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Bicontinuity of the Upsilon transformations

Ole E. Barndorff-Nielsen
∗†

and Steen Thorbjørnsen
†‡

Abstract

In the papers [BT3] and [BT4], the authors introduced and studied one-to-one mappings
Υ and Υα (α ∈ ]0, 1[) from the class ID(∗) of infinitely divisible probability measures on
R into itself. In particular it was proved that these mappings are continuous, when ID(∗)
is endowed with the topology corresponding to weak convergence. In the present note we
prove that the Υ-mappings are homeomorphisms onto their ranges, which are closed subsets
of ID(∗).

1 Introduction.

The paper [BT3] introduced a mapping Υ: ID(∗) → ID(∗), where ID(∗) denotes the
class of infinitely divisible probability measures on the real line. (Here the ∗ refers to
the usual convolution of probability measures). For a measure µ in ID(∗), Υ(µ) may be
characterized as the measure in ID(∗) satisfying

CΥ(µ)(y) =

∫ ∞
0

Cµ(yx)e−x dx, (y ∈ R), (1.1)

where, for any measure ν from ID(∗), Cν denotes the (classical) cumulant transform of
ν, i.e. the logarithm of the characteristic function of ν.

As consequences of (1.1), the mapping Υ can be seen to have the following properties

(i) Υ is injective, but not onto.

(ii) For any measures µ, ν in ID(∗), Υ(µ ∗ ν) = Υ(µ) ∗Υ(ν).

(iii) For any measure µ in ID(∗) and any constant c in R, Υ(Dcµ) = DcΥ(µ).

(iv) For any constant c in R, Υ(δc) = δc (where δc is the Dirac measure at c).
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(v) Υ is continuous with respect to weak convergence.

In (ii) above, Dcµ is the Dirac measure at 0, when c = 0, and, if c 6= 0, it is the measure
given by Dcµ(B) = µ(c−1B), for any Borel-set B. It is immediate from the properties (ii)-
(iv) that Υ preserves the concepts of stability and selfdecomposability. In fact, one may
verify (cf. [BT3]) that Υ(S(∗)) = S(∗), where S(∗) denotes the class of stable distributions
on R and, in the subsequent paper [BT4] we proved that Υ maps the class L(∗) of
selfdecomposable distributions on R onto the subclass T(∗); the so-called Thorin class.

The results mentioned above indicate that Υ has intrinsic interest within classical prob-
ability. The original motivation for introducing Υ was, however, its connection to free
probability. Thus, Υ has the property that for any measure µ in ID(∗),

CΥ(µ)(y) = CΛ(µ)(iy), (y ∈ R), (1.2)

where Cν denotes the free cumulant transform of a probability measure ν, and Λ is the
Bercovici-Pata bijection from ID(∗) onto its counterpart ID(�) in free probability. We
refer to [BT1] for background material on free probability theory but mention at the same
time, that there will be no direct use of free probability in the present note.

Another feature of Υ, which has lead to further studies (see e.g. [BNMS]), is the fact,
established in [BT3], that Υ(µ) may be realized as the distribution of the stochastic
integral ∫ 1

0

− log(1− t) dXt, (1.3)

where (Xt) is the Lévy process satisfying that the distribution of X1 is µ.

In the paper [BT4] we also introduced a one-parameter family (Υα)α∈[0,1] of mappings
Υα : ID(∗)→ ID(∗), such that Υ0 = Υ and Υ1 is the identity mapping on ID(∗). For each
α, the mapping Υα has properties similar to those mentioned above for Υ; in particular
it has a realization in terms of a stochastic integral similar to (1.3).

It was proved in [BT1] that the Bercovici-Pata bijection Λ: ID(∗)→ ID(�) is a homeo-
morphism with respect to weak convergence. In view of (1.2), it is natural to ask whether
property (v) above can be strengthened to the statement that Υ is a homeomorphism
onto its range (which is the so-called Goldie-Steutel-Bondesson class, B(∗), as proved in
[BNMS]). In Section 3 below, we answer this question in the affirmative. We prove fur-
thermore, in Section 4, that for each α in ]0, 1[, the mapping Υα : ID(∗)→ ID(∗) is also
a homemorphism onto its range, and the range is a closed subset of ID(∗) with respect to
weak convergence. The arguments in Section 4 actually work in the case α = 0 as well.
We have chosen, however, to treat this case separately in Section 3, as this is the case of
most interest, and since the involved calculations in this case are much more direct. In
Section 2, we provide some background material on the mappings Υ and Υα.

2



2 Background.

Lévy-Khintchine representations

A probability measure µ on R belongs to the class ID(∗) of infinitely divisible probability
measures, if there exists, for each positive integer n, a probability measure µn on R, such
that

µ = µn ∗ µn ∗ · · · ∗ µn︸ ︷︷ ︸
n terms

.

The measures in ID(∗) are characterized as those probability measures µ for which the
cumulant transform Cµ (i.e., the logarithm of the characteristic function) admits the
Lévy-Khintchine representation:

Cµ(u) = iηu− 1
2
au2 +

∫
R

(
eiut − 1− iut1[−1,1](t)

)
ρ(dt), (u ∈ R), (2.1)

where η is a real constant, a is a non-negative constant and ρ is a measure on R satisfying
the conditions:

ρ({0}) = 0 and

∫
R

min{1, t2} ρ(dt) <∞,

i.e. ρ is a Lévy measure. The triplet (a, ρ, η) is uniquely determined and is called the
characteristic triplet for µ.

In the present paper, we shall often work with the classical version of the Lévy-Khintchine
representation, namely

Cµ(u) = iγu+

∫
R

(
eiut − 1− iut

1 + t2

)1 + t2

t2
σ(dt), (u ∈ R), (2.2)

where γ is a real constant and σ is a finite measure on R. Again, the pair (γ, σ) is uniquely
determined, and it is termed the generating pair for µ.

The relationship between the two representations (2.1) and (2.2) is as follows:

a = σ({0}),

ρ(dt) =
1 + t2

t2
· 1R\{0}(t) σ(dt),

η = γ +

∫
R

t
(

1[−1,1](t)−
1

1 + t2

)
ρ(dt).

(2.3)

The mapping Υ.

In the paper [BT3], we defined the mapping Υ: ID(∗)→ ID(∗) as follows:
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2.1 Definition. Let µ be a probability measure in ID(∗) with characteristic triplet
(a, ρ, η). Then Υ(µ) is the measure in ID(∗) with generating triplet (2a, ρ̃, η̃), where

η̃ = η +

∫ ∞
0

(∫
R

t
(
1[−1,1](t)− 1[−x,x](t)

)
Dxρ(dt)

)
e−x dx (2.4)

and

ρ̃ =

∫ ∞
0

(Dxρ)e−x dx. (2.5)

By a tedious but straightforward calculation (see [BT3]), one may verify that the Lévy-
Khintchine representation for Υ(µ) takes the form:

CΥ(µ)(y) = iηy − ay2 +

∫
R

[
1

1−iyt
− 1− iyt1[−1,1](t)

]
ρ(dt), (y ∈ R), (2.6)

where (a, ρ, η) is the characteristic triplet for µ. As the right hand side of (2.6) is exactly
the free Lévy-Khintchine representation for CΛ(µ) (see [BT2]), that same calculation also
verifies the relation (1.2).

2.1 The mappings Υα.

For each α in [0, 1], we introduced in [BT4] the mapping Υα : ID(∗)→ ID(∗) as follows:

2.2 Definition. For a probability measure µ in ID(∗) with characteristic triplet (a, ρ, η),
we let Υα(µ) denote the measure in ID(∗) with characteristic triplet (cαa, ρ̃α, ηα), where

ρ̃α =

∫ ∞
0

(Dxρ)ζα(x) dx, (2.7)

and

cα =
2

Γ(2α + 1)
,

while

ηα =
η

Γ(α + 1)
+

∫ ∞
0

(∫
R

t
(
1[−1,1](t)− 1[−x,x](t)

)
Dxρ(dt)

)
ζα(x) dx. (2.8)

For α in ]0, 1[, the function ζα appearing in (2.7) and (2.8) is the probability density given
by

ζα(x) = α−1x−1−1/ασα(x−1/α),

where σα denotes the density function of the positive stable law with index α and Laplace
transform exp(−θα). For α = 0, ζα(x) = e−x, and for α = 1, ζα(x) dx should be inter-
preted as the Dirac measure at 1. With these conventions, it is apparent that Υ0 = Υ,
whereas Υ1 is the identity mapping on ID(∗). Therefore the family (Υα)α∈[0,1] provides a
kind of smooth interpolation between Υ and the identity mapping on ID(∗).
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Based on the definition of Υα given above, one may verify (see [BT4]) that the Lévy-
Khintchine representation for Υα(µ) is given by

CΥα(µ)(y) =
iηy

Γ(α + 1)
− 1

2
cαay

2 +

∫
R

(
Eα(iyt)− 1− iy t

Γ(α+1)
1[−1,1](t)

)
ρ(dt), (y ∈ R),

(2.9)
where (a, ρ, η) is the characteristic triplet for µ and Eα is the Mittag-Leffler function given
by

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, (2.10)

which enters the picture because of the relationship

Eα(it) =

∫ ∞
0

eitxζα(x) dx, (t > 0). (2.11)

Combining (2.9) and (2.11), one obtains the identity (cf. formula (5.5) in [BT4]):∫ ∞
0

xkζα(x) dx =
k!

Γ(kα + 1)
, (k ∈ N0). (2.12)

3 Bicontinuity of Υ.

3.1 Lemma. Let µ be a measure in ID(∗) with generating pair (γ, σ). We then have

CΥ(µ)(y) = iγy +

∫
R

iy(t+ iy)

1− iyt
σ(dt), (y ∈ R).

Proof. Let (a, ρ, η) be the characteristic triplet for µ. According to (2.6) we have for any
y in R that

CΥ(µ)(y) = iηy − ay2 +

∫
R

[
1

1−iyt
− 1− iyt1[−1,1](t)

]
ρ(dt)

= iy
(
η +

∫
R

t
(

1
1+t2
− 1[−1,1](t)

)
ρ(dt)

)
− ay2 +

∫
R

[
1

1−iyt
− 1− iyt

(1+t2)

]
ρ(dt)

= iγy − σ({0})y2 +

∫
R\{0}

[
1

1−iyt
− 1− iyt

(1+t2)

]
1+t2

t2
σ(dt),

(3.1)

where we have used the relationship between (a, ρ, η) and (γ, σ) given in (2.3). Note here
that (

1
1−iyt

− 1− iyt
(1+t2)

)
1+t2

t2
= iyt

(
1

1−iyt −
1

1+t2

)
1+t2

t2
= iy

t

(
1+t2

1−iyt
− 1
)

= iy(t+iy)
1−iyt

,

which combined with (3.1) yields that

CΥ(µ)(y) = iγy +

∫
R

iy(t+ iy)

1− iyt
σ(dt),

as desired. �
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3.2 Proposition. Let (µn) be a sequence of measures from ID(∗) with generating pairs
(γn, σn).

(i) If limn→∞CΥ(µ)(y0) exists in C for some non-zero real number y0, then

sup
n∈N

σn(R) <∞.

(ii) Assume that there exist ε > 0 such that

C(y) := lim
n→∞

CΥ(µ)(y) exists in C for all y in [0, ε[.

If the limit function y 7→ C(y) is continuous at 0, then the sequence (σn) is tight.

Proof.

(i) Note first that for any y in R,

Re
( iy(t+ iy)

1− iyt

)
=
−y2(1 + t2)

1 + t2y2
,

and hence Lemma 3.1 yields that

−Re
(
CΥ(µn)(y)

)
=

∫
R

y2(1 + t2)

1 + t2y2
σn(dt),

for any n in N. For fixed y, note next that

inf
t∈R

y2(1 + t2)

1 + y2t2
= min{1, y2}

and therefore ∣∣CΥ(µn)(y)
∣∣ ≥ ∫

R

min{1, y2}σn(dt) = min{1, y2}σn(R).

Assume now that limn→∞CΥ(µn)(y0) exists in C for some y0 in R\{0}. Then by the
estimate above

sup
n∈N

σn(R) ≤ max{1, y−2} sup
n∈N

∣∣CΥ(µn)(y0)
∣∣ <∞,

as desired.

(ii) Assume that the limit function y 7→ C(y) is continuous at 0, and let δ > 0 be
given. Since C(0) = 0, we may choose y0 in ]0, ε[ such that |C(y0)| ≤ δ and, since
CΥ(µn)(y0)→ C(y0) as n→∞, we may subsequently choose N in N such that∣∣CΥα(µn)(y0)

∣∣ ≤ 2δ, whenever n ≥ N.

6



As in the proof of (i), we have for each n in N that

−Re
(
CΥ(µn)(y0)

)
=

∫
R

y2
0(1 + t2)

1 + t2y2
0

σn(dt), (3.2)

and here
y2
0(1+t2)

1+t2y2
0
→ 1 as |t| → ∞. Hence, we may choose T1 > 0 such that

y2
0(1 + t2)

1 + t2y2
0

≥ 1

2
, whenever t ∈ [−T1, T1]c.

It then follows from (3.2) that∣∣CΥ(µn)(y0)
∣∣ ≥ ∫

[−T1,T1]c

y2
0(1 + t2)

1 + t2y2
0

σn(dt) ≥ 1
2
σn([−T1, T1]c),

for all n in N, and consequently

σn([−T1, T1]c) ≤ 2
∣∣CΥ(µn)(y0)

∣∣ ≤ 4δ, whenever n ≥ N .

Since a finite family of finite measures is automatically tight, we may subsequently
choose T2 > 0, such that also

max
1≤n<N

σn([−T2, T2]c) ≤ 4δ.

Setting T = max{T1, T2}, it follows that

sup
n∈N

σn([−T, T ]c) ≤ 4δ,

and since δ > 0 was arbitrary, we have proved that (σn) is tight. �

Before stating the main result about the mapping Υ, we recall that for probability mea-
sures µ, µ1, µ2, µ3, . . . on R, we use the notation “µn

w→ µ as n→∞” to express that the
sequence (µn) is weakly convergent to µ.

3.3 Theorem. Let (µn) be a sequence of measures in ID(∗) and assume that

Υ(µn)
w−→ ν, as n→∞,

for some measure ν in ID(∗). Then there exists a measure µ in ID(∗) such that

µn
w−→ µ, as n→∞ and ν = Υ(µ).

Proof. For each n, let (γn, σn) denote the generating pair for µn. Since Υ(µn)
w→ ν as

n→∞, we have
CΥ(µn)(y) −→ Cν(y), (y ∈ R)

(cf. [Sa, Lemma 7.7]), where Cν is continuous at 0. Hence Proposition 3.2 asserts that

(σn) is tight and sup
n∈N

σn(R) <∞,
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so in particular the family {σn | n ∈ N} is conditionally compact (cf. [GK, §9, Theorem 3
bis]).

The main task of the proof is to show the existence of a real number γ and a finite measure
σ on R, such that

lim
n→∞

γn = γ, and σn
w−→ σ, as n→∞.

For this, it suffices to show the existence of γ and σ, such that any subsequence (γn′ , σn′)
of (σn, γn) has a subsequence (γn′′ , σn′′), which converges (coordinate-wise) to (γ, σ). So
let (γn′ , σn′) be an arbitrary subsequence of (γn, σn). Since the family {σn | n ∈ N} is
conditionally compact, there exists a subsequence (σn′′) of (σn′) and a finite measure σ
on R, such that σn′′

w→ σ. By Lemma 3.1, we have for each n in N that

CΥ(µn)(y) = iγny +

∫
R

iy(t+ iy)

1− iyt
σn(dt), (y ∈ R).

For fixed y in R, the function t 7→ iy(t+iy)
1−iyt

is bounded and continuous, and hence∫
R

iy(t+ iy)

1− iyt
σn′′(dt) −→

∫
R

iy(t+ iy)

1− iyt
σ(dt), as n→∞.

Since also

iγn′′y +

∫
R

iy(t+ iy)

1− iyt
σn′′(dt) = CΥ(µn′′ )

(y) −→ Cν(y), as n→∞,

we conclude that the subsequence (γn′′) must converge to some real number γ, which then
has to satisfy the equation:

Cν(y) = iγy +

∫
R

iy(t+ iy)

1− iyt
σ(dt), for all y in R. (3.3)

Now, let µ be the measure in ID(∗) with generating pair (γ, σ). Then by Lemma 3.1 and
(3.3),

CΥ(µ)(y) = Cν(y), (y ∈ R),

and hence Υ(µ) = ν. Since Υ is injective, this implies, in addition, that the pair (γ, σ)
is uniquely determined (as the generating pair for Υ−1(ν)). In summary, we have singled
out a real number γ and a finite measure σ on R with the property that any subsequence
of (γn, σn) has a subsequence converging (coordinate-wise) to (γ, σ). As mentioned above,
this means that the whole sequence (γn, σn) converges (coordinate-wise) to (γ, σ). Ap-
pealing finally to Gnedenko’s Theorem (cf. [GK, §19, Theorem 1]), we may deduce that
µn

w→ µ, as n→∞, and this completes the proof. �

3.4 Corollary. Let B(∗) denote the range of the mapping Υ, i.e. B(∗) = Υ(ID(∗)).
Then B(∗) is a closed subset of ID(∗) with respect to weak convergence, and the mapping
Υ: ID(∗)→ B(∗) is a homeomorphism with respect to weak convergence.
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Proof. It was proved in [BT3] that Υ is continuous. The remaining assertions follow
immediately from Theorem 3.3. �

3.5 Remark. As previously mentioned, it was proved in [BNMS] that B(∗) is the so-
called Goldie-Steutel-Bondesson class. As this class is, by definition, closed in the topology
for weak convergence, the cited result from [BNMS] also shows that B(∗) is closed with
respect to weak convergence.

4 Bicontinuity of Υα, α ∈ ]0, 1[.

Recall that Eα denotes the Mittag-Leffler function (cf. (2.10)).

4.1 Lemma. Let µ be a measure in ID(∗) with characteristic triplet (γ, σ). Then for
any α in ]0, 1[ we have

CΥα(µ)(y) =
iγy

Γ(α + 1)
+

∫
R

gα(t, y)σ(dt), (y ∈ R),

where gα : R× R→ C is the function given by

gα(t, y) =

{[
Eα(iyt)− 1− iyt

Γ(α+1)(1+t2)

]
1+t2

t2
, if t 6= 0,

−1
2
cαy

2, if t = 0,
(4.1)

and cα = 2
Γ(2α+1)

.

Proof. Let (a, ρ, η) be the characteristic triplet for µ. According to (2.9) we have for any
y in R that

CΥα(µ)(y) =
iηy

Γ(α + 1)
− 1

2
cαay

2 +

∫
R

[
Eα(iyt)− 1− iyt

Γ(α+1)
1[−1,1](t)

]
ρ(dt)

=
iy

Γ(α + 1)

(
η +

∫
R

t
(

1
1+t2
− 1[−1,1](t)

)
ρ(dt)

)
− 1

2
cαay

2

+

∫
R

[
Eα(iyt)− 1− iyt

Γ(α+1)(1+t2)

]
ρ(dt)

=
iγy

Γ(α + 1)
− 1

2
cασ({0})y2 +

∫
R\{0}

[
Eα(iyt)− 1− iyt

Γ(α+1)(1+t2)

]
1+t2

t2
σ(dt)

=
iγy

Γ(α + 1)
+

∫
R

gα(t, y)σ(dt),

where we have used the relationship between (a, ρ, η) and (γ, σ) given in (2.3). �

4.2 Lemma. Let α be a number in ]0, 1[, and consider the Mittag-Leffler function Eα.
Consider further the constant cα = 2

Γ(2α+1)
. We then have

9



(i) For any real number y,[
Eα(iyt)− 1− iyt

Γ(α+1)(1+t2)

]
1+t2

t2
−→ −1

2
cαy

2 for |t| ↘ 0.

(ii) For any real number y,[
1− Re

(
Eα(iyt)

)]
1+t2

t2
−→ 1

2
cαy

2 for |t| ↘ 0.

(iii) For any y in R \ {0} we have

Eα(iyt) −→ 0, as |t| → ∞.

(iv) For any y in R \ {0} we have

inf
t∈R\{0}

[
1− Re

(
Eα(iyt)

)]
1+t2

t2
> 0.

Proof.

(i) We recall first that s 7→ Eα(is) is the characteristic function for ζα(x) dx (cf. (2.11)),
so that

Eα(iyt) =

∫ ∞
0

eiytxζα(x) dx =

∫ ∞
0

cos(ytx)ζα(x) dx+ i

∫ ∞
0

sin(ytx)ζα(x) dx

for any t, y in R. Recalling further that
∫∞

0
xkζα(x) dx = k!

Γ(kα+1)
for all k in N0 (cf.

(2.12)), we thus find that[
Eα(ity)− 1− ity

Γ(α+1)(1+t2)

]
1+t2

t2

= (1 + t2)

∫ ∞
0

[
cos(ytx)−1

t2

]
ζα(x) dx+ i

∫ ∞
0

[
sin(ytx)− ytx

(1+t2)

]
1+t2

t2
ζα(x) dx.

(4.2)

By second order Taylor expansion we have for fixed x in R that

cos(ytx)− 1

t2
−→ −1

2
y2x2, as |t| ↘ 0,

and that ∣∣∣cos(ytx)− 1

t2

∣∣∣ ≤ 1
2
y2x2, for all t in R \ {0}.

Hence, by dominated convergence,

(1 + t2)

∫ ∞
0

[ cos(ytx)−1
t2

]
ζα(x) dx −→

t→0

∫ ∞
0

−1
2
x2y2ζα(x) dx = −1

2
y2

∫ ∞
0

x2ζα(x) dx

= −1
2
y2 2

Γ(2α + 1)
= −1

2
cαy

2,

(4.3)
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for each fixed y in R. Regarding the second term in (4.2), note first that for fixed x
in R and t in R \ {0}(

sin(ytx)− ytx

1 + t2

)1 + t2

t2
=

sin(ytx)− ytx
t2

+ sin(ytx).

By second order Taylor expansion, it thus follows that(
sin(ytx)− ytx

1 + t2

)1 + t2

t2
−→ 0, as |t| ↘ 0,

and that ∣∣∣( sin(ytx)− ytx

1 + t2

)1 + t2

t2

∣∣∣ ≤ 1
2
y2x2 + 1, (t ∈ R \ {0}).

Hence, by dominated convergence,∫ ∞
0

(
sin(ytx)− ytx

1 + t2

)1 + t2

t2
ζα(x) dx −→ 0, as |t| ↘ 0. (4.4)

Inserting (4.3) and (4.4) in (4.2), assertion (i) follows readily.

(ii) This statement follows immediately by taking real parts in (i).

(iii) According to [HTF, Formula (7), page 207], we have the estimate

Eα(z) =
−z−1

Γ(1− α)
+O

(
|z|−2

)
, for |z| → ∞, απ

2
< | arg(z)| ≤ π.

Since α ∈ ]0, 1[, it follows in particular that

Eα(is) =
is−1

Γ(1− α)
+O

(
s−2
)
, for |s| → ∞,

and (iii) follows.

(iv) According to (ii) and (iii) we have for any y in R \ {0} that

lim
t→0

[
1− Re

(
Eα(iyt)

)]
1+t2

t2
= 1

2
cαy

2 and lim
|t|→∞

[
1− Re

(
Eα(iyt)

)]
1+t2

t2
= 1.

Hence, by continuity, it suffices to show that[
1− Re

(
Eα(iyt)

)]
1+t2

t2
> 0, (t, y ∈ R \ {0}). (4.5)

But

1− Re
(
Eα(iyt)

)
=

∫ ∞
0

(
1− cos(ytx)

)
ζα(x) dx,

where (1− cos(ytx))ζα(x) ≥ 0 for all x, and since equality does not hold for almost
all x w.r.t. Lebesgue measure (assuming that t, y 6= 0), (4.5) follows readily. �
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4.3 Proposition. Let α be a fixed number in ]0, 1[ and, for each n in N, let µn be a
measure in ID(∗) with generating pair (γn, σn).

(i) If limn→∞CΥα(µn)(y0) exists in C for some y0 in ]0,∞[, then supn∈N σn(R) <∞.

(ii) Assume that there exists ε > 0 such that

C(y) := lim
n→∞

CΥα(µn)(y) exists in C for all y in [0, ε[.

If the limit function y 7→ C(y) is continuous at 0, then the sequence (σn) is tight.

Proof.

(i) For each n in N, it follows from Lemma 4.1 that

−Re
(
CΥα(µn)(y0)

)
=

∫
R

f(t)σn(dt), (4.6)

where f : R→ R is the function given by

f(t) =

{
[1− Re(Eα(iy0t))]

1+t2

t2
, if t 6= 0,

1
2
cαy

2
0, if t = 0.

(4.7)

According to Lemma 4.2, f is continuous and c0 := inft∈R f(t) > 0. By (4.6) it
follows that ∣∣CΥα(µn)(y0)

∣∣ ≥ ∫
R

f(t)σn(dt) ≥ c0σn(R),

for all n, and hence

sup
n∈N

σn(R) ≤ 1

c0

sup
n∈N

∣∣CΥα(µn)(y0)
∣∣ <∞,

assuming that limn→∞CΥα(µn)(y0) exists in C.

(ii) Assume that the limit function y 7→ C(y) is continuous at 0, and let δ > 0 be given.
Then we may choose y0 in ]0, ε[ such that |C(y0)| ≤ δ, and since CΥα(µn)(y0)→ C(y0)
as n→∞, we may subsequently choose N in N such that∣∣CΥα(µn)(y0)

∣∣ ≤ 2δ, whenever n ≥ N.

As in the proof of (i), we have for each n in N that

−Re
(
CΥα(µn)(y0)

)
=

∫
R

f(t)σn(dt), (4.8)

with f given in (4.7). By Lemma 4.2, Eα(iy0t)→ 0 as |t| → ∞, and hence we may
choose T > 0 such that

f(t) =
[
1− Re

(
Eα(iy0t)

)]1 + t2

t2
> 1

2
, for all t in [−T, T ]c.

12



Then, since 1− Re(Eα(iy0t)) ≥ 0 for all t, it follows from (4.8) that∣∣CΥα(µn)(y0)
∣∣ ≥ ∫

[−T,T ]c
f(t)σn(dt) ≥ 1

2
σn([−T, T ]c),

for all n in N, and consequently

σn([−T, T ]c) ≤ 2
∣∣CΥα(µn)(y0)

∣∣ ≤ 4δ, whenever n ≥ N.

Since any finite family of finite measures is automatically tight, it now follows as in
the proof of Proposition 3.2(ii) above, that the sequence (σn) is tight. �

4.4 Theorem. Let α be fixed number in ]0, 1[, and let (µn) be a sequence of measures
from ID(∗). Assume that

Υα(µn)
w−→ ν, as n→∞,

for some measure ν in ID(∗). Then there exists a measure µ in ID(∗) such that

µn
w−→ µ, as n→∞ and ν = Υα(µ).

Proof. The proof is similar to that of Theorem 3.3, and we shall not repeat all details.
For each n in N, let (γn, σn) denote the generating pair for µn. Since Υα(µn)

w→ ν as
n→∞, we have

lim
n→∞

CΥα(µn)(y) = Cν(y), (y ∈ R),

where Cν is continuous at 0. It follows thus from Proposition 4.3 that

(σn) is tight and sup
n∈N

σn(R) <∞,

and by [GK, §9, Theorem 3 bis] this implies that the family {σn | n ∈ N} is conditionally
compact. As in the proof of Theorem 3.3, we show the existence of a real number γ and
a finite measure σ on R such that

lim
n→∞

γn = γ and σn
w−→ σ, as n→∞.

For that, it suffices to verify the existence of (γ, σ) such that any subsequence (γn′ , σn′)
has a subsequence (γn′′ , σn′′) satisfying that

lim
n→∞

γn′′ = γ and σn′′
w−→ σ, as n→∞.

So let (γn′ , σn′) be a given subsequence of (γn, σn). Since the family {σn | n ∈ N} is
conditionally compact, there exists a subsequence (σn′′) and a finite measure σ on R, such
that σn′′

w→ σ as n→∞. Recall now from Lemma 4.1 that

CΥα(µn)(y) =
iγny

Γ(α + 1)
+

∫
R

gα(t, y)σ(dt), (y ∈ R),

13



where g : R × R → R is the function given in (4.1). For fixed y in R, it follows from (i)
and (iii) of Lemma 4.2 that the function t 7→ g(t, y) : R→ R is bounded and continuous,
and hence ∫

R

g(t, y)σn′′(dt) −→
∫
R

g(t, y)σ(dt) as n→∞,

for each fixed y in R. At the same time we have for each y in R that

iγny

Γ(α + 1)
+

∫
R

gα(t, y)σn(dt) = CΥα(µn)(y) −→
n→∞

Cν(y),

and hence we may conclude that γn′′ → γ as n→∞ for some real number γ, which then
has to satisfy the identity

iγy

Γ(α + 1)
+

∫
R

gα(t, y)σ(dt) = Cν(y), (4.9)

for each real number y. Now let µ be the measure in ID(∗) with generating pair (γ, σ).
Then by Lemma 4.1, formula (4.9) asserts that

CΥα(µ)(y) = Cν(y), (y ∈ R),

and hence Υα(µ) = ν. Since Υα is injective (cf. [BT4, Corollary 5.7]), this also means
that µ, and hence (γ, σ), is independent of the considered subsequences.

From this point, the proof is completed exactly as that of Theorem 3.3. �

4.5 Corollary. For each α in ]0, 1[, the full range Bα(∗) := Υα(ID(∗)) of Υα is a
closed subset of ID(∗) with respect to weak convergence. Furthermore, the bijection
Υα : ID(∗)→ Bα(∗) is a homeomorphism with respect to weak convergence.

Proof. It was proved in [BT4] that Υα is continuous with respect to weak convergence.
The remaining assertions are immediate consequences of Theorem 4.4 �
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