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Abstract

We consider Markov processes for coding DNA sequence evolution. In context
dependent models the instantaneous substitution rate for a codon depends on the
neighboring codons. This makes the model analytically intractable, and previously
Markov chain Monte Carlo methods have been used for statistical inference. We in-
troduce an approximative estimation method based on pseudo-likelihood that makes
inference analytically tractable. We demonstrate that the pseudo-likelihood esti-
mates are very accurate, and from analyzing 348 human-mouse coding sequences we
conclude that incorporating the CpG effect improves the model fits considerably.

Keywords: codon model, context dependence, CpG avoidance, EM-algorithm, maximum
likelihood, pseudo-likelihood.

1 Introduction

For protein coding sequences, amino-acids are encoded by codons consisting of triplets of
nucleotides. A commonly used model for coding sequences is the Goldman and Yang (GY)
model described in Goldman and Yang (1994), where a basic assumption is that codon
sites evolve independently. The CpG effect (Albert et al., 2002, p. 434-435) refers to the
fact that an excess of substitutions are observed for positions in a sequence where the
nucleotides C and G are neighbors. The CpG effect violates the independent site assumption
and motivates studying models where the substitution process is context dependent.

An extension of the GY model allowing CpG effects across codon boundaries is presented
in Jensen and Pedersen (2000) and Pedersen and Jensen (2001). The neighbor dependence
in the substitution rates implies that the transition probability for a sequence of length
n can no longer be written as a product over the n codons. Thus we have to consider
the sequence itself as a state in a Markov process and the corresponding rate matrix is
of size 61n × 61n. The large dimension of the rate matrix makes the likelihood function
intractable in practice, and Markov chain Monte Carlo (MCMC) methods are used for
statistical inference. The use of MCMC methods is often time-consuming and problems
such as slow convergence and poor mixing may arise.

The Jensen and Pedersen (2000) model consists of two components. The first compo-
nent depends on the type of change (transition/transversion, synonymous/non-synonymous)
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and the second component models the CpG effect. In this paper we consider a model similar
to Jensen and Pedersen (2000), but we extend our model to allow the first component to
be any reversible codon substitution model.

Statistical inference in the model may naturally be divided into two separate parts.
The probability of observing two sequences x and y is

P (x, y) = P (x)P (y | x).

Firstly, we use the stationary distribution of sequence x, P (x), to estimate the codon fre-
quency and CpG parameters using maximum likelihood. Secondly, we construct a pseudo-
likelihood (Besag, 1975) approximation of the conditional probability P (y|x) that makes
inference analytically tractable. The pseudo-likelihood is used to estimate the remaining
parameters in the substitution rate matrix. We also present an EM-algorithm for comput-
ing the pseudo-likelihood estimates, which is useful in models with many parameters. An
analysis of simulated data shows that the pseudo-likelihood estimates are very accurate.
We analyst 348 human-mouse coding sequences from human chromosome 1 using different
codon substitution models, and conclude that incorporating the CpG effect improves the fit
considerably.

Our paper is in the spirit of Siepel and Haussler (2004) and we arrive at the same
conclusion that substitution models with context dependence fit data considerably better
than substitution models with site independence do. However, our paper differs from Siepel
and Haussler (2004) and the follow-up paper by Jojic, Jojic, Geiger, Siepel, Haussler and
Heckerman (2004) by having a proper stochastic process model for sequence evolution.
Furthermore, instead of analyzing the merged alignments only, we also allow gene individual
parameters.

Section 2 describes the model, and the human-mouse alignments are described in Sec-
tion 3. Section 4 considers likelihood inference for one sequence, and in Section 5 we
present pseudo-likelihood estimation for two sequences. In Section 6 we discuss inference
for more than two sequences, and further extensions of the models and methods.

2 Context dependent codon models

We describe the evolution of a protein coding sequence as a stationary reversible time-
homogeneous continuous time Markov process, where a change in the sequence consists of
a change of one nucleotide only. The model is an extension of the Jensen and Pedersen
(2000) model, and consists of two components.

Firstly, there is the codon substitution rate matrix Q, where the rates do not depend
on the neighboring codons. This component corresponds to the model one would use had
there been no interaction among codons, and we call it the site independent part of the
model. We consider two types of site independent reversible substitution models, namely
the GY model (Goldman and Yang, 1994) and the general reversible substitution model
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(REV). The GY model is given by the rate matrix

Q(a, b) =























0 if a and b differ at more than one position
απb for synonymous transition
βπb for synonymous transversion
ωαπb for nonsynonymous transition
ωβπb for nonsynonymous transversion,

(2.1)

for a 6= b where πb is the codon frequency of codon b. The REV model assumes Q(a, b) = 0
when a and b differ at more than one position, and the reversibility condition πaQ(a, b) =
πbQ(b, a). The REV model has 263 parameters in Q and 60 free codon frequencies πa.

Secondly, there is the CpG component determined by the CpG parameter λ = (λ12, λ23, λ31).
The parameter λ31 introduces dependence among codons. If λ31 < 1 the parameter intro-
duces CpG avoidance across codon boundaries, if λ31 > 1 the parameter introduces CpG

attraction, and if λ31 = 1 the model is a site independent model. Thus we can investigate
whether a site independent codon model is appropriate by testing λ31 = 1. The parameters
λ12 and λ23 introduce CpG avoidance (parameters less than 1) or attraction (parameters
larger than 1) within codon positions (1,2) and (2,3), respectively. We note that these two
parameters are confounded with the codon frequencies of codons with CpG at position (1,2)
or (2,3). Therefore, we only include these two parameters when analyzing multiple genes
with common codon frequencies, and in this case the average of the gene specific values
is close to 1, with individual values modeling gene specific deviations from the general
pattern.

We write a codon sequence x of n codons as x = (x1, . . . , xn) with xk = (x1
k, x

2
k, x

3
k),

where the upper index u in xu
k indicates the position within the k’th codon, and let x̃k =

(x̃1
k, x̃

2
k, x̃

3
k) denote the new codon. The rate γ for such a change depends upon xk as well

as the nucleotide neighbors x3
k−1 and x1

k+1 and is given by

γ(x̃k; x
3
k−1, xk, x

1
k+1) = Q(xk, x̃k)λ

1CG(x3
k−1

,x̃1
k
)−1CG(x3

k−1
,x1

k
)

31 λ
1CG(x̃1

k
,x̃2

k
)−1CG(x1

k
,x2

k
)

12

× λ
1CG(x̃2

k
,x̃3

k
)−1CG(x2

k
,x3

k
)

23 λ
1CG(x̃3

k
,x1

k+1
)−1CG(x3

k
,x1

k+1
)

31 . (2.2)

Note that the rate depends on the neighbors through the parameter λ31 only. We assume
that the boundary codons of a sequence are a start codon (x0 = ATG) and a stop codon
(xn+1 ∈ TAA, TGA, TGG).

A crucial feature of our model is that the stationary distribution can be determined
explicitly. In Section 4 we use the stationary distribution to estimate codon frequencies
and CpG parameters.

Theorem If (Q, π) obeys detailed balance

Q(a, b)πa = Q(b, a)πb,

the model defined in (2.2) is reversible with stationary distribution

P (x) =
1

Z(λ, π)
λ

2
Pn

k=1
1CG(x1

k
,x2

k
)

12 λ
2

Pn
k=1

1CG(x2
k
,x3

k
)

23 λ
2

Pn
k=2

1CG(x3
k−1

,x1
k
)

31

n
∏

k=1

πxk
, (2.3)
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where Z(λ, π) is a normalizing constant.

Proof. The claim follows since detailed balance

P (x)γ(x̃k; x
3
k−1, xk, x

1
k+1)

= P (x1, . . . , xk−1, x̃k, xk+1, . . . , xn)γ(xk; x
3
k−1, x̃k, x

1
k+1),

is fulfilled.

An important parameter in a substitution model is the branch-length parameter τ
which is the expected number of substitutions per codon (on a given branch). For the
models with CpG considered here, the branch-length parameter is not easily expressed in
terms of the other parameters in the model, and we therefore use an approximation which
we derive in Appendix B.

3 Data

We consider a set of homologous human-mouse coding sequence alignments from human
chromosome 1. The alignments were obtained from the NCBI data base from stringent
human-mouse alignments on human chromosome 1 made using the ‘build 34’ human as-
sembly vs. the ‘NCBI Mouse Build 32’ assembly. The Ensembl gene predictions (‘ensGene’
annotation file) were used to extract the coding parts of the alignments, and these exonic
alignments within a gene were combined to one protein coding alignment. Alignments
where one of the sequences had gaps were removed, as were alignments with length not a
multiplum of three, and alignments where one of the sequences had internal stop codons.
The resulting data consists of 348 human-mouse alignments with no internal stop codons
and no gaps.

4 Analysis of one sequence

We now consider parameter estimation for the set of human sequences in the alignments
described in Section 3. From the stationary distribution (2.3) we obtain the log-likelihood

l(λ, π) = − logZ(λ, π) + nCpG12 log λ2
12 + nCpG23 log λ2

23 + nCpG31 log λ2
31 +

∑

a

na log πa, (4.1)

where nCpG12 , nCpG23 and nCpG31 is the number of CpG’s at codon positions (1, 2), (2, 3) and
(3, 1), respectively, and na is the number of times codon a appears in the sequence. An
approximation of the normalizing constant Z(λ, π) is presented in Appendix A.

The number of codons in a gene is typically too small to obtain reliable estimates of
all 61 codon frequencies. Furthermore it is not possible to identify both π and (λ12, λ23)
from one gene. Since the CpG effect is our main interest we use the same codon frequencies
π for all 348 genes, but allow gene specific CpG parameters (λ12, λ23, λ31). The common
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frequencies π and gene specific CpG parameters λ are obtained by maximizing the log-
likelihood function numerically. The log-likelihood for a set of codon sequences is the sum
of the individual log-likelihoods (4.1).

In the top row of Figure 1 we show the distribution of (λ̂12, λ̂23, λ̂31). The distributions
of λ̂12 and λ̂23 are centered around 1 whereas the distribution of λ̂31 is centered around 0.50.
In order to investigate whether the variation in the CpG parameter estimates λ̂12 is due to
random fluctuation or gene specific CpG effect we tested λ12 = 1 against the alternative
λ12 6= 1. A similar test was carried out for λ23 and also for the CpG parameter across
codon boundaries λ31. P-values were calculated using the usual χ2(1)-approximation for
this likelihood ratio test. The distribution of the p-values is shown in the middle row of
Figure 1. The p-values of λ12 and λ23 are not uniformly distributed, implying that these
parameters should be included in the model. The p-values of λ31 show the great importance
of including CpG avoidance across codon boundaries. In the bottom row of Figure 1 we
consider the correlation between the parameters. All three parameters are proportional to
one another, and we use the linear relationship to collapse the three parameters into one
single parameter, letting λ31 = 0.5λ12 = 0.5λ23.

In Table 1 we summaries four different parameterizations of the stationary distribution
for the 348 genes. For all parameterizations we assume common codon frequencies. Model
A is the site independent model. Model B is the context dependent model with one single
parameter λ31 describing CpG avoidance across codon boundaries in the merged set of
genes. In model D we take CpG avoidance into account by fitting all three CpG parameters
(λ12, λ23, λ31) for each gene. This corresponds to the model analyzed above with results
summarized in Figure 1. Finally model C is the collapsed model where λ31 = 0.5λ12 =
0.5λ23 for each gene. The differences in log-likelihood with model A as reference are shown
in the left plot of Figure 2. Bearing in mind that the difference between model A and
B is only one single parameter, the remarkable difference in likelihood between these two
models is perhaps the most striking feature. However, there is also a considerable gain in
likelihood when modeling gene specific CpG avoidance as in model C. Recall that model
D has many more free parameters than model C, and therefore the smaller difference in
likelihood between these two models justifies the constraint λ31 = 0.5λ12 = 0.5λ23.

Model Parameters N Description

A π, λ12 = λ23 = λ31 = 1 60 Merged genes, independent site
B π, λ12 = λ23 = 1, λ31 60+1 Merged genes, context dependent
C π, (λ31 = 0.5λ12 = 0.5λ23)i 60+1·348 Gene specific, constrained λ’s
D π, (λ12, λ23, λ31)i 60+3·348 Gene specific, free λ’s

Table 1: Models for the stationary distribution used in this paper. The models range from the
simple site independent merged gene model to the general context dependent model with gene
specific CpG effect. N : Number of free parameters in the stationary distribution.

The same conclusions are obtained from the Akaike Information Criterion (AIC) (Akaike,
1973) given in the right hand plot of Figure 2. The AIC supports the use of gene specific
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Figure 1: Top row: Histograms of λ̂12, λ̂23 and λ̂31. The distributions of λ̂12 and λ̂23 are centered
around 1, while the distribution of λ̂31 is well below 1 (average 0.50). Middle row: Histograms
of p-values for testing λ12 = 1, λ23 = 1 and λ31 = 1. The histograms of the p-values for testing
λ12 = 1 and λ23 = 1 show that these are not uniformly distributed, implying that λ12 and λ23

should be included in the model. The histogram of the p-values for testing λ31 = 1 show the great
importance of including CpG avoidance across codon boundaries. Bottom row: Scatter plot of
(λ̂12, λ̂31) and line with slope 0.50, (λ̂23, λ̂31) and line with slope 0.50, and (λ̂12, λ̂23) and identity
line.
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Figure 2: Left: Log likelihoods of various models with respect to the site independent model
on the set of merged genes. We use the same codon frequencies for all genes, but the codon
frequencies vary between models. A: Site independent model on the set of merged genes. B:
Context dependent model on the set of merged genes. C: Context dependent model with one
gene specific CpG parameter determined by λ31 = 0.5λ12 = 0.5λ23. D: Context dependent model
with three gene specific CpG parameters (λ12, λ23, λ31). Right: Similar barplot showing the Akaike
Information Criterion (AIC) in place of the log likelihood (AIC = −2 log L + 2N , where N is
the number of parameters - see Table 1).

CpG parameters and only slightly supports the use of free CpG parameters compared to
constrained CpG parameters. In the following we use the maximum likelihood estimates
obtained from model C. Using this model instead of model D, we obtain more robust esti-
mates of the CpG effect and we avoid outliers from genes with no observed CpG dinucleotides
at a given position.

5 Analysis of two sequences

Consider two homologous coding sequences x = (x1, . . . , xn) and y = (y1, . . . , yn) of length
n codons, and assume the boundary codons are a start codon (x0 = y0 = ATG) and stop
codon (xn+1, yn+1 ∈ TAA, TGA, TGG). We consider the situation where the codon frequencies
and CpG parameters are estimated as described in Section 4. We let the rate matrix Q be
scaled in such a way that x has evolved into y in a time period of length one.

In this section we describe how to estimate the remaining substitution rate parameters
from a pseudo-likelihood that approximates the conditional likelihood of y given x.
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5.1 Pseudo-likelihood function

Besag (1975) introduced a pseudo-likelihood function, in the context of a random field,
being a product of conditional likelihoods, each term representing the conditional likelihood
for the observation at a particular site given the observations at the neighboring sites. Our
pseudo-likelihood is in the same spirit although different in details. We use the probability
of codon k being changed from xk to yk when the evolutionary history of the two flanking
nucleotides are fixed.

To describe our pseudo-likelihood in detail let us first consider the full likelihood of the
evolution changing x to y when all the substitution events are known. This is a product
over the codon sites where each term is the contribution from the evolutionary events at
this site. The term for site k corresponds to a Markov process for one site where the events
at the two flanking nucleotide positions are fixed and we denote it by Lek−1,ek+1

(ek|xk), with
ek−1 denoting the events at the left flanking nucleotide and ek+1 denoting the events at the
right flanking nucleotide. In this site process we next find the marginal distribution for the
codon yk and write the corresponding k’th site marginal likelihood as Lek−1,ek+1

(yk|xk). We
wish to use this term in our pseudo-likelihood. We do, however, not know ek−1 and ek+1

and need to approximate these. To this end we use the approximation that if x3
k−1 = y3

k−1

then there are no substitutions in ek−1, and if x3
k−1 6= y3

k−1 there is exactly one substitution
in ek−1 taking place at time t = 1/2. A similar approximation is used for ek+1. Denoting
these approximate evolutionary events by ẽk−1 and ẽk+1 our pseudo-likelihood becomes

n
∏

k=1

Lẽk−1,ẽk+1
(yk | xk). (5.1)

Let us now consider in more detail each term in the pseudo-likelihood. The rate of a
change (2.2) for a single codon depends on the left flanking nucleotide being a C or not
and the right flanking nucleotide being a G or not. Thus there is a total of four different
flanking situations. Let c = 1 (c = 0) indicate the presence (absence) of a C at the left
flanking position, and index g = 1 (g = 0) denote the presence (absence) of a G at the
right flanking position. Knowing the values at the flanking positions, the rate matrix for
a single codon is given by the 61 × 61 rate matrix

Qcg(a, b) = Q(a, b)λ
c(1G(b1)−1G(a1))+g(1C(b3)−1C(a3))
31 λ

1CG(b1,b2)−1CG(a1,a2)
12 λ

1CG(b2,b3)−1CG(a2,a3)
23 . (5.2)

If we define cxk = 1C(x
3
k−1), c

y
k = 1C(y

3
k−1), g

x
k = 1G(x

1
k+1), and gy

k = 1G(y
1
k+1) to be the

flanking situations in the x and y sequences, respectively, and if we use the approximate
evolutionary events ẽk−1 and ẽk+1, the rate matrix for codon k is Qcx

k
,gx

k for 0 ≤ t ≤ 1
2

and

Qcy
k
,gy

k for 1
2
≤ t ≤ 1. The k’th term in the pseudo-likelihood (5.1) is therefore

Lẽk−1,ẽk+1
(yk|xk) =

[

exp
(

Qcx
k
gx

k/2
)

exp
(

Qcy
k
gy

k/2
)]

xk,yk

. (5.3)

Since there are only 16 different values of I = (cx, cy, gx, gy) ∈ {0, 1}4 we can rearrange the
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terms in (5.1) and use (5.3) to get the pseudo-likelihood

Lp(Q; ν) =
∏

I

∏

a,b

{

[

exp
(

Qcxgx

/2
)

exp
(

Qcygy

/2
)]

a,b

}νI(a,b)

, (5.4)

where νI(a, b) counts the number of codons with a substitution of b for a with the approx-
imate flanking evolutionary events given by I.

The matrix exponentials in (5.3) can be computed using a symmetrization and an eigen-
value decomposition as in Schadt and Lange (2002). The computation uses the stationary
frequencies for Qcg which are

πcg
a ∝ πaλ

21CG(a1,a2)
12 λ

21CG(a2,a3)
23 λ

2(c1G(a1)+g1C(a3))
31 . (5.5)

Further details can be found in Appendix C.
Parameter estimation can either be achieved by maximizing the pseudo-likelihood func-

tion (5.4) numerically or alternatively by an EM algorithm. When the number of param-
eters is small, as in the GY-model, numerical maximization is perhaps the easiest way of
obtaining estimates, but in cases with many free parameters, such as the REV-model, the
EM-algorithm becomes useful.

5.2 EM-algorithm for pseudo-likelihood estimation

The pseudo-likelihood function (5.4) has the same form as the likelihood function for
sixteen independent processes, each of which corresponds to a model with independent
codon evolution. The codon evolution for one of these sixteen processes is given by the
rate matrix

QI(a, b, t) =

{

Qcxgx

(a, b) 0 ≤ t ≤ 1/2
Qcygy

(a, b) 1/2 < t ≤ 1,
(5.6)

with Qcg defined in (5.2). This identification allows us to construct an EM-algorithm
for estimating the parameters. An EM-algorithm for estimating substitution matrices
(Holmes and Rubin, 2002; Yap and Speed, 2004) iterates between two steps. In the E-step
the quantity

G(Q;Q0, ν) = EQ0
[logLc(Q; ν)]

is calculated given a current estimate Q0, data ν = {νI : I ∈ {0, 1}4} and where Lc is
the complete data likelihood. In the M-step G(Q;Q0, ν) is maximized as a function of the
parameters in Q.

5.2.1 E-step

The pseudo-likelihood is a product of sixteen terms and the function G(Q;Q0, ν) then
becomes a sum of terms

G(Q;Q0, ν) =
∑

I

G(QI ;QI
0, νI),
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where each term corresponds to an independent codon model with transition rates (5.6).
In Appendix C (C.3) we show that each individual term can be written as

G(QI ;QI
0, νI) =

∑

a,b:a6=b

logQcxgx

(a, b)w1
I (a, b) +

∑

a

Qcxgx

(a, a)w1
I(a, a)

+
∑

a,b:a6=b

logQcygy

(a, b)w2
I(a, b) +

∑

a

Qcygy

(a, a)w2
I(a, a),

where the weights w1
I(·, ·) and w2

I(·, ·) are defined in (C.4) and (C.5) with ν∗ replaced by
νI and depend on the current estimate of the rate matrix Q0 and the data νI only. Using
that

Qcg(a, a) = −
∑

b:ab6=a

Qcg(a, b)

and substituting the expression (5.2) for Qcg we get, up to a constant,

G(QI ;QI
0, νI) =

∑

a,b:a6=b

logQ(a, b)
[

∑

I

(w1
I(a, b) + w2

I(a, b))
]

−
∑

a,b:a6=b

Q(a, b)
[

∑

I

(kcxgx

(a, b)w1
I(a, a) + kcygy

(a, b)w2
I(a, a))

]

,

where kcg(a, b) = λ
c(1G(b1)−1G(a1))+g(1C(b3)−1C(a3))
31 λ

1CG(b1,b2)−1CG(a1,a2)
12 λ

1CG(b2,b3)−1CG(a2,a3)
23 . To sim-

plify notation, we observe that the form of G(Q;Q0, ν) is

G(Q;Q0, ν) =
∑

a,b:a6=b

logQ(a, b)w(a, b) −
∑

a,b:a6=b

Q(a, b)w(a, a), (5.7)

which is similar to the independent site estimating function, cf. Yap and Speed (2004,
page 20, top equation). To summaries, the E-step is a matter of calculating the weight
matrices w̃I and w̄I for each of the sixteen cases and add appropriately scaled versions of
these matrices to obtain the weight matrix w in (5.7).

We now derive the M-step for the context dependent GY-model and REV-model.

5.2.2 M-step for REV-model

In the case of a reversible substitution process we have detailed balance

Q(b, a) = πaQ(a, b)/πb,

and the derivative of (5.7) with respect to Q(a, b) is

−(w(a, a) + πaw(b, b)/πb) + (w(a, b) + w(b, a))/Q(a, b).

Given a current estimate Q0 we update Q by

Q(a, b) =
w(a, b) + w(b, a)

w(a, a) + πaw(b, b)/πb

,

where Q0 enters through w(·, ·).
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5.2.3 M-step for GY-model

In the case of the GY-model (2.1) we get up to a constant

G(α, β, ω) = G((α, β, ω); (α0, β0, ω0), ν)

= −α
∑

a,b:s,ts

πbw(a, a) − β
∑

a,b:s,tv

πbw(a, a) − ωα
∑

a,b:ns,ts

πbw(a, a)

− ωβ
∑

a,b:ns,tv

πbw(a, a) + logα
∑

a,b:s,ts

w(a, b) + log β
∑

a,b:s,tv

w(a, b)

+ log(ωα)
∑

a,b:ns,ts

w(a, b) + log(ωβ)
∑

a,b:ns,tv

w(a, b) +
∑

a,b:a6=b

log(πb)w(a, b),

where e.g. {a, b : s, ts} is the set of pairs (a, b) that differ at one position and where
the substitution of a with b is a synonymous transition. Introducing a shorter notation,
G(α, β, ω) is on the form

−αk1 − βk2 − ωαk3 − ωβk4 + logαc1 + log βc2 + log(ωα)c3 + log(ωβ)c4 + c5,

where k1, . . . , k4, c1, . . . , c5 are constants. Differentiating with respect to the three param-
eters, and setting the partial derivatives equal to zero we obtain the updating

α̂ = (c1 + c3)/(k1 + ω̂k3), β̂ = (c2 + c4)/(k2 + ω̂k4),

with

ω̂ =
−((c1 − c4)k2k3 + (c2 − c3)k1k4) +

√
D

2(c1 + c2)k3k4
,

where D = ((c1 − c4)k2k3 + (c2 − c3)k1k4)
2 + 4(c1 + c2)(c3 + c4)k1k2k3k4.

5.3 Investigation of the accuracy of the pseudo-likelihood ap-

proximation

For the GY model with CpG we investigate the accuracy of the pseudo-likelihood ap-
proximation by a simulation study. We let λ12 = λ23 = 1, and the frequency pa-
rameters πa = 1/61, and for different combinations of α, β, ω and λ31 we simulate
sequences of length 1000 codons from the model. The parameter values we consider
are the 48 combinations of branch-length τ = 0.04, 0.2, 1, transition/transversion ratio
κ = α/β = 2, 4, non-synonymous/synonymous rate ω = 0.1, 2 and CpG avoidance param-
eter λ31 = 0.01, 0.05, 0.2, 0.6. In the estimation we use the true values of π and λ31 and
estimate (τ, κ, ω) using both the approximative estimation procedure in Section 5 and the
MCMC-EM procedure in Jensen (2005). Figure 3 shows the parameter estimates obtained
by pseudo likelihood versus the exact estimates obtained by MCMC-EM. The estimates
obtained by pseudo likelihood are accurate for a range of realistic parameter values. As
expected, the estimates are most accurate when the two sequences are not too distant, i.e.
the estimated branch-length is small.

11



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

tau

exact

ps
eu

do

2 4 6 8

2
4

6
8

kappa

exact

ps
eu

do

0 1 2 3 4

0
1

2
3

4

omega

exact

ps
eu

do

Figure 3: Comparison of estimates obtained by pseudo likelihood with estimates obtained by the
MCMC-EM procedure in Jensen (2005). Dotted lines represent values used for the simulated
data. Left : Branch-length τ . Middle : The transition/transversion ratio κ. Right : The non-
synonymous/synonymous rate ω.

5.4 Results for data example: human-mouse alignments

For the 348 human-mouse alignments in Section 3 we investigate the effect of including
CpG in the GY model and the REV model, respectively.

For the GY model Figure 4 shows the results of this comparison. For the model without
CpG we used π equal to total observed frequencies, and for the model with CpG we used π, λ
estimated in Section 4 under the model λ31 = 0.5λ12 = 0.5λ23. We see that the differences
in the parameter estimates are not large, but in general the transition/transversion ratio κ
is slightly increased when including CpG (79.6% of cases), the non-synonymous/synonymous
rate ω is slightly decreased (92.8% of cases) and the branch length parameter τ is slightly
decreased (87.1% of cases).

The log-likelihood from (5.4) is increased for 71.6% of the alignments, and decreased
for the remaining ones, when including CpG; the average increase in the log-likelihood is
2.20.

The REV model has too many parameters to be fitted on a single short alignment.
We therefore consider a model where individual alignments follow the same REV model,
but have individual branch lengths. The results obtained are that the branch length is
decreased (78.4% of cases) when including CpG. Also, the log-likelihood is increased for
75% of the alignments when including CpG; the average increase in the log-likelihood is
2.90.

In Figure 5 we compare the total log-likelihood for the different models. In addition
to the models discussed previously, we also consider the model where all alignments follow

12
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Figure 4: Comparison for the GY model with and without CpG effect. Left : The transi-
tion/transversion ratio κ. Middle : the non-synonymous/synonymous rate ω. Right : branch-
length τ .

the same REV model, with and without CpG effect. From Figure 5 it is clear that including
CpG results in a remarkable total increase in the log-likelihood for all three types of models.
Another striking observation is the poor performance of the GY model with gene-specific
parameters (where the total number of parameters is 3×348 = 1044), compared to the REV
model (263 parameters) and the REV model with individual branch-length parameters
(263 + 348 − 1 = 610 parameters). This seems to suggest that it is more important to
model the overall substitution patterns of many genes compared to modeling individual
gene specific substitution patterns. That result may throw some doubts on the routine
use of the GY model as the standard codon model, but we note that the main use of
the GY model has been to detect genes with an unusual substitution pattern, i.e. ω > 1
corresponding to positive selection. Finally, we note that here model comparison is used in
a somewhat informal way, since most of the models compared are not nested. However, we
believe that the conclusions from the comparison are still valid, due to the large differences
in likelihood.

6 Discussion

We have provided a pseudo-likelihood method for inference in codon models with CpG

effects, which should make these models much more useful in practice. The method is very
accurate for two sequences and for the range of parameter values in the data set we have
considered.

The pseudo-likelihood function (5.4) can be extended to multiple species, and here
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Figure 5: Log-likelihood values for three types of models, with and without CpG effects : The gen-
eral reversible model, assuming same model for all genes (REV); The general reversible model, but
allowing gene specific branch length (REV*); The Goldman and Yang model with all parameters
being gene specific (GY).

we discuss the extension to three sequences. Assume that we have observed three codon
sequences x = (x1, . . . , xn), y = (y1, . . . , xn) and z = (z1, . . . , zn), and assume that the pa-
rameters π and λ in the stationary distribution have already been estimated from sequence
x. We will denote the unobserved sequence at the inner node v = (v1, . . . , vn). Following
the derivation in Section 5.1 the pseudo likelihood given x becomes

Lp(Q; ν) =
∏

I

∏

a,b,c

(

∑

cv,gv

∑

d

Lcx,gx;cv,gv(d | a)Lcv,gv;cy,gy(b | d)Lcv,gv;cz,gz(c | d)

× P (cv | cx, cy, cz)P (gv | gx, gy, gz)
)νI(a,b,c)

,

where I = (cx, gx, cy, gy, cz, gz) ∈ {0, 1}6, νI(a, b, c) is the three dimensional array consisting
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of observed codon substitutions given flanking situation I, and the functions Lcx,gx;cv,gv ,
Lcv,gv;cy,gy and Lcv,gv;cz,gz are as in (5.3). Furthermore,

P (cv|cx, cy, cz) = P (1C(v
3
k) = cv | 1C(x

3
k) = cx, 1C(y

3
k) = cy, 1C(z

3
k) = cz)

is the probability of presence (cv = 1) or absence (cv = 0) of a C at the third position at the
inner node given the third positions at the leaves, and P (gv|gx, gy, gz) is similarly defined, as
the probability of presence (gv = 1) or absence (gv = 0) of a G at he first position at the inner
node given the first positions at the leaves. In practice we will approximate P (cv|cx, cy, cz)
and P (gv|gx, gy, gz) by estimating parameters under for example an independent nucleotide
site model, and calculating these probabilities under this model.

An explanation of CpG effect in vertebrates is given by the CpG-methylation-deamination
process; which is a non-reversible phenomenon. Non-reversible context dependent nu-
cleotide models are considered in Arndt, Burge and Hwa (2003), Lunter and Hein (2004)
and Hwang and Green (2004). It seems worth studying non-reversible context dependent
models for codons, and develop analytically approximative inference methods either along
the lines in this paper or along the lines in Lunter and Hein (2004).

Codon models with context dependencies arising from global properties of the sequence,
such as dependence among codons due to tertiary structure of the proteins (Robinson,
Jones, Kishino, Goldman and Thorne, 2003) are not covered by the techniques in this
paper, since we only consider neighboring dependence. Analytically tractable inference
techniques for such models still need to be developed.

Acknowledgements

The authors wish to thank Mikkel Schierup for encouragement and support throughout this
project. Ole F. Christensen acknowledges financial support from SJVF grant 2052-01-0032.

Appendix A: Normalizing constant for stationary distribution

In order to calculate the normalizing constant Z(λ, π) in (2.3) we write the stationary
distribution as a Markov chain along the sequence and apply Jensen and Pedersen (2000)
Section 4. First we rewrite the stationary measure

P (x) =
1

Z
πx1

λ
2×1CG(x1

1,x2
1)

12 λ
2×1CG(x2

1,x3
1)

23

[

n
∏

k=2

πxk
λ

2×1CG(x1
k
,x2

k
)

12 λ
2×1CG(x2

k
,x3

k
)

23 λ
2×1CG(x3

k−1
,x1

k
)

31

]

=
1

Z
φ(x1)

n
∏

k=2

S(xk−1, xk),

with obvious definitions of φ(x1) and S(xk−1, xk). Now let s be the largest eigenvalue of S
and r and l the corresponding right and left eigenvectors so that for all a we have

∑

b

S(a, b)r(b) = sr(a),
∑

b

S(b, a)l(b) = sl(a).
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If we normalize l such that
∑

b l(b)r(b) = 1 it follows from Jensen and Pedersen (2000)
Section 4 that we can approximate Z by

Z ≈ sn−1
∑

a,b

r(a)

r(b)
φ(a)l(b)r(b)

= sn−1
(

∑

a

r(a)φ(a)
)(

∑

b

l(b)
)

.

Appendix B: Formula for the branch-length parameter

As noted in Section 2 the branch-length parameter τ is not easily expressed in terms of the
other parameters in the model, and we here derive an approximation. The branch-length
parameter τ is defined as the average number of substitutions per codon, and for the model
with CpG dependence, the branch length is

τ =
1

n

∑

x=(x1,...,xn)

n
∑

j=1

∑

x̃j

P (x)γ(x̃j ; x
3
j−1, jk, x

1
j+1),

=
1

n

n
∑

j=1

∑

x1,...,xn

φ(x1)

n
∏

k=2

S(xk−1, xk)
∑

x̃j

Q1C(x3
j−1

)1G(x1
j+1

)(xj , x̃j)/Z

=
1

n

n
∑

j=1

ψj ,

where Qcg is defined in (5.2) and φ(a) and S(a, b) are defined as in Appendix A, and with
an obvious definition of ψj . Dividing the sum into three parts concerning (x1, . . . , xj−2),
(xj−1, xj , xj+1) and (xj+2, . . . , xn), respectively, we get

ψj =
∑

x1,...,xn

φ(x1)

j−1
∏

k=2

S(xk−1, xk)S(xj−1, xj)S(xj, xj+1)
∑

x̃j

Q1C(x3
j−1

)1G(x1
j+1

)(xj , x̃j)

×
n

∏

k=j+2

S(xk−1, xk)/Z.

Making a similar approximation as in Appendix A we obtain

ψj ≈
∑

x1,xj−1,xj ,xj+1,xn

sj−2r(x1)φ(x1)l(xj−1)S(xj−1, xj)S(xj, xj+1)
∑

x̃j

Q1C(x3
j−1

)1G(x1
j+1

)(xj , x̃j)

× sn−j−1r(xj+1)l(xn)/(sn−1
∑

a,b

r(a)φ(a)l(b))

=
∑

xj−1

l(xj−1)
∑

xj ,xj+1

S(xj−1, xj)S(xj , xj+1)r(xj+1)
∑

x̃j

Q1C(x3
j−1

)1G(x1
j+1

)(xj , x̃j)/s
2.
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This term is independent of j, and hence we obtain

τ ≈
∑

a1

l(a1)
∑

a2,a3

S(a1, a2)S(a2, a3)r(a3)
∑

b

Q1C(a3
1)1G(a1

3)(a2, b)/s
2.

Appendix C: E-step for inhomogeneous Markov model

Here we derive the E-step for estimating substitution rate matrices for an inhomoge-
neous reversible continuous time Markov process. Observations are n∗ independent pairs
(xk, yk), k = 1, . . . , n∗, of a continuous time Markov process with rate matrix

Q∗(A,B, t) =

{

Q1(A,B) 0 ≤ t ≤ 1/2
Q2(A,B) 1/2 < t ≤ 1

(C.1)

so that the continuous time Markov chain changes rate matrix at time 1/2 from Q1 to Q2.
We assume that Q1 and Q2 are reversible with stationary distribution π and η, respectively.

Suppose the Markov chain at site k experience mk substitutions. Denote the substi-
tution times tk,` and the new states sk,`, ` = 1, . . . , mk. With sk,0 = xk, sk,mk

= yk and
tk,0 = 0 the likelihood of observing the complete data given x is,

Lc(Q
∗) =

n∗

∏

k=1

({mk
∏

`=1

Q∗(sk,`−1, sk,`, tk,`)e
R tk,`
tk,`−1

Q∗(sk,`−1,sk,`−1,t)dt
}

e
R

1

tk,mk

Q∗(yk,yk,t)dt
)

.

In the E-step we calculate the function

G(Q∗;Q∗
0) = EQ∗

0
[logLc(Q

∗) | x, y] (C.2)

=
∑

a,b

ν∗(a, b)
∑

A,B:A 6=B

EQ∗

0

[ mk
∑

`=1

1{sk,`−1=A,sk,`=B} logQ∗(A,B, tk,`)
∣

∣xk = a, yk = b

]

+
∑

A

EQ∗

0

[mk+1
∑

`=1

1{sk,`−1=A}

∫ tk,`

tk,`−1

Q∗(A,A, t)dt
∣

∣xk = a, yk = b

]

,

where the expectation is with respect to (mk, tk,1, . . . , tk,mk−1, sk,1 . . . , sk,mk−1), and where
ν∗ is the substitution table based on (xk, yk), k = 1, . . . , n∗.

Note that for A 6= B we have

EQ∗

0

[ mk
∑

`=1

1{sk,`−1=A,sk,`=B} logQ∗(A,B, tk,`)
∣

∣

∣
xk = a, yk = b

]

=

∫ 1

0

logQ∗(A,B, t)P0(0, t, a, A)Q∗
0(A,B, t)P0(t, 1, B, t)dt/P0(0, 1, a, b)

= logQ1(A,B)Q1
0(A,B)

∫ 1/2

0
P0(0, t, a, A)P0(t, 1, B, b)dt

P0(0, 1, a, b)

+ logQ2(A,B)Q2
0(A,B)

∫ 1

1/2
P0(0, t, a, A)P0(t, 1, B, b)dt

P0(0, 1, a, b)
,
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and similarly we obtain

EQ∗

0

[mk+1
∑

`=1

1{sk,`−1=A}

∫ tk,`

tk,`−1

Q∗(A,A, t)dt
∣

∣

∣
xk = a, yk = b

]

=

∫ 1

0

Q∗(A,A, t)P0(0, t, a, A)P0(t, 1, A, b)dt/P0(0, 1, a, b)

= Q1(A,A)

∫ 1/2

0
P0(0, t, a, A)P0(t, 1, A, b)dt

P0(0, 1, a, b)
+Q2(A,A)

∫ 1

1/2
P0(0, t, a, A)P0(t, 1, A, b)dt

P0(0, 1, a, b)
.

Therefore (C.2) takes the form

G(Q∗;Q∗
0) =

∑

A,B:A 6=B

logQ1(A,B)w1(A,B) +
∑

A

Q1(A,A)w1(A,A)

+
∑

A,B:A 6=B

logQ2(A,B)w2(A,B) +
∑

A

Q2(A,A)w2(A,A), (C.3)

where

w1(A,B) =
∑

a,b

ν∗(a, b)Q1
0(A,B)

∫ 1/2

0
P0(0, t, a, A)P0(t, 1, B, b)dt

P0(0, 1, a, b)
, (C.4)

w1(A,A) =
∑

a,b

ν∗(a, b)

∫ 1/2

0
P0(0, t, a, A)P0(t, 1, B, b)dt

P0(0, 1, a, b)
, (C.5)

and with w2(A,B) and w2(A,A) defined similarly with the integral being from 1/2 to 1.
We now explain how to calculate the denominator in (C.4) and (C.5). For convenience

we drop the subscript. Firstly note that

P (0, 1, a, b) =
∑

k

P (0, 1/2, a, k)P (1/2, 1, k, b). (C.6)

Remember thatQ1 is reversible with stationary distribution π. Let V be the real orthogonal
matrix with eigenvectors as columns and Dλ the diagonal matrix of eigenvalues of the
symmetric matrix D

1/2
π Q1D

−1/2
π . It follows that

P (0, t) = exp(Q1t) = D−1/2
π V exp(tDλ)V

TD1/2
π , 0 ≤ t ≤ 1/2.

Remember thatQ2 is reversible with stationary distribution η. Let U be the real orthogonal
matrix with eigenvectors as columns and Dµ the diagonal matrix of eigenvalues of the

symmetric matrix D
1/2
η Q2D

−1/2
η . It follows that

P (1/2, 1/2 + t) = exp(Q2t) = D−1/2
η U exp(tDµ)UTD1/2

η , 0 ≤ t ≤ 1/2.

Now we can find (C.6) and thereby the denominator in (C.5) and (C.4).
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Now consider the nominator in (C.4) and (C.5). Note that for 0 ≤ t ≤ 1/2 we have

P (t, 1, B, b) =
∑

k

P (t, 1/2, B, k)P (1/2, 1, k, b)

=
( ηb

πB

)1/2 ∑

l

∑

m

VBlUbme
(λl+µm)/2e−tλl

∑

k

(πk

ηk

)1/2
VklUkm,

and we get

∫ 1/2

0

P (0, t, a, A)P (t, 1, B, b)dt

=

∫ 1/2

0

{

∑

j

(πA

πa

)1/2

Vaj exp(tλj)VAj

}

×
{( ηb

πB

)1/2 ∑

l

∑

m

VBlUbme
(λl+µm)/2e−tλl

∑

k

(πk

ηk

)1/2

VklUkm

}

dt

=
( πAηb

πaπB

)1/2 ∑

j

VajVAj

∑

l

∑

m

VBlUbme
µm/2Jjl

∑

k

(πk

ηk

)1/2

VklUkm, (C.7)

where

Jjl =

{

1
2
exp(λl/2) if λj = λl

(exp(λj/2) − exp(λl/2))/(λj − λl) if λj 6= λl.

Fast implementation of (C.7) is achieved by first calculating

Ybk =
∑

m

Ubme
1µm/2Ukm, Zbl =

∑

k

Ybk

(πk

ηk

)1/2
Vkl.

Then
∫ 1/2

0

P (0, t, a, A)P (t, 1, B, b)dt =
( πAηb

πaπB

)1/2 ∑

n

VanVAn

∑

l

VBlZblJnl.
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