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Abstract

Using bivariate Lévy processes, stationary and selfsimilar processes,
with prescribed one-dimensional marginal laws of type G, are con-
structed. In the case of square integrability the arbitrary spectral
distribution of the stationary process can be chosen so that the cor-
responding selfsimilar process has second order stationary increments.
The spectral distribution in question, which yields fractional Brown-
ian motion when the driving Lévy process is the bivariate Brownian
motion, is shown to possess a density, and an explicit expression for
the density is derived.

1. Introduction

Laws of approximate or exact selfsimilarity, and more generally laws of scaling,
are attracting interest in many applied fields, most recently in finance, see Guil-
laume, Dacorogna, Davé, Miiller, Olsen and Pictet (1997). In finance, turbulence
and other fields it is of importance to develop models that in addition to such laws
have certain other key features. As a particular case one may ask whether, given
a certain family of probability distributions, there exists a selfsimilar or approxi-
mately selfsimilar process whose marginal laws belong to that family. Apart from
the field of stable processes, this is a largely unexplored area; in particular, there
is no simple characterisation of the possible families of one-dimensional marginal
laws of strictly selfsimilar processes with stationary increments (the latter prop-
erty is, at least in some approximate form, essential for most applications).

To exemplify by a concrete question: Given H € (0,1) (H # 3), does there
exist a H-selfsimilar process with stationary increments whose one-dimensional
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marginals distributions are normal inverse Gaussian (for a discussion of the nor-
mal inverse Gaussian distributions and their role in finance and turbulence see
Barndorff-Nielsen (1998)). We have not been able to decide this question. How-
ever, as a special case of the results presented in the following we show that there
does exist a H-selfsimilar process with second order stationary increments having
the desired type of marginal laws.

Section 2 summarizes a variety of known results needed for the sequel. These
results concern: (i) independently scattered measures of Lévy type (ii) type G ran-
dom variables, i.e. random variables of the form oe where o2 is infinitely divisible
and ¢ is standard (multivariate) normal (iii) weakly stationary processes. Station-
ary processes driven by Lévy processes are discussed in Section 3. By a result due
to Lamperti (1962) the class of strictly stationary processes is in one-to-one corre-
spondence with the class of H-selfsimilar processes via a simple transformation of
time and scale. This allows us, in Section 4, to construct H-selfsimilar processes
with second order stationary increments, driven by Lévy processes and having
marginal distributions of type G. In case the processes, to which the Lamperti
transformation applies, are square integrable a necessary condition for stationary
increments of the selfsimilar versions is that their covariance functions are the
same as for the fractional Brownian motion. We translate this condition to the
corresponding one on the correlation function r of the associated stationary pro-
cesses and determine explicitly the probability distribution F' of which r is the
Fourier transform. The non-L? case is also considered in Section 4.

As a standard notation we shall write C{(  y} for the cumulant (generating)
function of a random vector y, i.e.

C{¢ 1y} =log E{e ¥},
Similarly,
L{f 1y} = E{c"¥)}
will denote the Laplace transform of y, and we let
L{0ty} =L{-01y} = E{e ¥}
K{0 1y} =logL{0 {y}
K{0ty} =K{-01y}.

2. Background

2.1. Independently scattered measures of Lévy type

In this subsection we review some basic facts about infinitely divisible random
measures and integration of non-random functions with respect to such measures



(cf. Rajput and Rosinski, 1989).

Let T = R? and S be a o—ring of T (i.e. countable unions of sets in S belong
to S and if A and B are sets in § with A C B then B\A is also in §). The
o-algebra generated by S will be denoted by o(S). A multiparameter process
z = {z(A); A € S} defined on a probability space is said to be an independently
scattered random measure (i.s.r.m.) if for every sequence {A,} of disjoint sets in
S, the random variables z(A,),n = 1,2, .., are independent and if

z2(UX Ay) = i_o:lz(An) a.s.

whenever U° A, € S. We shall be interested in the case when z is infinitely
divisible, that is, for each A € S, z(A) is an infinitely divisible random variable
whose cumulant function can be written as

CLCEX(A)} = iCmo(4) = 5Cma(A) + [[ (€0~ 1~ icr(u)a(4,du),  (2.1)

where my is a signed measure, m; is a positive measure, §(A, du) is a measure in
B(R) without atoms at 0 such that fg min(1, [u|*)7(A, du) < co and where

_Jouiful <1
() = e if fuf > 1

In this case we say that z has the Lévy characteristics (mg, m1, §) and g is called the
Lévy measure. There is a one to one correspondence between infinitely divisible
i.s.r.m. and the class of parameters mg, m; and q.

For later use we note that the above definition of 7(u) has an immediate
extension to the case where u, and hence 7(u), are d-dimensional vectors with |u
denoting the Euclidean norm of u.

If |-| denotes Lebesgue measure in R? and if mg ~ |-| ,m; ~ || and g(A, du) =
|A| g(du), for q a classical Lévy measure, we say that z is an homogeneous inde-
pendently scattered measure or a multiparameter Lévy process with characteristics
(mg, m1,q). When T =R, z is a Lévy process.

The control measure m defined as

m(A) = |mo| (A) +mi(A) + /R min{1,z2}¢(A, dz) (2.2)

is such that m(A4,) — 0 implies that z(A4,) — 0 in probability. This measure is
important to characterize the class of non-random functions that are integrable
with respect to z (see Rajput and Rosinski, 1989). Namely, for a real simple



function f = Y7, z;14; on T, where A; € S, define for every A € o(S), such
that AN Aj €S, j=1,..,n,

/A fdz = ﬁ:sz(A N A;). (2.3)

In general, a function f : (T,0(S)) — ( R,B(R)) is said to be z—integrable if
there exists a sequence {f,} of simple functions as above, such that f, — f a.e.
[m] and for every A € o(S), the sequence {[, f,dz} converges in probability as
n — oo. If f is z—integrable, we write

/A fdz =p— lim /,4 fndz. (2.4)

The integral [, fdz is well defined (does not depend on the approximating
sequence) and

Clct [ fdz} = [ HCFN), Nym(an), (25)

for
H(t,\) = ita()\) — %tQUQ()\) + /R(eim — 1 —itr(x))p(A, dx) (2.6)
where a()\) = 450 52(\) = %1 and p: T x B(R) — [0, 00] is such that (i) p(},-)

is a Lévy measure on B(R), for every A € T, (ii) p(-, B) is a Borel measurable
function, for every B € B(R) and (iii)

/Tth(/\an)Q(d/\adx)=/T [/Rh()\,x)p()\,dx) m(d)\), (2.7)

for every o(S) x B(R)— measurable function A : &S x R — [0,00). Thus, in
essence,

g(dX, dx) = p(A, dx)m(d)) (2.8)

In particular, when z is a multiparameter Lévy process with characteristics
(0,0, q), we have m(d\) = d\ [g min{1, 2?}¢(dz) and

dq(dz) = p(), dz)d /R min{1, u?}q(du). (2.9)

We now describe the class of z-integrable functions (see Rajput and Rosinski,
1989; Theorem 2.7) when mg = 0 and m; = 0. In this case, f is z—integrable if
and only if the following two conditions hold:

(i) Sz [U(f(A), A)|m(dA) < oo

(i) Sz [Vo(f(A), A)[m(dA) < oo

where



Uu, ) = /R (r(zu) — ur(z)) p(X, d)

Vol(u, \) = /R min{1, |zul2} p(), dz).

The following facts will be used in the sequel. Let z be a Lévy process with
characteristics (0,0, g), let F be a distribution function and let v(d\) = z(F(d))).
Then, v is an independently scattered random measure with control measure

m(d\) = F(d)) /R min{1, 22} ¢(dz), (2.10)

and
F(dN)q(dz) = p(), dz) F(dN) /R min{1, 22}q(dz) (2.11)

in which case bounded measurable functions are v—integrable. Furthermore,

C{¢t /R fdv} = /R /R (/0= —1 —iCf(Vr(2)) q(da) F(dN). (212

More generally, suppose z = (z1,...,24) is a d-dimensional Lévy process with
characteristics (0,0,¢q) and let v;(\) = z;(F(A\)), ¢ = 1,...,d. Then, for ( =
(C1y -, Ca) € RY 2 = (24, ...,74) and bounded measurable functions fi, ..., fq we
have

C{Ci/fldvl,.. /fddvd} // (€, 2)q(dz) F(d)) (2.13)

where

(C)\x)—ezzvlg"f” ”—1—ZZCyfu 7, ()

and with 7(z) = (71(x), ..., 74(z)) as defined earlier.

2.2. Type G distributions

In this section we present basic facts about multivariate type G distributions. Let
ya be a random variable of the form ya = gea where ¢ > 0 and €4 are indepen-
dent random variables with € ~ N,,(0, A) (the multivariate normal m-dimensional
distribution), that is the distribution of yA is a normal variance mixture. When
A = I (the standard normal m-dimensional distribution) we simply write y = oe.
The characteristic function of ya is

E{ei(C,yA)} — E{e—%CACT”2} = L{%QACT 1o’}



and we have

C{Ctya}= K{%CACT 1o’} (2.14)

Thus the cumulant function C{¢ I ya} depends on ¢ through (AC" only. In case
the distribution of o2 is infinitely divisible, ya and its distribution are said to
be of type G. We recall that when the distribution of o2 is infinitely divisible,
the cumulant transform has the representation (see, for instance, Feller (1971; p.
450))

_ o0

Kiwio’y=— [ (1—e9)Q(e), (2.15)
0
for Q a measure on [0, 00). Consequently,
o0 1
C{ctual == [ (1-e#¥T) Qug) (2.16)
The measure Q is, in fact, identical to the Lévy measure of the Lévy-Khintchine
representation for o2.

A multivariate type G distribution is infinitely divisible and its Lévy measure
is absolutely continuous with respect to Lebesgue measure on R¢ as shown by the

following result.

Proposition 1 The distribution of a multivariate type G random variable
ya is infinitely divisible with Lévy-Khintchine representation

C{Ctus} = —5QUONCAC+ [ (cos((Gw) ~ Dgalw)du  (27)

where the Lévy density ga(u) is given by

gaw) = [~ éa(€u)Qude) (218)
and where @a(u) is the multivariate normal density
Da(u) = (2m) =12 |A|7 emana T
and [ge(min(1, |ul”)ga(v)du < co. O
Proor We do the proof on the lines of the one-dimensional case as presented

in Rosinski (1991). Let ga(du) be the (symmetric) Lévy measure of the type G
random vector ya. Then the log Lévy-Khintchine representation is

C{Ctun} = —5¢5CT + [ (cos((G,u) — 1)as(dn)
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for ¥ a d x d positive definite matrix. Using (2.16) and the fact that Q({0})A =X
we have

[ feos((¢,u)) = Daa(du) = = [~ (1 - e 42€) Qqag).

0

Since

e~ 3¢'AE — /Rd(cos(§1/2(C,U>) — 1)¢a(u)du,

we obtain
- (eos((€u) = Daa(du) = [~ [ (cos(€'1%(¢,u)) = 1)) @ (u)duQ(de)

Then, by the uniqueness of the Lévy measure we have ga(du) = ga (&~ Y?u)du
where ga(u) is given by (2.18). O

A number of examples of type G distributions will now be presented.

Example 1 Generalized hyperbolic distributions  Suppose the law of o2 is
the generalized inverse Gaussian distribution GIG(A,d,7), given in terms of its
density by

A
(7/5) /\—16—%(52.1‘71-1-’721')’ (219)
2K,(d7)
and let y = u+02AB+ou where u follows the m-dimensional normal distribution
with mean 0 and variance matrix A. (For parametric identifiability, A is assumed
to have determinant 1.) The probability density of x is then

(7/5)m/2am/271\
(2m)™2Kx(67)

{62 + RYODK, o (af6? + RY?)elbo—m (2.20)

where o = {72 + fTAB}/? and
R=(z—p) Az —p) .

This class of distributions is closed under marginalization and conditioning (with
respect to subvectors of ), and when § = 0 and A = [ the distributions are of type
G. The class of all normal inverse Gaussian distributions is obtained for A = —1/2,
while the class of hyperbolic laws correspond to A = (m + 1)/2. These special
types have been applied in a variety of contexts, in particular geology and finance
(see Barndorff-Nielsen 1977, 1978, 1979, 1982, 1986, 1997a,b, 1998; Barndorff-
Nielsen, Bleesild, Jensen and Sgrensen 1985; Barndorff-Nielsen and Christiansen
(1985); Barndorff-Nielsen, Jensen and Sgrensen 1989, 1990, 1993; Eberlein and
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Keller 1995; Kiichler, Neumann, Sgrensen and Streller (1994); Rydberg 1996a,b,c)
and they are considered further in the following two examples.

The one-dimensional generalized hyperbolic distributions are selfdecompos-
able, a result due to Halgreen (1979). In the multivariate case, the distributions
are selfdecomposable if and only if § = 0; note that this provides examples of
multivariate non-selfdecomposable laws all of whose one-dimensional marginals
are selfdecomposable (Shanbhag and Sreehari, 1979). O

Example 2 NIG distributions of type G Suppose that o2 follows the in-
verse Gaussian distribution IG(6, ), with density

)

6v,.—3/2  — (820~ 1 +422)
—e"'z e 2 , 2.21
T (2.21)
(i.e. the special case of (2.19) for A = —1) the corresponding Q measure being

Q(d¢) = (2m) V/25€ 32 772

Then the cumulant function of y = o0& is

_ 1/2
cictyr=0v[1- {14770}
and this is the cumulant function of the m-dimensional distribution with density

67m2(27_‘_)7(m+1)/2 (57)(m+1)/26(57
{07 + (@, 2)} TV K (1) 2 ({07 + (2, ) }7?) (2.22)

Example 3 Hyperbolic distributions of type G~ The general m-dimensional
hyperbolic distribution has density

(v/3) a2
(2m) ™2 K (4172 (67)
The graph of the logaritm of this density function is an m-dimensional hyper-

boloid, in particular a hyperbola when m = 1, whence the name hyperbolic laws.
In the special case of m = 2 the expression (2.23) becomes fully explicit since

exp{—a(?+ R+ (Br—p}  (2.23)

K(m+1)/2 (8) = 71'/28_1/2(1 + S_l)e_s (2.24)

(cf. Barndorff-Nielsen, 1977; Blasild, 1981; Blaesild and Jensen, 1981).
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The m-dimensional spherically symmetric hyperbolic distribution with density

(v/8)™/2y~1/2
2m)™ 2 K (11 1)2(07)

exp(—{8” + (z, 2)}/%) (2.25)

isof type G . O

Example 4 Student distributions 'The multivariate Student distributions
on v degrees of freedom occur as the special cases of the generalized hyperbolic
distributions (2.20) corresponding to S =y =0and A = —v/2. O

Example 5 Symmetric o stable distributions For 0 < o < 2, let o2 be a
positive a/2-stable random variable with Laplace transform

Ee % = e‘caa/z, 0 >0,
le. B

K{01 0%} = —cf/? (2.26)
(c a positive constant). Then (see Samorodnitsky and Taqqu (1994; p. 77-84)),
the distribution of the random vector y = o# is symmetric « stable (Sa.S) in R?

. Thus SaS random variables are of type G.
More generally we have that

e(07)Y =8% (v* =)/

bl

(where @ < ~?) is the Laplace transform of a positive random variable 0% having
density of the form

(8,7, V)pua(z/8)e "

where p,/2(z) denotes the density of a positive v/2—stable random variable and
§ > 0 and v > 0 are parameters. For v > 0 all moments of o2 exist.
The corresponding type G' law has cumulant function

C{Cty} = (o) [1 - {1 + %7‘2@, g)}m] .

As discussed in Rosinski (1991), if z(¢) is a univariate Lévy process with z(1)
. c
of type G, i.e. z(1) = o8, then

{2(s):0< s <1} E£{z(s): 0< s < 1} (2.27)
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with Z(t) defined by
Z(t) = Z ‘SnQ_l(Pn)l[O,t} (un) (228)
n=1

where {¢,} is an i.i.d. sequence of N(0,1) variates, I'j, ..., 'y, ... are the arrival
times of a Poisson process with intensity 1, and {u,} is an i.i.d. sequence of uni-
form random variables on [0, 1], and {e,}, {T'»} and {u,} are mutually indepen-
dent. Furthermore, Q! is the inverse function of the function Q(z) = Q(z, c0),
Q being the Lévy measure of z(1). (Here we have assumed, for simplicity, that
sup{z : P{o® > z} = 1} = 0. If this is not the case, a slightly more involved
definition of Q7! is needed.) The infinite series in (2.28) converges almost surely
uniformly for ¢ € [0, 1].

Furthermore, if f(s,7) is a function such that f(-,7) is integrable on the in-
terval [0, 1] with respect to the process z for each 7 € T, T an arbitrary set, then
the process y(t), t € T, given by

y(r) = /01 f(s,7)z(ds) (2.29)

is representable in law as

{y(r):TeTYE {G(r): T € T} (2.30)
where -
y(r) = ZlgnQ_l(Fn)f(un:T) (2.31)

cf. Rosinski (1991).
In extension of (2.27)-(2.28), if z(t) = (21(t), 22(t)) is a bivariate Lévy process
with z(1) £ oe = o(e, 2) of type G then

{2(s):0< s <1} £ {z(s):0< s < 1}

with .
2(t) = (a(t), 2(t) = 3_(e1n,e20)Q " (Tn)10,0(uin) (2.32)
n=1
where {£1,,} and {e9,} are two independent an i.i.d. sequences of N (0, 1) variates
and {I',} and {u,} are as above. This is simple to verify from the earlier result,

by verifying that {z(s) : 0 < s < 1} and {2Z(s) : 0 < s < 1} have the same
characteristic functions for the finite dimensional marginal distributions.
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2.3. Second order stationary processes

Any real second order stationary process {z(t) }r which is continuous in quadratic
mean and has mean 0 is representable as

v(t) = | 7 cos(M)u(dA) + / * sin(A)w(d). (2.33)
—0oQ — o0
Here {v(t)}r and {w(t)}r are mean 0 and square-integrable real processes which
are mutually orthogonal and have orthogonal increments, and the integrals are
defined in the L? sense (see for instance Cramér and Leadbetter, 1967; p. 137).
Conversely, if v and w are two mutually orthogonal processes with orthogonal
increments then (2.33) determines a second order stationary process.
The correlation function of x(t) satisfies

r(u) = / T E R, (2.34)

where F' is a probability distribution function such that

F(d)) = %E{COSQ()\t)U(d/\)2 + sin®(At)w(dA)?}. (2.35)

The measure F'(d)) is, in fact, symmetric around 0 (follows from z(t) being real)
and hence r(u) satisfies

r(u) = /  cos(u) F(dN). (2.36)

—0o0

The processes v and w may be expressed in terms of x by

1 /T
v(A) = lim —/ t sin A\t 2 (t)dt
-T

T—o0 27

w()) = lim / it—la _ cos A a(t)dt. (2.37)

T—oo 27

3. Stationary processes driven by type G Lévy processes

The representation (2.33) holds in particular for square integrable processes x
that are strictly stationary. By the theory of independently scattered measures of
Lévy type, discussed in Section 2, we may conclude that the representation defines
a (strictly) stationary process also in certain cases where (v(\),w()\)) does not
satisfy the above-mentioned requirements, in particular the square integrability.
We shall be especially interested in stationary processes that correspond to a
bivariate innovation process (v(\), w(\)) of the form

(0(A), w(A) = 2(F(N)) = (2(F (X)), 22(F(N))), (3.1)

11



where z()) is a bivariate Lévy process z (1) of type G.

Theorem 1 Let F be an arbitrary distribution and suppose (v(A), w(A)) is of

the form z(F(\)) where the bivariate Lévy process z is of type G, i.e. z(1) £ oz,
Then a process z is welldefined by

x(t) = /  cos(M)u(dA) + /_ °:o sin(\t)w(d)) (3.2)

and
(i) {z(t) : t € R} is (strictly) stationary and infinitely divisible
(ii) the law of z(t) is given by

Clnta(t)} = Riyn* o)

(iii) if Eo? < oo then z is square integrable and its correlation function is given
by r(u) = [ cos(Au)F(dA).

PRrOOF The existence of x follows from the theory outlined in Subsection
2.1.

To prove the stationarity we calculate the joint characteristic function of
z(t1), ..., x(t,) for arbitrary n = 1,2, ... and ¢; < ... < t,,. From (2.13) we have

B {oxpli 3 nie(on)

k=1

= exp {/_o:o C{(kzi: M cos(At), kzi: M sin(Atg)) T z(l)}F(d)\)} .

Since z(1) is of type G its cumulant function is of the form

C{CE (1)} = K{5 (6.0 1%},

Thus

B {oxpli 3 nue(on)

k=1

12



= exp (3.3)

/ { Z M+ > mm cos(A(te — ) 1 02} F(d))
k<k’
and because this depends on i, ..., %, through the differences t; — t; only, the
process z(t) is stationary.
The infinite divisibility of the process and the statement (ii) follow immediately
from the latter formula and the infinite divisibility of o2
And direct calculation yields (iii). O

Remark It seems likely that {z(¢)}r being type G generated as in Theorem
1 is not only sufficient but also necessary for strict stationarity of {z(¢)}r.

Example 6 With o2 chosen to follow the inverse Gaussian law (2.21), the
theorem implies the existence of a stationary stochastic process having normal
inverse Gaussian one-dimensional marginals and spectral measure F. O

Example 7 If 02 is o/2-stable with K{f { 0%} = —cf#*? (0 < a < 2) then
the joint law of z(t;), ..., z(¢,) has cumulant function

a/2

an + > memw cos(A(te — )| F(dN).
k<K'

(Hnix@ﬁwﬁx@”}::—c/

The joint laws are stable and, in fact, the process z(t) is identical in law to the
real part of the complex harmonizable process discussed in Samorodnitsky and
Taqqu (1994; Example 6.3.6). O

Suppose the distribution function F' is continuous and strictly increasing on
R, with inverse F~'. Then z(t), given by (3.2), may be reexpressed as

1
x(t) :/0 cos(F 1 (€)t)z(d€) —I—/ sin(F1(€)t)2(d€) (3.4)
Hence, by (2.32), we further have

{2(t): 0<t <1}

£ i (61n coS(F ™ (up)t) + consin(F " (u,)t))Ro(T,) : 0 < t < 1} (3.5)

a type of representation that is particularly useful for simulation purposes, due to
the rapid convergence of the infinite series.
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4. Selfsimilar processes

A stochastic process £*(t) on the interval [0, 00) is selfsimilar with exponent H > 0
if z*(0) = 0 and if for any ¢ > 0

{z*(ct)}r, = {c2"(t)}r,-

Such a process is said to be H-selfsimilar, for short.
By a result due to Lamperti (1962), if a process {z*(¢)}r, with z*(0) = 0 is
selfsimilar then the derived process {z(t)}r where

z(t) = e Hlz*(eh) (4.1)

is strictly stationary; and conversely, if {z(t)}r is a strictly stationary process
then z*(t) defined by
r*(t) = t"z(logt) (4.2)

is selfsimilar. Note that, in this case, *(¢) may and may not have strictly sta-
tionary increments.

Suppose now that the strictly stationary process z(t) is given by (3.2) with
(v(A),w(X)) of the form z(F'()\)) where F'is an arbitrary distribution function and
z is a bivariate Lévy process of type G, such that z(1) £ ge. For the associated
self-similar process z*(t) = t” z(logt) we find, from (3.3), that

logE{exp(anjnkx*(tk)} = logE{exp(izn:nktfx(logtk))}

k=1 =
= /RK {%Q'Af\(i)ﬂi o?}F(dN), (4.3)

where o
AL = (tjl-{tkH cos(A(logi))) - (4.4)

In particular

Clnt@®-a' o) = [ [ (1-ew{-5ermin)}) Qe r@y
= [ RGPWs 1) (@ (45

where .
Wi(s,t) = s* + 27 — 257" cos(Alog -) . (4.6)
s
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For use below we note that (4.5) may be rewritten as

Clnt () - 2" ()} = = [ (=367 5,0)Q(de) (@)

+

where
M(8; s,1) = /R (1 — exp {8Wi(s,1)}) F(dN). (4.8)

4.1. Selfsimilar processes with second order stationary increments

We shall now show that in the square integrable case, processes z*(t) of the type
considered in Theorem 1 have second order stationary increments for a special
choice of F, specifically for F' equal to the distribution function associated to the
covariance function of fractional Brownian motion.

If 2*(¢) is H-selfsimilar with second order stationary increments then its co-
variance function is necessarily of the form

B {2*(s)a" (1)} = %{SQH T (¢ 5PN {at (1)) (4.9)

for some H € (0,1) and s < t. (This is well known and follows easily from
the identity E {(z*(t) — 2*(s))?} = E {z*(t — s)?}). Equivalently, the correlation
function of the associated stationary process z(t) must be of the form
r(u) = cosh(Hu) — 22771 sinh® (u/2) (4.10)
= cosh(Hu) — 274 (coshu — 1)?#

for u > 0.
In fact,

E{z(t)z(t+u)} = e TEWE {x* (e')z* (et+”)}

— % o~ H(2t+u) { 2H | 2H () _ (et o et)QH}
E{a*(1)*}
= e = (er - B (e ay)

= {cosh(Hu) — 22~ sinh®" (u/2)} E {(0)*} .

Let Fy denote the (uniquely defined) distribution function satisfying

r(u) = /oo cos(Au) Fg(dA)

—00
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with 7(u) given by (4.10).
Combined with Theorem 1 the above discussion implies the validity of

Theorem 2 Suppose that {x(¢)}r is stationary with representation (3.2)
where v(A) and w(\) are defined (as in (3.1)) from a square integrable bivariate

Lévy process z(\) that is type G generated (i.e. z(1) £ o(e1,e5)) and for which
F = Fy. Then the correlation function 7(u) of x(t) satisfies

r(u) = cosh(Hu) — 22771 sinh?# (u/2) (4.11)

and the associated selfsimilar process *(t) = tz(logt) has second order station-
ary increments. 0O

Example 8 In particular, the above construction gives a new integral repre-
sentation of the Fractional Brownian motion By. Let W; and W5 be independent
standard Brownian motions. Then

Bu(t) = t* /  cos(Alog )W, (Fir (dN)) + ¥ /  sin(Alog )Wa(Fu(dA) (4.12)

— -0

is a fractional Brownian motion. O

In the general case of type G distributions with second moment, although
the selfsimilar process z* does not have stationary increments, the associated
fractional noise keeps several properties of the fractional Gaussian noise. For
j=0,1,2,..., let yf = 2*(j + 1) — 2*(j). Then the fractional sequence {y;} is
second order stationary and has autocovariance function

r*(j) = Efwoy;} = 3 (G +1 P =25 P2+ |5 -1 PH]. (4.13)
Then, from Proposition 7.2.10 in Samorodnitsky and Taqqu (1994), for H # 1/2

r*(j) ~ H2H — 1)7?%72  as j — cc. (4.14)

We conclude this section by showing that r(u) possesses a spectral density fx
and by deriving a formula for fy. Together with the representation (3.5), this
formula will be useful for simulation studies.

Theorem 3 The correlation function
r(u) = cosh(Hu) — 222~ sinh?" (u/2) (4.15)
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has, for 0 < H < 1 a spectral density of the form

fa(3) = @2n) " 3 (-1 (”.{ ) G-H{G-HP+X)" (416)

0 J

i.e. a weighted sum of Cauchy densities. O

PROOF First note that

r(u) = cosh(Hu) — 2271 sinh* (u/2)
1
= —eH"{1+e_2HU— (1—6_“)2H}

2
1 © . 2H .
— §6Hu {e—QHU + Z(_l)]—1< . )e—Ju} ]
1 J
Consequently, for u — oo we have
~ tetfv for 0<H<1
r(u)s = 1e%? for H=]

~ He v for 1 <H<1

showing that Fg()) is absolutely continuous with a density fz ().
Further, since r(u) is symmetric we may reexpress r(u) as

) = 1 {e_H“| 31y (”.LI) e—<j-H>'u} . (4.17)

J

From this expression it is possible to develop the series representation for
the density fy(A) of Fu()). In fact, using that exp{—c|u|} is the characteristic
function of the Cauchy density 7~'c¢{c? + 2*}~! we find by Fourier inversion that

) = Cn a4 e () - i - o

J

= Cn S0 ()6 G- B

0 J
O

4.2. Selfsimilar processes without assumption of square integrability

Without the assumption of square integrability of the processes v and w one can,
of course, not speak of second order stationarity. However, there is in any case

17



approximate stationarity in the sense that the coefficient ¢;(s,t) in the below
Proposition 2 depends on s and t through ¢t — s only. We shall refer to this as
weak stationarity of the increments.

Lemma 1 The following identity holds

o0 t
23HtH/ Cos(Alog;)FH(d)\) = 41" — (t — 5)?". (4.18)
O
ProoF  This follows from formula (4.9) in conjunction with the relation (4.2).
O
Now, recall the formulae (4.7) and (4.8).
Proposition 2 For ' = Fg we have
M(O;s,1) = [ (1= exp{6Wa(s,1)}) Fu(d)
R
00 ] Hj
= Y (1) e(s, ) (4.19)
j=1 J:
where

ci(sit) = i(—l)f"(j)<s2H+t2H>f‘—m% (")

m=0 m =0 1
{stm 2020 | hm=20)2H _ (gm=2q _ gm-2a)2H} (4 90)

In particular,
ci(s,t) = (t —s)*" (4.21)

ca(s,t) = (t — 8)?H{2(s*H +127) — (s + 1)} + (s*H +127)% 4 2(st)*  (4.22)

i.e. c1(s,t), but not co(s,t), depends on t — s only. O

PROOF From Gradshteyn and Ryzhik (1965; p. 31) we have

cos™(x) =

2"}_1 Zii (ZL) cos((m — 2q))z. (4.23)

18



It follows that

Gs,0) = [ WA OY Fuld))
— i(—l)m2m<7{l>(82H+t2H)j_m(St)mH
/cos )\log YFr(d)) (4.24)

and, using (4.23) and (4.18), we find

1[%] m tm72q
Alog D) Fy(dA) = 27™F / Al Fyr(dA
[ cos™(xlog 1) P (a) > (1) costos S )
1
— gm m)(st)(m2q)H
g=0 \ 4
H

Inserting this in (4.24) we obtain (4.20). O
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