
properties discussed earlier. Note the analogue to the Malliavin derivative
D, X, of an adapted square integrable stochastic process X;. It is known (see

e.g. [N]) that D, X; = 0 when s > t.
We calculate D®4(f) for f € S(IR) with support in [0,¢]. Apply (4.5)

and (4.4) to get
¢
:D/ o

/D (/)5B, +/Ot °(®,) - f(s) ds
= [(@r@)ennnin+ [ @)

Introduce the notation

(5.3) ¢1(6) = S (DP:(/)) ()

where ¢ € S(IR) with norms less than 1. S-transformation yields the follow-
ing differential equation for ¢/ €3]

o1(6) = / o(SB,(6))f(s) ds + / o (S.(6)) 8! (€)E(s) ds

But the solution to this equation is

o161 = [ otseuenss) e ([ Ssouoiewan) d

By inverting the S-transform we obtain a representation for the extended
Malliavin derivative of ®;:

(54)  DO(f) = /Ot 7°(®,) - f(s) o Exp (/:(a’)°(<1>u)6Bu> ds

16



where

- ( /:(J,)O(q)u) s Bu) -y ( / t(a')O(CI)u)csBu><>n

n=0

Note that the right-hand side of (5.4) makes sense in the space of Kondratiev
distributions as long as (¢)°(®,) is Skorohod integrable (in the generalized
sense) and

o°(®5) - f(s) o Exp (/t(a’)%(bu)éBu)

is integrable in the sense of Pettis on [0,¢]. Since o is analytic and ((®;, ¢))
is continuous with respect to ¢ for ¢ € (S), this will be true.

To validate our result, consider o(z) = z. The equation (5.1) is then the
familiar stochastic differential equation

t
(I)t::L‘—I-/ b, dB;
0

(5.4) gives us the expression

Do,(f) = /Otf(s)CDS o Exp (/t 5Bu> ds

= /Otf(s)cl)s oexp(By — By —1/2(t — s)) ds

for the extended Malliavin derivative. However, by strong independence (see

[BP, lemma 3]),

t
DOf) = [ (6102 exp (B = B, = 1/2(1 ) ds
0
which implies that
Ds®; = s exp(B; — Bs — 1/2(t — s))

when s < t. This expression is known from e.g. [N].

Remark: In light of prop. 3.7, expression (5.4) may be useful if one wants to
study the chaos expansion of the solution ®; to (5.1).

Acknowledgements: The author would like to thank F. Oertel for inter-
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17



References

[Aa@QU] K. Aase, B. Oksendal and J. Ubge, A generalization of the Clark-
Ocone Formula. Preprint, University of Oslo, Norway, 1998

[AKS] S. Albeverio, Y. Kondratiev and L. Streit, Non-Gaussian infinite di-
menstonal analysts, J. Func. Anal. 138, 1996. pp. 311-350.

[B]  F.E. Benth, On the positivily of the stochastic heal equation, Pot. Anal.
6, 1997. pp. 127-148.

[BDP] F. E. Benth, Th. Deck and J. Potthoff, A White Noise approach to a
class of non-linear stochastic heat equations, J. Func. Anal. 146, 1997.

pp. 382-415.

[BP] F. E. Benth and J. Potthoff, On the martingale property for generalized
stochastic processes, Stochastics 58, 1996. pp. 349-367.

[DPV] Th. Deck, J. Potthofl and G. Vage, A review of white noise analysis
from a probabilistic standpoint, Acta Appl. Math. 48, 1997. pp. 91-112.

[HKPS] T. Hida, H.-H. Kuo, J. Potthoff and L. Streit, “White Noise: An
Infinite Dimensional Calculus”, Kluwer, Dordrecht. 1993.

[KLS] Y. Kondratiev, P. Leukert and L. Streit, Wick Calculus in Gaussian
Analysis, Acta Appl. Math. 44, 1996. pp. 269-294.

[N] D. Nualart, “The Malliavin Calculus and Related Topics”, Springer
Verlag, 1995.

[PT] J. Potthoff and M. Timpel, On a dual pair of smooth and generalized
random variables, Potential Anal. 4, 1995. pp. 637-654.

[Ul  A. S. Ustunel, “An Introduction to Analysis on Wiener Space®,
Springer Lecture Notes in Mathematics 1610, 1995.

[V] G. Vage, A general existence and uniqueness theorem for Wick-SDFEs
in (8)7, 1, Stochastics 58, 1996. pp. 259-284.

18



