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ABSTRACT. Identifying the structure in genome sequences is one of the
principal challenges in modern molecular biology, and comparative ge-
nomics offers a powerful tool. In this paper we introduce a hidden Markov
model that allows a comparative analysis of multiple sequences related by
a phylogenetic tree. The model integrates structure prediction methods
for one sequence, statistical multiple alignment methods and phylogenetic
information and is applied to a variety of homologous sequences.
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1 Introduction

Structure identification of genome sequences is a central challenge in molecular biol-
ogy. Comparative genomics provides a powerful and general approach for identifying
functional elements such as genes. Natural selection implies that functional elements
should have a larger degree of conservation across related species than elements with
no function. The power of comparative genomics increases with the number of species,
and therefore the approach is likely to become increasingly important as more genomes
are being sequenced. The main purpose of this paper is to develop and apply statis-
tical approaches for systematic analysis of several related genomic sequences.

Hidden Markov models (HMMs) along the sequence have been successfully applied
to gene structure prediction in one sequence, cf. e.g. Burge and Karlin (1997) and
Krogh (1997). The one sequence HMMs partition a sequence into (at least) five parts:
one part representing the sequence before the gene, one representing the start of the
gene, one representing the inside of the gene, one representing the stop of the gene,
and one part representing the sequence after the gene. If the sequence is from an
eukaryotic organism the part of the sequence inside the gene is further divided into
alternating coding and noncoding parts (exons and introns).

Recently Pachter et al. (2002) and Meyer and Durbin (2002) have extended the
gene structure prediction HMMs for one sequence to two sequences. Their HMMs si-
multaneously predict the gene structure and align two homologous sequences, and the
transition and substitution probabilities of the models are determined from training
data. In order to extend the pair HMMs for simultaneous gene structure prediction
and alignment to multiple sequences the transition and substitution probabilities
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should be derived from the evolutionary relationship between the sequences. We
propose a model that integrates gene structure prediction, alignment methods and
phylogenetic information. The model is fully parametric and can in principle be ex-
tended to any number of homologous sequences. Further we develop a novel method
for parameter estimation based on the expectation maximisation (EM) algorithm and
moment equations.

In the before gene, after gene and intronic parts we assume that the evolution
from one sequence to the other follows the Thorne, Kishino, and Felsenstein (1991)
model. If an ancestral sequence S; has evolved to a sequence Sy the evolution can be
summarized in terms of an alignment of some of the letters in S; with some of the
letters in S5, in terms of deletions of some of the letters in S7, in terms of insertions
of some of the letters in S5, and in terms of substitutions of the aligned letters. The
TKF-model can be formulated as a hidden Markov model (HMM) along the sequence
with three hidden states corresponding to match (a pair of aligned letters), deletion,
or insertion of single nucleotides. The substitution probabilities are determined by
the Hasegawa, Kishino and Yano (1985) model, which involves parameters describing
nucleotide frequencies and the transition to transversion ratio.

In the coding part of the gene the sequences have also evolved according to the
TKF-model, but formulated on the codon level. Thus the hidden states corresponds
to match, deletion and insertion of nucleotide triplets. The substitution probabilities
are determined by the codon model of Goldman and Yang (1994). Besides parameters
of codon frequencies and the transition to transversion ratio the codon model also
distinguishes between non-synonymous and synonymous codon substitutions. The
start, stop, donor and acceptor site positions are modelled in terms of simple func-
tional signals.

Pedersen and Hein (2003) also predict gene structure in multiple related sequences,
but their HMM assumes that alignment of the sequences have already been estab-
lished. In this paper we extend Pedersen and Hein (2003) to perform gene finding and
alignment simultaneously and Pachter et al. (2002) and Meyer and Durbin (2002) to
treat more than two sequences.

In the three next sections of this paper we consider pairwise prokaryotic, pair-
wise eukaryotic and triplewise prokaryotic gene structure prediction. The parametric
hidden Markov models are described in detail and an EM-algorithm for parameter
estimation is developed. We also apply the suggested models to DNA sequence data.
The paper finishes with a discussion of extensions of the models to more than three
species.

2 Pairwise prokaryotic gene structure prediction

Let S; and S5 denote two observed homologous DNA sequences of lengths L; and Lo
from prokaryotic organisms. The ith nucleotide in sequence j is S;[i]. We use a hidden
Markov model (HMM) along the sequences to describe the evolutionary relationship
of the two sequences. A HMM consists of a set of hidden states that determine
the underlying (hidden) structure of the sequences. If the sequences contain one



common gene the hidden state sequence is modelled according to a Markov chain
with graphical representation shown in Figure 1. Here M, D, I denote match, delete
and insert states, and the indices B and A refers to before the gene and after the
gene. Further the states GeneStart and GeneStop denote the start and stop of the
gene, and Mg, D¢, I¢ denote the match, delete and insert codon states. The Begin state
initializes the Markov chain, and the End state is used to model the random length
of the sequences. In Section 2.1 we describe the transition probabilities between the
hidden states in detail.

Before Start Inside Stop After

Figure 1: States and transitions of the pair HMM for prokaryotic gene structure
prediction.

Each hidden state emits letters in the two sequences, and the number of letters
emitted by each state can be seen in Table 1. We use throughout the notation # for
the presence of a letter and — for no letter being present. In the before and after
gene states single nucleotides are matched, deleted or inserted, and in the remaining
states nucleotide triplets are matched, deleted or inserted. In Section 2.2 we describe
the emission probabilities from each hidden state in detail.

Mg, My | Dg, Dy | Ig, I, | GeneStart, M, GeneStop| Do | Ic

DO G 1[G

Table 1: Letters emitted from each hidden state. Here # denotes the presence of a
letter (nucleotide) and - denotes the absence of a letter. The End and Begin state do
not emit any letters.

2.1 Transition probabilities

In the three parts of the sequences corresponding to before the gene, the gene itself,
and after the gene, we assume that the sequences have evolved according to the
Thorne, Kishino, and Felsenstein (1991) model. In the TKF-model each letter in an
ancestral sequence develops independently of the other letters according to a birth and
death process with birth rate A and death rate p > \. This means that each ancestral
letter is deleted after an exponentially distributed waiting time with mean 1/u, and
while the letter is present it gives rise to new letters at the rate A\. New letters
are placed immediately to the right of the letter giving birth and is chosen from
the stationary distribution of the substitution process. We assume that the birth



and death rates are the same in the intergenic (before and after gene) regions of a
sequence.

If an ancestral sequence has evolved to a present sequence during a time span 7
the evolution can be summarized in terms of an alignment of some of the letters in the
ancestral sequence with some of the letters in the present sequence (survival of these
letters in the birth and death process), in terms of deletions (deaths) of some of the
letters, in terms of insertions (births), and in terms of substitutions of the aligned let-
ters. The TKF-model can be formulated as a Markov chain along the sequences with
three states corresponding to match (survival with possible substitution), deletion of
a single letter, insertion of a single letter, and and an end state.

The transition probabilities can be written as a product of at most three terms.
The first terms b(-,) represents the probability of having another birth b(-,#) or
having no more births b(-, —). The second term ~ represents the probability of having
another letter in the ancestral sequence. Finally, the third term s(-) represents the
probability of survival of a new letter in the ancestral sequence. The precise definition
of these terms are

1 — exp(—(1 = y)pr)

R e s M M @1)
b(#,#) =8, b(#,—) =1 —b(#. #) (2.2)
1 p Ly (-
b<_7 #) =1 1— eXp(—,uT)’ b( ) ) 1 b( 7#)7 (23)
s(#) = exp(—p7), s(=) =1 — s(#), (2.4)
The transition probabilities in the TKF-model can be seen in Table 2.
| M | D | 1| End
M b(#a _)73(#) b(#v _)’75(_) b(#a #) b(#v _)(1 - 7)
D | b(—,—=)ys(#) | b(—, —)ys(=) | b(—=#) | b(—, —)(1 —7)
| b(#, —)vs(#) | b(#, —)ys(=) | b(#.#) | b(#, —)(1 —7)

Table 2: Transition probabilities between the match, delete, insert and end states in
the TKF-model.

At the very left of the ancestral sequence is a birth process with rate A so that
the sequence will not eventually die out. This is achieved by letting the Begin state
be a state with no emitted letters and where the transition probabilities are given by
the first row of Table 2.

Note that the TKF-model has two parameters v and pu7, and that the expected
length E'L of a sequence and the expected number of matches (ENy|L) given that
the sequence has length L are

BL=~/(1—7), (ENy|L) = exp(—pr)L. (2.5)

Hein et al. (2003) give a careful introduction to the main probabilistic aspects of the
TKF-model.



When we use the TKF-model for the part of the DNA-sequence before the gene the
End state in Table 2 corresponds to the GeneStart state in Figure 1, and the transition
probabilities from the GeneStart states are given by the first row of Table 2 used for
the codon part of the DNA sequences. Similarly, when we use the TKF-model for the
codon part of the sequences the End state in Table 2 corresponds to the GeneStop
state in Figure 1.

The transition probability of going from the hidden state x to the hidden state y
in the Markov chain depicted in Figure 1 is denoted p(x,y).

2.2 Emission probabilities

A state x emits letters in those positions where the symbol # is present. We use the
same emission probabilities in the before and after gene states. In the states Dg and
D, a nucleotide is emitted in sequence S7, and the frequencies of the nucleotides

(m(A), 7(G), (C), =(T))

are assumed known. In the states Iz and I, a nucleotide is emitted in sequence Ss
also from the distribution 7. Finally in the states Mz and M, a nucleotide w, is emitted
in sequence S; and a nucleotide wy in sequence S5. The distribution of this pair of
nucleotides is

pe(wi, wy) = m(wy) f(walwy), (2.6)

where f(ws|w;) is the probability of a change from w; to we within a time span 7.
We use an approximative form of the Hasegawa, Kishino and Yano (1985) model for
the substitution process corresponding to a small time span 75. Thus for w; # ws the
probability of a change is

B em(wy)/sp  for transition
flwehun) = { keTem(ws)/sg for transversion, (2.7)

where s is a scaling factor, and the probability of no change is
flwnlw) =1= """ flws|w).
waFw]

There are two parameters in the HKY-model, the time span between the sequences 73
and the transition-transversion parameter xg. Usually time is scaled such that it
reflects the number of expected substitutions per site. In this case

B = Z pe(wiawj)u
wiFEW;
and so the scaling factor sg is given by
sp = s(kp) (2.8)
—9 (W(A)W(G) + W(C)W(T)) + 2k (W(A)ﬁ(c) + (M) (T) + 7(C)m(C) + W(G)W(T)).

bt



In the inside gene states sense codons are emitted. In the states D¢ and I¢ the fre-
quency of the emitted nucleotide triplet is determined by the known distribution 7.
In the state Mg a codon w; is emitted in sequence S; and a codon ws in S;. We will
use an approximate form of the Goldman and Yang (1994) model for the substitu-
tion process. For the simplified case of identical distances between amino-acids the
probability for a pair of emitted codons in the Goldman and Yang model is given by
the rate matrix

me(wy)/sc  for synonymous transition
Keme(wsy)/se  for synonymous transversion
Q(wy, ws) = weme(wy)/se  for nonsynonymous transition (2.9)
KeweTe(ws)/se  for nonsynonymous transversion
0 otherwise,

for w; # w,, with corresponding substitution probabilities given by the matrix
exp(Q7c). We approximate this matrix by I + Q7 and add a term to take ac-
count of substitutions altering more than one codon. Thus we use the substitution
probabilities

Teme(wy)/se  for synonymous transition
(wq)/se for synonymous transversion
fwg|wy) = ¢ weTeme(ws)/se  for nonsynonymous transition (2.10)
(wq)/sc for nonsynonymous transversion
(wq)/sc otherwise.

We have replaced kcwe by a free parameter p;. The term with 6; takes care of
substitutions altering more than one codon and we scale this by 7¢ to make such
events less probable. There are five parameters in the approximate Goldman and
Yang model, the time span 7¢, and the four parameters k¢, we, pc, Oc that distinguishes
between synonymous transitions and transversions and nonsynonymous transitions
and transversions and other types of substitutions. In this case time is scaled such
that it reflects the number of expected codon substitutions per codon site.

In the GeneStart state the start codon ATG is emitted in sequence S; and Ss.

In the GeneStop state stop codons are emitted in both sequences. As before we
assume that the distribution 7g(wy) of the stop codons TAA, TAG and TGA is known.
The conditional probabilities f(we|w;) are given in Table 3.

Wa
TAA TAG TGA
TAA : Tems(TAG) Tems(TGA)
wy | TAG | 7¢ms(TAA) : Ocrims(TGA)
TGA | 7cms(TAA)  Oc72ms(TAG)

Table 3: Conditional probabilities f(ws|w;) for the nine possible emissions from the
GeneStop state. Each row should sum to 1, giving the non-specified value in each
row.



2.3 Parameter estimation

A summary of the 11 parameters of the model can be found in Table 4.

‘ Before ‘Start ‘ Inside ‘ Stop ‘ After ‘total
Alignment | s, (s7s - Yo, HeTe - Ve, MBTs | 4
Substitution | 7g, ks - Te, Ke, We, Pe, e | Tc, Oc | T8, KB 7

Table 4: Summary of the parameters of the pair prokaryotic HMM.

We estimate the parameters of the model by a modified version of the EM-
algorithm. The EM-algorithm is a two-step maximization procedure. In the ex-
pectation step mean values of a set of count statistics in the conditional distribution
given the observed sequences and parameter values are calculated. In the maximiza-
tion step new parameter values are found by maximizing the full distribution of the
hidden states and the observed sequences with the counts replaced by their mean
values. The proposed pair HMM is rather complex, and the set of count statistics
is large. Therefore we suggest replacing the maximization step by a moment step
such that the parameters are estimated from moment equations. In this modified
EM-algorithm the number of count statistics equals the number of parameters.

Consider the inside gene states and let Ny, be the number of matches, Np, the
number of deletions, and N, the number of insertions. From (2.5) we can write the
two moment equations

Ny, + Npg = v¢/(1 —7¢) and Ny, + N1, = ve/(1 — 7e).
We combine these into the equation
Ny, + (Np, + N1.)/2 = v /(1 — 7e). (2.11)
Also from (2.5) we have the moment equations
Ny, = exp(—pete)(Ny, + Np,) and Ny, = exp(—pc7e)(Ny, + N1, ),
that are combined into

Ny = exp(—picTc) (NMC + (Mo + NIC)/Q)- (2.12)

In the estimation step we replace the count statistics in (2.11) and (2.12) by their
conditional mean values given the observed sequences.

Similarly the parameters of the TKF-model in the before and after gene states
are estimated from the moment equations

1

ND +NI ND +NI B
— N Y8 ' "B N A A>:
2( T Tt 1— 7
Np, + N1, Np, + Ny,
(N, + Ny, ) = exp(—peTs) (NMB + % + Ny, + %)



Parameter estimation in the HKY-model is as follows. Recall that the model
describes the substitution processes in the before and after gene states and that the
parameters are 73 and xg. Let Ny, denote the number of substitutions of wy by ws
in the match before or match after gene states. From (2.7) we get, with wy # wy, the
moment equations

N B Tpm(we)Ny,./sg  for transition
w2 KpTeT(wy)Ny,./sp for transversion,

where Ny,,. = g Ny, -
w2

Adding all transition equalities and transversion equalities we obtain

T8 Niyg Nea Ner Nrc
N.— = 2.13
e A ORE OB (2.13)
N../{BE _ Nac + Nar + Nge + Ner " NCA+NCG+NTA+NTG’ (2.14)
Sp 7(C) + m(T) 7(A) + 7(G)

where N. = Y Ny, = Ny + Ny, is the total number of matches in the before
and after gene states. In the estimation step we replace the count statistic in (2.13)
and (2.14) by their conditional mean values given the observed sequences. Using the
approximate form (2.7) of the HKY-model thus implies that parameter estimation
requires three count statistics, namely the conditional mean values of Ny, + Ny, and
the conditional mean values of the right hand sides of (2.13) and (2.14). In the
Appendix we construct moment equations for parameter estimation in the original
HKY-model.

In case of uniform frequencies 7(A) = 7(G) = 7(C) = 7(T) = 1/4 we get from (2.8),
(2.13) and (2.14)

o=t N N, N = 2N,
4 2 Sp Sp

where N¢g is the number of transitions and Ny, the number of transversions. Solving
these equations we obtain

o Nts+Ntv P Ntv
- N, BT 9N

(2.15)

B

Thus if the nucleotides are uniformly distributed the time span 73 is estimated as
the fraction of nucleotides undergoing changes and the transversion-transition ratio
kg 1s the fraction between the number of transversions and twice the number of
transitions since there are twice as many possible transversions. If the nucleotides are
not uniformly distributed we obtain a weighted version of (2.15) as given by (2.8),
(2.13) and (2.14).

The five parameters in the Goldman and Yang model are estimated in a similar
way as for the HKY-model. The model describes the substitution process in the
coding part of the sequences and the parameters are 7¢, K¢, we, pc, 0c. Now let Ny,
denote the number of codon substitutions of w; by ws in the match codon state.



From (2.10) we get, with w; # ws,

Tem(we) Ny,./Sc  for synonymous transition
KeTeT (wa) Ny, . /se - for synonymous transversion
Nuyjwy, = weTem(wa) Ny, ./Ssc  for nonsynonymous transition
peTem(wa) Ny, ./sc  for nonsynonymous transversion
Oc7ém(we)Ny,./Sc  otherwise.

Adding e.g. all synonymous transversion equalities we obtain

Nw w S i w 7w
Z Z’LUQ 1w2 ,t ( 1 2) _ Ns,ts7 (2.16>

Ewg s ts(wh w2)

where 1g ys(wq, w2) is 1 if the change from w; to wy is a synonymous transition and 0
otherwise. Similar equalities can be obtained by adding equalities for synonymous
transversions, nonsynonymous transitions, nonsynonymous transversions and other
changes. Using the approximative form (2.10) of the Goldman and Yang model thus
implies that parameter estimation requires six counts, namely the conditional mean
values of the number of codon matches N.. = Ny, and of the right hand sides of the
five equations similar to (2.16). In the Appendix we construct moment equations for
parameter estimation in the original Goldman and Yang model (2.9).

We now describe how to calculate the count statistics. A subsequence of S; start-
ing in a and ending in b is denoted Sj[a : b], and if a > b we interpret S;[a : b] as the
empty set.

Let x be any state of the hidden Markov chain shown in Figure 1, and let K =
(K1, K3) be numbers with 1 < K; < L;. We then consider a recursion for the
probability of a chain starting in the state x generating the two sequences S1[K7 : L]
and So[K3 : L] from the states following z. Let us denote the latter probability
by P(K|z). The recursion is obtained by splitting the probability according to the
value of the state following x in the Markov chain. For a hidden state y let I(y) =
(I1(y),l2(y)) be the number of emitted nucleotides in the two sequences according
to Table 1. For example {(Mg) = (1,1), {(Dg) = (1,0) and [(Mc) = (3,3). Then the
recursion is

P(Kl|z) = pla,y)p.(K, (y)ly) P(K + 1(y)]y), (2.17)

Y

where p.(K,l(y)|y) is the emission probability as described in Section 2.2 when emit-
ting the nucleotides S1[K; : K + l1(y) — 1] in sequence S; and the nucleotides
So[Ka,: Ky + la(y) — 1] in sequence Ss. In this notation the probability of the two
sequences S and Sy is P(1,1|Begin). Note that the sum in (2.17) always has four
terms corresponding to the possible transitions in Table 2. The recursion is started
at (L1+1,Ls+1) = L+1 and runs down to (1,1). The start of the recursion is given
by

P(L + 1|z) = p(x,End), (2.18)



where End is the state shown in Figure 1.

Let x1, ..., x, be the sequence of the hidden Markov chain generating the observed
sequences S; and S, with z,,; being the End state of Figure 1. Also let S[x;] =
(S1[x;], Sa]x;]) be the nucleotides emitted by z; in the sequence xy,...,z,. By a

count statistic N4 we mean a statistic of the form

Ny = Z La(w;, Slxi]),

i=1
where A is some set. For example A could be defined such that

1 if x = M and substituting S[x] by S3[z] is a transition
0 otherwise,

La(a St = §

in which case N4 is the number of transitions in the before gene state. We want to
be able to calculate the mean value of N4 given the observed sequences S; and Ss.
If a series of states ending in the state x generated the sequences Si[1 : K; — 1] and
So[l : Ky — 1] we let Na(K|x) be the part of the count statistic N4 that is due to the
states following x. To calculate the conditional mean EN4(K|x) of Na(K|z) given
the observed sequences, K, and x, we note that the conditional distribution of the
first state y following x is

P, y)pe (K, l(y)|y) P(K + 1(y)|y)
P(K|x) '

We therefore get the following recursion for EN4 (K |x),

ENA(K|2) = 5, (14 Sly)) + ENA(K +1(3))) %

P, y)p (K, l(y)|y) P(K + (y)|y)
P(K|z) '

(2.19)

The start of the recursion is given by

ENA(L + 1|z) = 0.

2.4 Application to A.tumefaciens and M.lot:

We applied the pair prokaryotic HMM to analyse two homologous sequences from
Agrobacterium tumefaciens and Mesorhizobium loti. Genbank accession numbers are
AE009042 and AP003011. The sequences code for the protein AGR_C_1356p, which
is a exodeoxyribonuclease small subunit. The modified EM-algorithm described in
Section 2.3 based on moment equations was used for parameter estimation. The
algorithm converged during a few iterations and the result is summarized in Table 5.
The first column in Table 5 shows the log probability of the sequences and in this
particular example the log likelihood increases after each iteration. The original EM-
algorithm is constructed to have this property, but it is not ensured in the modified

10



1 7B Kg B HB
Start | -769.964 0.400 0.500 0.995 0.250
Iteration 1 | -719.513 0.438 0.750 0.994 0.100
Iteration 2 | -713.171 0.454 0.837 0.994 0.052
Iteration 3 | -712.383 0.458 0.855 0.994 0.040
Iteration 5 | -712.282 0.458 0.859 0.994 0.036
Iteration 10 | -712.279 0.458 0.859 0.994 0.036
Iteration 10 | -715.450 0.458 0.859 0.994 0.037

Tc ke We Pc tc Ve He
Start 0.300 0.500 0.400 0.300 0.300 0.995 0.250
Iteration 1 0.542 0.381 0.126 0.228 0.104 0.988 0.015
Iteration 2 0.544 0.379 0.124 0.227 0.104 0.988 0.011
Iteration 3 0.544 0.379 0.124 0.227 0.104 0.988 0.011
Iteration 5 0.544 0.379 0.124 0.227 0.104 0.988 0.011
Iteration 10 0.544 0.379 0.124 0.227 0.104 0.988 0.011

Iteration 10‘ 0.492  0.409 0.187 0.076 0.115 0.988 0.012

Table 5: EM-algorithm for the pair prokaryotic HMM. The parameter values shown
at several iterations are from the full Goldman and Yang model. The parameter
values shown after 10 iterations only are from the constrained Goldman and Yang
model.

EM-algorithm. We also applied the algorithm with different starting values, and in
each case the algorithm converged to the same parameters after a few iterations.

In Figure 2 we indicate the gene structure prediction as obtained from the Viterbi
algorithm with parameters inferred from the EM-algorithm.

We also investigated whether the constrained Goldman and Yang model given
by (2.10) with pc = Kcwe fits the data. The parameters of the constrained Gold-
man and Yang model are estimated as follows. Recall that the five substitution
parameters T¢, K¢, We, Po, O, in the coding part of the sequences are estimated from
five equations of the type (2.16). In each iteration we therefore estimate the pa-
rameters of the constrained Goldman and Yang model by minimizing the sum of
squares of differences between the left and right hand sides of these equations. Let-
ting E'Ng s, E'Ns tv, ' Nus ts, &2 Nos tv, 2 Notner denote the counts on the right hand
sides (with obvious notation) the estimates in each iteration minimize the sum of
squares

EN, EN, EN
(FET BN ) + (FR B, )2 (T BN, )
c ¢ ¢
EN. E Ny 0c7é
(FHEEE BN (T — BN ouner)
c C

The resulting parameter estimates and corresponding likelihood values are given in
Table 5.
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Figure 2: Part of the pairwise alignment of A.tumefaciens and M.loti. Green colour
corresponds to conserved positions, yellow to nonconserved and gaps are shown in
red. The two blue bars on top of the alignment indicate the start and stop of the
gene.

Carrying out a goodness of fit test of the pair prokaryotic HMM with the con-
strained Goldman and Yang model (2.10) with p¢ = kcwe under the prokaryotic HMM
with the full Goldman and Yang model (2.10) we obtain a likelihood ratio test statis-
tic equal to 6.3 on 1 degree of freedom. Using the x?(1) approximation of the test
statistic the p-value is 1.2%, and thus indicates that the full model fits significantly
better than the constrained model.

3 Pairwise eukaryotic gene structure prediction

If the two homologous DNA sequences come from eukaryotic organisms we have to
introduce intronic parts to the Markov chain depicted in Figure 1. An intronic part
can start in three possible phases 0,1, 2, depending on the codon reading frame.
Further we assume that the splice sites follow the GT-AG rule. According to this rule
an intronic part starts with the letters GT at a splice donor site and ends with the
letters AG at a splice acceptor site. The graphical representation of the pair HMM for
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eukaryotic gene structure prediction is shown in Figure 3.

Figure 3: States and transitions of the pair HMM for eukaryotic gene structure pre-
diction.

In Figure 3 the symbols M;, D1, I denote match, delete and insert intron states,
and the IntronStart and IntronStop states denote the start and stop of the in-
tron. The number of letters emitted by the match, delete and insert intron states
equals the numbers emitted from the match, delete and insert before and after gene
states. Similar to the before and after gene states the transition probabilities follow
the TKF-model, and the emission probabilities are determined by the HKY-model
with parameters specific for the intron states. The number of letters emitted by the
IntronStart and IntronStop states can be seen in Table 6. In phase 0 the intronic
part starts immediately after a sense codon. In phase 1 the first nucleotide in a
codon is emitted in both sequences just before the donor splice site, and the codon
is established by emitting two nucleotides in both sequences immediately after the
acceptor site. Similarly in phase 2 two nucleotides are emitted just before the donor
splice site, and one nucleotide is emitted immediately after the acceptor site. Thus
the eukaryotic pair HMM maintains the reading frame across introns, but it does not
prevent stop codons to occur across introns. To disallow stop codons an extension of
the three possible intron start states would be needed, where in phase 1 it is taken into
account whether the nucleotide is a T or not, and in phase 2 whether the nucleotides
are TA, TG or not. Further extensions would be to allow gap triplets across introns
and to keep track of codons across introns.

The probability of leaving the coding state from the match, delete or insert states
are given in the right column of Table 2, but having left the coding state there are
now two possible scenarios, namely entering an intron or ending the gene. Thus the
number of introns follow a geometric distribution with probability g, say, of entering
the intronic part. If we expect m intronic parts per gene we fix ¢ at m/(m + 1).

Meyer and Durbin (2002) extend the model in Figure 3 by allowing introns within
untranslated regions of genes. They also allow introns which are only present in one
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IntronStart IntronStop
Phase 0 Phase 1 Phase 2 | Phase O Phase 1 Phase 2

GT HGT HHGT AG AGHH AGH
GT #GT H#H#GT AG AGHH AGH#
Table 6: Letters emitted from the intron start and stop states, taking into account

that introns can come in three different phases depending on the reading frame of the
previous exon.

of the genes. Further extensions of the model include e.g. sequencing errors and
signals such as the TATA box in the promotor region of the gene and the Poly-A signal
at the end of transcription, see Zhang (1998).

The modified EM-algorithm has been applied to several homologous sequences
from eukaryotic organisms. In all cases the EM-algorithm converges to a maximum
in a few iterations.

4 Triplewise prokaryotic gene structure prediction

Now consider three homologous DNA sequences Sp, Sy and Ss of lengths Ly, Ly and
L3 from prokaryotic organisms, and suppose the sequences have one common gene.
Again we use a hidden Markov model along the sequences to describe the evolutionary
relationship of the sequences. If the model is time-reversible the three sequences are
related in a 3-star tree with the observed sequences at the leaves and an unobserved
common ancestral sequence in the interior node. Thus for a 3-star tree the hidden
states are alignment columns with 4 entries, the first corresponding to the interior
node. Symbolically we write a hidden state z as x = (x¢|x1, z2, T3).

The number of emitted nucleotides in the different parts of the Markov chain
follow the same rules as in Table 1. In the before and after gene states each entry
xj,j = 0,1,2,3, emits a single nucleotide or a gap, x; € {#,—}, and in the inside
gene state each entry emits a sense codon or a gap triplet, z; € {###,— — —}.
Therefore each of these three parts of the hidden Markov chain have 15 hidden states
since the state with gaps in all entries is excluded. We denote the set of 15 states €.

In Figure 4 the HMM for triplewise prokaryotic gene structure prediction is de-
picted. The only difference compared to the HMM for pairwise prokaryotic gene
structure prediction as shown in Figure 1 is that alignment columns with 4 entries
are emitted instead of alignment columns with 2 entries.

. G

Figure 4: States and transitions of the triple HMM for prokaryotic gene structure
prediction. Here the set € consists of 15 hidden states generalizing the 3 (match,
delete and insert) hidden states of the pair HMM.
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4.1 Transition probabilities

We now describe how to extend the TKF-model of Section 2.3 to a 3-star tree. Denote
the evolutionary times along the branches of the 3-star tree 7,7 and 73. Further
suppose the parameters of the birth and death process u and \ are the same along the
branches. To state the transition probabilities we define 3;,b;(-,-), s;(+), as in (2.1)-
(2.4) with 7 replaced by 7;,j = 1,2, 3.

As in the case of two sequences the transition probabilities are a product of at
most three terms. The first term []b;(-,-) represents the probability of having more
births, the second term v represents the probability of having another letter in the
ancestral sequence, and the third term represents the probability of survival of a new
letter in the ancestral sequence. The precise formulation of the transition probability
p(z,y) from state © = (xo|z1, 22, x3) to state y = (yYo|y1, Y2, y3) is given in Table 7,
and we refer to Hein et al. (2003) for more details on the TKF-model for a 3-star
tree.

Yo =# Yo = — y = End

xo = # {Hb %a*} ﬁ f[bj(ifjayj) {f[bj(xjv)}(lw

= Jj=1

To = — { }f[ T e { 1T bj(#r)}(l—v)

{j>1 Tji= #} {521:z;=#} {521z =#}

Table 7: Transition probabilities in the 3-star TKF-model. The terms b;(-, -) and s(-)
are defined in (2.1)-(2.4) with 7 replaced by 7,7 = 1,2, 3. Transitions from a state
with zyp = — to a state with yy = — is only possible if y; = — when z; = —.

As in the case of two sequences at the very left of the ancestral sequence is a birth
process with rate A so that the sequence will not eventually die out. This is achieved
by letting the Begin state be a state with no emitted letters and where the transition

probabilities are given by the first row in Table 7 with = = (#|#, #, #).

4.2 Emission probabilities

Recall that a hidden state x is an alignment column with 4 entries and that letters
are emitted in those positions where the symbol # is present. First consider the
emission probabilities in the before and after gene states. Let the emitted letter be
w = (wj,j = 0,1,2,3), where w; is the empty set if ; = —. Following (2.6) the
emission probabilities in the before and after gene states are given by

7 (wo) H filwjlwo) if zg = #

p(wlz) = st =) . (4.1)
H 7(w;) if 19 = —
{i>1uz=4#}

Here f;(w;|wy) is given by (2.7) with the intergenic evolutionary distance 73 and the
transition-transversion parameter xg replaced by branch specific parameters 73, j =
1,2,3, and kg j,j = 1,2, 3.
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The marginal probability of (wy, wsy, w3) given the state x is obtained by summing
over wy in the previous expression

Zw(wo) H flwjlwy) if xg = #

pe((wy, wa, wy) ) = EE | (42)
H 7(w;) if 29 = —,
{j>1ij=#}
In particular if (wy, wy, w3) = (w1, —, —) and g = # we get
pe(<w17 ) _)|<#‘#7 ) _>) = Zw(wo)f(w1|w0) = 7T<U}1>,
wo

since 7 is the stationary distribution. We are now in a position to find the conditional
distribution of a letter in the unobserved ancestral sequence given the letters at the
three leaves and the hidden state. This probability is given by

pe(wlx)
Pe((wy, wa, w3)|z)’

P2 (wol(wr, wa, w3), x) = (4.3)
where the probabilities on the right hand side are given by (4.1) and (4.2).

The emission probabilities in the inside gene states are defined as in (4.1) with
7 replaced by 7 and with f;(-, ) determined by (2.10). Here the evolutionary dis-
tance 7¢ and the parameters kg, we, pc, Oc are replaced by branch specific parameters.

The GeneStart state emits the start codon ATG in all three observed sequences
and in the ancestral sequence.

In the GeneStop state stop codons are emitted in all four sequences, and the
emission probabilities are determined by Table 3 and

3
p(wlz) = ms(wo) [ | fi(wjlwo), w; € {TAA, TAG, TGA}, j =0,1,2,3.
j=1

4.3 Parameter estimation

Recall the 11 parameters of the pairwise prokaryotic HMM summarized in Table 4.
In the 3-star HMM we let the parameters of the TKF-model g, g, Ve, fic be com-
mon parameters on all lineages. For the remaining parameters we consider the full
model with 73, ks, ¢, K¢, We, P, ¢ being branch specific. Again we use a modified
EM-algorithm based on moment equations to estimate the parameters in the 3-star
HMM.

Consider the inside gene states and let Ny, be the number of states having the
symbol ### in the ancestral sequence and Npy, be the number of full matches

(HHH|HHH, #H##, ##44). From (2.5) we can write the moment equations

Ny, =7¢/(1 —¢), New, = exp (— pe(Te1 + Teo + Tc,3)>NAc- (4.4)
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In the estimation step we replace the count statistic in (4.4) by their conditional mean
values given the observed sequences.

Because of the silent states Qg = (#|—, —, —), Q& = (#|—, —, —) and Q¢ = (H#H##|—
——,— — —,— — —) the start of the recursion (2.18) and the recursion (2.17) become

more complicated. With (Ly, Ly, L3) = L the start of the recursion now becomes

p(QA7 End)

and for x # Qu,
P(L+ 1[z) = plz,End) + p(z, Q) P(L + 1185),

where End is the state shown in Figure 4. The recursion is given by first finding the
marginal probability of the sequences S[K : L + 1] given the initial state @) is one of
the silent states Qg, Qa, Qc

P(KIQ) = —— 3 p(Qu (1) ) PUS + 1))
4Q

1_p<Q7Q y

and second finding the marginal probability for the non-silent states as in (2.17).

Parameter estimation of the substitution probabilities is complicated by the fact
that the letters of the ancestral sequence are unknown. Calculating the conditional
mean given the observed sequences therefore involves an extra step where the mean
over the ancestral letter is calculated. This is done via (4.3) and amounts to replacing
the indicator function in (2.19) by

Z La(y, wo, S[y))pd(wo| S[yl, v)-

4.4 Application to A.tumefaciens, M.loti and S.melilot:

We applied the 3-star prokaryotic HMM to analyse homologous sequences from Agrobac-
terium tumefaciens, Mesorhizobium loti and Sinorhizobium meliloti. The first two
sequences are described in Section 2.4, and the last has Genbank accession number
AP003011. We used the parameters from the pairwise comparisons of the sequences
as starting values for the 3-star EM-algorithm. With these starting values the EM-
algorithm converged after a few iterations. In Table 8 we show the final parameter
estimates, and in Figure 5 we indicate a part of the gene structure prediction as
obtained from the Viterbi algorithm.

In the 3-star model one may wish to consider several different constrained models.
For example one may expect the transition-transversion parameters sg and k¢ to
be the same in all branches, and perhaps even the same in the intergenic and coding
parts. The synonymous-nonsynonymous ratio wc is of interest on its own since a value
of we larger than one indicates positive selection, cf. Nielsen and Yang (1998). In this
particular data example this is surely not the case. Further it is natural to assume
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‘ T8 K Tc Kc We Pc Oc
A. tumefaciens | 0.188 0.629 0.315 0.257 0.010 0.076 0.063
M.loti 0.331 0.855 0.367 0.765 0.397 0.632 0.386
S.meliloti 0.271 0.807 0.371 0.266 0.002 0.001 0.026

v = 0.994, g = 0.064, ¢ = 0.988, e = 0.002, [ = —2128.5.

Table 8: EM-algorithm for the triple prokaryotic HMM.

#

felleli=] EXIellol ] EX

Figure 5: Part of the multiple alignment of A.tumefaciens, M.loti and S.meliloti. The
top row specifies the hidden state of the ancestral sequence.

the evolutionary distances to scale linearly in the intergenic and coding regions such
that

(T18, T28: T38) = {(T1.6: T2, T3¢), € > 0.

In Section 2.4 we discussed how to fit constrained models by minimizing a certain
sum of squares.

We fitted the constrained model with kg being the same in all branches. The fitted
value of kg is 0.788, and the remaining parameter values only changed slightly com-
pared to the full model. The log likelihood is —2128.7, and so we obtain a likelihood
ratio test statistic equal to 0.4 on 2 degrees of freedom. Using the x*(2) approxima-
tion of the test statistic the p-value is 82%, and thus support the expectation that
the constrained model is sufficiently flexible compared to the full model.

5 Discussion

The EM-algorithm for a pair HMM with S states and 7" transitions and sequences of
length L, < Lo requires time of the order O(SL;) and memory of the order O(T'L; Ls).
For a triple HMM and sequences of length L; < Ly < L3 the time and memory re-
quirements are of the order O(NL;Ls) and O(TLyLyL3). For two sequences Meyer
and Durbin (2002) have developed the stepping stone algorithm, where subsequences
of strong similarity are used as fixed points for the alignment. A similar algorithm can
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be formulated for multiple sequences and is needed if alignment and gene structure
prediction are carried out simultaneously. Another approach is to search the align-
ment space using simulation procedures as discussed by Holmes and Bruno (2001)
and Jensen and Hein (2002).
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Appendix

In this Appendix we construct moment equations for parameter estimation in the
HKY and Goldman and Yang model.

The probability for a pair of nucleotides in the HKY-model is determined by the
rate matrix

Q(wy, ws) = mpm(wy)/sg  for transition
D2 kpmem(ws) /s for transversion,

for wy; # ws, with corresponding substitution probabilities given by the matrix
exp(Q7g). Let N, denote the number of times w occur in sequence S; in the be-
fore or after match states. Further let N, ., denote the number of times w; in
sequence Sy is substituted with ws in sequence S in the before or after match states.
We may then estimate 73 and kg from the two moment equations

Nag + Noa + Ner + Ny = (5.1)
Nypac(78, k8) + Nepea (78, k) + Neper(7s, k) + Nepre(Ts, Kp)

Nac + Nar + Ngc + Ngr + Nep + Neg + Nrp + Npg = (5.2)
Ny (pac(7s, kg) + par(T8, k8)) + Ne(Pac(Ts, ks) + Per(Ts, Ke)) +
Nec(pea(Ts, ke) + Dee (T8, Ke)) + Nr(pra(7s, K8) + P1e (T8, K8)),

where py,w, (78, k8) is the (wy,ws)'th entry in exp(Q7s). The equations would have
to be solved numerically and require six counts, namely Ny, Ng, N¢, Nt and the left
hand sides of (5.1) and (5.2).

In the Goldman and Yang model (2.9) with kcwe replaced by the free parameter pc
we get with a similar notation

Z N’wlwgls,ts (wla wZ) - Z Nwlpwlwg (TC7 Rg, We, pC)]-s,ts(w17 w2)7

w1, w2 wi,w2

where 1g4s(wy,w) is 1 if the change from w; to wq is a synonymous transition
and 0 otherwise. Similarly three other equations with 15 s replaced by 1g 4y (synony-
mous transversions), lps s (nonsynonymous transitions), and 1, ¢, (nonsynonymous
transversions) are obtained. These four equations should be solved numerically and
require 65 counts, namely the 61 sense codon counts N, and the four counts of the
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left hand sides.
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