
LONG RANGE DEPENDENCE, HEAVY TAILS AND RARE EVENTS

GENNADY SAMORODNITSKY

Abstract. These notes were prepared for a Concentrated Advanced Course at the Uni-
versity of Copenhagen in the framework of the MaPhySto program. The notes present
an attempt to propose a new approach to long range dependence, one that is not mainly
based on correlations, or on (approximate) self-similarity. Rather, we advocate a point
of view that regards the passage between short memory and long memory and a phase
transition in the way certain rare events happen. We are especially interested in the heavy
tailed case. These notes bring together ideas from large deviations, theory of heavy tailed
processes, extreme value theory and relate those to the notion of memory. Main examples
considered are those related to communication networks and risk theory.
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1. Introduction

The phenomenon of long range dependence is widely believed to be both ubiquitous and
important in data arising in a variety of di�erent �elds. Yet what is long range dependence?
How does one measure it? Historically, long range dependence was viewed as a property
of certain stochastic models with a �nite variance, and then it was associated either with
a particularly slow decay of correlation, or with a particular pole of the spectral density at
the origin. In addition to obvious drawbacks of correlations that carry a limited amount
of information away from the Gaussian case, this leaves one unable to de�ne long memory
for stochastic processes with in�nite variance. Sometimes \correlation{like" notions have
been used where correlations did not exist; see e.g. Astrauskas et al. (1991). Those, as
expected, carry precious little information.
We propose to think about long range dependence in terms of the way rare events happen.

This is particularly appropriate in the heavy tailed situations because most practitioners
using heavy tailed models are interested precisely in certain rare events related to the tails.
Speci�cally, in many cases one can split the parameter space of a stationary process into
two parts, such that probabilities of certain rare events undergo a signi�cant change at
the boundary. Often in one part of the space the order of magnitude of the probabilities
stays the same, and, once the boundary is crossed, the order of magnitude increases, and
becomes dependent on the parameters. If one makes sure that this phenomenon is not
related to a change in heaviness of the tails, then this phase transition may be called a
passage between short and long memory. We provide many details and examples in the
sequel.
These notes are organized as follows. We start with a discussion of heavy tails, which

is by itself an often ambiguous notion. Section 3 introduces various points of view on
long range dependence. Self-similar processes, an important example where the notion is
most easily visible, are discussed in subsection 3.1. We also discuss spectral analysis of long
range dependence and periodogram (subsection 3.2), as well as the classical topic of Hermite
polynomials and their applications to studying the e�ect of pointwise transformations of
Gaussian processes on the rate of correlations (subsection 3.3).
The most powerful approach to studying rare events is that of large deviations; it is

introduced in section 4. Subsection 4.1 applies the ideas of large deviations to certain
problems in communication networks.
All the ideas developed in the above sections are brought together in section 5, where we

start developing the connections between memory and the way rare events happen. Two
main classes of stochastic processes are considered: that of moving averages (subsection
5.1) and that of in�nitely divisible processes (subsection 5.4). An important example of the
latter is that of stationary stable processes in subsection 5.5. Two main test classes of rare
events and associated functionals are considered: that of long strange intervals (subsection
5.2) and that of ruin probabilities in subsection 5.3.
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2. Heavy Tails

In many ways the class of distributions with heavy tailed tails is that of subexponential
distributions.

De�nition 1. A distribution F on [0;1) is called subexponential if F (x) > 0 for all x � 0
and

lim
x!1

F � F (x)
F (x)

= 2:

Here for a distribution F we denote by F = 1� F its tail. If X is a random variable with
a subexponential distribution F , then we say that X is a subexponential random variable.
Note that subexponentiality of X means that

lim
x!1

P (X1 +X2 > x)

P (X > x)
= 2:

Here X1 and X2 are independent copies of X.
Notice also that

P (max(X1; X2) > x)

= P (X1 > x) + P (X2 > x)� P (X1 > x)P (X2 > x)

= 2P (X > x)� (P (X > x))2 � 2P (X > x)

as x!1. That is, for a subexponential random variable

P (X1 +X2 > x) � P (max(X1; X2) > x)

as x!1. Since X is nonnegative, we always have X1 +X2 � max(X1; X2).
Therefore, for a subexponential random variable X the sum X1 + X2 is larger than a

large value x when either X1 or X2 are larger than x. It is much less likely that both X1

and X2 are less than x, but they are still large enough so that their sum exceeds x. For
example, for a subexponential random variable

(2.1) P (x=2 < X1 � x; x=2 < X2 � x)

= (P (x=2 < X � x))2 = o(P (X > x)):

Example 2. Let X be an exponential random variable with mean 1. Then

P (x=2 < X � x)2 = (e�x=2 � e�x)2

� e�x = P (X > x)

as x!1, and so (2.1) fails. That is, an exponential random variable is not subexponential.

This last fact also follows from second statement in the following proposition, that
describe some basic properties of subexponential random variables. The proof may be
found in, say, Embrechts et al. (1979).



5

Proposition 3. Let X be a subexponential random variable, and X1; X2; : : : are iid copies
of X. Then
(i) limx!1

P (X>x+y)
P (X>x)

= 1 uniformly in y over compact sets;

(ii) limx!1 e�xP (X > x) =1, for each � > 0;
(iii) For every n � 1

lim
x!1

P (X1 + : : :+Xn > x)

P (X > x)
= n:

(iv) If N is a Poisson random variable with mean � that is independent of the sequence
X1; X2; : : : then

lim
x!1

P (X1 + : : :+XN > x)

P (X > x)
= �:

(v) If limx!1 P (Y > x)=P (X > x) = c 2 (0;1), then Y is subexponential as well.

Even though we have de�ned subexponentiality for nonnegative random variables, the
notion immediately extends to the class of general real valued random variables. We will
call a real random variable X subexponential if its positive part, X+, is subexponential.
The properties of subexponentiality discussed above extend immediately to this more gen-
eral case. For example, if X is subexponential, and X1 and X2 are independent copies of
X, then

lim sup
x!1

P (X1 +X2 > x)

P (X > x)
� lim sup

x!1

P ((X1)+ + (X2)+ > x)

P (X+ > x)
= 2;

and for every M > 0

P (X1 +X2 > x) � P (X1 > x +M;X2 > �Mor X1 > �M;X2 > x +M)

= 2P (X1 > x +M;X2 > �M) � (P (X1 > x +M))2;

hence

lim inf
x!1

P (X1 +X2 > x)

P (X > x)
� lim inf

x!1
2
P (X1 > x+M;X2 > �M)

P (X > x)

= 2P (X > �M)

by part (i) of Proposition 3 above. Letting M !1 we conclude that

lim
x!1

P (X1 +X2 > x)

P (X > x)
= 2:

Similarly, the parts (iii) and (i) of Proposition 3 extend to the general, not necessarily
nonnegative, case as well.
A nice tool for checking whether a given distribution on [0;1) is subexponential is the

following result due to Pitman (1980). For a distribution F on [0;1) let

gF (x) = � logF (x); x � 0:
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Theorem 4. Suppose gF has an eventually decreasing to 0 derivative g0F . The a necessary
and suÆcient condition for F to be subexponential is

(2.2) lim
x!1

Z x

0

expfyg0F (x)� gF (y)gg0F (y)dy = 1;

and a suÆcient condition is

(2.3) expfyg0F (y)� gF (y)gg0F (y)
integrable over [0;1).

Example 5. Let Y be the standard log-normal random variable. Then

P (Y > x) � 1p
2�

(logx)�1 expf�(logx)2

2
g

as x!1. Choose a random variable X with a distribution F such that

P (Y > x) =
1p
2�

(logx)�1 expf�(log x)2

2
g

for x � x0 > 1, and such that gF has a bounded derivative on [0; x0]. Notice that on
[x0;1)

gF (x) = c + log log x+
1

2
(log x)2;

some constant c that may change as we go along, hence

g0F (x) =
1

x logx
+
log x

x
;

which is an eventually decreasing to zero function.
Hence

expfxg0F (x)� gF (x)gg0F (x)
= expflog x+ (log x)�1 � log log x� 1

2
(logx)2 � cgg0F (x)

� expflogx + (logx)�1 � log log x� 1

2
(logx)2 � cg

� expf�c(log x)2g;
some c > 0, which is an integrable function. Hence by Theorem 4 X is subexponential
and, hence, so is the log-normal random variable Y .

Distribution functions with the following tails can be similarly shown to be subexponen-
tial.

(1) F (x) � expf�cxag as x!1, 0 < a < 1 and c > 0.
(2) F (x) � expf�cx(log x)�ag as x!1, a > 0 and c > 0.

Arguably, the single most important class of subexponential distributions is given in the
following example.
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Example 6. A function g : IR ! IR is called regularly varying at in�nity with exponent
a 2 IR if for every c > 0

(2.4) lim
x!1

g(cx)

g(x)
= ca:

If (2.4) holds with a = 0, then the function g is called slowly varying (at in�nity). Any
function g that is regularly varying with exponent a can, obviously, be written in the form

(2.5) g(x) = xaL(x); x > 0;

where L is a slowly varying function.

De�nition 7. A distribution function F is said to have regularly varying right tail with
tail exponent � > 0 if F is regularly varying at in�nity with exponent ��. If F is slowly
varying at in�nity, then we say that F has a slowly varying right tail.

It is easy to see directly that a distribution with a regularly or slowly varying right
tail is subexponential. For instance, if X is a nonnegative random variable with such a
distribution, then for any 0 < � < 1 we have

P (X1 +X2 > x) � P (X1 > (1� �)x) + P (X2 > (1� �)x) + P (X1 > �x;X2 > �x)

= 2P (X > (1� �)x) + (P (X > �x))2;

and, hence,

lim sup
x!1

P (X1 +X2 > x)

P (X > x)
� 2 lim sup

x!1

P (X > (1� �)x)

P (X > x)
+ lim sup

x!1

(P (X > �x))2

(P (X > x))2
P (X > x)

= 2(1� �)�� + ��2� � 0 = 2(1� �)��:

Letting �! 0 we obtain

lim sup
x!1

P (X1 +X2 > x)

P (X > x)
� 2;

which means that X is subexponential.

There are several basic facts about regularly varying functions we will be using. Let g
be a regularly varying at in�nity function with exponent a 2 IR.

(1) The convergence in

lim
x!1

g(cx)

g(x)
= ca

takes place uniformly in c over compact intervals in (0;1). If a < 0 then this
convergence is also uniform in c over half-lines (b;1) with b > 0.

(2) Let � 2 (0; 1) and b > 1. There is a x0 > 0 such that for all c � b and x � x0

(2.6) (1� �)ca�� � g(cx)

g(x)
� (1 + �)ca+�

(the Potter bounds).
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See e.g. Resnick (1987).
Distributions with regularly varying tails are by far the most popular in applications

among all subexponential distributions. At the very least, many arguments involving dis-
tributions with regularly varying tails are much easier than the corresponding arguments
involving subexponential distributions, and sometimes the parallel statements in the gen-
eral subexponential case are simply false.
For example, it follows directly from the de�nition that if X and Y are independent, and

have distributions with regularly varying right tails with exponents � and � accordingly,
then X + Y has also a distribution with a regularly varying right tail with exponent
min(�; �).
On the other hand, it is not true that if X and Y are independent and subexponential

distributions, then X + Y also has a subexponential distribution. A counterexample is
given by Leslie (1989).
The situation is even more delicate with products instead of sums.
Let X be a random variable with a regularly varying right tail with exponent �, and Y

is a positive random variable independent of X such that for some � > 0 EY �+� <1. Let
Z = XY . We claim that

(2.7) lim
x!1

P (Z > x)

P (X > x)
= EY �:

In particular, Z has also a regularly varying right tail with exponent �.
To see that, let G be the distribution of Y . By the Potter bounds, there is a C > 0 such

that for all x large enough
P (X > x=y)

P (X > x)
� Cy�+�

for all y > 0, where � > 0 is such that EY �+� < 1. This allows us to use the dominated
convergence theorem in

lim
x!1

P (Z > x)

P (X > x)
= lim

x!1

Z 1
0

P (X > x=y)

P (X > x)
G(dy)

=

Z 1
0

lim
x!1

P (X > x=y)

P (X > x)
G(dy) =

Z 1
0

y�G(dy) = EY �:

In fact, if X be a random variable with a regularly varying right tail with exponent �,
and Y is a positive random variable independent of X, then it is also true that Z = XY
has also a regularly varying right tail with exponent � under the following assumptions:

(1) EY � <1.
(2) Y has a regularly varying right tail with exponent �.

However, the relation (2.7)

lim
x!1

P (Z > x)

P (X > x)
= EY �

may fail. See Embrechts and Goldie (1980).
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Results of this type are much harder to obtain in the case when X is a general subexpo-
nential random variable. For example, it is not known, in general, whether or not it is true
that if X and Y are independent subexponential random variables, then Z = XY is also
a subexponential random variable (probably not). However, it is still, roughly speaking,
the case that if Y is a positive random variable independent of X, and the right tail of Y
is suÆciently light in comparison with with the right tail of X.
The following result is from Cline and Samorodnitsky (1994). Let F and G be the

distribution functions of X and Y correspondingly.

Theorem 8. Assume that X is a subexponential random variable. If there is a function
a : (0;1)! (0;1) satisfying

� a(t) " 1 as t!1,
� t=a(t) " 1 as t!1,
� limt!1 F (t� a(t))=F (t) = 1,
� G(a(bt)) = o(F (t)) for some b > 0

then Z = XY is also a subexponential random variable.

In particular, if X is a subexponential random variable, and Y is a bounded positive
random variable independent ofX, then Z = XY is also a subexponential random variable.

There are various statistical approaches to detecting heavy tails and measuring heaviness
of the tails. Instead of looking at formal statistical tests, let us mention at the moment an
\eyeball" approach to detecting heavy tails.
By plotting the data and seeing that most of the data is dominated by a few largest

observations (see Figure 9) one concludes that heavy tails are present.
A typical plot without heavy tails is that of Figure 10. Here there are no obvious

dominating observations.

We �nish this introduction into heavy tails by observing that when random variables
with heavy tails are mentioned in literature, the authors often mean di�erent things. Some
common possibilities:

� random variables with subexponential tails
� random variables with regularly varying right tails
� random variables with regularly varying right tails with exponent � < 1
� random variables with in�nite second moment

It is, therefore, important, to ascertain in what sense the notion of heavy tails is used in
any given instance.

3. Long range dependence

As we mentioned above, there is no consensus on the notion of heavy tails. There is
even less consensus on the notion of long range dependence.
The obvious way to measure the length of memory in a stochastic process is by looking

at the rate at which its correlations decay with lag. Annoyingly, this requires correlations
to make sense, hence �nite variance needs to be assumed.



10 G. SAMORODNITSKY

0 5000 10000 15000 20000

0
10

00
0

20
00

0
30

00
0

Figure 9. iid Pareto random variables with � = 1.
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Figure 10. iid exponential random variables with mean 1.

Let us start with the discrete time case. Let Xn; n = 0; 1; 2; : : : be a stationary stochastic
process with mean � = EX0 and 0 < �2 = VarX0 < 1. Let �n = Corr(X0; Xn); n =
0; 1; : : : be the correlation function.
For most \usual" stochastic models: ARMA processes, GARCH processes, many Markov

and Markov modulated processes the correlations decay exponentially fast with n. This
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implies, in particular, that

(3.1)
1X
n=0

j�nj <1:

Summability of correlations means, in turn, many other things. For example, consider
the partial sum process

Sn = X1 + : : :+Xn; n � 1; S0 = 0;

and let us calculate its variance. We have

VarSn =
nX
i=1

nX
j=1

Cov(Xi; Xj)

= �2
nX
i=1

nX
j=1

�ji�jj = �2(n + 2
n�1X
i=1

(n� i)�i):

Under the assumption (3.1) we see by the dominated convergence theorem that

lim
n!1

VarSn
n

= �2(1 + 2
1X
i=1

�i):

That is, if the correlations are summable, then the variance of the partial sum process
increases linearly fast. Often it is the case that Sn itself has the order of magnitude n1=2.
Moreover, under certain additional regularity assumptions the partial sum process (Sn)

satis�es Functional Central Limit Theorem:

(3.2)
1p
n
S(n) ) ��B in D[0; 1];

where

(3.3) S(n)(t) = S[nt] � [nt]�; 0 � t � 1;

�2� = �2(1 + 2
1X
i=1

�i) � 0

and B is the standard Brownian motion on [0; 1].

In 1951 a British hydrologist, H. Hurst, published a study of 
ow of water in the Nile
river. The plot on Figure 11 shows the annual minima of the water level in the Nile river
for the years 622-1281, measured at the Roda gauge near Cairo.
This plot looks interesting in many di�erent ways, but H. Hurst was interested in a

speci�c statistics, de�ned as follows. Let

(3.4)
R

S
(X1; : : : ; Xn) =

max0�i�n(Si � i
n
Sn)�min0�i�n(Si � i

n
Sn)

( 1
n

Pn
i=1(Xi � 1

n
Sn)2)1=2

:
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Figure 11. The Nile river annual minima

The numerator in this statistic is referred to as the range of the data, and the whole
statistic (after scaling by the sample standard deviation) is referred to as the rescaled
range, or the R=S statistic.

If one computes the R=S statistic on the increasing subsets fX1; : : : ; Xng of

the Nile river data set fX1; : : : ; X660g then it turns out that, as a function of the

sample size n, this statistic grows approximately as n:75.

This has been observed to be strange. Too see why it is strange, suppose that our ob-
servations come from a stationary model with a �nite variance and summable correlations,
as in (3.1). In fact, assume that the Functional Central Limit Theorem (3.2) holds.
Notice that the range of the data, which is the numerator of the R=S statistic, can

be expressed in the form f(S(n)), where S(n) is the partial sum process in (3.3), and
f : D[0; 1]! IR is given by

f(x) = sup
0�t�1

(x(t)� tx(1))� inf
0�t�1

(x(t)� tx(1));

x = (x(t); 0 � t � 1) 2 D[0; 1]. It is easy to see that this is a continuous function on
D[0; 1]. Therefore, by the continuous mapping theorem,

(3.5)
1p
n
(the range of the data) = f

�
1p
n
S(n)

�
) f(��B)

= ��
h
sup
0�t�1

(B(t)� tB(1))� inf
0�t�1

(B(t)� tB(1))
i
= ��

�
sup
0�t�1

B0(t)� inf
0�t�1

B0(t)
�
;

where B0 is the Brownian bridge on [0; 1].
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Furthermore, if the observations come from an ergodic stationary process then the sample
standard deviation is a consistent estimator of the population standard deviation;

(3.6) (
1

n

nX
i=1

(Xi � 1

n
Sn)

2)1=2 ! �:

Hence, if the observations come from a stationary ergodic model with a �nite variance and
summable correlations, and if the Functional Central Limit Theorem (3.2) holds, then by
(3.5) and (3.6) we conclude that

1p
n

R

S
(X1; : : : ; Xn)) ��

�

�
sup
0�t�1

B0(t)� inf
0�t�1

B0(t)
�
:

That is, the R=S statistic grows, with the sample size, as n:5. This was observed �rst by
Feller (1952) (in the iid case).
For a long time people tried to explain what classes of stationary processes would lead

to a faster rate of increase of the the R=S statistic than n:5. This latter phenomenon has
become known as the Hurst phenomenon.
Moran (1964) claimed that one can explain the Hurst phenomenon by assuming that

the observations X1; X2; : : :, while independent (and identically distributed), possess heavy
tails in the sense of the in�nite second moment. Speci�cally, he assumed that the observa-
tions have regularly varying tails with exponent 0 < � < 2, and even more speci�cally he
assumed that these observations are in the domain of attraction of an �-stable distribution.
However, in Mandelbrot and Taqqu (1979) a heuristic argument was given that showed

that even in that case one would expect the the R=S statistic to grow at the rate n:5. It is
not diÆcult to make this argument precise.
In fact, one can show that here (leaving aside slowly varying terms) that

the range of the data � n1=�

and
nX
i=1

(Xi � 1

n
Sn)

2 � n2=�

(in distributional sense), so that the R=S statistic still has the order of n:5.
An possible explanation of the Hurst phenomenon had to wait until the paper of Man-

delbrot (1975), and it had to do with the length of memory as opposed to heavy tails.

3.1. Self-similar processes.

De�nition 12. A stochastic process (Y (t); t � 0) is called self-similar with exponent
H 2 IR of self-similarity if for all c > 0

(3.7) (Y (ct); t � 0)
d
= cH(Y (t); t � 0)

in the sense of equality of the �nite-dimensional distributions.
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Obviously, if H 6= 0 then Y (0) = 0 a.s.

If the process (Y (t); t � 0) also has stationary increments, then this process is often
denoted SSSI (self-similar stationary increments).
A few facts about SSSI processes. Let (Y (t); t � 0) be an SSSI process with exponent

H of self-similarity.

(1) If H < 0 then Y (t) = 0 a.s. for every t � 0.
(2) If H = 0 and (Y (t); t � 0) has a measurable modi�cation (in particular, if it is

continuous in probability), then for all t � 0, P (X(t) = X(0)) = 1.

Therefore, one assumes that H > 0 when studying SSSI processes.
Certain moment assumptions will further reduce the feasible range of the self-similarity

exponent H. We will assume in the sequel that our process is not identically equal to zero
at any given time t.

Lemma 13. Let (Y (t); t � 0) be an SSSI process with exponent H of self-similarity, and
assume that EjY (1)j <1. Then H � 1.

Proof. We have by the self-similarity

nH�1Y (1)
d
=
Y (n)

n
=

Y (1) + (Y (2)� Y (1)) + : : :+ (Y (n)� Y (n� 1))

n
and by the stationarity of the increments and ergodic theorem the expression in the right
hand side above converges a.s. to the conditional expectation of Y (1) given the corre-
sponding invariant �-�eld. In particular, the family of the laws of the random variables in
the right side above, indexed by n � 1, is tight. Hence H � 1. �

Two more facts are presented without a proof. Let (Y (t); t � 0) be an SSSI process with
exponent H of self-similarity.

(1) Assume EjY (1)j < 1. If H = 1 then for every t � 0 we have X(t) = tX(1) with
probability 1.

(2) Assume EjY (1)j <1. If 0 < H < 1 then EY (1) = 0.
(3) Assume that for some 0 < 
 < 1, EjY (1)j
 <1. Then 0 < H < 1=
.

Suppose that (Y (t); t � 0) is an SSSI process with exponent H of self-similarity, and
a �nite non-zero variance at time 1. By the above we know that, if we want to avoid
degenerate situations, we have to assume that 0 < H < 1, and then the process has to
have zero mean. For every 0 � s < t we must have then

E(Y (t)� Y (s))2 = EY (t� s)2 = (t� s)2HEY (1)2;

and so

(3.8) Cov(Y (s); Y (t)) =
1

2

h
EY (t)2 + EY (s)2 � E(Y (t)� Y (s))2

i

=
EY (1)2

2

h
t2H + s2H � (t� s)2H

i
:
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Therefore, if (Y (t); t � 0) is a second order SSSI process with 0 < H < 1, then it must
have the covariance structure speci�ed by (3.8).
Of course, we have not checked that the right hand side of (3.8) is a non-negative de�nite

function. This, however, turns out to be the case. Therefore, second order SSSI processes
do exist, and they all share the same covariance function given by the right hand side of
(3.8).

In particular, there is a unique up to a scale zero mean SSSI Gaussian process

with 0 < H < 1. This process is called Fractional Brownian motion (FBM).

Since for H = 1=2 the covariance function given by the right hand side of (3.8) reduces
to Cov(Y (s); Y (t)) = EY (1)2s, one sees that a FBM with H = 1=2 is just a Brownian
motion.
Going back to the Hurst phenomenon, let (Y (t); t � 0) be a FBM, and let Xi = Y (i)�

Y (i � 1), i = 1; 2; : : :. By the stationarity of the increments of FBM, this is a stationary
sequence, commonly referred to as the Fractional Gaussian Noise (FGN). Let us understand
the behavior of the R=S statistic on FGN.
Notice that by the self-similarity

max
0�i�n

(Si � i

n
Sn) = max

0�i�n
(Y (i)� i

n
Y (n))

d
= nH max

0�i�n
(Y (

i

n
)� i

n
Y (1)):

Since a FBM has continuous sample paths, we see that

max
0�i�n

(Y (
i

n
)� i

n
Y (1))! sup

0�t�1
(Y (t)� tY (1))

with probability 1.
The same argument applies to the second part of the range and, hence,

n�H
h
max
0�i�n

(Si � i

n
Sn)� min

0�i�n
(Si � i

n
Sn)
i

) sup
0�t�1

(Y (t)� tY (1))� inf
0�t�1

(Y (t)� tY (1)):

Since the relation (3.6) still holds (the sample standard deviation converges a.s. to the
population standard deviation) we conclude that

n�H
R

S
(X1; : : : ; Xn)) 1

�

h
sup
0�t�1

(Y (t)� tY (1))� inf
0�t�1

(Y (t)� tY (1))
i
:

Therefore, a choice of an appropriate H > 1=2 will provide an explanation of the Hurst
e�ect.

Let us do some covariance computations for a FGN. For 1 � i < j we have by (3.8)

Cov(Xi; Xj) = Cov
h
(Y (i)� Y (i� 1))(Y (j)� Y (j � 1))

i

=
EY (1)2

2

h
(j � i+ 1)2H + (j � i� 1)2H � 2(j � i)2H

i
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and

Var(Xi) = Var(Y (i)� Y (i� 1)) = EY (1)2:

Hence, for n � 1

(3.9) �n = Corr(X0; Xn) =
(n + 1)2H + (n� 1)2H � 2n2H

2
:

In particular,

(3.10) �n � H(2H � 1)n�2(1�H)

as n ! 1. Of course, if H = 1=2, then �n = 0 for all n � 1 (a Brownian motion has
independent increments).
We conclude that the summability of correlations (3.1) holds if 0 < H � 1=2 and it does

not hold if 1=2 < H < 1.
Therefore, a FGN with H > 1=2 has become commonly accepted as having long range

dependence, and lack of summability of correlations as a popular de�nition of long range
dependence.

Nonetheless, even those who view long range dependence through slow decay of corre-
lations do not agree on what the right de�nition is. Here are several de�nitions that have
been used.

(1) Lack of summability of correlations

(3.11)
1X
n=0

j�nj =1:

(2) Correlations are regularly varying at in�nity with exponent �1 < d � 0.
Of course, this assumption implies lack of summability of correlations (3.11). FGN
with H > 1=2 has this property.

(3) Correlations are regularly varying at in�nity with exponent d � 0. This
assumption does not imply (3.11), and it is designed, rather, for contrast with the
case of exponentially decaying correlations.

Another possible angle of viewing long range dependence that is still closely related
to correlations is through the spectral domain. Let Xn; n = 0; 1; 2; : : : be a stationary
stochastic process with a �nite variance �2. If its correlations are summable (i.e. (3.1)
holds) then the process has a spectral density f satisfying

(3.12) �2�n =

Z �

0

cos(nx)f(x)dx;

n = 0; 1; 2; : : :. Moreover, in this case the spectral density is continuous on [0; �].
On the other hand, it has been observed that a particular slow decay of correlations

(condition 2 above), namely that the correlations are regularly varying at in�nity with
exponent 0 � d < 1 often goes together with the spectral density "blowing up" at the
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origin. In fact, it has been observed that often the spectral density is then regularly
varying at the origin, with exponent �(1� d).

Example 14. It is easy to check that Fractional Gaussian Noise (FGN) (Y1; Y2; : : :) has a
spectral density given by

(3.13) f(x) = EY 2
1 C(H)(1� cos x)

1X
j=�1

j2�j + xj�(1+2H) � 1

2
EY 2

1 C(H)x�(2H�1)

as x! 0. Here

C(H) =
2H(1� 2H)

�(2� 2H)

1

cos �H

(= 2=� if H = 1=2.) In particular, the spectral density is continuous at the origin if
0 < H � 1=2 and "blows up" at the origin at the appropriate rate if 1=2 < H < 1.

In fact, the equivalence between the regular variation of the correlations at in�nity and
the regular variation of the spectral density at the origin have become taken for granted,
and often stated as a theorem (without proof).
To the best of our knowledge this equivalence is false in general, without extra regularity

assumptions. Below is a rigorous result. Let Rn = EY 2
1 �n; n = 0; 1; 2; : : : be the covariance

function of a (weakly) stationary second order process.

Theorem 15. (i) Assume that

(3.14) Rn = n�dL(n); n = 0; 1; 2; : : : ;

where 0 < d < 1 and L is slowly varying at in�nity, satisfying the following assumption:

(3.15) for every Æ > 0 both functions g1(x) = xÆL(x)

and g2(x) = x�ÆL(x) are eventually monotone.

Then the process has a spectral density, say, f , satisfying

(3.16) f(x) � x�(1�d)L(x�1)
2

�
�(1� d) sin

1

2
�d

as x! 0.
(ii) Conversely, assume that the process has a spectral density f satisfying

(3.17) f(x) = x�dL(x�1); 0 < x < �;

where 0 < d < 1, and L is slowly varying at in�nity, satisfying assumption (3.15) above.
Suppose, further, that f is of bounded variation on the interval (�; �) for any 0 < � < �.
Then the covariances of the process satisfy

(3.18) Rn � n�(1�d)L(n)�(1� d) sin
1

2
�d

as n!1.
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This theorem explains why is that that in practically all cases people looked at both
appropriately slow regular decay of correlations at in�nity and the appropriate "explosion"
of the spectral density at the origin occur at the same time. It is easy to see, for example,
that a slowly varying function

L(x) = (logx)�; any � 2 IR

satis�es the regularity assumption (3.15). This observation is a particular case of the
following more general and easily veri�able statement.

Proposition 16. Any eventually absolutely continuous, monotone, nonnegative function
L such that L0 is regularly varying at in�nity with exponent �1 satis�es the regularity
assumption (3.15).

Nonetheless, there are examples of slowly varying functions that do not satisfy
the assumption (3.15).
Whether or not there is equivalence between the rate of decay of correlations and the rate

of "exposition" of the spectral density at the origin, two additional alternative de�nitions
of long range dependence appeared.

(1) Spectral density is regularly varying at the origin with exponent 0 < d � 1.
(2) Spectral density has an in�nite limit at the origin.

This last point of view on long range dependence has become one of the most commonly
used ways by which people try to detect presence of long range dependence in the data.

3.2. Periodogram. For a sequence of observations X1; : : : ; Xn de�ne

(3.19) In(�) =
1

�n

�����
nX
j=1

(Xj �X)eij�

�����
2

;

to be the periodogram of the sequence computed at the frequency � 2 (0; �). Here X =Pn
j=1Xj=n is the sample mean.
If X1; X2; : : : are observations from a second order stationary process with a spectral

density f and either summable correlations, or certain kind of non-summable correlations,
then it is not diÆcult to check that

(3.20) EIn(�)! f(�) as n!1:

Moreover, under certain assumptions, one also knows the asymptotic distribution of the
periodogram.
Hence, one can calculate the periodogram, take it as the estimate of the spectral density,

and check if the estimated spectral density seems to have a pole at the origin. Furthermore,
one may even try to estimate exactly how fast the estimated spectral density "blows up"
at the origin.
Figure 17 contains the plot of the periodogram for the Nile river data. Note the obvious

pole at the origin and lack of any structure away from the origin.
We have talked in details about points of view on long range dependence in the case

of a �nite variance. One way or the other these de�nitions of long range dependence
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Periodogram for the Nile river data

Figure 17.

concentrate on the correlations of the process. However, such approaches have drawbacks,
that we will presently discuss.
Suppose that X1; X2; : : : is a zero mean stationary Gaussian process with covariance

function satisfying

(3.21) Rn � a n�d for some 0 < d < 1 as n!1.

Let G : IR ! IR be a measurable function such that EG(X1) = 0 and EG(X1)
2 < 1.

We consider the stochastic process Yn = G(Xn); n � 1, an instantaneous transformation
of the Gaussian process. How fast do the correlations of this process decay?

3.3. Hermite polynomials. For a �xed x 2 IR consider the function

hx(a) = e�(a+x)
2=2; a 2 IR:

This function has a Taylor expansion

hx(a) =
1X
k=0

ak

k!

dkh

dak
(0) =

1X
k=0

ak

k!

dk(e�x
2=2)

dxk
:
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Replacing a with �a we get

e�x
2=2eax�a

2=2 = e�(x�a)
2=2 =

1X
k=0

(�1)k a
k

k!

dk(e�x
2=2)

dxk
:

Therefore

eax�a
2=2 =

1X
k=0

ak

k!

 
(�1)kex2=2 d

k(e�x
2=2)

dxk

!
:

One denotes

(3.22) Hk(x) = (�1)kex2=2 d
k(e�x

2=2)

dxk
; x 2 IR;

for k = 0; 1; 2; : : :, and we call Hk the kth Hermite polynomial. The way we introduced
Hermite polynomials we see that

(3.23) eax�a
2=2 =

1X
k=0

Hk(x)
ak

k!
; a 2 IR;

and so, for a �xed x 2 IR, the sequence (Hk(x), k = 0; 1; 2; : : :) is the sequence of the
coeÆcients in the expansion of the function gx(a) = eax�a

2=2 in a power series in a.

Some properties of Hermite polynomials.
1. Hk is a polynomial of degree k.

H0(x) = 1; H1(x) = x;

H2(x) = x2 � 1; H3(x) = x3 � 3x;

etc.
2. If X and Y are two jointly normal zero mean random variables with variances equal

to one and correlation �, then

EHk(X) = 0 for all k 6= 0

and

E [Hk(X)Hm(Y )] =

(
0 if m 6= k

k!�k if m = k
:

3. Hermite polynomials H0; H1; : : : form an orthogonal basis in the space

L2 = L2

�
IR;B; 1p

2�
e�x

2=2 dx

�
:

The last two properties imply that, if X is a standard normal random variable, then for
any measurable function G such that EG(X)2 <1 one can write

(3.24) G(X) =
1X
k=0

ak
k!

Hk(X);
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with

(3.25) ak = E [Hk(X)G(X)] ; k = 0; 1; 2; : : : ;

in the sense that the series in the right hand side of (3.24) converges to G(X) in L2.
If, in addition, EG(X) = 0, then a0 = 0, and so

G(X) =
1X
k=1

ak
k!

Hk(X):

In general, for a given function G as above let

(3.26) kG = inffk = 1; 2; : : : : ak 6= 0g:
The number kG is called the Hermite rank of the function G. We have

G(X) =
1X

k=kG

ak
k!

Hk(X);

and it turns out that the rate of decay of correlations of the stationary stochastic process
Yn = G(Xn); n = 1; 2; : : :, where X1; X2; : : : zero mean variance one stationary Gaussian
process with covariance function satisfying (3.21) depends signi�cantly on the the Hermite
rank kG of the function G.
Here is a theorem due to Taqqu (1975, 1979) and Dobrushin and Major (1979). Once

again, we assume that the relation (3.21) holds:

Rn � a n�d for some 0 < d < 1 as n!1.

Theorem 18. The covariance function RY
n of the process Y1; Y2; : : : satis�es

(3.27) RY
n � a

�
akG
kG!

�2

n�dkG as n!1.

Furthermore:
(i) Suppose that

(3.28) kG >
1

d
:

Then (by (3.27)) the correlations of the process Y1; Y2; : : : are summable,

Var

 
nX
j=1

Yj

!
� n�2� as n!1,

with

�2� =
1X

k=kG

a2k
k!
�2k 2 (0;1);

and

�2k = lim
n!1

1

n

nX
i=1

nX
j=1

Rk
ji�jj <1 for k � kG.



22 G. SAMORODNITSKY

In addition, Functional Central Limit Theorem (3.2) holds:

1p
n
S(n) ) ��B in D[0; 1];

where Sn = Y1 + : : : Yn; n = 0; 1; 2; : : :, S(n)(t) = S[nt]; 0 � t � 1, and B is the standard
Brownian motion on [0; 1].
(ii) Suppose now that

(3.29) kG <
1

d
:

Then a Functional Non-Central Limit Theorem holds:

(3.30)
1

n1�dkG=2
S(n) ) Z(d;kG) in D[0; 1];

where for k < 1=d

Z(d;k)(t) = C(d; k)

Z
IR

: : :

Z
IR

eit(x1+:::+xk) � 1

i(x1 + : : :+ xk)
jx1j(d�1)=2 : : : jxkj(d�1)=2W (dx1) : : :W (dxk);

0 � t � 1, where

C(d; k) = 2�(d) cos
�d

2

ak
k!
;

and W is a (complex-valued) Gaussian random measure with Lebesgue control measure.

The process (Z(d;k)(t); t � 0) in part (ii) of Theorem 18) is a SSSI process with H =
1� dk=2. This process is non-Gaussian if k > 1, and it is an FBM (with H = 1� d=2) if
k = 1.
One can argue that, if the Hermite rank kG of the function G satis�es kG > 1=d (part (i)

of Theorem 18), then the resulting process Yn = G(Xn); n = 1; 2; : : : has short memory:
its correlation function is summable, and it satis�es Functional Central Limit Theorem.
On the other hand, if the Hermite rank kG satis�es kG < 1=d (part (ii) of Theorem 18),

then the process Yn = G(Xn); n = 1; 2; : : : has long memory: its correlations are regularly
varying at in�nity with exponent �1 < d < 0, and it satis�es Functional Non-Central
Limit Theorem.
It turns out that the case kG = 1=d also puts us in the framework of Functional Cen-

tral Limit Theorem, but the normalization is no longer 1=
p
n (the correlations are not

summable).

Note that the situation described by Theorem 18 is worrisome.
There are two di�erent one-to-one functions G1 and G2 of di�erent Hermite ranks. Then,

starting with a long memory (in the sense of the rate of decay of correlations) Gaussian

process (X1; X2; : : :) we may end up with a process Y
(1)
n = G1(Xn); n = 1; 2; : : : that has a

short memory in the sense of fast decaying correlations, and a process Y
(2)
n = G2(Xn); n =

1; 2; : : : that has a long memory in the sense of slowly decaying correlations.
However,

Y (2)
n = G2

�
G�11 (Y (1)

n )
�
; n = 1; 2; : : : :



23

and, since the function G2 Æ G�11 is one-to-one, the process Y
(2)
n = G2(Xn); n = 1; 2; : : :

should \remember" exactly as much as the process Y
(1)
n = G1(Xn); n = 1; 2; : : : does!

All the points of view on long range dependence we have discussed so far rely one way
or the other on correlations. Concentrating too much on the correlations has, however, a
number of drawbacks.

� Correlations provide only very limited information about the process if

the process is "not very close" to being Gaussian.
Nobody has argued that Fractional Gaussian noise withH > 1=2 is not long range

dependent, and in this case, indeed, correlations tell the entire story. However, for
processes like ARCH or GARCH processes, or fractionally di�erenced processes of
this kind, correlations are zero in spite of a very rich dependence structure in the
process. Finally, it is often diÆcult to relate correlations to functional of the process
that are of real interest.

� Rate of decay of correlations may change signi�cantly after instantaneous
one-to-one transformations of the process.

� What to do if the variance is in�nite?
Whatever the drawbacks of using correlations to measure length of memory in

the L2 case, the whole approach breaks down when the variance is in�nite. Some
of the proposed ways out in speci�c situations included computing \correlation-
like" numbers, or using instead characteristic functions by studying the rate of
convergence to zero of the di�erence

'X1;Xn+1(�1; �2)� 'X1(�1)'Xn+1(�2)

= Eei(�1X1+�2Xn+1) � Eei�1X1Eei�2Xn+1

for some �1; �2 not equal to zero. This approaches have met only with limited
success.

We advocate a di�erent approach to the problem of long range dependence, and we start,
for now, with a generic example.
Suppose that (P�; � 2 �) is a family of laws of a stationary stochastic process (X1; X2; : : :),

where � is some parameter space.
Suppose that R is a functional on IR1. We view R(X1; X2; : : :) as a functional of the

stochastic process; assume that it is a functional of interest. Of course, its behavior is
di�erent, in general, under di�erent laws P�, and we are looking at how this behavior
changes as � 2 � changes.
Suppose that there is a partition of the parameter space � into two parts, �0 and �1,

such that the behavior of the functional changes dramatically as one crosses the boundary
between �0 and �1. Then it may make sense to talk about that boundary as the boundary
between short range dependence and long range dependence. This approach makes long
range dependence appear in a sort of a phase transition.
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In many cases the functional R of the process is really a sequence of functionals,
R = (R1; R2; : : :), where Rn is a functional on IRn, n = 1; 2; : : :. An example consid-
ered implicitly before is that of

(3.31) Rn(x1; : : : ; xn) = x1 + : : :+ xn;

n = 1; 2; : : :, and then the phase transition we can be looking for is that of the change in
the rate of growth of the partial sums of the process.
Of course, not every phase transition indicates a change from short memory to long

memory. For example, certain changes in parameters may mean changing heaviness of
the tail, that is also likely to induce changes in the behavior of important functionals of
the process. For example, for the functional described by (3.31) the transition between
�nite and in�nite second moments can change the rate of growth of the partial sums of the
process even without any change in the dependence structure of the process (e.g. in the
iid situation).
In many cases we will be interested in phase transitions related to certain rare events

and functionals related to such rare events.

4. Rare events and large deviations

By de�nition, rare events are those events that do not happen very often. The ordinary
usage of the language is to associate rare events with certain limiting procedures. Let us
start with some examples.
Let (X1; X2; : : :) be a stationary stochastic process.

Example 19. For large � > 0 the event fX1 > �g is a rare event.
The probability of this event is the tail probability for the process. On the other hand,

this event is so elementary that it does not tell us anything about the memory in the
process.

Example 20. For k � 1 and large �1; : : : ; �k the event fX1 > �1; : : : ; Xk > �kg is also
rare event.

The probabilities of such events have, obviously, a lot to do with the tails of the process.
However, they can carry very important information about the dependence in the process.

Example 21. For large n � 1 and a positive sequence (�j)j�0 that does not converge to
zero the event fXj > �j; j = 1; : : : ; ng is a rare event.
Even though it is less obvious here, probabilities of such events may have a lot to do

with the tails of the process. The connection to the memory of the process is obvious here.
The case �j = � > 0 for all j � 0 is often interesting and appealing.
The term \large deviations" is a vague one, and is used in di�erent ways by di�erent

people. An example of a fairly restrictive meaning of the term is \asymptotic computation
of small probabilities on an exponential scale" (Dembo and Zeitouni (1993)). We will use
this term in a much wider sense. For us \large deviations" are synonymous with \rare
events", or with \things happening in other than expected way".

Large Deviations Approach: unlikely things happen in the most likely way.
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By itself, this statement does not provide anything new. However, it guides one towards
understanding of how rare events happen, and towards classifying rare events.
The �rst bene�t of the large deviations approach is to realize that certain rare events

tend to happen in di�erent ways in the heavy tailed cases and in the light tailed cases.

Heavy tailed case: rare events are caused by the smallest possible number of

individual factors

Light tailed case: rare events are caused by \conspiracy" among all or most

of individual factors

Let us demonstrate what this means by considering a few examples.

Example 22. Let X1 and X2 be independent random variables with the same distribution.
Consider the rare event

A = fX1 +X2 > �g; � large:

Recall that, if the random variables X1 and X2 are subexponential, then

P (A) = P (X1 +X2 > �) � P (X1 > �) + P (X2 > �)

� P (fX1 > �g [ fX2 > �g) :
That is, in this case the rare event A = fX1 + X2 > �g, is most likely to be caused by
one of the two individual factors: X1 is appropriately large (and X2 is not outrageously
small), or X2 is appropriately large (and X1 is not outrageously small). This is typical of
the heavy tailed case.

On the other hand, let X1 and X2 be independent standard normal random variables,
and consider the same event A as above. Obviously,

P (A) = P (X1 +X2 > �) � 1p
�
��1e��

2=4:

On the other hand, for every 1=2 < � � 1,

P (X1 +X2 > �;X1 > ��) = P (X1 +X2 > �;X1 > �) + P (X1 +X2 > �; �� < X1 � �):

Now,

P (X1 +X2 > �;X1 > �) � P (X1 > �) � 1p
2�

��1e��
2=2 = o(P (A));

while

P (X1 +X2 > �; �� < X1 � �) =
1

2�

Z �

��

e�x
2=2 dx

Z 1
��x

e�y
2=2 dy

� 1

2
p
2�

Z �

��

e�x
2=2e�(��x)

2=2 dx =
1

2
p
2�

e��
2=4

Z �

��

e�(x��=2)
2

dx

� 1

2
p
2�

e��
2=4

Z 1
(��1=2)�

e�x
2

dx � 1

2
p
2�

e��
2=4((2� � 1)�)�1e�((2��1)�)

2

= o(P (A)):

Therefore, every 1=2 < � � 1,

P (X1 +X2 > �;X1 > ��) = o(P (X1 +X2 > �)):
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In other words:

the rare event P (X1 + X2 > �) is most likely to occur because both of the terms in the
sum, X1 and X2 are at the same time at about the level 1

2
�.

This is an example of "conspiracy" (of X1 and X2).

Example 23. Let X1; X2; : : : be iid random variables with a �nite mean �. For an � > 0
consider the rare event

A =

�
X1 +X2 + : : :+Xn

n
> �+ �

�
; n large:

Let consider �rst the heavy tailed case, which in the present case will mean that the random
variables X1; X2; : : : have a regularly varying right tail with exponent � > 1.
Observe that for any �0 > �

P (A) = P

�
X1 +X2 + : : :+Xn

n
> �+ �

�

� P

 
n[
i=1

(
Xi > �0n;

X
j=1;:::;n;j 6=i

Xj > n(�+ �� �0)

)!
:= P ([ni=1Bi)

�
nX
i=1

P (Bi) = nP (B1)� n(n� 1)

2
P (B1 \B2)

� nP (X1 > �0n)P (
nX
j=2

Xj > n(�+ �� �0))� n(n� 1)

2
P (X1 > �0n;X2 > �0n)

� nP (X1 > �n)(
�

�0
)� � n(n� 1)

2
(P (X1 > �0n))2;

because by the regular variation

lim
n!1

P (X1 > �0n)

P (X1 > �n)
= (

�

�0
)�;

and by the law of large numbers,

P (
nX
j=2

Xj > n(�+ �� �0))! 1:

Note that

nP (X1 > �n) is regularly varying with exponent �(�� 1);

and
n(n� 1)

2
(P (X1 > �0n))2 is regularly varying with exponent �2(�� 1):

Therefore,

lim inf
n!1

P (A)

nP (X1 > �n)
� (

�

�0
)�;
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and since this is true for any �0 > �, we can let �0 # � to conclude that
(4.1) lim inf

n!1

P (A)

nP (X1 > �n)
� 1:

To prove the corresponding asymptotic upper bound, let 0 < � < � be a small number.
Observe that

P (A) = P

�
X1 +X2 + : : :+Xn

n
> �+ �

�
= P (A \ ffor some i = 1; : : : ; n, Xi > �ng) + P (A \ ffor all i = 1; : : : ; n, Xi � �ng) :

We will show that, if � > 0 is small enough, then

(4.2) lim
n!1

P (A \ ffor all i = 1; : : : ; n, Xi � �ng)
nP (X1 > �n)

= 0:

In that case, for all � small enough,

lim sup
n!1

P (A)

nP (X1 > �n)
� lim sup

n!1

P (A \ ffor some i = 1; : : : ; n, Xi > �ng)
nP (X1 > �n)

:

Take now any � < �0 < �, and write

P (A \ ffor some i = 1; : : : ; n, Xi > �ng)

� P

 
n[
i=1

fXi > �0ng
!
+ P

 
n[
i=1

(
Xi > �n;

X
j=1;:::;n;j 6=i

Xj > n(�+ �� �0)

)!

� nP (X1 > �0n) + nP

 
X1 > �n;

nX
j=2

Xj > n(�+ �� �0))

!

� nP (X1 > �n)(
�

�0
)� + nP (X1 > �n)P (

nX
j=2

Xj > n(�+ �� �0)):

Since by the law of large numbers,

P (
nX
j=2

Xj > n(�+ �� �0))! 0;

we conclude that

lim sup
n!1

P (A \ ffor some i = 1; : : : ; n, Xi > �ng)
nP (X1 > �n)

� (
�

�0
)�;

and since this is true for any � < �0 < �, we can let �0 " � to conclude that
(4.3) lim sup

n!1

P (A)

nP (X1 > �n)
� 1:

Therefore, we will have established the relationship

(4.4) lim
n!1

P (A)

nP (X1 > �n)
= 1;
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provided we can show that for all � > 0 small enough, the relationship (4.2) holds.
To this end, let X�1 ; : : : ; X

�
n be iid random variables with the common distribution being

that of X1 conditioned on jX1j � �n. Denote

�� = EX�1 � �+
�

2
for large n. Note that

P (A \ ffor all i = 1; : : : ; n, Xi � �ng) � P

�
A

����Xi � �n; i = 1; : : : ; n

�

= P

�
X1 + : : :+Xn

n
> �+ �

����Xi � �n; i = 1; : : : ; n

�

� P

�
X1 + : : :+Xn

n
> �+ �

����jXij � �n; i = 1; : : : ; n

�

= P (X�1 + : : :+X�n > n(�+ �)) � P
�
(X�1 � ��) + : : :+ (X�n � ��) > n

�

2

�
:

The following lemma is very useful.

Lemma 24. Let Y1; Y2; : : : be iid zero mean random variables, such that for some c > 0
we have jY1j � c a.s. Let Sn = Y1 + : : :+ Yn, n � 1. Then

(4.5) P (Sn > �) � exp

�
� �

2c
arsinh

c�

2 Var(Sn)

�
for every � > 0.

See Prokhorov (1959), also Petrov (1995). Here

(4.6) arsinh(y) =

�
ex � e�x

2

��1
(y) � log(2y)

for y � 2.
In our case, Yi = X�i � ��; i = 1; : : : ; n, c = �n + j��j � 2�n for large n, and � = n�=2.

It is easy to check that there is � < 2 and C > 0 such that for every n � 1

Var ((X�1 � ��) + : : :+ (X�n � ��)) � Cn�:

Therefore,
c�

2 Var(Sn)
� (��=2)n2

2Cn�
= C(�; �)n2��;

and so by (4.5) and (4.6) we have

P
�
(X�1 � ��) + : : :+ (X�n � ��) > n

�

2

�

� exp

�
�n�=2
2n�

log(2C(�; �)n2��)

�
� const n��(2��)=(4�):

Therefore, if � > 0 is small enough for

�(2� �)

4�
> �� 1;
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then

lim
n!1

P
�
(X�1 � ��) + : : :+ (X�n � ��) > n �

2

�
nP (X1 > �n)

= 0;

which proves (4.2).
Summarizing, we have proved that in the heavy tailed case,

(4.7) lim
n!1

P
�
X1+X2+:::+Xn

n
> �+ �

�
nP (X1 > �n)

= 1:

Recall that heavy tails here mean regularly varying right tails with exponent � > 1.
Rewriting the statement (4.7) in the form

lim
n!1

P (X1 +X2 + : : :+Xn > n(�+ �))

nP (X1 > �n)
= 1

we see another demonstration of the large deviations approach in the heavy tailed case,
saying that rare events are caused by the smallest possible number of individual factors.
Here the individual factors are the terms X1 through Xn that behave in an unusual way,

and to cause the particular rare event a given term Xi has to be greater than �n, because
all the other terms in the sum, behaving in the usual way, add up to about (n� 1)� � n�.
We emphasize that the large deviations approach is not a meta-theorem, and one has to

make sure whether it provides the right intuition in any given situation. For example, the
statement (4.7) does NOT hold for all subexponential distributions.
To see how the large deviations approach in the light tailed case works in this case

assume that the random variables X1; X2; : : : have �nite exponential moments:

Ee�X1 <1 for all � > 0:

Note that the equation
E
�
X1e

�X1
�

Ee�X1
= �+ �

has a unique solution �� that belongs to (0;1).
If F is the common law of X1; X2; : : : then F� de�ned by

F�(B) =
1

Ee��X1

Z
B

e��x F (dx); B a Borel set

is another probability measure on IR, such thatZ
IR

xF�(dx) = �+ �:

It turns out that the most likely way for the event

A =

�
X1 +X2 + : : :+Xn

n
> �+ �

�
to happen for large n is for X1; : : : ; Xn to take values as if their common law was not F
but, rather, F�.
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That is, the terms X1; : : : ; Xn \conspire by changing their law", so that they will have
\the right mean" �+ �.

Then one shows that

lim
n!1

1

n

�
� logP

�
X1 +X2 + : : :+Xn

n
> �+ �

��
= ��(�+ �)� logEe��X1:

Of course, the orders of magnitude of the probability of the rare event

A =

�
X1 +X2 + : : :+Xn

n
> �+ �

�
are di�erent in the light tailed and heavy tailed cases. The important thing for us is to
notice that the most likely ways this rare events happen di�er between the light tailed and
heavy tailed cases.

4.1. Applications to communication networks. Consider a simple 
uid queuing sys-
tem in which work arrives according to a stochastic process (A(t); t � 0) with non-
decreasing right continuous sample paths. That is, the amount of work arriving in the
system in the interval [0; t] is equal to A(t) for any t � 0.
The system has a single server of capacity r > 0 (i.e. the server can do r units of work

per unit of time). All the work that has to wait is collected in a bu�er. We will consider
input processes (A(t); t � 0) of two di�erent types.

Superpositions of ON-OFF processes

Let Fon and Fo� be two distributions on [0;1) with �nite means that we will denote
by �on and �o� . A (stationary) ON-OFF process with ON distribution Fon and OFF
distribution Fo� is de�ned as follows.
Let (X1; X2; : : :) and (Y0; Y1; Y2; : : :) be two independent sequences of random variables;

X1; X2; : : : are iid with a common law Fon, and Y0; Y1; Y2; : : : are iid with a common law
Fo� .
Let, further,

F (0)
on (t) =

1

�on

Z t

0

Fon(u) du

and

F
(0)
o� (t) =

1

�o�

Z t

0

Fo�(u) du

be the residual life time distributions of Fon and Fo� accordingly.

Let X
(0)
0 and Y

(0)
0 be independent random variables that are also independent of the

sequences (X1; X2; : : :) and (Y0; Y1; Y2; : : :), such that the law of X
(0)
0 is F

(0)
on and the law of

Y
(0)
0 is F

(0)
o� .

Finally, let Z be a Bernoulli random variable with success probability �on=(�on + �o�),
independent of all the rest of the random variables involved.
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De�ne the process (I(t); t � 0) as follows.

If Z = 1, set U0 = X
(0)
0 + Y0, Dn = Un�1 +Xn and Un = Dn + Yn for n = 1; 2; : : :, and

I(t) = 1 if 0 � t < X
(0)
0 or if Un�1 � t < Un�1 +Xn

for some n � 1. Otherwise set I(t) = 0.

If Z = 0, set U0 = Y
(0)
0 , and de�ne, as before, Dn = Un�1 +Xn and Un = Dn + Yn for

n = 1; 2; : : :. Now set

I(t) = 1 if Un�1 � t < Un�1 +Xn

for some n � 1. Otherwise set I(t) = 0.
This is a stationary alternating renewal process.

It turns out that there is a natural connection between one or both of the ON and OFF
distributions Fon and Fo� being heavy tailed, and long range dependence in the ON-OFF
process (I(t); t � 0). The intuitive reason is, simply, that a single long ON or OFF interval
can cover time points far apart.
Here is a precise result.

Theorem 25. Assume that the ON distribution Fon has a regularly varying right tail with
exponent 1 < � < 2, and that Fo�(t) = o(Fon(t)) as t!1. Let R(t) = Cov(I(s); I(s+ t)),
t � 0. Then

(4.8) R(t) � �2o�
(�� 1)(�on + �o�)3

tFon(t) as t!1:

That is, under the assumption of the theorem we have that the correlation function of
the ON-OFF process (I(t); t � 0) is regularly varying at in�nity with exponent �(� � 1)
so the correlations decay slowly enough for the ON-OFF process to be called long range
dependent.
The result is due to Heath et al. (1998).
Of course, one gets a similar result if the OFF distribution Fo� has a regularly varying

right tail with exponent 1 < � < 2, and that Fon(t) = o(Fo�(t)) as t!1.

We call the input processes (A(t); t � 0) to a queuing system a superposition of ON-OFF
processes if

(4.9) A(t) =
kX

j=1

aj

Z t

0

Ij(s) ds; t � 0;

where I1; : : : ; Ik are independent ON-OFF processes with ON distributions F
(j)
on and OFF

distributions F
(j)
o� accordingly, and a1; : : : ; ak are positive numbers.

Note that the jth ON-OFF stream in (4.9) brings the work at the rate aj during its ON
period and no work during its OFF period, j = 1; : : : ; k. Observe also that the proportion
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of time an ON-OFF process is in the ON state is equal to �on=(�on + �o�). Hence the
average input rate for the input process (A(t); t � 0) given by (4.9) is

kX
j=1

aj
�
(j)
on

�
(j)
on + �

(j)
o�

;

Here �
(j)
on and �

(j)
o� are, correspondingly, the mean ON and OFF times for the jth ON-OFF

process Ij, k = 1; : : : ; k.
In particular, the system is stable (reaches steady state) if and only i� the service rate

is higher than the input rate:

(4.10) r >
kX

j=1

aj
�
(j)
on

�
(j)
on + �

(j)
o�

:

Superpositions of M=G=1 inputs

Let F be a distribution on [0;1) with a �nite mean �. Let N be a homogeneous Poisson
process on (�1;1) with rate � > 0, independent of a sequence (Xi; i = 0;�1;�2; : : :)
of iid random variables with a common distribution F . Let (�i; i = 0;�1;�2; : : :) be the
atoms (arrival times) of the Poisson process N . De�ne

(4.11) M(t) =
1X

i=�1

1 (�i � t < �i +Xi) ; t � 0:

If one imagines that at time �i a customer arrives in a system and stays there for Xi

units of time, i = 0;�1;�2; : : :, then M(t) is the number of customers at the system at
time t � 0.
By the de�nition (M(t); t � 0) is a stationary stochastic process; it is the number

of customers in the system in an M=G=1 queue with arrival rate � and service time
distribution F .
If A(t) =

R t
0
M(s) ds; t � 0, then the input A is calledM=G=1 input. The computations

dealing with M=G=1 inputs are often easier than those dealing with ON-OFF inputs
because of the properties of Poisson random measures.
Indeed, the pairs (�i; Xi); i = 0;�1;�2; : : : form the points of a Poisson randommeasure,

say, N�, on IR� (0;1) with mean measure m� = � � Leb� F .
For t � 0 let Vt be a wedge in IR� (0;1) de�ned by

Vt = f(x; y) : x � t; x+ y > tg:
Then M(t) = N�(Vt); t � 0. In particular, M(t) is a Poisson random variable with the

mean

EM(t) = m�(Vt) = �

Z t

�1

dx

Z 1
t�x

F (dy) = �

Z 1
0

F (u) du = ��:
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In a similar way we can compute the covariance function of the stationary process
(M(t); t � 0). For t > 0 write

M(0) = N�(V0) = N�(At) +N�(Bt);

M(t) = N�(Vt) = N�(Bt) +N�(Ct);

where At = V0 n Vt, Bt = V0 \ Vt and Ct = Vt n V0, and N�(At), N�(Bt) and N�(Ct) are
independent Poisson random variables. Hence

R(t) = Cov(M(0);M(t)) = Var(N�(Bt))

= m�(Bt) = �

Z 0

�1

dx

Z 1
t�x

F (dy) = �

Z 1
t

F (u) du:

One commonly refers to Xi as the length of the session starting at time �i.
If the session length distribution F is regularly varying with exponent � > 1, then

(4.12) R(t) � �

�� 1
tFon(t) as t!1;

a similar behavior to the ON-OFF case.

We call the input processes (A(t); t � 0) to a queuing system a superposition ofM=G=1
input processes if

(4.13) A(t) =
kX

j=1

aj

Z t

0

Mj(s) ds; t � 0;

where M1; : : : ;Mk are independent M=G=1 input processes with Poisson rates �1; : : : ; �k
and session length distributions F1; : : : ; Fk accordingly, and a1; : : : ; ak are positive numbers.
Note that one can view the process

kX
j=1

aj Mj(t); t � 0

in (4.13) as representing the instantaneous input rate in a system where sessions arrive
according to a homogeneous Poisson process with a rate � = �1+ : : :+�k, and an arriving
session will, with probability pi = �i=�, have its length distributed according to Fi, and
will bring work at rate ai, i = 1; : : : ; k.
Observe that the process (M(t); t � 0) hits zero in�nitely often, and then regenerates.

Therefore,

lim
t!1

R t
0
M(s) ds

t
= EM(0) = ��:

Hence the average input rate for the input process (A(t); t � 0) given by (4.13) is

kX
j=1

aj�j�j;

where �j is the mean session length for the jth M=G=1 process, j = 1; : : : ; k.
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As before, the system is stable (reaches steady state) if and only i� the service rate is
higher than the input rate:

(4.14) r >
kX

j=1

aj�j�j:

We will consider two problems related the 
uid queuing model of a communication
network considered above.

Problem 1. Suppose that the bu�er in the system is of �nite capacity H, and let TH
be the �rst time that the bu�er over
ows. What is the asymptotic behavior of ETH as
H !1?

Problem 2 Suppose that the bu�er is in�nite, and letW represent the stationary bu�er
content. What is the tail behavior of the random variable W (what is the asymptotic
behavior of P (W > w) as w!1)?

We will see what the large deviations approach tell us about these two problems.

Bu�er over
ow problem

Let us consider �rst the case of the input process (A(t); t � 0) being a superposition of
ON-OFF processes. We assume, as usually, the stability condition (4.10):

r >
kX

j=1

aj
�
(j)
on

�
(j)
on + �

(j)
o�

:

Recall that �
(j)
on and �

(j)
o� are, correspondingly, the mean ON and OFF times for the jth

ON-OFF process, and let �(j) = �
(j)
on + �

(j)
o� , j = 1; : : : ; k. To develop our intuition, let us

start with the simplest case.
Assume that there is a distribution F on (0;1) with a regularly varying right tail with

exponent � � 1 and a subset J� of f1; : : : ; kg such that for every j 2 J� the limit

pj = lim
x!1

Fon
(j)
(x)

F (x)
> 0

exists and is positive, while for every j =2 J�

lim
x!1

Fon
(j)
(x)

F (x)
= 0:

Assume, furthermore, that

(4.15) max
j2J�

 
aj +

X
i=1;:::;k;i6=j

ai
�
(i)
on

�(i)

!
> r:

Let us try to �gure out the asymptotic behavior of the bu�er over
ow time ETH using
the large deviations approach. Since we are in a heavy tailed case, the unlikely event that
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results in a bu�er over
ow is, most likely, caused by the smallest number of individual
factors.
It is intuitively clear that such individual factors here are exceptionally long ON periods.

Since the ON-OFF processes Ij with j 2 J� have ON period distributions with the heaviest
tails, these are the most likely to have an exceptionally long ON period.
Since the smallest possible number of individual factors cannot be less than 1, Let us

check if a single exceptionally long ON period of an ON-OFF process Ij with j 2 J� is
suÆcient to cause an over
ow of a large bu�er.
Suppose, therefore, that an ON-OFF process Ij with j 2 J� has an ON period of a very

large length Z. During that Z units of time the jth process Ij brings work at the rate aj.
If Z is large, the other k � 1 ON-OFF processes Ii will bring work at their average rates

ai
�
(i)
on

�(i)on + �(i)o�
; i = 1; : : : ; k; i 6= j:

Therefore, the overall input rate during this exceptionally long ON period is

aj +
X

i=1;:::;k;i6=j

ai
�
(i)
on

�(i)
:

If

r > aj +
X

i=1;:::;k;i6=j

ai
�
(i)
on

�(i)
;

then during this ON period bu�er content tends to go down and, hence, this long ON
period is not likely to be suÆcient to cause bu�er over
ow.
On the other hand, if

(4.16) r < aj +
X

i=1;:::;k;i6=j

ai
�
(i)
on

�(i)
;

then during this long ON period bu�er content tends to go up at the rate

aj +
X

i=1;:::;k;i6=j

ai
�(i)on
�(i)

� r:

Assuming that bu�er content is not exceptionally large before the beginning of the long
ON period, the amount of work in the bu�er at the end of this period will be about

Z

 
aj +

X
i=1;:::;k;i6=j

ai
�
(i)
on

�(i)
� r

!
:

Therefore, an exceptionally long ON period of the ON-OFF process Ij, of length Z, is
likely to cause over
ow of a large bu�er of size H if both (4.16) holds and

(4.17) Z >
H

aj +
P

i=1;:::;k;i6=j ai
�
(i)
on

�(i)
� r

:
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Now we see the importance of the assumption (4.15): there are j 2 J� for which (4.16)
holds. Let us denote the set of such j by J�+, and we denote

Tj = the �rst time jth ON-OFF process starts an ON period whose length satis�es (4.17);

j 2 J�+.

Let us mention, at this point, why we are assuming, in our informal calculations, that

(1) During an exceptionally long ON period of the jth ON-OFF process the other ON-
OFF processes bring in work, roughly speaking, according to their average rate,
and

(2) At the beginning on the exceptionally long ON period the bu�er content is not very
large.

Indeed, during an exceptionally long ON period of the jth ON-OFF process the law of
large numbers kicks in for the other ON-OFF processes. If one of them violated the law of
large numbers, this would be another exceptional event (factor) in addition to the already
exceptionally long ON period, and the large deviations approach tells us that, if one factor
is suÆcient, then other factors will play no role.
For a similar reason the bu�er is not likely to be very full at the beginning of the

exceptionally long ON period. Since the overall service rate is higher than the overall
input rate (condition 4.10) the is usually not very full, and this would have been a second
exceptional event (factor), which should not be there according to the large deviations
approach.
Let us go back to the above fact that for many purposes one can replace all the input

streams except for the important ones by the non-random, averaged streams. Note that
this results in e�ective reduction of the service rate from r to

r �
X

i=1;:::;k;i6=j

ai
�
(i)
on

�(i)

(see (4.17)), while the process Ij runs its long ON period.
In general, input processes that are unlikely to produce exceptional factors that may

cause a rare event of interest are replaced by the average inputs, reducing the e�ective
service rates and leaving the \important" input processes as the remaining random input.
Results of this type are often called in communications research literature by the name

reduced load equivalence. See, for example, Agrawal et al. (1999), Zwart et al. (2000) and
Jelenkovi�c et al. (2002).
We are now ready to identify the asymptotic behavior of ETH , the time until bu�er

over
ow. Let

(4.18) T �H = min
j2J�+

Tj:

The large deviation approach tells us that bu�er over
ow occurs at approximately linear
in H time after one of the ON-OFF processes Ij with j 2 J�+ starts an ON period whose
length satis�es (4.17). The time T �H is exactly the �rst time such an event happens. We
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will see shortly that ET �H is regularly varying with exponent � > 1 as H !1. Therefore,
we conclude that

(4.19) ETH � ET �H as H !1:

Let us, therefore, �gure out the asymptotic behavior of ET �H as H !1.
We will consider, for simplicity, instead of the stationary input process the case where

every ON-OFF process Ij starts, at time zero, at the beginning of an ON period. We will
comment on what happens in the stationary case a bit later.
Denote

(4.20) �j = aj +
X

i=1;:::;k;i6=j

ai
�
(i)
on

�(i)
� r; j 2 J�+:

Recall that at time Tj the process Ij starts an ON period of the length greater than H=�j.
Observe that for every j 2 J�+

Tj
d
=

KjX
i=1

�
X

(H;�)
i + Yi

�
:

Here (X
(H;�)
1 ; X

(H;�)
2 ; : : :) is a sequence of iid random variables with a common distribution

given by

P (X
(H;�)
1 2 A) = P

�
X1 2 A

����X1 � H

�j

�
=
F

(j)
on (A \ [0; H=�j])

F
(j)
on ([0; H=�j])

;

i.e. ON times conditioned on not exceeding H=�j. Further, (Y1; Y2; : : :) is the usual se-

quence of iid OF times with their usual distribution F
(j)
o� . All random variables involved

are independent.
Note that, as H !1,

Fon
(j)
(H=�j)Kj ) E � exp(1);

whileX
(H;�)
1 increases stochastically toX1, a random variable with the law F

(j)
on . Therefore,

by the law of large numbers,

(4.21) Fon
(j)
(H=�j)Tj

d
=
�
Fon

(j)
(H=�j)Kj

� 1

Kj

KjX
i=1

�
X

(H;�)
i + Yi

�
) �(j)E:

We conclude that for any t > 0

P (T �H > t) =
Y
j2J�+

P (Tj > t) �
Y
j2J�+

P
�
E > t(�(j))�1Fon

(j)
(H=�j)

�

�
Y
j2J�+

expf�t(�(j))�1Fon
(j)
(H=�j)g �

Y
j2J�+

expf�t(�(j))�1pjFon(H)��j g
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= exp

8<
:�t

0
@X

j2J�+

(�(j))�1pj�
�
j

1
AFon(H)

9=
; :

We obtain, therefore, a weak convergence result

(4.22) Fon(H)T �H )
0
@X

j2J�+

(�(j))�1pj�
�
j

1
AE

as H !1. Since it is easy to check that Fon(H)T �H is uniformly integrable, we also obtain
convergence of the means:

(4.23) ET �H � 1

Fon(H)

1P
j2J�+

(�(j))�1pj��j
:

Using (4.19) we then obtain the solution to our problem: asymptotic behavior of the
expected time until over
ow of a large bu�er:

(4.24) ETH � 1

Fon(H)

1P
j2J�+

(�(j))�1pj��j

as H !1, where �j; j 2 J�+ are given by (4.20) above.

Recall that we have derived the result (4.24) by replacing the assumption of stationary
input by the assumption that every ON-OFF process Ij in the input to the system, starts,
at time zero, at the beginning of an ON period.
What happens if the input is stationary? It is easy to see that the same asymptotic result

remains true if one assumes, for example, that all OFF time distributions F
(j)
o� ; j = 1; : : : ; k

have a �nite second moment.
To see why we are talking about a �nite second moment, assume, for a moment, that

k = 1 (the input stream consists of a single ON-OFF process) and that Fo� has in�nite
second moment.
A stationary ON-OFF process starts, with a positive probability, with a special OFF

period, whose distribution is the residual life time distribution F
(0)
o� . The latter, of course,

will have in�nite mean in our situation. Since the bu�er cannot over
ow until this �rst
OFF period is over, the expected time until over
ow will be in�nite in this case.
Assuming �nite second moment for all the OFF time distributions eliminates problems of

this kind. However, in the case of a superposition of multiple ON-OFF inputs this assump-
tion is not necessary, and our conclusion (4.24) will hold under various rate assumptions
even if the second moments of some of the OFF times are in�nite.

The situation becomes quite di�erent if the assumption (4.15)

max
j2J�

 
aj +

X
i=1;:::;k;i6=j

ai
�
(i)
on

�(i)

!
> r

does not hold.
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To see what this means, let B be a subset of f1; : : : ; kg and imagine that the ON-OFF
processes Ij; j 2 B are running, simultaneously, very long ON periods.
Our previous discussion indicates that during this time the e�ective rate at which work

enters the system is

(4.25) 
B =
X
j2B

aj +
X
j 62B

aj
�
(j)
on

�(j)
:

The stability condition (4.10):

r >
kX

j=1

aj
�(j)on

�(j)

means that, on average, the server works at the rate higher than the input rate. That is,
as long as the bu�er is not empty, the bu�er content has a negative drift: it tends to go
down.
The right way to view the meaning of the assumption (4.15) is, then, as follows: there

is a set B � f1; : : : ; kg consisting of a single ON-OFF process whose ON distribution has
the heaviest possible tail such that

(4.26) 
B > r:

That is, during a long ON period of that ON-OFF process the direction of the drift in the
system changes from negative to positive.
If the assumption (4.15) does not hold, then either there is no B of cardinality 1 for

which (4.26) holds, or, if such a B exists, the corresponding ON-OFF process does not
have the heaviest possible tail of its ON distribution.
Recall that the large deviations approach tells us that our unlikely event of bu�er over
ow

is likely to be caused by the smallest possible number of individual factors. Until now we
have seen only example when this smallest possible number of factors is equal to one.
When the assumption (4.15) fails, the smallest possible number of factors can be greater
than one.
To get a better feeling about what is happening, let us consider a special case. Let k = 2,

and assume that both ON-OFF sources are identical, in the sense that both have the same
ON distribution Fon, the same OFF distribution Fo� , same input rate a, such that

a

�
1 +

�on
�

�
� r < 2a:

In that case the singletons B = f1g and B = f2g for which 
B = a(1 + �on=�) do not
satisfy (4.26), but the set B = f1; 2g, for which 
B = 2a does.
When the two ON-OFF processes are simultaneously running long ON periods, the drift

in the bu�er content is equal to 2a� r > 0. Therefore, the large deviations approach tells
us that the over
ow is likely to occur when both ON-OFF processes are running long ON
periods whose common part is greater than H=(2a� r).
In this case the smallest possible number of factors causing bu�er over
ow is 2: both

ON-OFF sources have to run very long ON periods.
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If we denote by T �H the �rst time such a long common ON time starts, we would expect
that ETH � ET �H as H !1. Let us try to �gure out the order of magnitude of ET �H .
Let us view the situation as that of Bernoulli trials: every (Fon(H))�1 (order of mag-

nitude) units of time we have one of the two ON-OFF processes start an ON period of
order of magnitude H. During this ON period the other ON-OFF process has to start
its ON period whose length is of order of magnitude H as well. The probability of this
happening has order of magnitude HFon(H), which we view as the success probability in
our sequence of Bernoulli trials. Therefore, we expect to need about (HFon(H))�1 trials
before this happens. The conclusion is that

ET �H � H�1(Fon(H))�2 as H !1
in the sense of order of magnitude. Hence we expect that the same holds for the time until
over
ow:

(4.27) ETH � H�1(Fon(H))�2 as H !1
as well.
Note that we expect that ETH is regularly varying at in�nity with exponent 2� � 1,

where � is the tail index of the ON distribution (common to the two ON-OFF processes).
Let us go back now to the general superposition of k ON-OFF processes. We assume

that for any j 2 f1; : : : ; kg the ON distribution is regularly varying with exponent �j � 1.
We are allowing �j = 1 for some j 2 f1; : : : ; kg, meaning distributions whose right tails
are lighter than any regularly varying tail (exponential tails are allowed, for example).
Let

(4.28) J�n = fj 2 f1; : : : ; kg : �j <1g:
We are assuming that J�n 6= ;.
Let apply the large deviations approach and the experience we gained while considering

the simple case above to �gure out the order of magnitude of the time until over
ow.
Let B � J�n. If the assumption (4.26) holds: 
B > r, where we recall that 
B is given

by (4.25):


B =
X
j2B

aj +
X
j 62B

aj
�
(j)
on

�(j)
;

then a long common ON period to the ON-OFF processes (Ij; j 2 B) of the length greater
than H=(
B � r) is likely to cause bu�er over
ow. Our previous discussion indicates that
the expected time until this happens is regularly varying with exponent

(4.29) 1 +
X
j2B

(�j � 1):

Therefore, we are looking for a subset B � J�n that will make the above event occur as
soon as possible, which means that we are trying to minimize the expression in (4.29).
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Consider, therefore, the optimization problem

(4.30) min
B�J�n

X
j2B

(�j � 1)

subject to
X
j2B

aj +
X
j 62B

aj
�
(j)
on

�(j)
> r:

We assume that the set of the feasible solutions to the problem (4.30) is not empty.
This type of optimization problems was introduced by Zwart et al. (2000) in the context

of Problem 2 above (tail behaviour of the distribution of the stationary bu�er content),
who reformulate it as a knapsack packing problem.
Let �� be the optimal value of the cost function in the optimization problem above. Let

also B1; : : : ; Bk� be those subsets of J�n on which this optimal value is achieved.
The large deviations approach suggests that the bu�er over
ow is likely to happen when

all the ON-OFF processes in one of these sets run a long common ON period (whose length
is of order H), and we have said that the expected time until this happens is regularly
varying with exponent 1 + ��. Therefore,

(4.31) ETH is regularly varying with exponent 1 + �� as H !1.

An interesting special case occurs when the input process consists of the superposition
of k identical ON-OFF sources, again with the same ON distribution Fon, the same OFF
distribution Fo� and same input rate a. Assume that

(4.32) r < ka

(otherwise over
ow cannot happen), and denote

(4.33) k0 =

�
r

a

�

�o�
� k

�on
�o�

�
:

The assumption (4.32) guarantees that k0 � k.
In this case the constraint in the optimization problem (4.30) reduces to card(B) � k0

and, hence, the optimal value of the cost function is achieved at the sets B with cardinality
equal to k0, and is equal to k0(��1). Therefore, (4.31) tells us that ETH is regularly varying
with exponent 1 + k0(�� 1) at in�nity.
Note an interesting phase transition occurring here. Imagine that you are in charge of

the system, and you can invest resources into getting a faster server, i.e. increasing the
service rate r. You need to decide whether to do it or not.
Notice that k0 above is a step function of the service rate r. Our discussion shows that if

we increase the service rate in such a way that the parameter k0 remains the same, there is
no much gain, at least as far as the asymptotic behavior of the expected time until bu�er
over
ow is concerned. If, however, the service rate r is increased in such a way that k0
goes up, then there is a major gain in system performance.
One can do a similar analysis for the bu�er over
ow problem when the input a superpo-

sition of M=G=1 input processes, also using the large deviations approach. We will not
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go into the details of the argument again, leaving it instead to the interested readers to do
it on their own.
We only mention a published result in the particular case of a superposition of k identical

M=G=1 input processes. The k processes have a common Poisson arrival rate �, a common
session length distribution F with mean � and regularly varying with exponent � � 1 at
in�nity tail, and a common input rate a > 0.
Assume that

r > a��k

for stability of the system.
Here the crucial parameter is

(4.34) k0 =
lr
a
� k��

m
:

Then there is a �nite constant C � 1 such that

(4.35) C�1a1+k0(��1)H
�
HF (H)

��k0 � ETH � Ca1+k0(��1)H
�
HF (H)

��k0
for all H large enough; see Heath et al. (1999).
Note, once again, that ETH is regularly varying with exponent 1 + k0(�� 1) at in�nity,

and that we have a phase transition similar to that in the case of the superposition of
ON-OFF processes as the input.

Steady state bu�er content problem

Here we consider in detail the case of the input process (A(t); t � 0) being a superposition
of k independent M=G=1 input processes. We assume the stability condition (4.14):

r >
kX

j=1

aj�j�j:

We recall that here aj; �j and �j are, correspondingly, the input rate, arrival rate and mean
session time for the jth M=G=1 input process, j = 1; : : : ; k.
Furthermore, the M=G=1 input processes have session length distributions Fj; j =

1; : : : ; k, on which we will impose certain assumptions as we go along.
The key ingredient to working with the distribution of the stationary bu�er content,

which we will denote by (W (t); t � 0) is the representation

(4.36) W (t) = sup
u�t

Z t

u

 
kX

j=1

ajMj(s)� r

!
ds; t � 0;

where we recall that for j = 1; : : : ; k, the process (Mj(t); �1 < t <1) is the stationary
process describing the number of the open at time t sessions of the jth M=G=1 input
process (alternatively, the number of customers in the system at time t in the jth M=G=1
queue). The processes (Mj(t); �1 < t <1), j = 1; : : : ; k are independent.
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Notice that if one is interested only in the one-dimensional marginal distribution of the
bu�er content, then one can use the representation

(4.37) W (0) = sup
u�0

Z 0

u

 
kX

j=1

aj Mj(s)� r

!
ds

= sup
�u�0

Z �u
0

 
kX

j=1

ajMj(�s)� r

!
ds

d
= sup

u�0

Z u

0

 
kX

j=1

ajMj(s)� r

!
ds

since the processes (Mj(t); �1 < t <1), j = 1; : : : ; k are reversible:

(Mj(�t); �1 < t <1)
d
= (Mj(t); �1 < t <1)

j = 1; : : : ; k.
Representations of the type (4.36) and (4.37) have been widely used in a variety of

queuing models; see for example Asmussen (1987), Prabhu (1998) or Whitt (1999).
Let us note the structure of the stochastic process (Mj(t); �1 < t < 1) describing

the number of customers in the system at time t in the jth M=G=1 queue. At any time
t, Mj(t) is a Poisson random variable with mean �j�j and, conditionally on Mj(t) = k,
the remaining lengths of the k sessions present are independent and identically distributed
with the common distribution

F
(0)
j (x) =

1

�j

Z x

0

(1� Fj(u)) du; x � 0 ;

j = 1; : : : ; k.
Once again, with start with the same particular case as in the bu�er over
ow problem.

Assume that there is a distribution F on (0;1) with a regularly varying right tail with
exponent � � 1 and a subset J� of f1; : : : ; kg such that for every j 2 J� the limit

pj = lim
x!1

F j(x)

F (x)
> 0

exists and is positive, while for every j =2 J�

lim
x!1

F j(x)

F (x)
= 0:

Assume, furthermore, that

(4.38) max
j2J�

aj > r �
kX
i=1

ai�i�i:

As in the case of the bu�er over
ow problem we will use the logic of large deviations to
�gure out the asymptotic behavior of the tail probability

(4.39) P (W (0) > w) = P

 
sup
u�0

Z u

0

 
kX

j=1

ajMj(s)� r

!
ds > w

!
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as w!1. This is exactly the kind of situation one expects this approach to be particularly
applicable. The stability condition (4.14) means that the process

Z u

0

 
kX

j=1

ajMj(s)� r

!
ds; u � 0

has a negative drift. Hence, we are talking about a rare event.
We will look for a single factor that is most likely to cause this rare event to happen. It

turns out that it is exactly the assumption (4.38) that causes the usual smallest number
of factors that are most likely to cause the rare event, to be equal to 1.
Indeed, when one of the M=G=1 input processes with j 2 J� runs a very long session,

during that time the long session itself generates input at rate aj, while we expect the

\normal" additional input rate of
Pk

i=1 ai�i�i. If

aj +
kX
i=1

ai�i�i > r;

then during this time the process

Z u

0

 
kX

j=1

ajMj(s)� r

!
ds; u � 0

has, actually, a positive drift of

(4.40) �j = aj +
kX
i=1

ai�i�i � r;

and, hence, can reach a high level w if the length of the long session is large enough.
Of course, the assumption (4.38) means that there is at least one of the M=G=1 input

processes with j 2 J� for which this scenario is feasible. Recall that the input processes
for which j 2 J� are the most likely to produce a very long session.
Now, for the jth M=G=1 input process, considered on [0;1) we have to think both of

the remainders of the sessions already present at time 0, and the new sessions that start
after time 0. Note that the remainders of the sessions present at time 0 are distributed

according to the life time distribution F
(0)
j , and this distribution has regularly varying

tails with exponent � � 1, while the new sessions that start after time 0 are distributed
according to Fj, and this distribution has regularly varying tails with exponent �. Hence
we need to pay special attention to the remainders of the sessions present at time 0.
To separate the e�ect of the remainders of the initial sessions and that of the newly

arriving sessions, let us denote by (M0
j (t); 0 � t <1), j = 1; : : : ; k independent stochastic

processes describing the number of customers in the system at time t in the jth M=G=1
queue, j = 1; : : : ; k, that starts empty at time 0.
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Let us denote, as before, by J�+ the set of all j 2 J� for which (4.38) holds. Then
appealing to the logic of heavy tailed large deviations, we see that

P (W (0) > w) = P

 
sup
u�0

Z u

0

 
kX

j=1

ajMj(s)� r

!
ds > w

!

(4.41) � P
�
for some j 2 J�+ one of the customers present at time 0

in the jth M=G=1 queue has more than w
�j

units time left to be in the system
�

+P

 
sup
u�0

Z u

0

 
kX

j=1

aj M
0
j (s)� r

!
ds > w

!
:= Prem(w) + Pnew(w):

Recalling that we do not expect more than one session present at time zero to have a
very long remaining lifetime, we see that

Prem(w) �
X
j2J�+

P (one of the customers present at time 0 in the jth M=G=1 queue

(4.42) has more than w
�j

units of time left to be in the system
�
:=
X
j2J�+

Prem;j(w):

For every j 2 J�+ we have

Prem;j(w) =
1X
i=1

P (Mj(0) = i)P (one of the i remaining sessions

(4.43) has more than w
�j

units of time left to be in the system
�
:

Now, Mj(0) has the Poisson distribution with mean �j�j, and so by (4.43) we have

Prem;j(w) �
1X
i=1

P (Mj(0) = i) iP ( a given remaining sessions has more than

w
�j

units of time left to be in the system
�

= EMj(0)F
(0)
j

�
w

�j

�
� �j�j

1

�j

1

�� 1

w

�j
F j

�
w

�j

�
� pj�j�

��1
j

1

�� 1
wF (w)

as w!1. Substituting into (4.42) we obtain

(4.44) Prem(w) �
0
@X

j2J�+

pj�j�
��1
j

1
A 1

�� 1
wF (w)

as w!1.
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It remains to deal with the second term in (4.41), Pnew(w), which is the probability of
the unlikely event

(4.45)

(
sup
u�0

Z u

0

 
kX

j=1

ajM
0
j (s)� r

!
ds > w

)
:

We already know that the logic of large deviations tells us that this event, if it occurs at
all, is likely to be caused by a single very long session during the duration of which the
drift in the system is positive and it drifts upwards to the level w. Such very long session
is most likely to occur in one M=G=1 input processes with j 2 J�+.
Let D be the duration of such a session, and T the time this session arrives. Note that

the duration D has to be very long, hence the arrival time T has to be large as well. As
the result, by the time the very long session arrives, the processZ u

0

 
kX

j=1

aj M
0
j (s)� r

!
ds; u � 0

is likely to be at the negative level of about

�T
 
r �

kX
j=1

aj�j�j

!
:

Suppose that the long session arriving at the time T belongs to the jth M=G=1 input
process with j 2 J�+. Then during that long session the system experiences a temporary
positive drift of �j. Hence, the duration D of the long session is suÆcient to cause the
event in (4.45) to occur if

D�j > w + T

 
r �

kX
i=1

ai�i�i

!
:

Therefore, we expect that

Pnew(w) � P

0
@[

j2J�+

f jth M=G=1 input process has a session of length D

arriving at time T such that D�j > w + T

 
r �

kX
i=1

ai�i�i

!)!
:= P

0
@[

j2J�+

Aj

1
A :

Since the events Aj above are unlikely, we have

(4.46) Pnew(w) �
X
j2J�+

P (Aj):

Observe that for the jthM=G=1 input process the pairs (T;D) of the times the sessions
are initiated and of their lengths form a Poisson random measure M� on IR2

+ with mean
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measure
m(dt; dx) = �j dt Fj(dx):

Therefore, for j 2 J�+,
P (Aj) = P (M�(Bj) > 0) ;

where

Bj =

(
(t; x) 2 IR2

+ : x�j > w + t

 
r �

kX
i=1

ai�i�i

!)
:

It is easy to compute the measure m of the set Bj. We conclude that

P (Aj) = 1� e�m(Bj ) � m(Bj)

(4.47) =
�j�j

r �Pk
i=1 ai�i�i

Z 1
w=�j

F j(x) dx �
pj�j�

�
j

r �Pk
i=1 ai�i�i

1

�� 1
wF (w)

as w!1. Substituting the result of (4.47) into (4.46) we conclude that

(4.48) Pnew(w) �
0
@X

j2J�+

pj�j�
�
j

1
A 1

r �Pk
i=1 ai�i�i

1

�� 1
wF (w)

as w!1.
Now that we know the asymptotic behavior of both Prem(w) and Pnew(w), we can sub-

stitute both expressions into (4.41) and obtain, after some easy algebra,

(4.49) P (W (0) > w) �
0
@X

j2J�+

pjaj�j�
��1
j

1
A 1

r �Pk
i=1 ai�i�i

1

�� 1
wF (w)

as w ! 1. That is, the tail of the steady state bu�er content is regularly varying with
exponent �� 1.
In the particular case of homogeneous input k = 1 (4.49) has been proved in Resnick

and Samorodnitsky (2001).

Let us brie
y review what happens in the case when the assumption (4.38)

max
j2J�

aj > r �
kX
i=1

ai�i�i

does not hold. We know, from our discussion of the bu�er over
ow problem, that, in this
case, the most likely way for the unlikely event

(4.50) A = fW (0) > wg
to occur may not be due to a single very long session but, rather, due to several long
sessions running at the same time.
To see what is the most likely way for this to happen, suppose that, at some point, the

k M=G=1 input processes start running, simultaneously, n1; n2; : : : ; nk long sessions, for
some nj = 0; 1; 2 : : : ; j = 1; : : : ; k. Let us call the collection (n1; : : : ; nk) a con�guration.
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For a given con�guration (n1; : : : ; nk) to be able to cause the unlikely event A in (4.50),
the drift during the long common part of the sessions in that con�guration should be
positive. Our usual arguments tells us that this drift is equal to

(4.51) �n1;:::;nk =
kX

j=1

aj (nj + �j�j)� r:

We need, therefore, for the jthM=G=1 input process to run nj suÆciently long sessions
at the same time (the length of the session is most likely to have order of magnitude ow w)
and early enough to make sure that the event A in (4.50) happens. This last requirement
says that these should either be the remainders of the sessions present at time zero, or the
sessions, or sessions arriving within about linear in w time interval after time zero.
Arguments similar to the one used above indicate that, the probability for this to happen

has the same order of magnitude as �
wF j(w)

�nj
:

Therefore, the probability for a con�guration (n1; : : : ; nk) satisfying (4.51) to occur has the
same order of magnitude as

(4.52)
kY

j=1

�
wF j(w)

�nj
:

Observe that the expression in (4.52) is regularly varying at in�nity with exponent

�
kX

j=1

nj(�j � 1):

Therefore, the con�guration the most likely to cause the event A in (4.50) to happen is
the one for which this exponent of the regular variation is the largest.
Therefore, we are led to the following optimization problem:

(4.53) min
nj=0;1;:::

j=1:::;k

kX
j=1

nj(�j � 1)

subject to
kX

j=1

aj (nj + �j�j)� r > 0:

As before, we are allowing �j = 1 for some j = 1; : : : ; k, indicating that the corre-
sponding distributions have right tails that are lighter than any regularly varying tails
(e.g. exponentially fast decaying tails). Note that the set of feasible solutions to the
problem (4.53) is always non-empty.
Let �� be the optimal value of the cost function in this optimization problem. Then we

expect that

(4.54) P (W (0) > w) is regularly varying with exponent ���
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as w!1.
In fact, this statement was proved in Borst and Zwart (2001), who introduced the above

optimization problem, and called it a knapsack packing problem as well. The above paper
also provides a certain asymptotic expression for the tail probability P (W (0) > w).

Finally, in the case of the input being a superposition of ON-OFF processes, one can
use similar arguments to arrive, once again,e to the optimization problem (4.30):

min
B�J�n

X
j2B

(�j � 1)

subject to
X
j2B

aj +
X
j 62B

aj
�
(j)
on

�(j)
> r

(recall that J�n = fj 2 f1; : : : ; kg : �j <1g) and then we expect that

P (W (0) > w) is regularly varying with exponent ���
as w !1, where we assume that the optimization problem has a feasible solution, and ��
is the optimal value of the cost function. This result has been established by Zwart et al.
(2000).

5. Rare events and long range dependence

We switch now to a discussion of long range dependence in the context of how rare
events happen. This will be done using the large deviations approach: we would like to
understand how memory in the process determines which con�gurations of possible factors
may causes certain unlikely events to happen.
We will concentrate on two major classes of heavy tailed stochastic models: moving

average processes and in�nitely divisible processes. For these two classes of models we can
identify the di�erent factors a�ecting rare events.

5.1. Moving average processes. These are stochastic processes in discrete time de�ned
by

(5.1) Xn = �+
1X

j=�1

'n�j "j ; n = 0; 1; : : :

(note that we are considering two-sided moving averages). Here ("n; n = : : : ;�1; 0; 1; 2; : : :)
(the noise variables) are iid random variables, and � is a constant.
If the random variables ("n) have a �nite mean, we will assume that the mean is equal

to zero (it is simply incorporated in the constant �).
Depending on the law of the noise variables we will, clearly, need to impose certain

requirements on the coeÆcients ('n) in (5.1) for the process to be well de�ned.
We assume that the random variables ("n) have heavy tails, and our speci�c assumption

is that of regular variation and tail balance: for " = "0

(5.2) P (j"j > �) is regularly varying with exponent � > 0,
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and

(5.3) lim
�!1

P (" > �)

P (j"j > �)
= p; lim

�!1

P (" < ��)
P (j"j > �)

= q :

Here p; q � 0 and p + q = 1. We will see below that (under appropriate assumptions on
the coeÆcients) this implies that the tails of the stochastic process (Xn) in (5.1) have the
same order of magnitude.
We will assume that the coeÆcients ('n) in (5.1) satisfy the following assumptions,

suÆcient for the series in (5.1) to converge.
If � > 2, we will assume that

(5.4)
1X

j=�1

'2
j <1 ;

whereas if 0 < � � 2, we will assume that

(5.5)
1X

j=�1

j'jj��� <1

for some � > 0.
In the case � > 2 it is easy to check, using the three-series theorem, that condition (5.4)

is also necessary for convergence of the series in (5.1). In the case 0 < � � 2 condition
(5.4) is not necessary for convergence. However, absent information on the slowly varying
function in the regular variation of the tail of j"j, this condition is as good as one can hope
for.
Under the above conditions on the coeÆcients ('n) the moving average stochastic process

(Xn) de�ned in (5.1) is, obviously, a stationary process. Moreover, it is heavy tailed, and
the tail of X1 turns out to be the same, up to a multiplicative constant, as the tail of the
noise variable j"j:

(5.6) lim
�!1

P (X1 > �)

P (j"j > �)
=

1X
j=�1

j'jj�
�
p 1f'j>0g + q 1f'j<0g

�
:

See Mikosch and Samorodnitsky (2000b). It is also a mixing, hence ergodic, process. See
Rosenblatt (1962).
The most familiar classes of moving average processes are, of course, the classical ARMA

processes. These are especially popular in the case of �nite second moments. According
to (5.6) this is guaranteed if � > 2.
Assuming �nite variances, it is easy to see that

(5.7) Cov (Xn; X0) =

 
1X

j=�1

'j'n+j

!
Var(") ;
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and for the traditional ARMA models covariances decay exponentially fast; see e.g. Brock-
well and Davis (1991). Notice that the condition

(5.8)
1X

j=�1

j'jj <1

guarantees absolute summability of correlations:

1X
n=0

jCov (Xn; X0) j <1:

Historically, those wishing to model long range dependence, while staying \not too far"
from ARMA processes, used the so called fractionally di�erenced ARMA models.
These are parametric models, the crucial parameter of which is the parameter of frac-

tional di�erencing d 2 (�1=2; 1=2). Except for the case d = 0 which corresponds to no
fractional di�erencing, one has

Cov (Xn; X0) � constn�(1�2d) as n!1:

Hence, it is common to refer to fractionally di�erenced ARMA processes with 0 < d < 1=2
as long range dependent. In this case correlations are not absolutely summable, and are
regularly varying at in�nity with exponent 2d� 1 > �1.
Our approach to deciding which moving average processes (5.1) have long memory and

which have short memory, is not based on correlations. Rather, we will be looking for
phase transitions as one moves from one part of the parameter space to the other one.
In this case the parameter space � consists of the sequences ('j ; j = : : : ;�1; 0; 1; : : :)

of coeÆcients satisfying (5.4) or (5.5). We view the noise variables distribution or, rather,
the tail parameter � > 0 of the noise variables, as being �xed, rather than as a part of
the parameter space. The reason is that changes in the tail parameter mostly a�ect the
heaviness of the tail of the moving average process (Xn), while we would like to concentrate
on the length of memory with given tails.
Similarly, we will also view the shift � in (5.1) for the obvious reason that it does not

a�ect the memory of the process.
Assume that � > 1 and consider the subset �0 of the parameter space consisting of

absolutely summable coeÆcients:

(5.9) �0 =
n
('j) 2 � :

P
j j'jj <1.

o
As we will see shortly, important things happen when one crosses the boundary between

�1 = �n�0, i.e. when the coeÆcients in the moving average process stop being absolutely
summable. The changes are so dramatic that they qualify as \a phase transition".
Hence, we will argue that the coeÆcients in the set �1 in (5.9) correspond to long memory

processes, while the coeÆcients in �0 = � n�1 correspond to short memory processes.
We have seen above that, if the process has a �nite variance, then the coeÆcients in

�0 also guarantee absolutely summable correlations. However, we will not concentrate on
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correlations and, moreover, our analysis will apply also in the cases when the variance does
not exist.

5.2. Long strange segments. Here is our �rst test problem on which we will look for
signi�cant changes as the memory of the process changes.
Let (X1; X2; : : :) be a stationary and ergodic stochastic process with a �nite mean �

(which may or may not a moving average process). For a � > � we de�ne

(5.10) Rn(�) = sup

�
j � i : 0 � i < j � n;

Xi+1 + : : :+Xj

j � i
> �

�
;

(de�ned to be equal to zero if the supremum is taken over the empty set).
What happens to Rn(�) as n increases? The strong law of large numbers tells us that

for long time intervals i + 1; i+ 2; : : : ; j the average

Xi+1 + : : :+Xj

j � i

should be about the mean �. Since there are many di�erent intervals of this type between
1 and n for large n, one would expect that over some of them this average may exceed a
given � > �. The statistic Rn(�) gives the length of the longest interval over which this
happens.
Long intervals whose length statistic Rn(�) is intended to measure are those on which

the law of large numbers appears to break down. Hence we refer to them as long strange
intervals.
If Xn refers to, say, the amount of work arriving in a service station during nth time

period, then during long strange intervals the system appears to be running under load
higher than the nominal load �. Therefore, the longer are the long strange intervals, the
worst we expect system performance to be.
This description indicates that such time intervals can be of a crucial importance in man-

ufacturing and insurance applications. Functionals like Rn(�) are also important in �nance,
comparative analysis of DNA sequences and analysis of computer search algorithms.
In the case of light tailed processes (Xn) and short or no memory, long strange intervals

have been considered before; see for example Dembo and Zeitouni (1993). Typically, Rn(�)
grows as c logn for some c > 0 (if the process has exponentially fast decaying tails).
The fact that heaviness of the tails of the process (Xn) a�ects the length of the long

strange intervals is quite intuitive; heavy tailed values of Xn make it more likely that the
average over an intervals is away from the theoretical mean. We will see this quanti�ed
below. We will also see the e�ect of memory on the length of long strange intervals.
We will study the long strange intervals in the case when the process (Xn) is a moving

average process (5.1). We are assuming now that the noise variables ("j) have a �nite
mean, which is equal to zero. Speci�cally, we will assume that � � 1. Then EX1 = �.
The very name long strange intervals implies that we are dealing with rare events. Hence

we expect that the large deviations approach may be useful here.
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We start with noting that it follows directly from the de�nition of Rn(�) that for any
1 � m � n

(5.11) Rn(�) � m if and only if Xi+1 + : : :+Xi+k > k�

for some k = m;m+ 1; : : : ; n, and some i = 0; : : : ; n� k :

By the de�nition (5.1) of the moving average process we know that

(5.12) Xi+1 + : : :+Xi+k = k�+
1X

j=�1

 
i+k�jX

d=i+1�j

'd

!
"j :

The logic of large deviations tells us that, for a large k, the unlikely event

Xi+1 + : : :+Xi+k > k�

is likely to be caused by a single large positive or negative value of a noise variable. The
coeÆcients in (5.12) above will determine how large this value has to be.
That is, we expect that

(5.13) P (Rn(�) � m) � P

  
i+k�jX

d=i+1�j

'd

!
"j > k(� � �) for some j = : : : ;�1; 0; 1; : : : ;

some k = m;m + 1; : : : ; nand some i = 0; : : : ; n� k

!
:

To obtain a meaningful result out of (5.13) we will let the number m increase to in�nity
as a function of the sample size n. For the "right" choice of m = m(n) we obtain a non-
degenerate limit in (5.13), and then we can say that the length Rn(�) of the long strange
intervals grows of m(n) with n.
Suppose, �rst of all, that the parameters of our process are in the set �0 of absolutely

summable coeÆcients.
We will see what is "right" choice of m = m(n) as we go along, but whatever it may be,

we expect that

m(n)!1;
m(n)

n
! 0 as n!1.

It follows from (5.13) that

(5.14) P (Rn(�) < m(n))

�
1Y

j=�1

P

  
i+k�jX

d=i+1�j

'd

!
"j � k(� � �) for all k = m(n); : : : ; n and i = 0; : : : ; n� k.

!

Recall that we are talking about \strange" intervals, and so for a given initial point of
an interval, it is easier for the average over the interval to be above � > � if the interval
is shorter. Hence, we expect that k = m(n) will make this event the most likely. Hence,
using k = m(n) in (5.14) we see that

(5.15) P (Rn(�) < m(n))
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�
1Y

j=�1

P

0
@
0
@i+m(n)�jX

d=i+1�j

'd

1
A "j � m(n)(� � �) for all i = 0; : : : ; n�m(n)

1
A

as n ! 1. Remembering that the coeÆcients may be either positive or negative, we see
that the event in the probability above imposes restrictions on "j both from above and
from below: we need

(5.16) "j � (� � �)

0
@ 1

m(n)
sup

i=0;:::;n�m(n)

0
@i+m(n)�jX

d=i+1�j

'd

1
A

+

1
A
�1

:= b+(j; n)

and

(5.17) "j � �(� � �)

0
@ 1

m(n)
sup

i=0;:::;n�m(n)

0
@i+m(n)�jX

d=i+1�j

'd

1
A
�

1
A
�1

:= �b�(j; n) :

Therefore,

(5.18) P (Rn(�) < m(n)) �
1Y

j=�1

P (�b�(j; n) � "j � b+(j; n)) :

Since m(n) grows to in�nity, we expect that the individual terms in the in�nite product in
(5.18) converge to 1 as n!1. In general, a little thought about the structure of b+(j; n)
and b�(j; n) above shows that only a particular range of j is likely to a�ect signi�cantly
the product in (5.18).
Denote

M+;1(') = sup
�1<k<1

 
kX

j=�1

'j

!
+

; M+;2(') = sup
�1<k<1

 
1X
j=k

'j

!
+

;

M�;1(') = sup
�1<k<1

 
kX

j=�1

'j

!
�

; M�;2(') = sup
�1<k<1

 
1X
j=k

'j

!
�

:

Then for j in the range m � j � m+ n, some integer m,

b+(j; n) � (� � �)m(n) (max (M+;1(');M+;2(')))
�1

and

b�(j; n) � (� � �)m(n) (max (M�;1(');M�;2(')))
�1 :

This turns out to be the only important range of j.
Let

M+(') = max (M+;1(');M+;2('))

and

M�(') = max (M�;1(');M�;2(')) :
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Then we expect that

P (Rn(�) < m(n)) �
m+nY
j=m

P
�
� (� � �)m(n)M�(')

�1 � "j � (� � �)m(n)M+(')
�1
�

(5.19) =
�
P
��(� � �)m(n)M�(')

�1 � "1 � (� � �)m(n)M+(')
�1
� �n+1

:

Now we can �gure out what is the right choice for m = m(n) above. Writing in (5.19)

(5.20) P (Rn(�) < m(n))

�
�
1� P

�
"1 < �(� � �)m(n)M�(')

�1
�� P

�
"1 > (� � �)m(n)M+(')

�1
� �n+1

we see that one should de�ne m(n) in such a way that

(5.21) P ("1 < �m(n)) � P ("1 > m(n)) � 1

n
:

Let F be the distribution function of j"j. For n � 1 de�ne

(5.22) an =

�
1

F

� 
(n) :

Here, for a nondecreasing function U , we use the notation U to denote the left continuous
inverse of U

U (y) = inffs : U(s) � yg :
Since 1=F is regularly varying at in�nity with exponent �, we immediately conclude

that (an) is regularly varying at in�nity with exponent 1=� and

(5.23) lim
n!1

nF (an) = 1 :

For x > 0 let m(n) = xan; n � 1. Because of the regular variation and tail balance
conditions (5.2) and (5.2) we see that

P
�
"1 < �(� � �)m(n)M�(')

�1
�
= P

�
"1 < �(� � �) xanM�(')

�1
�

� �(� � �) xM�(')
�1
���

P ("1 < �an) �
�
q (� � �)��M�(')

� x��
� 1
n

and

P
�
"1 > (� � �)m(n)M�(')

�1
�

� �(� � �) xM+(')
�1
���

P ("1 > an) �
�
p (� � �)��M+(')

� x��
� 1
n

as n!1. Substituting the above expressions into (5.20) we conclude that for any x > 0

(5.24) P (Rn(�) < xan))! exp
n
� (� � �)�� (pM+(')

� + qM�(')
�)x��

o
as n!1.
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Therefore, if the parameters of our process are in the set �0 of absolutely summable
coeÆcients,

(5.25)
Rn(�)

an
) (� � �)�1 (pM+(')

� + qM�(')
�)1=� Z�

for every � > �. Here Z� has the standard extreme value distribution of �� type:

(5.26) P (Z� � z) = exp
��z��	 ; z > 0 :

The result (5.25) is due to Mans�eld et al. (1999).
The conclusion is that, if the parameters of our process are in the set �0 of absolutely

summable coeÆcients, then the length of the long strange intervals grows about as an (a
regularly varying sequence with exponent 1=�).
Notice that the order of magnitude of Rn(�) does not change as the parameters vary

within �0 (the multiplicative constant in (5.25) does change).

We discuss next what happens when the parameters of the moving average process (5.1)
cross the boundary between �0 and �1, the set where the coeÆcients are not absolutely
summable.
Qualitatively, we expect that the behavior of the long strange intervals will be di�erent in

that case. For example, if the coeÆcients are not summable, then the quantities M+;1('),
M+;2('), M�;1(') and M�;2(') may not be �nite (this would be the case if, for example,
the coeÆcients are of a constant sign), and so the multiplicative constant in (5.25) may
become in�nite.
To quantify the order of magnitude of Rn(�) when the parameters are in the set �1, we

will need to look at a more concrete structure of the coeÆcients (') of the moving average
process.
Speci�cally, we will assume that the coeÆcients ('j) are regularly varying and balanced.

That is, there is a function ' : [0;1)! [0;1) such that

(5.27) '(t) = L2(t) t
�h ;

0 < h < 1, as t!1 and such that

(5.28) lim
j!1

'j
'(j)

= �+; lim
j!1

'�j
'(j)

= �� ;

for some �+; �� � 0, at least one of which is positive.
Here

(5.29) h > max
� 1
�
;
1

2

	
and L2 is a slowly varying function.
Note that the conditions (5.4) - (5.5) for convergence of the moving average process still

hold and, in particular, the tail behavior of the process remains the same: the distribution
of X1 has regularly varying right tail with exponent �; see (5.6). The length of the memory
of the process has changed, however.
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Now, the relation (5.18)

P (Rn(�) < m(n)) �
1Y

j=�1

P (�b�(j; n) � "j � b+(j; n))

still holds, but the behavior of the numbers (b+(j; n)) and (b�(j; n)) is di�erent now.
The regular variation of the coeÆcients means that, for all j large enough, all 'j are of

the same sign (at least if �+ > 0), and similarly with the negative j.
As before, we do not expect that individual terms in the product above have a signi�cant

e�ect. We may assume, therefore, that all the coeÆcients are of the same sign, and we
assume, for example, that the coeÆcients are all nonnegative.
In that case b�(j; n) =1 for all j and n and the expression (5.18) becomes

(5.30) P (Rn(�) < m(n)) �
1Y

j=�1

P ("j � b+(j; n)) :

Denote

(5.31) � =
�
1=h
�

�
1=h
+ + �

1=h
�

:

Arguments similar to the ones we used in the case when the parameters of the process
belonged to the set �0 give us that the important range of j in the in�nite product in
(5.31) is that between �m(n) and n� (1� �)m(n). Therefore (not worrying about integer
values), we expect that

(5.32) P (Rn(�) < m(n)) �
n�(1��)m(n)Y
j=�m(n)

P ("j � b+(j; n)) :

The next step is to understand the structure of the numbers (b+(j; n)) here. Since the
coeÆcients ('m) converge to zero as m ! 1 and m ! �1, we expect that the average
in b+(j; n),

sup
i=0;:::;n�m(n)

1

m(n)

0
@i+m(n)�jX

d=i+1�j

'd

1
A

is the biggest when the sum is \hugging zero". Hence, we expect that the maximum is
achieved when i� j � �am(n), some 0 � a � 1. In that case,

i+m(n)�jX
d=i+1�j

'd �
(1�a)m(n)X
d=1�am(n)

'd =

(1�a)m(n)X
d=0

'd +

am(n)�1X
d=1

'�d

� �+

Z (1�a)m(n)

0

'(t) dt+ ��

Z am(n)

0

'(t) dt

� �+(1� h)�1 (1� a)m(n)' ((1� a)m(n)) + ��(1� h)�1 am(n)' (am(n))

� (1� h)�1
�
�+(1� a)1�h + ��a

1�h
�
m(n)' (m(n)) :
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It is trivial to check that the expression

�+(1� a)1�h + ��a
1�h

is maximized when a = �. Hence we expect that in our range of j

b+(j; n) � (� � �)

0
@ 1

m(n)

(1��)m(n)X
d=0

'd +

�m(n)�1X
d=1

'�d

1
A

� (� � �)
1

m(n)
(1� h)�1

�
�+(1� �)1�h + ���

1�h
�
m(n)' (m(n))

= (� � �)(1� h)�1
�
�
1=h
+ + �

1=h
�

�h
' (m(n)) :

Substituting this expression into (5.32), we see that

P (Rn(�) < m(n)) �
n�(1��)m(n)Y
j=�m(n)

P

�
"j � (� � �)(1� h)

�
�
1=h
+ + �

1=h
�

��h 1

' (m(n))

�

(5.33) =

�
P

�
" � (� � �)(1� h)

�
�
1=h
+ + �

1=h
�

��h 1

' (m(n))

��n

=

�
1� P

�
" > (� � �)(1� h)

�
�
1=h
+ + �

1=h
�

��h 1

' (m(n))

��n

:

Once again, we are now in a position to identify the right choice for m = m(n) above.
We need to de�ne m(n) in such a way that

(5.34) P

�
" >

1

' (m(n))

�
� 1

n
:

By the above, we know that we should have

1

' (m(n))
� an =

�
1

F

� 
(n) ;

and so we should use

(5.35) m(n) �
�
1

'

� 
(an) := bn :

Since an is regularly varying at in�nity with exponent 1=�, we conclude that bn is
regularly varying at in�nity with exponent 1=(�h).
As before, for x > 0 we let m(n) = xbn; n � 1. By the regular variation we have

1

' (x bn)
� xh

1

' (bn)
� xhan :

Therefore,

P

�
" > (� � �)(1� h)

�
�
1=h
+ + �

1=h
�

��h 1

' (m(n))

�
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= P

�
" > (� � �)(1� h)

�
�
1=h
+ + �

1=h
�

��h 1

' (x bn)

�

� P

�
" > (� � �)(1� h)

�
�1=h+ + �1=h�

��h
xhan

�

� p

�
(� � �)(1� h)

�
�
1=h
+ + �

1=h
�

��h
xh
���

1

n
:

Substituting this expression into (5.33) we conclude that for every x > 0

(5.36) P (Rn(�) < x bn)! exp

�
�p(� � �)��(1� h)��

�
�1=h+ + �1=h�

��h
x��h

�
as n!1.
That is, if the parameters of our process satisfy the regular variation and balance as-

sumptions (5.28), and are non-negative, then

(5.37)
Rn(�)

bn
) p1=�h

�
(� � �)(1� h)

��1=h �
�
1=h
+ + �

1=h
�

�
Z�h

for every � > �. Here, once again, Z�h is an extreme value distribution given by (5.26).
Notice that under the above assumptions the length of the long strange intervals grows

about as bn (a regularly varying sequence with exponent 1=(�h) > 1=�).
In particular, the rate of growth of the long strange intervals depends on the coeÆcients

(through the exponent h).
The result (5.37) is due to Rachev and Samorodnitsky (2001).

Notice that:

� If the parameters of the process are within the set �1 of not absolutely summable
coeÆcients, then one can expect that the length of the long strange intervals grows
faster than it is the case when the parameters of the process are within the set �0

of absolutely summable coeÆcients.
� Within �1 the rate of growth of the long strange intervals may change when the
parameters change.

Therefore, there is a phase transition as one crosses the boundary between �0 and �1,
and so it makes sense to say that absolutely summable coeÆcients correspond to a short
memory process and not absolutely summable coeÆcients correspond to a long memory
process.

5.3. Ruin probabilities. Here is our second test problem on which we will look for sig-
ni�cant changes as the memory of the process changes.
Let (X1; X2; : : :) be a stationary and ergodic stochastic process with a �nite mean �

(which may or may not a moving average process). One can view Xn as the amount of
claims paid by an insurance company during the nth period, n = 1; 2; : : :.
Let c > � be a constant; think of c as the premium received by the insurance company

in a single time period. The assumption c > � is called positive loading. It assures that,
on average, the company receives more in premium than it pays out in claims.
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If � is the initial capital of the company, then after n time periods company's capital is
�+ cn� (X1 + : : :+Xn). Hence, if

sup
n�0

(X1 + : : :+Xn � cn) > �

then at some point in time the company runs out of money, hence this event is called ruin
occurrence, and its probability

(5.38) P

�
sup
n�0

(X1 + : : :+Xn � cn) > �

�

is called ruin probability.
Probabilities of the type (5.38) arise not only in insurance context, but also in solutions

of stochastic recurrence equations. This includes study of the tails of ARCH and GARCH
processes (see e.g. Embrechts et al. (1997)) and study of the stationary distributions in
queuing theory through the so-called Lindley equation (see e.g. Baccelli and Br�emaud
(1994)).
We are, mostly, interested in understanding the asymptotic behaviour of the ruin prob-

ability as the initial capital � increases to in�nity.
Consider the \random walk"

S0 = 0; Sn = X1 + : : :+Xn � cn; n � 1 :

Since the random walk has a negative drift, the ruin occurrence is, for large values of the
initial capital �, an unlikely event. It is not surprising, therefore, that the large deviations
approach is very useful in studying the ruin probability

(5.39) Pruin(�) = P

�
sup
n�0

Sn > �

�
:

Several factors a�ect the asymptotic behaviour of the ruin probability. It is evident that
the right tail of the claim size distribution has a major e�ect on the ruin probability. The
heavier is the right tail of the distribution of the claim size X1, the more likely it is that
ruin will occur. It is less evident that the memory in the claim size process a�ects the ruin
probability as well, and it is this e�ect that we are after.
As always, we are interested in the case when the claim sizes have a heavy tailed distri-

bution.
We start with reviewing what is known in the classical case, when the claim sizes

X1; X2; : : : are iid.
Recall that the large deviations logic tells us that ruin is most likely caused by the

smallest number of causes. If the claim sizes are iid, then the causes are individual claim
sizes being very large. It also turns out that here this smallest number of individual causes
is equal to 1. Knowing this, we can �gure out what we expect the asymptotic behaviour
of the ruin probability to be.
If the ruin is caused by the nth claim Xn, then the ruin time n is likely to be large itself,

because very large claims do not come very often. Since the mean claim size is �, by the
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time the very large claim arrives, the fortune of the company is about

�+ c(n� 1)� (X1 + : : :+Xn�1) � �+ (c� �)n :

Letting F denote the clime size distribution, we would, therefore, expect that

(5.40) Pruin(�) �
1X
n=1

P (Xn > �+ (c� �)n) =
1X
n=1

F (�+ (c� �)n)

�
Z 1
0

F (�+ (c� �)x) dx =
1

c� �

Z 1
�

F (x) dx

as �!1.
In fact, the asymptotic expression (5.40) of the ruin probability in the heavy tailed case

holds if the integrated tails of the claim sizes are subexponential. This was proved by
Embrechts and Veraverbeke (1982).
There is also evidence that this asymptotic equivalence remains valid for many heavy

tailed stationary ergodic claim size processes (Xn) that are not iid; see e.g. Asmussen et al.
(1999).
We will see shortly that, in fact, memory may cause the asymptotic equivalence (5.40)

to break down, and in the case of long memory, even the order of magnitude of the ruin
probability may di�er from the one prescribed by (5.40).
Let us now go back and study the ruin probability when the claim size process (Xn)

is a moving average process (5.1). We are assuming, once again, that the noise variables
("j) have a �nite mean, which is equal to zero. Speci�cally, we assume that � � 1. Then
EX1 = �.
Suppose, �rst of all, that the parameters of our process are in the set �0 of absolutely

summable coeÆcients. Similarly to our study of long strange intervals, two quantities will
play a major role in our calculations:

(5.41) m+
' = sup

�1<n<1

nX
k=�1

'k ; and m�' = sup
�1<n<1

nX
k=�1

(�'k) :

According to the logic of large deviations we should look for individual causes of the
ruin probability. In the case of moving averages these individual factors are evident: those
are the noise variables ("j). Let us �gure out what is the most likely way a given noise
variable "j can cause ruin.
Observe that for n � 1

(5.42) Sn = X1 + : : :+Xn � cn

= �(c� �)n+
nX

k=1

1X
j=�1

'k�j "j = �(c� �)n+
1X

j=�1

"j

n�jX
k=1�j

'k :

Notice that the noise variables can take both positive and negative values. An extremely
large value of a noise variable "j can, potentially, cause a very large value of a claim size if
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it is multiplied by a positive factor

(5.43)

n�jX
k=1�j

'k

in (5.42). Similarly, an extremely small negative value of a noise variable "j can cause
a very large value of a claim size if it is multiplied by a negative factor in (5.43) in the
expression (5.42).
Let us concentrate �rst on the large positive values of the noise. That is, we are looking

at unusually large values of "+j for all possible j, and let us discuss the factor (5.43) that

determines the contribution of "+j to Sn in (5.42).
Since we are assuming that the coeÆcients of the moving average process are absolutely

summable, when j is a very small negative number, the factor in (5.43) is small uniformly
in n. Furthermore, for each �xed j, we do not expect that "+j is likely to cause the ruin

because the tail P ("+j > �) is of a smaller order than that predicted even by Embrechts

and Veraverbeke theorem (5.40). Since neither noise variables "+j with very small negative
j nor any �xed individual j are expected to play an important role in the ruin probability
for large values of �, the really \important" noise variables are those with high j.
For those noise variables "+j with a high j the multiplicative factor in (5.43) becomes

about
n�jX

k=�1

'k ;

and the largest this multiplicative factor ever becomes is exactly

m+
' = sup

�1<n<1

nX
k=�1

'k :

It is important to realize that the values of Sn in which "+j gets multiplied by a factor
close to m+

' are those with n equal to about j, because n � j has to lie in a particular
region. Because of the ergodicity of the process, the random walk is, at that time, at about
the level �(c� �)j.
Of course, a similar analysis applies to very small negative values of the noise variables

"j, and the largest negative factor a very large value of "�j can be multiplied with is equal
to exactly

m�' = sup
�1<n<1

nX
k=�1

(�'k) :

Therefore, the logic of large deviations leads us to expect that

(5.44) Pruin(�) �
1X
j=1

�
P
�
m+

' "
+
j > �+ j(c� �)

�
+ P

�
m�' "

�
j > �+ j(c� �)

��

�
Z 1
1

P
�
m+

' "
+ > �+ y(c� �)

�
dy +

Z 1
1

P
�
m�'"

� > �+ y(c� �)
�
dy
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=

Z 1
1

P

�
" >

�

m+
'

+ y
(c� �)

m+
'

�
dy +

Z 1
1

P

�
" < � �

m+
'

� y
(c� �)

m+
'

�
dy

=
m+

'

c� �

Z 1
�=m+

'

P (" > y) dy +
m�'
c� �

Z 1
�=m�

'

P (" < �y) dy

as �!1.
Using the regular variation assumption (5.2) we conclude that

(5.45) Pruin(�) �
m+

'

c� �

�

m+
'

P

�
" >

�

m+
'

�
1

�� 1
+

m�'
c� �

�

m�'
P

�
" < � �

m�'

�
1

�� 1

� [p (m+
' )

� + q (m�' )
�]

�� 1

1

c� �
� P (j"j > �)

as �!1.
In fact, under the assumptions slightly stronger than the summability of the coeÆcients,

the asymptotic expression (5.45) was established in Mikosch and Samorodnitsky (2000b).
We do not know if the previous expression, (5.44), holds under the assumption of subex-

ponentiality of the noise variables distribution.
Let us compare the asymptotic result (5.45) with the Embrechts and Veraverbeke the-

orem (5.40) under the assumption of regular variation. In that case, the Embrechts and
Veraverbeke result (in the iid case) says that

(5.46) Pruin(�) � 1

c� �

1

�� 1
�P (X1 > �)

�
P1

j=�1 j'jj�
�
p 1f'j>0g + q 1f'j<0g

�
�� 1

1

c� �
� P (j"j > �)

as �!1, where we have used (5.6).
In principle, the asymptotic behavior of the ruin probability described by (5.45) can

be of a smaller order than that predicted by the Embrechts and Veraverbeke result result
(5.46). This would be the case if, say, p = 1 and m+

' = 0 (just take '�1 = �1 and '0 = 1,
with 'j = 0 for the rest of the js).
This is the case of strong negative dependence. Apart from such cases, we see that,

when the parameters of our process are in the set �0 of absolutely summable coeÆcients,
the ruin probability has the same order of magnitude of decay as in the iid case. While the
multiplicative constant in the asymptotic form of the ruin probability is a function of the
parameters, the order of magnitude is not, as long as the parameters belong to the set �0.
The ruin probability problem for linear processes when the parameters are in the set �1

of not absolutely summable coeÆcients, has not, to our knowledge, been considered.
Nonetheless, if one makes the assumption (5.28) of regularly varying and balanced co-

eÆcients, then an application of logic of large deviations makes one expect that the ruin
probability, Pruin(�), is, in this case, regularly varying at in�nity with exponent �(�h�1).
We will not go into the details.
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If this conjecture holds, then one sees that the conclusion here is similar to what one gets
by considering long strange intervals: there is a phase transition as one crosses the boundary
between �0 and �1, and so it makes sense to say that absolutely summable coeÆcients
correspond to a short memory process and not absolutely summable coeÆcients correspond
to a long memory process.

5.4. In�nitely divisible processes. A stochastic process (X(t); t 2 T ) is in�nitely di-
visible if all of its �nite dimensional distributions are in�nitely divisible. Equivalently, for
every k � 1 there is a stochastic process (Y k)(t); t 2 T ) such that

(X(t); t 2 T )
d
=

 
kX
i=1

Y
(k)
i (t); t 2 T

!

in terms of equality of �nite dimensional distributions.
An in�nitely divisible process has two independent components, a Poisson component

and a Gaussian component. Since we are considering heavy tails, the Gaussian component
with its light tails is usually negligible, and so we will consider here only in�nitely divisible
processes without a Gaussian component. Such processes have characteristic functions of
the form

(5.47) E exp

(
i
X
t2T

�(t)X(t)

)

= exp

(Z
IRT

 
exp

(X
t2T

i�(t)x(t)

)
� 1� i

X
t2T

�(t)x(t)1[0;1](jx(t)j)
!
�(dx) + i

X
t2T

�(t)b(t)

)

for every (�(t); t 2 T ) at most �nitely many of whose values are di�erent from zero. Here �
is a measure on RT equipped with the cylindrical �-�eld (the L�evy measure of the process)
and (b(t); t 2 T ) a function on T .
An in�nitely divisible process is �-stable, 0 < � < 2, if its L�evy measure scales:

(5.48) �(aA) = a���(A)

for every measurable A and a > 0.
The L�evy measure � of an in�nitely divisible process is its most important characteristic.

It gives us the most direct view of how the Poissonian jumps underlying an in�nitely
divisible process combine and how they a�ect the properties of the process.
These Poissonian jumps also turn out to be the factors that can cause unlikely events.

We will see the details a number of times in the sequel.

We start with a very general result related to rare events. For most applications one can
assume that the parameter set T is countable (by reducing, if necessary, everything to a
countable subset of T , e.g. to countable numbers as a subset of IR). In that case the L�evy
measure � in (5.47) is �-�nite.
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Many questions of interest can be thought of in the following way. We are given a mea-
surable functional � : IRT ! IR, and we are interested in the right tail of the distribution
of �(X):

(5.49) P (�(X) > �) ; �!1 :

Typical examples include

(5.50) �1(x) = sup
t2T

x(t) and �2(x) = sup
t2T

jx(t)j:

De�ne

(5.51) H(�) = �
�
x 2 IRT : �(x) > �

	
;

where � is the L�evy measure of an in�nitely divisible process X.
If one compares (5.49) with (5.51) then one sees that the two expressions compute the

measures of the same event f�(x) > �g. In the former case the measure is the probability
law of the process, whereas in the latter case the measure is the L�evy measure of the
process. In particular, H(�) may be in�nite for some or all �.
It turns out that, in heavy tailed cases, the two expressions are often asymptotically

equivalent. Speci�cally, assume that the functional � is subadditive:

(5.52) �(x1 + x2) � �(x1) + �(x2)

for all xi 2 IRT ; i = 1; 2. Note that the functionals given in (5.50) are subadditive.
Let q : IRT ! [0;1] be a measurable subadditive function such that q(0) = 0 and

q(cx) � q(x) for all x 2 IRT and c 2 [�; 1; 1]. Such q is called a measurable pseudonorm.
Assume that

(5.53) j�(x)j � q(x) for all x 2 IRT ;

for a lower-semicontinuous pseudonorm q, such that

(5.54) P (q(X) <1) = 1 :

Under the above assumptions H(�)! 0 as �!1. If

(5.55) 1�min (H(�); 1) is a subexponential distribution function ;

then

(5.56) lim
�!1

P (�(X) > �)

H(�)
= 1 :

The above result is due to Rosi�nski and Samorodnitsky (1993).

Example 26. Let (X(t); 0 � t � 1) be a L�evy process (i.e. a process with stationary
independent increments). This is an in�nitely divisible process whose L�evy measure is
given by

(5.57) � = (Leb� �) Æ J�1 ;
where J : [0; 1]� IR! IR[0;1] is a measurable map given by

J(s; y)(t) = y1(t � s); 0 � t � 1
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for s 2 [0; 1] and y 2 IR. Further, � is a one-dimensional L�evy measure. That is, � is a
�-�nite measure on IR such that

R
(1 ^ x2)�(dx) <1.

Take �1(x) = sup0�t�1 x(t) in (5.50). In this case for � > 0

H(�) = (Leb� �)

�
(s; y) : sup

0�t�1
y1(t � s) > �

�

= � ((�;1)) :

Assume that the tail of � is subexponential. That is,

1�min (� ((�;1)) ; 1)

is a subexponential distribution function. Then (5.56) applies (use q(x) = sup0�t�1 jx(t)j),
and so we conclude that

(5.58) lim
�!1

P
�
sup0�t�1X(t) > �

�
� ((�;1))

= 1 :

Notice that the requirement of heavy tails needed for the result (5.56) to hold is that of
subexponentiality.
To see how (5.56) is related to the large deviations idea, let us assume for simplicity that

the L�evy measure � of the in�nitely divisible process X in (5.47) is, actually, �nite. Let
k�k = �(IRT ). Let N be a Poisson random variable with the mean k�k, and let (Yj; j � 1)
be a sequence of iid IRT valued random variables with common law �=k�k, independent of
N .
It is elementary to check by comparing the characteristic functions that the process

(5.59)
NX
j=1

Yj(t) + a(t) ;

with

a(t) = b(t)�
Z
IRT

x(t)1(jx(t)j � 1) �(dx); t 2 T

is a version of (X(t); t 2 T ). Therefore,

(5.60) �(X)
d
= �

 
NX
j=1

Yj + a

!
:

Notice that the collection (Yj; j = 1; : : : ; N) forms the points of a Poisson random
measure on IRT with mean measure �. The large deviations approach tells us that it is one
of these Poisson points that is responsible for the rare event f�(X) > �g (the non-random
function a does not contribute much). That is, we expect that

P (�(X) > �) � P (�(Yj) > � for some j = 1; : : : ; N) :
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Conditioning on N and using the inclusion-exclusion formula we see that

(5.61) P (�(X) > �) � E

"
NX
j=1

P (�(Yj) > �)

#
= EN P (�(Y1) > �) :

Notice that

P (�(Y1) > �) =
1

k�k�
�
x 2 IRT : �(x) > �

	
=

1

k�kH(�):

Substituting this into (5.61) gives us

P (�(X) > �) = k�k
�

1

k�kH(�)

�
= H(�)

as �!1.
One can see the Poissonian structure of an in�nitely divisible process, resulting in an

even better understanding of the way large deviations work here, in the case when an
in�nitely divisible process is given as a stochastic integral.
Let (S;A) be a measurable space and M an in�nitely divisible random measure on

this space, with L�evy measure G and shift measure 
0. Here G is a �-�nite measure on
(S � IR;A� B) and 
0 is a �-�nite signed measure on (S;A). Let

(5.62) A0 =

�
A 2 A : 
(A) := j
0j(A) +

Z
A

Z
IR

min(1; x2)G(ds; dx) <1
�
:

The set function 
 extends to a �-�nite measure on (S;A), called a control measure of the
random measure M .
One can view the randommeasureM as a stochastic process of the type (M(A); A 2 A0),

such that

� M is independently scattered. That is, for any disjoint A0 sets A1; : : : ; An, the
random variables M(A1); : : : ;M(An) are independent

� M is �-additive. That is, for any disjoint A0 sets A1; A2; : : : such that [1i=1Ai 2 A0

we have M([1i=1Ai) = �1i=1M(Ai) a.s.
� For every A 2 A0; M(A) is an in�nitely divisible random variable with

(5.63) E exp(i�M(A)) = exp

�
i�
0(A) +

Z
A

Z
IR

(ei�x � 1� i�x1[0;1](jxj))G(ds; dx)
�
:

Consider a stochastic process given in the form

(5.64) X(t) =

Z
S

f(t; s)M(ds); t 2 T;

where f : T�S ! IR is a deterministic function. Such process is always in�nitely divisible.
See Rajput and Rosi�nski (1989) for more details on in�nitely divisible random measures
and on conditions on the kernel f(t; s) in (5.64) ensuring that the stochastic integral is
well de�ned.
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For an in�nitely divisible process given by in (5.64) its L�evy measure � is given in the
form

(5.65) � = G Æ J�1 ;
where J : S � IR! IRT is given by

(5.66) J(s; y)(t) = yf(t; s); t 2 T

for s 2 S and y 2 IR.
Expression (5.65) often allows one a straightforward way to compute the function H in

(5.51) above.
Since the signed measure 
0 in (5.63) plays no role in L�evy measure of the process X

(other than a�ecting the conditions on the kernel f under which the process is well de�ned)
and, hence, does not a�ect the function H, we will simply assume that 
0 = 0.
Below we will explore some important special cases.
The computations become especially convenient if the L�evy measure G of the random

measure M is given in the form

(5.67) G (A� B) =

Z
A

�(s; B) �(ds); A 2 A; B 2 B ;
where � is a probability measure on S (which is, necessarily, equivalent to the extended
measure 
 in (5.62); � is also called a control measure measure of M), and �(s; �); s 2 S
is a family of L�evy measures on IR.
Suppose also that the functional � is homogeneous:

(5.68) �(cx) = c�(x); c > 0; x 2 IRT :

Many functionals of interest are homogeneous: various sup functionals, Lp-norm function-
als, etc.
Under the above assumptions we have

(5.69) H(�) =

Z
S

�(ds)

Z
IR

1 (� (y f(�; s)) > �) �(s; dy)

=

Z
S

�
�

�
s;

�
�

� (f(�; s))+
;1
��

+ �

�
s;

�
�1;� �

� (�f(�; s))+

���
�(ds) :

One obtains an �-stable process with 0 < � < 2 if

(5.70) �(s; dy) = w(s)

�
1 + �(s)

2
y�(�+1)1(y > 0) +

1� �(s)

2
jyj�(�+1)1(y < 0)

�
dy :

Here w : S ! (0;1) and � : S ! [�1; 1] are measurable functions.
If the functional � is homogeneous, we obtain by (5.69) and (5.70) that

(5.71)

H(�) = ���
Z
S

�
1 + �(s)

2

�
� (f(�; s))+

��
+
1� �(s)

2

�
� (�f(�; s))+

��� 1

�
w(s) �(ds) :

In particular, the function H is regularly varying at in�nity with exponent �� and, hence,
the subexponentiality assumption (5.55) holds.



69

Example 27. One of interesting ways to measure the length of dependence is by looking
at joint tails. Suppose (X1; X2; : : :) is a stationary process. For some (large) � > 0 consider

P (X1 > �; : : : ; Xn > �)

as a function of n. Obviously, if the sequence (X1; X2; : : :) is iid, then the above expression
is an exponentially decaying function of n.
If (X1; X2; : : :) is an �-stable process, then the limit

(5.72) Kn = lim
�!1

��P (X1 > �; : : : ; Xn > �)

always exists, and one can look at the rate of decay of Kn as an indication of the length
of dependence. As above, Kn = 0 for n � 2 if (X1; X2; : : :) is a sequence of iid �-stable
random variables.
Suppose that the �-stable process (X1; X2; : : :) is given by an integral representation

(5.64). We see immediately by (5.71) and (5.56) that

(5.73) lim
�!1

��P

�
max
i=1;:::;n

Xi > �

�

=

Z
S

�
1 + �(s)

2
max
i=1;:::;n

(f(i; s)+)
� +

1� �(s)

2
max
i=1;:::;n

(f(i; s)�)
�

�
1

�
w(s) �(ds) :

An application of the inclusion - exclusion formula to (5.73) shows that

(5.74) Kn = lim
�!1

��P

�
min

i=1;:::;n
Xi > �

�

=

Z
S

�
1 + �(s)

2
min

i=1;:::;n
(f(i; s)+)

� +
1� �(s)

2
min

i=1;:::;n
(f(i; s)�)

�

�
1

�
w(s) �(ds) :

This shows that the rate of decay of Kn is related to the rate of decay of (f(n; s)+; n � 1)
and (f(n; s)�; n � 1) as n increases, for \most" of s 2 S.
As a concrete example let us consider the so-called (one-sided) linear fractional �-stable

noises given by

(5.75) Xn =

Z
IR

g(s� n)M(ds); n = 1; 2; : : : ;

where

(5.76) g(s) = (�s)H�1=�+ � (�s� 1)
H�1=�
+ ; s 2 IR ;

0 < H < 1, and we interpret 0a = 0 for any real a. The �-stable random measure M
has the Lebesgue control measure �, weight function w(s) � 1 and for simplicity we will
choose the �-stable random measure M to be symmetric (�(s) = 0 for all s 2 IR). In that
case the process (X1; X2; : : :) is itself a symmetric �-stable process.
Notice that, if 1 < � < 2, and H = 1=�, then the function g in (5.76) becomes

g(s) = 1 (�1 < s � 0) ;
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so that the resulting process in (5.75)

Xn =

Z
IR

1 (�1 < s� n � 0) M(ds) =M ((n� 1; n]) ; n = 1; 2; : : : ;

is just a sequence of iid �-stable random variables.
The process (X1; X2; : : :) in (5.75) is the increment process of �one-sided linear fractional

�-stable motions given by

(5.77) Y (t) =

Z
IR

�
(t� s)

H�1=�
+ � (�s)H�1=�+

�
M(ds);

t 2 IR, which are SSSI (self-similar stationary increment) �-stable Speci�cally,

Xn = Y (n)� Y (n� 1) ; n � 1 ;

In particular, linear fractional �-stable noises are stationary processes (as are, in general,
any processes of the form (5.75), with any kernel f , which are referred to as continuous
time moving averages).
Suppose �rst that H < 1=�. In that case it is straightforward to check that for n =

1; 2; : : :
min

i=1;:::;n
f(i; s)+ = min

i=1;:::;n
g(s� i)+ = 0; s 2 IR

and

min
i=1;:::;n

f(i; s)� = min
i=1;:::;n

g(s� i)� =

(
0 if s � 0

(n� 1� s)H�1=� � (n� s)H�1=� if s < 0
:

Therefore, by (5.74)

Kn =
1

2�

Z 0

�1

�
(n� 1� s)H�1=� � (n� s)H�1=�

��
ds

=
1

2�

Z 1
n

�
(x� 1)H�1=� � (x)H�1=�

��
ds �

�
1
�
�H

��
2�2(1�H)

n��(1�H)

as n!1.
Using a similar argument for 1=� < H < 1 we conclude that

(5.78) Kn �
�� 1
�
�H

���
2�2(1�H)

n��(1�H)

as n!1.
Notice that the rate of decay of Kn is slower when H is large, and in this sense the

memory becomes longer as H increases.

Let us go back to the general in�nitely divisible stochastic process given in the form of
a stochastic integral (5.64). Let the L�evy measure of the random measure M be given in
the form (5.67). We will assume, for simplicity, that the random measure M is symmetric,
which means that

�(s;�B) = �(s; B) ; B 2 B
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(on a set of � measure 1). For s 2 S and u > 0 let

(5.79) R(u; s) = inf fy > 0 : � (s; (y;1)) � ug
be the right-continuous inverse of the tail of �(s; �).
Let ("j), (�j) and (�j) be three independent sequences of random variables such that:

� "1; "2; : : : are iid Rademacher random variables. That is,

P ("1 = 1) = P ("1 = �1) = 1

2
:

� �1;�2; : : : are the arrival times of a unit rate Poisson process on (0;1).
� �1; �2; : : : are iid S-valued random variables with a common law �.

Then the stochastic process in (5.64) can be represented in the form

(5.80) (X(t); t 2 T )
d
=

 
1X
j=1

"j R (�j; �j) f (t; �j) ; t 2 T

!

in the sense of equality of �nite-dimensional distributions.
The representation (5.80) is called a series representation of the in�nitely divisible pro-

cess (5.64).
Such representation is not unique (one can select a function R of a di�erent form), and

representations also exist in the non-symmetric case. Then one may need to center the
series to make it converge. See Rosi�nski (1990) for a general treatment of series represen-
tations.
Series representations of in�nitely divisible processes are very important. In particular,

it emphasizes the role of Poisson jumps in the structure of an in�nitely divisible process. In
large deviations type of situations the Poisson points �1;�2; : : : are identi�able as individual
factors.
Notice that, for every �xed s 2 S, the function (R(u; s); u > 0) is nonincreasing. Since

�1 � �2 � : : :, we see that R(�1; �1) is stochastically larger than R(�j; �j) for j � 2.
Therefore, if a functional � has certain monotonicity properties with respect to the scale

of its argument (in particular, if the functional � has the homogeneity property (5.68)),
then

we expect that the very �rst term in the series representation (5.80) is most likely to
cause the rare event f�(X) > �g for large �.

To see how this works, notice that, with this logic,

(5.81) P (�(X) > �) � P
�
�
�
"1R (�1; �1) f (�; �1)

�
> �

�
=

1

2
P
�
�
�
R (�1; �1) f (�; �1)

�
> �

�
+
1

2
P
�
�
�
� R (�1; �1) f (�; �1)

�
> �

�
:

By the homogeneity property (5.68),

(5.82) P
�
�
�
R (�1; �1) f (�; �1)

�
> �

�
=

Z
S

P

�
R (�1; s) >

�

� (f (�; s))+

�
�(ds) :
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Observe that for every x > 0

P
�
R (�1; s) > x

�
= P

�
� (s; (x;1)) > �1

�
= 1� exp

n
� � (s; (x;1))

o
� � (s; (x;1))

as x ! 1. Assuming that using this asymptotic equivalence inside the integral in (5.82)
is justi�ed, we expect that

(5.83) P
�
�
�
R (�1; �1) f (�; �1)

�
> �

�
�
Z
S

�

�
s;

�
�

� (f (�; s))+
;1
��

�(ds)

as �!1.
Similarly, we expect that

(5.84) P
�
�
�
� R (�1; �1) f (�; �1)

�
> �

�
�
Z
S

�

�
s;

�
�

� (�f (�; s))+
;1
��

�(ds) :

Substituting (5.83) and (5.84) into (5.81), we conclude that

P (�(X) > �)

�
Z
S

�
�

�
s;

�
�

� (f(�; s))+
;1
��

+ �

�
s;

�
�1;� �

� (�f(�; s))+

���
�(ds) = H(�)

by (5.69), as promised, for example, by (5.56).
Obviously, the above argument is valid only under certain conditions. Some of these

situations are described above in (5.56). Below we will see additional situations where this
general principle holds, and is useful.
Note, however, that whether or not it is the �rst term in the series representation (5.80)

is most likely to cause the event f�(X) > �g for large �,
the tail measure H(�) is always the sum of the contributions to the tail probability

P (�(X) > �) from one of the Poisson points �1;�2; : : : in that series representation.

Therefore, the series representation (5.80) is exactly the right way to look at individual
causes of rare events associated with in�nitely divisible processes:

the individual causes are the points of the Poisson random measure on IRT

given by

(5.85) ("j R (�j; �j) f (t; �j) ; t 2 T ) ; j = 1; 2; : : : :

Indeed, as above,
1X
j=1

P
�
�
�
"j R (�j; �j) f (�; �j)

�
> �

�

(5.86) =
1X
j=1

Z 1
0

zj�1

(j � 1)!
e�zP

�
�
�
"j R (z; �j) f (�; �j)

�
> �

�
dz
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=

Z 1
0

P
�
�
�
"1R (z; �1) f (�; �1)

�
> �

�
dz

=
1

2

Z 1
0

P
�
�
�
R (z; �1) f (�; �1)

�
> �

�
dz +

1

2

Z 1
0

P
�
�
�
� R (z; �1) f (�; �1)

�
> �

�
dz :

Proceeding as before, we see that

P
�
�
�
R (z; �1) f (�; �1)

�
> �

�
=

Z
S

1

�
�

�
s;

�
�

� (f (�; s))+
;1
��

> z

�
�(ds)

and, hence, the �rst term in the right hand side in (5.86) is

1

2

Z 1
0

dz

Z
S

1

�
�

�
s;

�
�

� (f (�; s))+
;1
��

> z

�
�(ds)

=

Z
S

�

�
s;

�
�

� (f (�; s))+
;1
��

�(ds) :

Treating in the same way the second term the right hand side in (5.86), we obtain
1X
j=1

P
�
�
�
"j R (�j; �j) f (�; �j)

�
> �

�

=

Z
S

�
�

�
s;

�
�

� (f(�; s))+
;1
��

+ �

�
s;

�
�1;� �

� (�f(�; s))+

���
�(ds) = H(�);

as required.
In fact, what the series representation (5.80) does is represent an in�nitely divisible

process as an integral with respect to a Poisson random measure on IRT .

For the remainder of our discussion we will concentrate on symmetric �-stable (S�S )
processes. Recall that, in this case,

�(s; dy) =
1

2
w(s) y�(�+1) dy ; s 2 S ; y > 0 ;

and so the function R in (5.79) is given by

(5.87) R(u; s) =

�
1

2�

�1=�

w(s)1=� u�1=� := c�w(s)
1=� u�1=�

for s 2 S and u > 0.
Therefore, the most commonly used series representation of S�S processes has the form

(5.88) (X(t); t 2 T )
d
=

 
c�

1X
j=1

"j �
�1=�
j w(�j)

1=� f (t; �j) ; t 2 T

!
:

There are several interesting facts about series representations for S�S processes and
random variables.
If X is a S�S random variable, then it has a characteristic function of the form

(5.89) Eei�X = e��
�j�j�; � 2 IR
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for some � � 0 which is called the scale parameter of X. Then X has a series representation
of the form

(5.90) X
d
= C�

1X
j=1

"j �
�1=�
j Yj ;

some C� > 0, where this time Y1; Y2; : : : are iid random variables independent of the
sequence "1; "2; : : : and �1;�2; : : : as above.
The random variables (Yj) must have a �nite absolute � moment, and

(5.91) EjY1j� = �� :

Conversely, the distribution of the random series in the right hand side of (5.90) depends
only on the absolute � moment of the random variables Y1; Y2; : : :.
One application of the above fact is that, in the series representation (5.88) of a S�S

process one may replace the Rademacher random variables "1; "2; : : : by iid zero mean
normal random variables with the variance selected in such a way so as to make the
absolute � moment equal to 1.
Therefore, an alternative series representation is

(5.92) (X(t); t 2 T )
d
=

 
c0�

1X
j=1

Gj �
�1=�
j w(�j)

1=� f (t; �j) ; t 2 T

!
;

where c0� is a �nite positive cons-tat, and G1; G2; : : : are iid standard normal random
variables. In particular, any S�S process is a mixture of zero mean Gaussian processes
(but we will not use this fact in the sequel).
Many facts about �-stable processes can be found in Samorodnitsky and Taqqu (1994).

We will study now the question of short versus long large dependence for stationary
S�S processes by concentrating on the ruin problem. As before, let (Xn) be an ergodic
stationary S�S process, which is given in the form of a stochastic integral

(5.93) Xn =

Z
S

fn(s)M(ds) ; n = 1; 2; : : : ;

where M is a S�S random measure with a corresponding probability measure � in (5.67)
and a function w in (5.70). The �-�nite measure

(5.94) m(A) =

Z
A

w(s) �(ds) ; A 2 A

is also called a control measure of M , and it is the most common usage of this term in the
stable context.
Finally, f1; f2; : : : are measurable functions on S such that

R
S
jfn(s)j�m(ds) <1 for all

n � 1 (so that all the integrals are well de�ned).
Since we are studying ruin probabilities and need to have a �nite mean, we will assume

that 1 < � < 2, in which case EX1 = 0.



75

Let c > 0 and consider, as before, the ruin probability in (5.39):

Pruin(�) = P

�
sup
n�0

Sn > �

�
with

S0 = 0; Sn = X1 + : : :+Xn � cn; n � 1 :

Notice that we are in an apparently similar situation to the one we had before: namely,
we are looking, as in (5.49), at the tail

P (�(X� cI) > �) ; �!1
of a measurable functional � given by

(5.95) �ruin(x) = sup
n�0

(x1 + : : :+ xn)

for x = (x1; x2; : : :).
Even though the functional �ruin is, clearly, subadditive, the result of Rosi�nski and

Samorodnitsky (1993) mentioned above that justi�ed the asymptotic relation (5.56), does
not apply here because that theorem requires the functional to be bounded from above by
a �nite pseudonorm (requirement (5.53)). This, intuitively, means that the process

X1 + : : :+Xn � cn; n � 1

has to be bounded on both sides, whereas in our case it is only bounded from above
because of the negative drift. Nonetheless, it turns out that under certain assumptions the
asymptotic relation (5.56) still holds.
Speci�cally, let mn be the scale parameter of the S�S random variable X1 + : : : + Xn,

n = 1; 2; : : :. One can show that the ergodicity of the process (Xn) implies that mn = o(n)
as n!1. Assume a stronger requirement: for some � 2 (0; 1)

(5.96) lim
n!1

mn

n�
= 0 :

The assumption (5.96) turns out to hold for virtually all stationary ergodic S�S processes
of interest. Under the assumption (5.96), the equivalence (5.56)

P (�(X) > �) � H(�)

as �!1 still holds. This result is due to Mikosch and Samorodnitsky (2000a).
It is interesting to note that, in this case, it is not necessarily the case that it is only

the �rst term in the series representation (5.88) (the largest Poisson jump) may cause the
ruin. It is the sum of possible e�ects of all Poisson jumps that causes the ruin.
In a recent paper Braverman (2002) stated conditions on the series representation of the

process (Xn) (as we know, it is not unique) under which it is still the case that only the
�rst term in the series representation (5.88) is likely to cause ruin.
Note that, in this case, by (5.65) and (5.67),

(5.97) H(�) = �
�
x 2 IRT : �(x) > �

	
=

Z
S

m(ds)

Z 1
0

x�(�+1) dx
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1

2
1

 
sup
n�0

 
x

nX
k=1

fk(s)� cn

!
> �

!
+
1

2
1

 
sup
n�0

 
�x

nX
k=1

fk(s)� cn

!
> �

!#
:

However,(
sup
n�0

 
x

nX
k=1

fk(s)� cn

!
> �

)
=

(
x

nX
k=1

fk(s) > cn+ � for some n � 0

)

=

(
x > inf

n�0

�+ cn

(
Pn

k=1 fk(s))+

)
:

Substituting this expression into (5.97) above we obtain that, under the assumption (5.96)
(5.98)

Pruin(�) � H(�) =
1

2�

Z
S

sup
n�0

(
Pn

k=1 fk(s))
�

+

(�+ cn)�
m(ds) +

1

2�

Z
S

sup
n�0

(�Pn
k=1 fk(s))

�

+

(�+ cn)�
m(ds)

as �!1.
We will use the above asymptotic equivalence to study the length of memory in stationary

ergodic S�S processes via the rate of decay of the ruin probability.

5.5. Structure of stationary S�S processes. Even though the integral representation
of �-stable processes is not unique, stationary S�S processes have integral representations
of a special form, that allows one to get quite a bit of insight into the structure of these
processes. Theory of such representations is due to Rosi�nski (1995).
Let (S;A; m) be a �-�nite measure space, and let ' : S ! S be a one-to-one map, such

that both ' and '�1 are measurable. We assume that ' is a non-singular map (that is, the
measure m Æ'�1 is equivalent to the measure m). The family ('n; n = : : : ;�1; 0; 1; 2; : : :)
is called a non-singular 
ow on (S;A; m).
According to Rosi�nski (1995), every stationary S�S process has a representation of the

form

(5.99) Xn =

Z
S

an(s)

�
d (m Æ '�n)

dm
(s)

�1=�

f Æ 'n(s)M(ds)

for n = : : : ;�1; 0; 1; 2; : : :. Here M is a S�S random measure on (S;A) with control
measure m, f 2 L�(m), the functions (an) is a family of �1-valued functions satisfying

(5.100) an+m(s) = am(s) an Æ 'm(s) for all integer m;n ;

s 2 S. The functions (an) form a so-called cocycle for the 
ow ('n).
That is, apart from a cocycle and the Radon-Nykodim derivative, the kernel in the

integral representation (5.99) consists of a single function f being \shifted" by the 
ow
('n). Of course, f Æ 'n(s) is just f('n(s)).
Recall that a non-singular 
ow ('n) is called conservative if there is no wandering set of a

positive measure m. That is, there no set A 2 A such that that the sets '�nA, n = 0; 1; : : :
are disjoint.
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Given a non-singular 
ow ('n), there is a unique (up to a set ofm-measure zero) partition
of S into '-invariant measurable sets C and D ('(C) = C and '(D) = D), such that

� the restriction of ('n) to C is conservative
� D is either empty or D = [1n=�1'n(A) for some wandering set A.

The decomposition S = C [D as above is called the Hopf decomposition. See e.g. Krengel
(1985).
A 
ow is conservative if D = ;. If C = ; then the 
ow is called dissipative. Intuitively,

conservative 
ows tend to come back to the initial point, while dissipative 
ows do not.

Given a stationary S�S process with an integral representation (5.99), if the 
ow ('n) is
conservative, we say that the stationary process (Xn) is generated by a conservative 
ow.
If the 
ow ('n) is dissipative, we say that the stationary process (Xn) is generated by a
dissipative 
ow. It is known that if a stationary S�S process is generated by a conservative

ow, then in any other integral representation of the form (5.99) it will be be represented
by a conservative 
ow as well. Similarly with stationary S�S processes generated by a
dissipative 
ow (Rosi�nski (1995)).
Since S�S random measures assign independent values to disjoint sets, it is, intuitively,

clear that S�S processes generated by a conservative 
ow should have a longer memory than
those generated by a dissipative 
ow. Indeed, if a process is generated by a conservative

ow, then the same values of the random measure tend to contribute to the values of, say,
X0 and Xn for large n.
Suppose now that a general stationary S�S process is given by an integral representation

(5.99). Let S = C[D be the Hopf decomposition of S with respect to the 
ow ('n). Denote

(5.101) X(1)
n =

Z
C

an(s)

�
d (m Æ '�n)

dm
(s)

�1=�

f Æ 'n(s)M(ds)

and

(5.102) X(2)
n =

Z
D

an(s)

�
d (m Æ '�n)

dm
(s)

�1=�

f Æ 'n(s)M(ds) ;

n = : : : ;�1; 0; 1; 2; : : :. Notice that (X
(1)
n ) and (X

(2)
n ) are independent stationary S�S

processes, generated, correspondingly, by a conservative 
ow and a dissipative 
ow, and
that

(5.103) Xn = X(1)
n +X(2)

n ; n = : : : ;�1; 0; 1; 2; : : : :
Decomposition (5.103) represents a stationary S�S process as a sum of two indepen-

dent stationary S�S processes, generated by a conservative 
ow and a dissipative 
ow,
correspondingly. Such a decomposition is unique in distribution (Rosi�nski (1995)).
Therefore, to understand the length of memory in a stationary S�S process, one should

start with trying to understand the length of memory in a stationary S�S processes gen-
erated by conservative 
ows, and those generated by dissipative 
ows.
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It is known that the processes generated by dissipative 
ows are the so-called mixed
moving average processes. They are always ergodic (even mixing) and have the form

(5.104) Xn =

Z
W

Z
IR

g(w; s� n)M(dw; ds);

for n = : : : ;�1; 0; 1; 2; : : :, where (W;W; �) is a �-�nite measure space, M a S�S random
measure on W � IR with control measure � � Leb, and g 2 L�(� � Leb). See Surgailis
et al. (1993) and Rosi�nski (1995).
There is no known concise description of a similar kind of general stationary S�S pro-

cesses generated by conservative 
ows, and these may or may not be ergodic. Intuitively,
for a stationary S�S process generated by conservative 
ow to be ergodic the 
ow should
not \come back too often". It also turns out that if such a process is ergodic, then the
longer it takes for the 
ow \to come back", the shorter is the memory of the process. We
will see these phenomena in the sequel.

Let us go back to studying the ruin probability

Pruin(�) = P

�
sup
n�0

Sn > �

�
with

S0 = 0; Sn = X1 + : : :+Xn � cn; n � 1 :

We start with the case when the stationary S�S process (Xn) is generated by a dissipative

ow. In that case the process is a mixed moving average with a representation (5.104).
De�ne

J�(w; s) = lim
h#�1

lim inf
m!1

sup
h�j�m

 
mX
k=j

g(w; s+ k)

!
�

for w 2 W and s 2 IR.
We have the following general result due to Mikosch and Samorodnitsky (2000a).

Theorem 28. (a) For any mixed moving average process (5:104) the following lower bound
for the ruin probability holds:

(5.105) lim inf
�!1

���1Pruin(�) � 1

2�(�� 1)c
I(f) ;

where
I(f) :=Z

W

Z 1

0

([J+(w; s)]
� + [J�(w; s)]

�) �(dw) ds :

(b) Assume that for �-almost every w 2 W there is a compact interval [Kl(w); Kr(w)]
such that 0 < Kr(w) � Kl(w) � L for some �nite constant L which does not depend on
w 2 W and that g(w; s) = 0 for Leb-almost every s =2 [Kl(w); Kr(w)]. Then

(5.106) lim
�!1

���1Pruin(�) =
1

2�(�� 1)c
I(f) <1 :
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That is, the ruin probability is always at least of the same order of magnitude as that
in the case of iid claims (Xn) (see the Embrechts and Veraverbeke result (5.46)).
On the other hand, if s-sections of the kernel g are supported by compact intervals

uniformly in w, then the ruin probability is exactly of the same order of magnitude as that
in the case of iid claims (Xn). We, obviously, view it as saying that such stationary S�S
processes have short memory. Below we will see what may happen if the s-sections of the
kernel g are not compactly supported.
Let us go back to the example of one-sided linear fractional �-stable noise given by

(5.75):

Xn =

Z
IR

g(s� n)M(ds); n = 1; 2; : : : ;

with
g(s) = (�s)H�1=�+ � (�s� 1)

H�1=�
+ ; s 2 IR ;

0 < H < 1. This is a moving average process; hence, it is generated by a dissipative

ow. We saw previously that the memory of this process seems to become longer as H
increases. It was not clear, however, where the boundary between long and short memory
was. Things become clearer when we look at the ruin probabilities.
The following theorem, due to Mikosch and Samorodnitsky (2000a), describes the be-

havior of the ruin probabilities for linear fractional �-stable noises.

Theorem 29. (a) If 1=� < H < 1 then

(5.107) Pruin(�) � K(�;H)

c�H
���(1�H) ; �!1 :

(b) If 0 < H � 1=� then

(5.108) Pruin(�) � K(�;H)

c
��(��1) ; �!1 :

In both cases K(�;H) is a �nite positive constant.

This result is an easy consequence of the equivalence (5.56). Note that the requirement
(5.96) is satis�ed, as in this case mn = constnH .
We see that Theorem 29 shows that

� If 0 < H � 1=�, then the order of magnitude of the ruin probability does not
change as H changes, and it is the same as in the case of iid claims (Xn).

� If 1=� < H < 1 then the order of magnitude of the ruin probability is large than
that n the case of iid claims, and this order of magnitude changes as H changes.

Therefore, we have an indication of a phase transition as H crosses the boundary 1=�:

we view linear fractional �-stable noises with 0 < H � 1=� as having short memory

we view linear fractional �-stable noises with 1=� < H < 1 as having long memory

We conclude with examining what may happen with the ruin probability when a sta-
tionary S�S process is generated by a conservative 
ow. We will consider a class of such
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stationary S�S processes, described below. Consider an irreducible null-recurrent Markov
chain on Z := f� : : : ;�1; 0; 1; 2; : : :g with law Pi(�) on

S = fs = (s0; s1; s2; : : :) : sn 2 Z; n = 0; 1; : : :g
corresponding to the initial state s0 = i 2 Z. Let � = (�i)i2Z be the �-�nite invariant
measure corresponding to the family (Pi) satisfying �0 = 1.
Let A be the cylindrical �-�eld on S, and de�ne a �-�nite measure on (S;A) by

m(�) =
1X

i=�1

�i Pi(�) :

One can view m as the measure generated on the path space by the Markov chain starting
according to the (in�nite) initial invariant measure �. Observe that the measure m is
invariant under the shift ' : S ! S:

'((s0; s1; s2; : : :)) = (s1; s2; : : :)

s = (s0; s1; s2; : : :) 2 S.
We consider a family of stationary S�S processes de�ned by (5.99), with the 
ow ('n)

being the shift 
ow, the cocycle an � 1 for all n, and a particularly simple choice of the
kernel f . Since the measure m is invariant under the 
ow, the Radon-Nykodim derivative
in (5.99) disappears, and we have

(5.109) Xn =

Z
S

f Æ 'n(s)M(ds)

for n = : : : ;�1; 0; 1; 2; : : :.
We choose the kernel

(5.110) f(s) = 1fs0=0g(s) ; s = (s0; s1; s2; : : :) 2 S :

Then we obtain a stationary S�S process

(5.111) Xn =

Z
S

1 (sn = 0) M(ds) ;

n = 1; 2; : : :. This process is generated by a conservative 
ow. This follows from the fact
that the Markov chain is recurrent. Moreover, this process is mixing.
However, if the Markov chain were positive recurrent, then the resulting S�S process

would not even be ergodic (intuitively, the Markov chain would then return too often to
its initial state). See Rosi�nski and Samorodnitsky (1996) for all of the above statements.
One can view the stationary S�S process in (5.111) as parameterized by a null-recurrent

Markov chain. It is, then, natural to try to relate the length of memory of the S�S process
to the properties of the Markov chain. By now we know that it is important to look at how
quickly the Markov chain returns to its initial state. For a given s = (s0; s1; s2; : : :) 2 S,
let

(5.112) � = �(s) = inf fn � 1 : sn = 0g
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be the �rst return time to 0. Since the Markov chain is null recurrent, we must have
E0� =1.
Assume that there are 
 2 (0; 1] and a slowly varying function L such that

(5.113) P0(� � n) = n
�1L(n) :

The parameter 
 in (5.113) shows how long it takes the Markov chain to come back to its
initial state.
Intuitively, this parameter also determines the length of memory of the corresponding

stationary S�S process. From this point of view, small values of 
 (close to 0) correspond
to more frequent returns of the Markov chain and to longer memory of the S�S process.
Note that, if 
 crosses zero, then the Markov chain becomes positive recurrent, and the
S�S process stops being ergodic.
It turns out that, at least as far as the rate of decay of the ruin probability is concerned,

this intuition is correct. We have the following result.

Theorem 30. Under the assumption (5.113),

(5.114) Pruin(�) � K(�; 
)c
(��1)����
(��1)L(�)�(��1)

as �!1. Here K(�; 
) is a �nite positive constant.

This result is due to Mikosch and Samorodnitsky (2000a). From this result we see that:

� The ruin probability decays at a slower rate than in the case of iid claims (Xn).
� The rate of decay of the ruin probability decreases as 
 decreases to zero.

This allows us to say that the class of stationary S�S processes in (5.111) has, under the
assumption (5.113), long range dependence.
In fact, it may well be the case that under a proper point of view all (non-degenerate)

ergodic stationary S�S processes generated by conservative 
ows have long range depen-
dence. We do not know how to approach this question yet.
Notice, further, that stationary S�S processes generated by dissipative 
ows may or

may not have long range dependence. In that case the length of memory appears to be
determined by the asymptotic behavior of the kernel g in (5.104), as a function of s, for large
values of s. In contrast, we saw that a stationary S�S process generated by a conservative

ow can have long range dependence even if the kernel is as \nice" as that in (5.110).

Conclusion

The problem of long range dependence is an exciting and diÆcult one, and the approach
of looking for phase transitions in the way rare events happen may bring new insights to
this problem. Lots of work lies ahead.
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