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Introduction

In [1] we considered character perturbations of the automorphic Laplacian
A = A(Γ0, χ) for the Hecke group Γ0(N) with primitive character χ. We
assume that N = 4N2 or N = 4N3, where N2 and N3 are products of distinct
primes and N2 ≡ 2 mod 4, N3 ≡ 3 mod 4. In these cases we are dealing
with regular perturbations of A, which allows for a rigorous analysis of the
problem of stability of embedded eigenvalues. We introduce a character
perturbation of the form αM + α2N , where the first order term M is a first
order differential operator and N a multiplication operator. In order to prove
instability of an embedded eigenvalue λ we prove that the Phillips-Sarnak
integral I(Φ, λ) = 〈MΦ, E〉 6= 0 for a common eigenfunction Φ of A with
eigenvalue λ and the Hecke operators, where E is a generalized eigenfunction
with eigenvalue λ. We consider only odd eigenfunctions, since 〈MΦ, E〉 = 0
for Φ even. We proved in [1] that I(Φ, λ) 6= 0 for each such eigenfunction
under the following condition on the eigenvalue λ = 1

4
+ r2 of A and the

eigenvalues ρ(q) of the exceptional Hecke operators U(q), q | N , with the
common eigenfunction Φ. The operators U(q) are unitary ([1] Theorem 4.1)
so the eigenvalues ρ(q) lie on the unit circle. The main result about the
Phillips-Sarnak integral follows from [1](7.23), (7.24). It states that I(Φ, λ) 6=
0 if and only if ρ(2) 6= 2ir and ρ(q) 6= qir/εq, where the εq are real parameters
of the perturbation, εq 6= 0. In [1] Lemma 4.3 it is stated that ρ(q) = ±1,
which gives rise only to the exceptional sequences rn2 = π

log 2
n and rnq =

π
log q

n, n ∈ �
, q | N , q > 2 if εq = ±1. This Lemma, however, is not correct.

The eigenvalues of U(q) may lie anywhere on the unit circle. For q > 2
we can obtain ρ(q) 6= qir/εq by choosing εq 6= ±1. For q = 2 we might
a priori have e2irn = ρn(2) for all eigenvalues λn = 1

4
+ r2

n or for no such
λn. It is a delicate problem to establish that e2irn 6= ρn(2) at least for a
certain proportion of the eigenvalues λn. That is the subject of the present
paper. We shall prove that asymptotically at least 1

4
of all eigenvalues of

Aodd, counted with multiplicity, satisfy the condition e2irn 6= ρn(2), where
λn = 1

4
+ r2

n and ρn(2) are eigenvalues of U(2) with the same eigenvector Φ
(Theorem 6).

Assume further that the dimensions of odd eigenspaces are bounded,
dim(N(Aodd − λn)) ≤ m for all λn. Then asymptotically at least 1

4m
of

all odd eigenfunctions turn into resonance functions under this perturbation,
and in that sense the Weyl law is violated under the perturbation αM +α2N
at α = 0.

The proof that e2irn 6= ρn(2) = eiηn for at least 1
4

of all eigenvalues is
based on the Weyl law (Theorem 5) for a certain operator T introduced in
§4, combining A, U(2) and U(2)∗ and measuring the average distance of 2irn
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from eiηn . In order to prove this Weyl law we first establish the Weyl law for
Aodd (Theorem 4). The main term coming from the identity is ε−1 |F |

8π
. The

remaining terms are proved to be of smaller order as ε ↓ 0. Then the Weyl
law follows from a Tauberian theorem.

To prove these results we derive a version of the Selberg trace formula
involving the exceptional Hecke operators U(2), U(2)∗ on the Hilbert space
of (Γ, χ)-automorphic odd functions. Because of this specific restriction,
this version of the Selberg trace formula was not considered before (as far
as we know). But some terms in this formula were calculated before (see
[2, 3, 4, 5, 6]). Anyway we make the derivation of the trace formula self-
contained.

We would like to thank Fredrik Strömberg for pointing out to us the
mistake in the proof of Lemma 4.3 in [1].

We also express our thanks for the hospitality of I.H.E.S during the month
of June 2003.
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1 Hecke exceptional operators U(2), U(2)∗ and

their squares

We have

U(2)f(z) =
1√
2
[f( z

2
) + f( z+1

2
)]

U(2)∗f(z) =
1√
2
[f(2z) + f( 2z

−Nz+1
)].

(∗)

Recall our discrete group Γ = Γ0(N) where N = 4N2 or N = 4N3 (see [1]).
We can see that U(2)∗U(2)f = U(2)U(2)∗f = f . We identify linear-fractional
maps with corresponding elements of PSL(2,�). We denote U = U(2),
U∗ = U(2)∗ and we have the following correspondence, where all matrices
are taken mod ± 1:

For U :


















z → z

2
↔
( 1√

2
0

0
√

2

)

z → z + 1

2
↔
( 1√

2
1√
2

0
√

2

)
(1.1)

For U∗:


















z → 2z ↔
(
√

2 0
0 1√

2

)

z → 2z

−Nz + 1
↔
(
√

2 0
−N√

2
1√
2

)
(1.2)

For U2:


























































( 1√
2

0

0
√

2

)( 1√
2

0

0
√

2

)

=

(

1
2

0
0 2

)

( 1√
2

0

0
√

2

)( 1√
2

1√
2

0
√

2

)

=

(

1
2

1
2

0 2

)

( 1√
2

1√
2

0
√

2

)( 1√
2

1√
2

0
√

2

)

=

(

1
2

3
2

0 2

)

( 1√
2

1√
2

0
√

2

)( 1√
2

0

0
√

2

)

=

(

1
2

1
0 2

)

(1.3)
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For U∗2:


























































(
√

2 0
0 1√

2

)(
√

2 0
0 1√

2

)

=

(

2 0
0 1

2

)

(
√

2 0
0 1√

2

)(
√

2 0
−N√

2
1√
2

)

=

(

2 0
−N
2

1
2

)

(
√

2 0
−N√

2
1√
2

)(
√

2 0
−N√

2
1√
2

)

=

(

2 0
−3N

2
1
2

)

(
√

2 0
−N√

2
1√
2

)(
√

2 0
0 1√

2

)

=

(

2 0
−N 1

2

)

(1.4)

We have 4 sets of elements of PSL(2,�) on the right hand sides of (1.1)–
(1.4) which we denote by P1, P2, P3, P4.

Lemma 1. For j = 1, 2, 3, 4, ΓPj = ΓPjΓ.

Proof. This follows from the definition of Hecke operators. But since we start
with the definition of U, U∗ by (∗) we can recall the argument. Let ϕ be a
continuous function of compact support in H , then for

fϕ(z) =
∑

γ∈Γ

χ(γ)ϕ(γz)

we have fϕ(γ0z) = χ(γ0)fϕ(z), where γ0 ∈ Γ and χ is a real primitive char-
acter on Γ0(N), χ(γ0) = χ(γ−1

0 ), (see [1]). If we denote by Tj one of the
operators U, U∗, U2, U∗2, then

Tjfϕ(γ0z) = χ(γ0)Tjfϕ(z) and Tjfϕ(z) =
∑

γ∈Γ

χ(γ)
∑

p∈Pj

ϕ(γpz).

From that follows
∑

γ∈Γ

χ(γ)
∑

p∈Pj

ϕ(γpγ0z) =
∑

γ∈Γ

χ(γ−1
0 γ)

∑

p∈Pj

ϕ(γpz)

=
∑

γ∈Γ

χ(γ)
∑

p∈Pj

ϕ(γ0γpz) (1.5)

Since (1.5) holds for all functions ϕ of this type, the statement of Lemma 1
follows.

We will study now the sets ΓPj and their conjugacy classes by conjugation
from Γ like {γp}Γ = {γ1γpγ−1

1 | γ1 ∈ Γ}, γ ∈ Γ, p ∈ Pj , j = 1, 2, 3, 4.
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Lemma 2. There are no parabolic classes {γp}Γ in each ΓPj, j = 1, 2, 3, 4.

Proof. We have to check that tr(γp) 6= 2 (mod ± 1). Take

γ =

(

a b
Nc d

)

∈ Γ,

ad − Nbc = 1. Since N = 4N2 or 4N3, a and d are odd integers, and the
lemma follows.

The next result is well known.

Lemma 3.

(1) There are at most finitely many elliptic classes {γp}Γ in ΓPj, j = 1, 2, 3, 4.

(2) There are infinitely many hyperbolic classes in ΓPj, j = 1, 2, 3, 4.

It is obvious that the unity e ∈ Γ is not in ΓP =
⋃4

j=1 ΓPj. We will study
now the centralizers Γγp of γp in Γ. By definition

Γγp = {γ1 ∈ Γ | γ1γp = γpγ1}
for γ ∈ Γ, p ∈ Pj , j = 1, 2, 3, 4.

It is clear that Γγp is a subgroup of Γ and it is known that each Γγp is a
cyclic group and possibly trivial, Γγp = {e} for some γp.

Lemma 4. A hyperbolic element of PSL(2, �) commutes only with the iden-
tity and with hyperbolic elements.

Proof. We check this using the language of linear fractional transformations.
Any hyperbolic transformation is conjugated in PSL(2,�) to a transforma-
tion of the type

z → λ2z, λ > 1, z ∈ H

Assume that

z → az + b

cz + d

corresponding to

(

a b
c d

)

∈ PSL(2, �) commutes with the above transfor-

mation, so that

aλ2z + b

cλ2z + d
= λ2az + b

cz + d
for all z ∈ H

This implies that a 6= 0, b = c = 0, d = a−1, so that the transformation

defined by

(

a b
c d

)

is hyperbolic or the identity.
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Similarly we have

Lemma 5. A parabolic element of PSL(2, �) commutes only with the identity
and with parabolic elements.

Also a simple check shows

Lemma 6. There are no elliptic classes in Γ.

From Lemmas 3–5 follows

Theorem 1.

(1) Any elliptic class {γp}Γ, γ ∈ Γ, p ∈ Pj, j = 1, 2, 3, 4, has only trivial
centralizer Γγp = {e}.

(2) For a hyperbolic class {γp}, γp ∈ ΓPj, we have the alternatives

(a) Γγp = {e}
(b) Γγp is generated by a hyperbolic element in Γ.

We will study in more detail hyperbolic classes in ΓPj and characterize
their centralizers.

From the proof of Lemma 4 follows

Lemma 7. The hyperbolic elements of PSL(2, �) commute with each other
if and only if they have the same fixed points as linear fractional transforma-
tions.

Let

g1 =

(

a1 b1

Nc1 d1

)

∈ Γ

be a hyperbolic element. Then we have c1 6= 0. The equation a1z+b1
c1z+d1

= z has
two solutions

z1,2 =
a1 − d1 ±

√

(a1 + d1)2 − 4

2Nc1
(1.6)

Since N = 4N2 or N = 4N3, then a1 and d1 are odd integers (recall a1d1 −
Nb1c1 = 1), a1 + d1 is an even integer and (a1 + d1)

2 is divisible by 4. From
this follows that for any hyperbolic element γ of Γ the integer (tr γ)2 − 4 can
not be the square of an integer.
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We consider now a hyperbolic element

g2 =

(

a2 b2

c2 d2

)

∈ ΓP.

It has two fixed points as transformation of H

t1,2 =
a2 − d2 ±

√

(a2 + d2)2 − 4

2c2
(1.7)

The problem is how for given g2 to find g1 with the same fixed points z1,2 =

t1,2. Since
√

(a1 + d1)2 − 4 is always irrational we have

a1 − d1

2Nc1
=

a2 − d2

2c2

(a1 + d1)
2 − 4

4N2c2
1

=
(a2 + d2)

2 − 4

4c2
2

(1.8)

It will work, of course, if (a2 + d2)
2 − 4 is an integer and it is not a square,

which is not necessarily true for all hyperbolic elements of ΓP . We will try
to solve the system of equations (1.8). From (1.8) follows

a1d1 − 1

N2c2
1

=
a2d2 − 1

c2
2

b1

Nc1
=

b2

c2

(1.9)

From (1.8), (1.9) follows

a1 = d1 + Nc1
a2 − d2

c2

b1 = Nc1
b2

c2

(1.10)

Let

g =

(

a b
Nc d

)

∈ Γ

p =

(

α β
γ δ

)

∈ Pi

then
(

a2 b2

c2 d2

)

=

(

a b
Nc d

)(

α β
γ δ

)

=

(

aα + bγ aβ + bδ
Ncα + dγ Ncβ + dδ

)

(1.11)
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Since in (1.10) we have the ratios a2−d2

c2
, b2

c2
we can multiply the matrix (1.11)

by
√

2 in the case i = 1, 2 or by 2 in the case i = 3, 4, not changing these
ratios but getting ratios of integers.

We have in the first case i = 1, 2

a1 = d1 + Nc1

√
2(a2 − d2)√

2c2

b1 = Nc1

√
2b2√
2c2

(1.12)

and
√

2(a2 − d2),
√

2b2,
√

2c2 ∈
�

. In the second case i = 3, 4

a1 = d1 + Nc1
2(a2 − d2)

2c2

b1 = Nc1
2b2

2c2

(1.13)

and 2(a2 − d2), 2b2, 2c2 ∈
�
. In the first case we assume that

Nc1 = 2k1

√
2c2, k1 ∈

�
(1.14)

and we will have that

g1 =

(

a1 b1

Nc1 d1

)

=

(

d1 + 2k1

√
2(a2 − d2) 2k1

√
2b2

2k1

√
2c2 d1

)

(1.15)

is an integer matrix with the left lower matrix element divisible by N . We
have to prove now that there exist d1, k1 ∈

�
with the property that det g1 =

1. That means we have to prove the existence of integer solutions of the
equation

d2
1 + 2k1d1

√
2(a2 − d2) − 4k2

1 · 2b2c2 = 1 (1.16)

or the equation

m2
1 − k2

1 · 2[(a2 + d2)
2 − 4] = 1 (1.17)

where m1 = d1 + k1

√
2(a2 − d2). This is Pell’s equation which has infinitely

many integer solutions in m1, k1 ∈
�

for given a2, d2 if 2[(a2 +d2)
2 −4] is not

the square of an integer (recall that
√

2a2,
√

2d2 are integers). Notice that
this is a square if and only if |

√
2(a2 + d2)| = 3. If |

√
2(a2 + d2)| 6= 3, we

can always find a matrix g1 with z1,2 = t1,2, which belongs to the centralizer
Γγp of a given hyperbolic γp. If on the contrary |

√
2(a2 + d2)| = 3 so that
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2[(a2 + d2)
2 − 4] = 1, there is no such matrix g1, so the centralizer of γp is

{e}.
In the case i = 3, 4 we obtain a similar result, using (1.13). This leads to

the equation

m2
2 − 4k2

2[(a2 + d2)
2 − 4] = 1

in the integers m2, k2. Recall that 2a2, 2d2 are given integers in that case.
This equation has integer solutions if and only if 4[(a2 + d2)

2 − 4] is not the
square of an integer, that is if 2|a2+d2| 6= 5. In this case the centralizer Γγp of
γp is non-trivial and generated by a hyperbolic element of Γ. If 2|a2+d2| = 5,
Γγp = {e}.

We have proved

Theorem 2. For a hyperbolic class {γp}Γ in ΓP from (2) of Theorem 1 the
alternative (a) occurs when

√
2|tr γp| = 3 for p ∈ Pi, i = 1, 2 and when

2|tr γp| = 5 for p ∈ Pi, i = 3, 4. In those cases the fixed points of γp in H
are rational points. The norms of the classes {γp}Γ are 2 in case 1 and 4 in
case 2. For other values of tr(γp) alternative (b) holds.

We shall see later that there are only finitely many classes {γp}Γ from
Theorem 2.
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2 The involution J : z 7→ −z̄ and the excep-

tional Hecke operators

Let g ∈ PSL(2,�),

g =

(

a b
c d

)

(mod ± 1).

Then it is easy to see that JgJ acts on H as the matrix

g̃ =

(

a −b
−c d

)

(mod ± 1).

It is convenient now to introduce an isomorphic model of H . This model is
well known. We consider the set of positive definite symmetric matrices

z(x, y) =

(

y + x2y−1 xy−1

xy−1 y−1

)

(2.1)

where y > 0, x ∈ � . We define the action of g ∈ PSL(2,�) on such matrices
by

gz(x, y) = g[z(x, y)]gt (2.2)

where gt is the transpose of g and the product on the right of (2.2) is the
usual product of matrices. It is easy to see that the set Ĥ = {z(x, y)} with
the action (2.2) has the structure of a symmetric space and is isomorphic to
H . The isomorphism is given by the map

z(x, y) → z = x + iy.

This model Ĥ of the hyperbolic plane has the following useful property,
which can not be seen in the case of H . The reflection J in the model Ĥ is
given by

J =

(

1 0
0 −1

)

(mod ± 1) (2.3)

i.e. it is an element in GL(2,�)/(±E), where E is the identity matrix.
It therefore makes sense to consider the products Jg, gJ in PGL(2,�) for
g ∈ PSL(2,�).

We shall study now the relative conjugacy classes {gJ}G under conjuga-
tion by elements from PSL(2, �) = G. We have obviously GJ = GJG, so
we can consider the conjugation g1gJg−1

1 , g1 ∈ G, for fixed g ∈ G. From the
point of view of the trace formula there is an important alternative for the
relative conjugacy classes:

12



(1) tr(gJ) 6= 0

(2) tr(gJ) = 0 (see [2] §6.5)

The fixed points of gJ : H → H are determined by the equation

−az̄ + b

−cz̄ + d
= z

b − az̄ = −c|z|2 + dz.

For z = x + iy we have the system

b − ax = dx − c|z|2
dy = ay.

In the case (1) tr(gJ) = d − a (mod ± 1) 6= 0 we have

y = 0

b − ax = dx − cx2

Therefore we obtain for c = 0, x = b
a+d

.
For c 6= 0 the fixed points are

z1,2 = t1,2

=
a + d

2c
±
√

(a + d)2

4c2
− b

c

=
a + d

2c
±
√

(a − d)2 + 4

2c
(2.4)

where we use det g = 1.
In the case (2) tr(gJ) = d − a = 0 we have a one-parameter family of

fixed points z given by the equation

c|z|2 − a(z + z̄) + b = 0 (2.5)

where z = x + iy, z̄ = x − iy, y > 0, x ∈ � .
Consider now gJ, g ∈ G where J is given by (2.3) with the property

tr(gJ) 6= 0. There exists g1 ∈ G such that

g1(gJ)g−1
1 =

(

λ 0
0 −λ−1

)

(mod ± 1) , λ > 1 (2.6)

By definition the norm N(gJ) = λ2.
Similar to Lemma 4 we have
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Lemma 8. An element gJ from (2.6) with tr(gJ) 6= 0 commutes in PSL(2,�)
only with the identity and with hyperbolic elements.

We will specify later exactly which hyperbolic elements commute with gJ
from Lemma 8. From Lemma 1 follows

Lemma 9. For j = 1, 2, 3, 4, ΓPjΓ = ΓPjJΓ.

Lemma 10. For any γ ∈ Γ, p ∈ Pj, j = 1, 2, 3, 4 we have tr(γpJ) 6= 0,
where J is given by (2.3).

Proof. This follows directly from (1.1)–(1.4) and the fact that for any
(

a b
Nc d

)

∈ Γ

a and d are odd integers, N = 4N2 or N = 4N3.

Similar to Lemma 7 we have

Lemma 11. An element gJ from Lemma 8 commutes with a hyperbolic
element g1 if and only if they have the same fixed points.

We will modify now the proof of Theorem 2 for the case

g2 =

(

a2 −b2

c2 −d2

)

∈ ΓPJ (2.7)

The fixed points of g2 are (see (2.4))

t1,2 =
a2 + d2

2c2
±
√

(a2 − d2)2 + 4

2c2
(2.8)

Now, for given g2 we have to find g1 ∈ Γ, hyperbolic, with the same fixed
points x1,2 = t1,2. Since

√

(a1 + d1)2 − 4 is always irrational we have (see
(1.8))

a1 − d1

2Nc1

=
a2 + d2

2c2

(a1 + d1)
2 − 4

4N2c2
1

=
(a2 − d2)

2 + 4

4c2
2

(2.9)

and similarly to (1.9)

a1d1 − 1

N2c2
1

=
1 − a2d2

c2
2

b1

Nc1
= −b2

c2

(2.10)
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That gives the matrix

g1 =

(

a1 b1

Nc1 d1

)

=

(

d1 + Nc1
a2+d2

c2

−Nc1b2
c2

Nc1 d1

)

(2.11)

We take now g2 ∈ ΓPjJ where j = 1, 2. In that case we have similarly to
(1.12)

a1 = d1 + Nc1

√
2(a2 + d2)√

2c2

b1 = Nc1

√
2b2√
2c2

(−1)

(2.12)

and
√

2(a2 + d2),
√

2c2,
√

2b2 ∈
�

. Similar to (1.14) we have

Nc1 = 2κ1

√
2c2 , κ1 ∈

�
(2.13)

where

g1 =

(

d1 + 2κ1

√
2(a2 + d2) −2κ1

√
2b2

2κ1

√
2c2 d1

)

(2.14)

is an integer matrix with 2κ1

√
2c2 divisible by N . Similar to (1.16), (1.17)

we have

d2
1 + 2κ1d1

√
2(a2 + d2) + 4κ2

1 · 2b2c2 = 1 (2.15)

or

m2
1 − 2κ2

1((a2 − d2)
2 + 4) = 1 (2.16)

where m1 = d1 + κ1

√
2(a2 + d2).

If g2 ∈ ΓPjJ and j = 3, 4, we have

a1 = d1 + Nc1
2(a2 + d2)

2c2

b1 = −Nc1
2b2

2c2

(2.17)

Nc1 = 2κ2 · 2c2 , κ2 ∈
�

(2.18)

where

g1 =

(

d1 + 2κ2 · 2(a2 + d2) −2κ2 · 2b2

2κ2 · 2c2 d1

)

(2.19)
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is an integer matrix with 2κ2 · 2c2 divisible by N . Since det g1 = 1, we have

d2
1 + 2κ2d1 · 2(a2 + d2) + 4κ2

1 · 4b2c2 = 1 (2.20)

or

m2
2 − 4κ2

2((a2 − d2)
2 + 4) = 1 (2.21)

where

m2 = d1 + κ2 · 2(a2 + d2)

We can always solve the equations (2.16), (2.21) if 2((a2 − d2)
2 + 4) (or

4((a2 − d2)
2 + 4) in the second case) is not an integer squared. This holds if

and only if
√

2 tr(γp) 6= ±1 for p ∈ Pj , j = 1, 2 and 2 tr(γp) 6= ±3, p ∈ Pj,
j = 3, 4.

We have proved

Theorem 3. For a relative conjugacy class {γpJ}Γ, γ ∈ Γ, we have

(a) If
√

2|tr(γp)| = 1 for j = 1, 2 and 2|tr(γp)| = 3 for j = 3, 4, then the
centralizer ΓγpJ of γpJ in Γ is {e}.

(b) If
√

2|tr(γp)| 6= 1 for j = 1, 2 and 2|tr(γp)| 6= 3 for j = 3, 4, then ΓγpJ is
a cyclic group generated by a hyperbolic element.
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3 The trace formula for odd functions and the

Weyl law

We recall now the definition of the Eisenstein series (non-holomorphic) for
Γ = Γ0(N), N = 4N2 or N = 4N3, which correspond to open cusps for the
real primitive character χ (see [1] (2.1)). For the definitions we introduced
elements gj in PSL(2,�). We now parametrize these elements by the divisors
d | N , d > 0. We have

gd =

(√
md 0

d
√

md
√

md
−1

)

gdS∞g−1
d = Sd,

where S∞ is the stabilizer of the cusp at ∞.
For each open cusp 1

d
we define the Eisenstein series

Ed(z, s) = Ed(z, s, Γ, χ) =
∑

γ∈Γd\Γ
ys(g−1

d γz)χ(γ), (3.1)

where Re s > 1, χ(γ) = χ(γ). Let us calculate ys(g−1
d γz). Let

γ =

(

a b
Nc h

)

∈ Γ,

and we have

g−1
d =

(√
md

−1 0
−d

√
md

√
md

)

,

z = x + iy ∈ H . We have with N = dmd

g−1
d γ =

(

∗ ∗
−d

√
mda +

√
mdNc −d

√
mdb +

√
mdh

)

ys(g−1
d γz) = ys[{(−d

√
mda +

√
mdNc)x − d

√
mdb +

√
mdh}2

+ (−d
√

mda +
√

mdNc)2y2]−s

= ys|md|−s[{(Nc − ad)x − db + h}2 + (Nc − ad)2]−s (3.2)

We notice that (3.2) is unchanged when (d, x, b, c) is replaced by (−d,−x,−b,−c).
It follows that

E−d(−z̄, s) = Ed(z, s) (3.3)

Lemma 12. The cusps 1
d

and −1
d

are equivalent, d | N ,

Ed(z, s) = E−d(z, s) = Ed(Jz, s). (3.4)
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Proof. We want to find a matrix

(

α β
Nγ δ

)

∈ Γ0(N),

where N = 4N2 or N = 4N3 with αδ − Nβγ = 1, such that

(

α β
Nγ δ

)(−1

d

)

=
1

d
.

This yields the equation

δ2 − (βd + γmd)δ + βγdmd + 1 = 0 (3.5)

with the solutions

δ =
βd + γmd

2
±
√

(βd − γmd)2 − 4

2
(3.6)

Here (βd − γmd)
2 − 4 is the square of an integer if and only if

βd − γmd = ±2 (3.7)

From that follows α = δ, since α is a solution of the same equation (3.5).
Since N = dmd = 4p1 · · · pk, where the pj are distinct primes, we have the
following cases:

(1) d = 2d′, md = 2m′
d, (d′, m′

d) = 1. Then (3.7) yields

βd′ − γm′
d = ±1 (3.8)

The equation (3.8) has integer solutions β, γ and by (3.6) δ = βd′ +γm′
d.

(2) d = 2d′, 2 | d′, (d′, md) = 1. Then by (3.7), γ must be even, γ = 2γ′, and

βd′ − γ′md = ±1. (3.9)

The equation (3.9) has integer solutions β, γ′, and by (3.6) δ = βd′+γ′md.

(3) md = 2m′
d, 2 | m′

d, (d, m′
d) = 1. This is similar to (2), exchanging d with

md and β with γ.

Hence 1
d

and −1
d

are equivalent, and it follows that Ed(z, s) = E−d(z, s).
Together with (3.3) this proves the Lemma.
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We recall that the involution J : z → −z̄ acts on the space of all contin-
uous (Γ, χ)-automorphic functions and splits this space into the sum of even
and odd functions given by

f(Jz) = f(z) f(Jz) = −f(z) (3.10)

The operator J commutes with the automorphic Laplacian A(Γ, χ) and
with all Hecke operators. The Hilbert space H = H(Γ, χ) according to (3.10)
decomposes into an orthogonal sum of two subspaces H = Hodd ⊕ Heven.
From Lemma 12 follows

Lemma 13. Let D(A) be the domain of definition of A(Γ, χ) in H and
Aodd = A(Γ, χ)|D(A)∩Hodd

. Then the operator Aodd has discrete spectrum as
a selfadjoint operator in Hodd.

Let Nodd(λ) be the distribution function of eigenvalues of Aodd. We will
prove now the Weyl law

Nodd(λ) ∼ µ(F )

8π
λ , λ → ∞ (3.11)

where µ(F ) is the area (dµ-area) of the fundamental domain F of Γ. The
proof is an extension of the proof from [2] and [7]. We have a preliminary
trace formula on the space of odd functions

∑

j

hε(λj) = lim
Y →∞

1

2

∫

FY

∑

γ∈Γ

χ(γ)(kε(u(z, γz)) − kε(u(z, γJz)))dµ(z) (3.12)

where {λj} is the set of all eigenvalues of Aodd and FY is the cut-off funda-
mental domain of Γ in H (see (3.32)), FY → F as Y → ∞. Here u is the
distance function

u(z, z′) =
|z − z′|2

yy′ .

The test function hε(λ) is given by

hε(λ) = hε(
1
4

+ r2) = e−εr2

, ε > 0 (3.13)
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and kε(u) is the corresponding Selberg transform of hε(λ), given by

gε(u) =
1

2π

∫ ∞

−∞
e−iruhε(

1
4

+ r2)dr

hε(λ) =

∫ ∞

−∞
eiλugε(u)du , λ = 1

4
+ r2

Qε(e
u + e−u − 2) = gε(u)

kε(t) = −1

π

∫ ∞

t

dQε(ω)√
ω − t

Qε(ω) =

∫ ∞

ω

kε(t)√
t − ω

dt

(3.14)

We have
∫

FY

∑

γ∈Γ

χ(γ)kε(u(z, γz))dµ(z) =
∑

{γ}Γ

χ(γ)

∫

F γ
Y

kε(u(z, γz))dµ(z) (3.15)

where {γ}Γ is the conjugacy class in Γ with representative γ,

F γ
Y =

⋃

γ′∈Γγ\Γ
γ′FY (3.16)

Γγ is the centralizer of γ in Γ, and Γγ \ Γ is the left co-set. We have
F γ

Y −−−→
Y →∞

F γ, where F γ is a fundamental domain of Γγ in H .

In analogy we have
∫

FY

∑

γ∈Γ

χ(γ)kε(u(z, γJz))dµ(z) =
∑

{γJ}Γ

χ(γ)

∫

F γJ
Y

kε(u(z, γJz))dµ(z) (3.17)

where {γJ}Γ is the relative conjugacy class in ΓJ by conjugation of Γ,

F γJ
Y =

⋃

γ′∈ΓγJ\Γ
γ′FY −−−→

Y →∞
F γJ (3.18)

ΓγJ is the centralizer of γJ in Γ, F γJ is a fundamental domain of ΓγJ in H .
We consider first the sum given by (3.15). It is well known that the sum over
all conjugacy classes {γ}Γ in (3.15) splits into {e}Γ, {h}Γ, {p}Γ, identity,
hyperbolic, parabolic classes (Γ has no elliptic classes). Also the sum over all
parabolic classes splits into two sums according to the character χ (χ = 1,
χ = −1) (see [1]). The contribution from {e}Γ is equal to

∫

FY

kε(u(z, z))dµ(z) =
µ(FY )

4π

∫ ∞

−∞
r · (tanh πr)hε(

1
4

+ r2)dr (3.19)
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µ(FY ) −−−→
Y →∞

µ(F ) (3.20)

The contribution from all hyperbolic classes to (3.15) is equal to

∑

{h}Γ

∞
∑

k=1

χk(h) log N(h)

N(h)k/2 − N(h)−k/2
gε(k log N(h)) + o(1)

Y →∞
(3.21)

where γ = hk is a positive integer power of a primitive hyperbolic element h,
N(h) is the norm of h,

gε(u) =
1

2π

∫ ∞

−∞
e−riuhε(

1
4

+ r2)dr (3.22)

Let a(Γ, χ) be the number of open cusps for F relative to χ, and b(Γ, χ) the
number of closed cusps of F . Then the contribution from all of the parabolic
conjugacy classes to (3.15) is equal to

a(Γ, χ)
[

gε(0) log Y − gε(0) log 2 +
hε(

1
4
)

4

− 1

2π

∫ ∞

−∞
hε(

1
4

+ r2)
Γ′

Γ
(1 + ir)dr

]

− b(Γ, χ)gε(0) log 2 + o(1)
Y →∞

(3.23)

where Γ(s) the Euler function and o(1)
Y →∞

means o(1) −−−→
Y →∞

0.

Now we consider the sum given by (3.17). In order to calculate the right
hand side of (3.17) we have to seperate two different cases for the conjugacy
classes {γJ}Γ, γ ∈ Γ (as in § 2)

∑

{γJ}Γ

=
∑

{γJ}Γ

tr(γJ)6=0

+
∑

{γJ}Γ

tr(γJ)=0

(3.24)

There is a significant difference between the classes {γJ}Γ and {γpJ}Γ, γ ∈ Γ,
p ∈ Pj , j = 1, 2, 3, 4. We shall make use of the following results about these
classes.

Lemma 14.

(1) For any {γJ}Γ with the property tr(γJ) 6= 0 the centralizer ΓγJ in Γ of
γJ is generated by a hyperbolic element h = h(γJ).

(2) There are classes {γJ}Γ, γ ∈ Γ, tr(γJ) = 0.
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Proof. (1) It is sufficient to show that ΓγJ contains a hyperbolic element.
Then from the discreteness of Γ follows that ΓγJ is a cyclic group, gen-
erated by a hyperbolic element. We have γJγJ ∈ Γ if γ ∈ Γ. Clearly
(γJγJ)γJ = γJ(γJγJ). Similar to (2.6) we have

g1(γJ)g−1
1 =

(

λ 0
0 −λ−1

)

(mod ± 1) , λ > 1

Then

g1(γJγJ)g−1
1 =

(

λ2 0
0 λ−2

)

(mod ± 1)

is a hyperbolic element.

(2) This follows from the definition of Γ.

Remark. We shall see later that there are at most finitely many classes
{γJ}Γ from (2) of Lemma 14.

From the proof of (1) of Lemma 14 follows

Lemma 15. For any {γJ}Γ with tr(γJ) 6= 0 we have

N(h(γJ)) ≤ N2(γJ).

From the definition of the group Γ = Γ0(N), N = 4N2 or N = 4N3, and
(2.6) follows

Lemma 16. Let γ ∈ Γ and {γJ}Γ be such that tr(γJ) 6= 0. Then γ is a
hyperbolic element and N(γJ) = N(γ).

The following is well known.

Lemma 17. The series

∞
∑

k=1

∑

{γ}Γ

1

N(γ)ks
, γ hyperbolic primitive

is absolutely convergent for Re s > 1, where the sum is taken over all hyper-
bolic conjugacy classes in Γ.

We will now calculate the contribution to (3.24) from classes with tr(γJ) =
0.
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Lemma 18. Let γ ∈ Γ and tr(γJ) = 0, then the centralizer ΓγJ of γJ in Γ
is either trivial ΓγJ = {e} or ΓγJ is a cyclic hyperbolic group.

Proof. The element γJ is conjugated by g ∈ G to

(

1 0
0 −1

)

(mod ±1). Let

g1 =

(

a b
c d

)

∈ G. We consider the commutation condition

−az̄ + b

−cz̄ + d
= −az̄ + b

cz̄ + d
(3.25)

which is supposed to be valid for all z ∈ H . From this follows that g1 is a
hyperbolic element or g1 = e or g1 is elliptic with tr(g1) = 0. Then the result
follows from Lemma 6 and the discreteness of Γ.

We will calculate now in a little more detail the sum in (3.17) since it is
not so much known as the sum (3.15). We start from the sum in (3.24) with
tr(γJ) 6= 0. Any γ′J in ΓJ is an odd positive integer power of a primitive
element γJ . Let us denote by h(γJ) ∈ Γ the generator of ΓγJ . Let FγJ be a
fundamental domain of ΓγJ in H . If g(γJ) ∈ G brings h(γJ) to the diagonal

form

(

λ 0
0 λ−1

)

similar to (2.6), then we take as FγJ the following domain

g(γJ)FγJ = {z = reiϕ ∈ H | 1 ≤ r < N(h(γJ)), 0 < ϕ < π} (3.26)

Then the part of (3.17) with the condition tr(γJ) 6= 0 is equal to

∑

{γJ}Γ

tr(γJ)6=0

χ(γ)

∫

F γJ
Y

kε(u(z, γJz))dµ(z)

=
∑′

{γJ}Γ

tr(γJ)6=0

∞
∑

k=1

χ(γ)2k−1

∫

FγJ

kε(u(z, (γJ)2k−1z))dµ(z) + o(1)
Y →∞

=
∑′

{γJ}Γ

tr(γJ)6=0

∞
∑

k=1

χ(γ)2k−1

∫ N(h)

1

dr

r

∫ π

0

dϕ

sin2 ϕ
kε

( |z + N(γJ)2k−1z̄|2
y2N(γJ)2k−1

)

+ o(1)
Y →∞

=
∑′

{γJ}Γ

tr(γJ)6=0

∞
∑

k=1

[

χ(γ)2k−1 log N(h(γJ))

2

∫ π/2

0

dϕ

sin2 ϕ
kε

( |eiϕ + N(γJ)2k−1e−iϕ|2
sin2 ϕ · N(γJ)2k−1

)

]

+ o(1)
Y →∞
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=
∑′

{γJ}Γ

tr(γJ)6=0

∞
∑

k=1

[

χ(γ)2k−1 log N(h(γJ))

∫ ∞

0

dt√
t
kε

(

t
(

N(γJ)k−1
2 + N(γJ)

1
2
−k
)2

+

(

N(γJ)k−1
2 − N(γJ)

1
2
−k
)2
)

]

+ o(1)
Y →∞

=
∑′

{γJ}Γ

tr(γJ)6=0

∞
∑

k=1

χ(γ)2k−1 log N(h(γJ))
Qε

(

N(γJ)2k−1 + N(γJ)1−2k − 2
)

N(γJ)k−1/2 + N(γJ)1/2−k
+ o(1)

Y →∞

=
∑′

{γJ}Γ

tr(γJ)6=0

∞
∑

k=1

χ(γ)2k−1 log N(h(γJ))
gε((2k − 1) log N(γJ))

N(γJ)k−1/2 + N(γJ)1/2−k
+ o(1)

Y →∞

(3.27)

where the summation in
∑′ is only taken over primitive relative classes and

N is the norm.
We consider now the situation when tr(γJ) = 0 and ΓγJ is a hyperbolic

cyclic group. Denote by h(γJ) the generator of ΓγJ . Then we have

∑

{γJ}Γ

tr(γJ)=0
ΓγJ nontrivial

χ(γ)

∫

F γJ
Y

kε(u(z, γJz))dµ(z)

=
∑

{γJ}Γ

tr(γJ)=0
ΓγJ nontrivial

χ(γ)

∫

FγJ

kε(u(z, γJz))dµ(z) + o(1)
Y →∞

=
∑

{γJ}Γ

tr(γJ)=0
ΓγJ nontrivial

χ(γ)

∫ N(h(γJ))

1

dr

r

∫ π

0

dϕ

sin2 ϕ
kε(u(z, Jz)) + o(1)

Y →∞

=
∑

{γJ}Γ

tr(γJ)=0
ΓγJ nontrivial

χ(γ) log N(h(γJ))

∫ π

0

dϕ

sin2 ϕ
kε

(4 cos2 ϕ

sin2 ϕ

)

+ o(1)
Y →∞
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=
∑

{γJ}Γ

tr(γJ)=0
ΓγJ nontrivial

χ(γ)
log N(h(γJ))

2
gε(0) + o(1)

Y →∞
(3.28)

The calculation is similar to (3.27). We shall see later that the sum in
(3.28) contains only finitely many terms, at most.

Finally we have to calculate the contribution to (3.24) from classes with
tr(γJ) = 0 and trivial centralizer ΓγJ = {e}. We have to find the asymptotics
of

∑

{γJ}Γ

tr(γJ)=0
ΓγJ ={e}

χ(γ)

∫

F γJ
Y

kε(u(z, γJz))dµ(z) , Y → ∞ (3.29)

where

F γJ
Y =

⋃

γ′∈ΓγJ\Γ
γ′FY =

⋃

γ′∈Γ

γ′FY (3.30)

We recall that Γ = Γ0(N), N = 4N2 or N = 4N3 and F = F0(N), a
fundamental domain of Γ in H . We introduce Γ(1) to be the modular group
and F (1) to be a fundamental domain of Γ(1) in H . For the purpose of
calculation let us take

F (1) = {z ∈ H, z = x + iy | x2 + y2 > 1, 0 ≤ x ≤ 1
2

or x2 + y2 ≥ 1, −1
2

< x < 0}

Then we take

FY (1) = {z ∈ F | y ≤ Y } , Y > 1 (3.31)

We have

F0(N) =
⋃

γ∈Γ(1)/Γ0(N)

γF (1)

and we now define FY by

FY = F 0
Y (N) =

⋃

γ∈Γ(1)/Γ0(N)

γFY (1) (3.32)

From that follows the continuation of (3.30)

⋃

γ′∈Γ

γ′FY =
⋃

γ∈Γ(1)

γFY (1) (3.33)

25



In the sum (3.29) we will first consider the term with γ = e
∫

F J
Y

kε(u(z, Jz))dµ(z) (3.34)

We define two sets Ωj ⊂ H , j = 1, 2. By definition

Ω1 = H(Y ) = {z ∈ H, z = x + iy | y > Y }
Ω2 = Ω2(Y ) = {z = −1

z′
| z′ ∈ Ω1(Y )}

= {x + iy | x2 + (y − 1
2Y

)2 <
1

4Y 2
}

From (3.30)–(3.33) follows

F J
Y ⊂ H \ Ω1 ∪ Ω2 = Ω3 (3.35)

We will not calculate here explicitly the integral (3.34), but we will cal-
culate the divergent term and we will estimate the remainder term for the
purpose of proving the Weyl law.

We define now

Ω4 = Ω4(Y ) = {z ∈ H, z = x + iy | 1

Y
≤ y ≤ Y } (3.36)

We can see that

Ω4(Y ) ⊂ F J
Y (3.37)

This follows from (3.30)–(3.33) and the fact that

max Im(γz) ≤ 1

y
, z = x + iy

γ =

(

a b
c d

)

∈ Γ(1)

c 6= 0

(3.38)

We will prove now that the only divergent part of (3.34) for Y → ∞ is
given by

∫

Ω4(Y )

kε(u(z, Jz))dµ(z) (3.39)

which is equal to

2

∫ ∞

0

dx

∫ Y

1/Y

dy

y2
kε(

4x2

y2 ) =
1

2

∫ Y

1/Y

dy

y

∫ ∞

0

kε(t)√
t

dt
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=
1

2
· 2 log Y · gε(0)

= gε(0) log Y (3.40)

We will estimate now the rest of the integral (3.34) given by

∫

F J
Y
\Ω4(Y )

kε(u(z, Jz))dµ(z) (3.41)

From (3.14), (3.22), (3.13) follows

gε(u) =
1

2π

∫ ∞

−∞
e−irue−ε(r2+

1
4
)dr =

1

2
√

πε
e−u2/4ε · e−ε/4

kε(e
v + e−v − 2) = −1

π

∫ ∞

v

g′
ε(u)du√

eu + e−u − ev − e−v

g′
ε(u) =

d

du
gε(u)

(3.42)

From (3.42) follows that kε(t) ≥ 0, t ≥ 0. Therefore

∫

F J
Y
\Ω4(Y )

kε(u(z, Jz))dµ(z) ≤
∫

Ω3(Y )\Ω4(Y )

kε(u(z, Jz))dµ(z) = T1 (3.43)

for all Y > 1, ε > 0 by (3.35). We will calculate now the right hand side of
(3.43). We have

T1 = 2

∫ 1/Y

0

dy

y2

∫ ∞

y
√

1/yY −1

kε(
4x2

y2 )dx

=
1

2

∫ 1/Y

0

dy

y

∫ ∞

4(1/yY −1)

kε(t)√
t

dt

=
1

2

∫ ∞

1

dτ

τ

∫ ∞

4(τ−1)

kε(t)√
t

dt

= −gε(0) log 2 +
1

2

∫ ∞

0

log(t + 4)
kε(t)√

t
dt (3.44)

For the purpose of estimations of integrals (3.44) is good enough, but we can
also transform (3.44) to integrals with the hε function. It was done in [2]
§6.5. We have

∫ ∞

0

log(t + 4)
kε(t)√

t
dt = −1

π

∫ ∞

0

dQε(ω)

∫ ω

0

log(t + 4)√
t
√

ω − t
dt
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=
1

π
gε(0) log 2

∫ 1

0

1√
t
√

1 − t
dt

+
1

π

∫ ∞

0

Qε(ω)dω

∫ 1

0

dτ

(ω + 4/τ)
√

τ
√

1 − τ

= 2 log 2gε(0) +
1

π

∫ ∞

0

Qε(ω) · π · 1

ω + 4 + 2
√

ω + 4
dω

= 2 log 2gε(0) +

∫ ∞

0

gε(u) tanh(u/4)du (3.45)

Similarly we obtain (cf. Appendix Lemma A.3) as the main term of the
asymptotics of (3.29)

∫

Ω4(Y )

kε(u(z, Jz))dµ(z) = gε(0) log y

and the remaining terms given by
∫

c−1(Ω3(Y )\Ω4(Y ))

kε(u(z, Jz))dµ(z) = T1

and
∫ 1/Y

c−1 1
Y

kε(u(z, Jz))dµ(z)

see (4.34), (4.36).

Lemma 19. The number of classes {γJ}Γ, tr(γJ) = 0, ΓγJ nontrivial, is
finite.

Proof. We can derive a formula similar to (3.12) for a trivial character χ.
Then we can repeat the calculation of the contributions from all classes to
(3.12). Instead of (3.28) we get

gε(0)

2

∑

{γJ}Γ

tr(γJ)=0
ΓγJ nontrivial

log N(h(γJ)) + o(1)
Y →∞

(3.46)

For any fixed Y > 1 and trivial character χ the integral in (3.12) is finite.
From that follows that the sum in (3.46) is finite, which can happen only if
we have finitely many terms in the sum.

We denote by a(Γ, 1) = a(Γ) the number of all pairwise inequivalent open
cusps of F relative to χ and set m(Γ) = #{γJ}Γ, tr(γJ) = 0, ΓγJ = {e}.
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Lemma 20.

(1) a(Γ) = m(Γ)

(2) a(Γ, χ) =
∑

{γJ}Γ

tr(γJ)=0
ΓγJ={e}

χ(γ)

Proof. Similar to the proof of Lemma 19. We compare the coefficients of the
log Y terms in (3.12) (1) for trivial χ (2) for the primitive nontrivial character
coming from the {γ}Γ and {γJ}Γ classes.

Theorem 4. The Weyl law (see (3.11)) is valid.

Proof. To prove the theorem we have to see the asymptotics of each term in
(3.12) when ε → +0 and then apply a Tauberian theorem. Similar to [2] we
have

µ(F )

4π

∫ ∞

−∞
r(tanhπr)hε(

1
4

+ r2)dr =
µ(F )

4π
· 1

ε
+ O(1)

ε→+0

∑

{h}Γ

∞
∑

k=1

χk(h) log N(h)

N(h)k/2 − N(h)−k/2
gε(k log N(h)) = o(1)

ε→+0

gε(0) = O( 1√
ε
)

ε→+0
∫ ∞

−∞
hε(

1
4

+ r2)
Γ′

Γ
(1 + ir)dr = O( |log ε|√

ε
)

ε→+0

(3.47)

We have also
∫ ∞

0

gε(u) tanh(u
4
)du = o(1)

ε→0

(3.48)

Applying Lemmas 15, 16, 17 we have (see (3.27))

∑′

{γJ}Γ

tr(γJ)6=0

∞
∑

k=1

χ(γ)2k−1 log N(h(γJ))
gε((2k − 1) log N(γJ))

N(γJ)k−1/2 + N(γJ)1/2−k
= o(1)

ε→+0

(3.49)

Finally, using (3.43) and Lemmas 19, 20, we obtain from (3.12)

∑

j

hε(λj) =

∫ ∞

0

e−ελdNodd(λ)

=
µ(F )

8π
· 1

ε
+ O( |log ε|√

ε
)

ε→+0

(3.50)

and from that follows (3.11) and Theorem 4.

29



4 More advanced trace formula

We introduce three functions

h1(λ) = h1(
1
4

+ r2) = e−ε(
1
4
+r2)

h2(λ) = h2(
1
4

+ r2) = 4 cos(r log 2)e−ε(
1
4
+r2)

h3(λ) = h3(
1
4

+ r2) = 2 cos(2r log 2)e−ε(
1
4
+r2)

(4.1)

All these functions depend on a parameter ε > 0 similar to (3.13). For
each hj(λ) we denote by kj the corresponding Selberg transform from (3.14),
j = 1, 2, 3. We introduce also

Kj(z, z
′, Γ, χ) =

∑

γ∈Γ

χ(γ)kj(u(z, γz′)) (4.2)

where γ runs over the whole group Γ = Γ0(N), N = 4N2, N = 4N3 and χ is

our real primitive character and u(z, z′) = |z−z′|2
yy′

.

We denote also by Kj(Γ, χ) = Kj the corresponding integral operator in
the Hilbert space H(Γ) = L2(F, dµ) with the kernel given by (4.2). We will
study now the operator

T = (4 + U2(2) + U∗2(2))K1 − (U(2) + U∗(2))K2 + K3 (4.3)

on the space of odd functions Hodd (see the above Lemma 13). We have
Kj = hj(A(Γ, χ)), j = 1, 2, 3. U(2)Kj = KjU(2), U∗(2)Kj = KjU

∗(2),
KjHodd ⊂ Hodd, U(2)Hodd ⊂ Hodd, U∗(2)Hodd ⊂ Hodd and hence

THodd ⊂ Hodd. (4.4)

From Lemma 12 follows that A(Γ, χ) has only discrete spectrum in Hodd∩
D(A(Γ, χ)). From Theorem 4.2 [1] follows that there exists a common ba-
sis of eigenfunctions of A(Γ, χ), U(2), U∗(2) in Hodd. Let us denote by
{vj(z, Γ, χ)}∞j=1 the orthonormal basis of common eigenfunctions in Hodd. If

A(Γ, χ)vj(z) = λjvj(z) λj = λj(Γ, χ) vj(z) = vj(z, Γ, χ)

and

U(2)vj(z) = νjvj(z) νj = νj(Γ, χ)

λj ∈ � νj ∈ � |νj | = 1 νj = eiηj ηj ∈ �
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then U∗(2)vj = e−iηjvj and we have

Tvj =
[

(4 + e2iηj + e−2iηj )h1(λj) − (eiηj + e−iηj )h2(λj) + h3(λj)
]

vj

=
[

(4 + e2iηj + e−2iηj ) − (eiηj + e−iηj ) · 4 cos(rj log 2) + 2 cos(2rj log 2)
]

e−ελjvj

(4.5)

where λj = 1
4

+ r2
j . We can continue (4.5)

Tvj = (eiηj + e−iηj − 2irj − 2−irj )2e−ελjvj

= (2 cos ηj − 2 cos(rj log 2))2e−ελjvj (4.6)

We denote ωj = cos ηj−cos(rj log 2). It is not difficult to see that the operator
T is of trace class on Hodd and its spectral trace is equal to

trT = 4

∞
∑

j=1

ω2
j e

−ελj (4.7)

Using the trace formula we can calculate the matrix trace of T and obtain
the asymptotics as ε → +0. Then we apply the Tauberian theorem to get
information on a bound for ωj.

From (1.4), (4.2), (4.3) it follows that the kernel T̂ (z, z′) of the operator
T (as an integral operator) on the space of odd functions Hodd is given by

T̂ (z, z′) =
1

2
(T (z, z′) − T (z, Jz′))

= 2
∑

γ∈Γ

χ(γ)[k1(u(z, γz′)) − k1(u(z, γJz′))]

+
1

2

∑

γ∈Γ

∑

p∈P3

χ(γ)[k1(u(z, γpz′)) − k1(u(z, γpJz′))]

+
1

2

∑

γ∈Γ

∑

p∈P4

χ(γ)[k1(u(z, γpz′)) − k1(u(z, γpJz′))]

− 1

2

∑

γ∈Γ

∑

p∈P1

χ(γ)[k2(u(z, γpz′)) − k2(u(z, γpJz′))]

− 1

2

∑

γ∈Γ

∑

p∈P2

χ(γ)[k2(u(z, γpz′)) − k2(u(z, γpJz′))]

+
1

2

∑

γ∈Γ

χ(γ)[k3(u(z, γz′)) − k3(u(z, γJz′))]

(4.8)
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From (4.7), (4.8) we can construct a trace formula similar to (3.12),

4
∞
∑

j=1

ω2
j e

−ελj = lim
Y →∞

∫

FY

T̂ (z, z)dµ(z) (4.9)

where the λj were explained above (4.5). The right hand side of (4.8) is a
sum of six automorphic kernels according to the decomposition (4.3). We
denote them as T̂j(z, z

′), j = 1, 2, . . . , 6, starting from

T̂1(z, z
′) = 2

∑

γ∈Γ

χ(γ)[k1(u(z, γz′)) − k1(u(z, γJz′))]

and so on finishing by

T̂6(z, z
′) =

1

2

∑

γ∈Γ

χ(γ)[k3(u(z, γz′)) − k3(u(z, γJz′))].

It is not difficult to see that for each j = 1, . . . , 6 there exists a finite limit

lim
Y →∞

∫

FY

T̂j(z, z)dµ(z) =

∫

F

T̂j(z, z)dµ(z) = Ij(ε) (4.10)

for any fixed ε > 0. We have to find an asymptotics (or bound) for all Ij(ε),
ε → +0. We did that in § 3 for I1 (see (3.50)). We have

I1(ε) =
µ(F )

2π
· 1

ε
+ O( |log ε|√

ε
)

ε→+0

(4.11)

The next integral we will consider is I6(ε) since it is close to the previous
case. The contribution from the identity similar to (3.12), (3.13) is equal to

µ(F )

8π

∫ ∞

−∞
r(tanhπr)h3(

1
4

+ r2)dr (4.12)

We will estimate this integral when ε → +0. We have
∫ ∞

−∞
r(tanhπr)h3(

1
4

+ r2)dr = 4

∫ ∞

0

r(tanhπr)(e2ir log 2 + e−2ir log 2)e−(
1
4
+r2)εdr

(4.13)

Since
∫ ∞

0

r(1 − tanh πr)h3(
1
4

+ r2)dr = O(1)
ε→+0
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we have to evaluate
∫ ∞

0

r(2 cos(2r log 2))e−r2εdr =
1

ε

∫ ∞

0

t(2 cos(2 t√
ε
log 2))e−t2dt

=
2

ε

∫ ∞

0

t · e−t2d(sin( t√
ε
2 log 2))

√
ε

2 log 2

= − 1√
ε log 2

∫ ∞

0

d

dt
(t · e−t2) sin( t√

ε
2 log 2)dt

= O( 1√
ε
)

ε→+0

(4.14)

From (4.14) follows that (4.12) is O( 1√
ε
)

ε→+0

, which is smaller than the leading

term in (4.11). To see the contribution from hyperbolic elements similar to
(3.21), (3.47) we have to find

g3(u) =
1

2π

∫ ∞

−∞
e−iruh3(

1
4

+ r2)dr

=
1

2
√

πε
[e−

(u−2 log 2)2

4ε + e−
(u+2 log 2)2

4ε ]e−
ε
4 (4.15)

The worst that could happen is if there exists {h}Γ (see the second line
in (3.47)) with the property

κ log N(h) = 2 log 2 (4.16)

which gives us instead of o(1)
ε→+0

the estimate O( 1√
ε
)

ε→+0

coming from the g3(2 log 2)

term (we know that at most finitely many {h}Γ have the same norm). We
have then that the contribution from hyperbolic classes to the integral I6 is
bounded by O( 1√

ε
)

ε→+0

which again is smaller than the leading term in (4.11).

The contribution from parabolic classes to I6 is estimated in complete analogy
to the previous case of I1 and is estimated by O( 1√

ε
)

ε→+0

.

The estimations of contributions from the {γJ}Γ classes also proceed in
analogy to the previous case with obvious change. For example in (3.43) we
estimate in numerical value

∫

F J
Y
\Ω4(Y )

|k3(u(z, Jz))|dµ(z) ≤
∫

Ω3(Y )\Ω4(Y )

|k3(u(z, Jz))|dµ(z) (4.17)

and in (3.49) we will get instead of o(1)
ε→+0

the estimate O( 1√
ε
)

ε→+0

using the argu-

ment similar to the one in the proof of (4.15). Finally we obtain

I6(ε) = O( |log ε|√
ε

)
ε→+0

(4.18)
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We are going to evaluate now the remaining four integrals I2, I3, I4, I5.
From the point of view of the trace formula there is no substantial difference
between these cases. We will consider in more detail the case I2 and then
explain the differences with other cases. We have for a fixed ε > 0

I2 = I2(ε)

= lim
Y →∞

∫

FY

1

2

∑

γ∈Γ

∑

p∈P3

χ(γ)
[

k1(u(z, γpz)) − k1(u(z, γpJz))
]

dµ(z)

= 1
2

lim
Y →∞

{

∑

γ∈Γ

χ(γ)
∑

p∈P3

∫

FY

k1(u(z, γpz))dµ(z)

−
∑

γ∈Γ

χ(γ)
∑

p∈P3

∫

FY

k1(u(z, γpJz))dµ(z)
}

= 1
2

lim
Y →∞

{

∑

{γp}Γ

χ(γ)

∫

F γp
Y

k1(u(z, γpz))dµ(z)

−
∑

{γpJ}Γ

∫

F γpJ
Y

k1(u(z, γpJz))dµ(z)
}

(4.19)

where {γp}Γ, {γpJ}Γ are relative conjugacy classes with Γ conjugation (see
§ 1, § 2). Similar to (3.16), (3.18) we have

F γp
Y =

⋃

γ′∈Γγp\Γ
γ′FY F γpJ

Y =
⋃

γ′∈ΓγpJ\Γ
γ′FY (4.20)

where Γγp, ΓγpJ are centralizers of γp and γpJ in Γ. We have F γp
Y −−−→

Y →∞
F γp,

F γpJ
Y −−−→

Y →∞
F γpJ , where F γp, F γpJ are fundamental domains of Γγp, ΓγpJ in

H . We have to see now the contribution to (4.19) from different conjugacy
classes. From Lemma 2 we know there is no parabolic classes {γp} in each
ΓPj , j = 1, 2, 3, 4. From Lemma 3 follows that there are at most finitely
many elliptic classes {γp}Γ in ΓPj, j = 1, 2, 3, 4. Let the elliptic class {γp}Γ

have order d, then it is not difficult to see that the contribution to the trace
is

χ(γ)

2 sin π
d

∫ ∞

−∞

exp(−2πr/d)

1 + exp(−2πr)
h(1

4
+ r2)dr (4.21)

where for I2, I3 we have h = h1 and for I4, I5 we have h = h2. From (4.1)
follows that in all cases the contribution from all elliptic classes is given by
O(1)
ε→+0

. From the first sum in (4.19) we have to evalute now only contributions
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from hyperbolic classes since there is no contribution from the identity in
all these cases. According to Theorem 2 we have hyperbolic classes of two
different types. We will consider first the case when Γγp is non-trivial cyclic
group generated by a hyperbolic element h(γp) ∈ Γ. We have infinitely
many such classes and the total contribution can be calculated very similar
to (3.21)

∑

{γp}Γ

{γp} hyperbolic
Γγp non-trivial

χ(γ) log N(h(γp))
1

N(γp)1/2 − N(γp)−1/2
· g(log N(γp)) + o(1)

Y →∞

(4.22)

where again g = g1 for I2, I3 and g = g2 for I4, I5. It is known that the
series (4.22) is absolutely convergent. We can take the limit Y → ∞ and
then evaluate (4.22) by o(1)

ε→+0

for I2, I3 and O( 1√
ε
)

ε→+0

for I4, I5. To complete the

study of the first sum in (4.19) we have to consider hyperbolic classes with
trivial Γγp. We have F γp

Y = Γ0
Y (see Appendix) and we will consider the more

general situation assuming p ∈ Pj, j = 1, 2, 3, 4. Then

∫

Γ0
Y

k(u(z, γpz))dµ(z) =

∫

gΓ0
Y

k(u(z, αz))dµ(z) (4.23)

where g ∈ PSL(2, �), α = gγpg−1 =

(

λ 0
0 λ−1

)

, λ > 1, u(z, αz) = |z−λ2z|
y2λ2 .

Similar to (3.40) the main term of asymptotics of (4.23) for Y → ∞ is given
by

∫ ∞

−∞
dx

∫ Y

1/Y

k( |z−λ2z|2
y2λ2 )

dy

y2
= A (4.24)

(see Appendix Lemma A.4). We have

A = 2

∫ ∞

0

dx

∫ Y

1/Y

k(a(1 + x2

y2 ))
dy

y2

= 2(log(Y ) − log(1/Y ))

∫ ∞

0

dtk(a(1 + t2))

= 4 log Y

∫ ∞

0

k(a(1 + t2))dt

=
2 log Y

λ − 1/λ
g(2 logλ) (4.25)
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where a = (λ − 1
λ
)2 and g(u) is the Selberg transform of k(t) (see (3.14)).

For k = k1 or k2 we have

g(2 logλ) = O( 1√
ε
)

ε→0

(4.26)

If h
(j)
0 (Γ) is the number of classes {γp}Γ, p ∈ Pj , with trivial centralizer

Γγp = {e}, we can prove similar to Lemma 20 that each h
(j)
0 < ∞, and the

total divergent term from the first sum of (4.19) is equal to

(

∑

{γp}Γ

Γγp={e}
p∈Pj

χ(γ)
1

λ − 1/λ

)

2 log Y g(2 logλ) (4.27)

where the sum in (4.27) consists of h
(j)
0 terms, λ = λ(γp). We have from

Theorem 2

(a) tr(γp) = λ + λ−1 = 3√
2

if p ∈ P1 or P2

(b) tr(γp) = λ + λ−1 = 5
2

if p ∈ P3 or P4.

From that follows in case (a) λ =
√

2 and in case (b) λ = 2, so it is indepen-
dent of γ. We can rewrite (4.27)

(2 log Y )g(2 logλ)
1

λ − 1/λ

∑

{γp}Γ

Γγp={e}
p∈Pj

χ(γ) , λ =
√

2 or λ = 2 (4.28)

Now we have to see the divergent terms in the second sum of (4.19). From
Lemma 10 follows that there is no term in this sum with tr(γpJ) = 0. We
have to split this sum according to

∑

{γpJ}Γ
ΓγpJ non-trivial

+
∑

{γpJ}Γ
ΓγpJ trivial

(4.29)

The first sum in (4.29) is transforming similar to (3.27) with g = g(ε) where
g = g1 or g = g2. It is absolutely convergent, has a finite limit as Y → ∞
and is estimated by O( 1√

ε
)

ε→0

. And we have to calculate the asymptotics as

Y → ∞ of the second sum in (4.29). We have F γpJ
Y = Γ0

Y and
∫

Γ0
Y

k(u(z, γpJz))dµ(z) =

∫

gΓ0
Y

k(u(z, βz))dµ(z) (4.30)
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where g∗ ∈ PSL(2, �),

β = g∗γpJg∗−1 =

(

λ 0
0 −λ−1

)

,

λ > 1, p ∈ Pj.
The main term of asymptotics for Y → ∞ of (4.30) is given by

∫ ∞

−∞
dx

∫ Y

1/Y

k( |z+λ2z̄|2
y2λ2 )

dy

y2
= 2(log(Y ) − log(1/Y ))

∫ ∞

0

k(b2x2 + d2)dx

(4.31)

b2 = (λ + 1
λ
)2, d2 = (λ − 1

λ
)2. From Theorem 3 follows that λ − λ−1 = 1√

2
in

cases j = 1, 2 and λ − λ−1 = 3
2

if j = 3, 4. That means λ =
√

2 in cases (1),
(2) and λ = 2 in cases (3), (4). The integral (4.31) is equal to

4 log Y

∫ ∞

0

k(b2x2 + d2)dx =
λ

1 + λ2
· 2 log Y g(2 log λ) (4.32)

where g is the Selberg transform of k from (3.14). Again for k = k1 or k2 we

have (4.26). If h
(j)
1 (Γ) is the number of classes {γpJ}Γ, p ∈ Pj with trivial

centralizer ΓγpJ = {e}, similar to Lemma 20 we can prove that each h
(j)
1 < ∞

and the total divergent term from the second sum of (4.19) is equal to (more
general p ∈ Pj)

(2 log Y )g(2 logλ)
λ

1 + λ2

∑

{γpJ}Γ

ΓγpJ={e}
p∈Pj

χ(γ) λ =
√

2 or λ = 2 (4.33)

where the sum in (4.33) consists of h
(j)
1 terms. From the existence of a finite

limit (4.10) we obtain that the divergent terms (4.28) and (4.33) coincide
(not only for primitive character χ but also for χ = 1). We have proved the
following

Lemma 21. We have (the notation explained in (4.27), (4.33))

(1) h
(j)
1 (Γ) = 3h

(j)
0 (Γ)

(2)
∑

{γpJ}Γ
p∈Pj

χ(γ) = 3
∑

{γp}Γ
p∈Pj

χ(γ)

(3) 3h
(j)
1 (Γ) = 5h

(j)
0 (Γ)
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(4) 3
∑

{γpJ}Γ
p∈Pj

χ(γ) = 5
∑

{γp}Γ
p∈Pj

χ(γ)

The cases (1), (2) apply when j = 1, 2 and the cases (3), (4) apply when
j = 3, 4.

To complete now the evaluation of terms in (4.19) (more general p ∈
Pj) we first have to evaluate the second terms in the right hand sides of
(4.25), (4.32) for ε → 0, and this is done by (4.26). Secondly we have to
evaluate the differences between (4.23), (4.24), and between (4.30), (4.31). In
both of these last cases we have for the domain of integration (see Appendix
Lemmas A.4 and A.5) for some c ≥ 1

gΓ0
Y ⊂

{

z ∈ H, z = x + iy | 1

cY
< y < Y

}

∪
{

0 < y <
1

cY
, |x| > y

√

1

yY c
− 1
}

(4.34)

It follows then, that we have to evaluate the following integrals

∫ 1/Y

1/cY

dy

y2

∫ ∞

−∞
dxk(a(1 + x2

y2 )) (4.35)

∫ 1/cY

0

dy

y2

∫ ∞

y
√

1/yY −1

dxk(a(1 + x2

y2 )) (4.36)

where c ≥ 1 is a constant (independent of Y, ε, but generally different for γp,
γpJ), a = (λ − λ−1)2 (see (4.25)), and the integrals

∫ 1/Y

1/cY

dy

y2

∫ ∞

−∞
dxk(d2 + x2

y2 b
2)) (4.37)

∫ 1/cY

0

dy

y2

∫ ∞

y
√

1/yY −1

dxk(d2 + x2

y2 b
2)) (4.38)

b = λ + λ−1, d = λ − λ−1 (see (4.31)).
It is easy to see (by calculation, similar to (4.25), (4.32)) that the inte-

grals (4.35), (4.37) are independent of Y and up to a multiplicative constant
they are equal to g(2 log λ), which is estimated in (4.26). We consider now
(4.36). By obvious change of variables we reduce it to (up to a multiplicative
constant)

∫ ∞

a

dy

y

∫ ∞

y

k(τ)√
τ − a

dτ =

∫ ∞

a

d(log y)

∫ ∞

y

k(τ)√
τ − a
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= − log(a)g(2 log λ) +

∫ ∞

a

log y
k(y)√
y − a

dy (4.39)

We only have to estimate

∫ ∞

a

log y
k(y)√
y − a

dy

=

∫ ∞

a

log y√
y − a

(−1

π

∫ ∞

y

dQ(ω)√
ω − y

)

=
−1

π

∫ ∞

a

dω

∫ ω

a

dy
Q′(ω) log y√
y − a

√
ω − y

=
−1

π

∫ ∞

a

dQ(ω)

∫ ∞

a

log y√
y − a

√
ω − y

dy

=
−1

π

∫ ∞

a

dQ(ω)

∫ 1

0

log((ω − a)y + a)
√

y
√

1 − y
dy

= (log a)g(2 log λ) +
1

π

∫ ∞

a

Q(ω)

∫ 1

0

√
ydy√

1 − y((ω − a)y + a)
dω

= (log a)g(2 log λ) +
1

π

∫ ∞

a

Q(ω)
π

ω +
√

aω
dω

= (log a)g(2 log λ) +

∫ ∞

2 log λ

g(u)
eu − e−u

eu + e−u − 2 + (λ − 1/λ)(eu/2 − e−u/2)
du

= (log a)g(2 log λ) +

∫ ∞

2 log λ

g(u)
eu/2 + e−u/2

eu/2 − e−u/2 + λ − 1/λ
du (4.40)

We have g = g1 or g2 and

g1(ε) =
1

2
√

π
· 1√

ε
e−u2/4εe−ε/4

g2(ε) = e−ε/4 1√
πε

(

e−(u−log 2)2/4ε + e−(u+log 2)2/4ε
)

(4.41)

From (4.40), (4.41) follows that the integral (4.39) is estimated by O( 1√
ε
),

ε → +0.
The last integral (4.38) can be easily reduced to the sum of g(2 logλ) and

∫∞
d2 log(t+4) k(t)√

t−d2 dt (up to multiple constant coefficients) which is estimated

as before by O( 1√
ε
), ε → +0.

We have proved the following

Lemma 22. There are estimates Ij = Ij(ε) = O( 1√
ε
), ε → +0, j = 2, 3, 4, 5

(see (4.8), (4.10)).
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From (4.11), (4.18), Lemma 22 follows

Theorem 5. For the trace of the operator T (see (4.7)) we have the following
asymptotics, ε → +0

trT = 4
∞
∑

j=1

ω2
j e

−ελj =
µ(F )

2π
· 1

ε
+ O

( |log ε|√
ε

)

We have by (3.50) and Theorem 5 with ωj = cos(ηj) − cos(rj log 2),

∞
∑

j=1

e−ελj =
µ(F )

8π
· 1

ε
+ O

( |log ε|√
ε

)

(4.42)

∞
∑

j=1

ω2
j e

−ελj =
µ(F )

8π
· 1

ε
+ O

( |log ε|√
ε

)

(4.43)

The smallest number of terms with ωj 6= 0 is obtained if |ωj| = 2 for all
j with ωj 6= 0. Assume that this holds and that

#{j | 1 ≤ j ≤ X, ω2
j = 4}

X
−−−→
X→∞

1

4
(4.44)

Then we shall see that (4.43) holds.
By a Tauberian theorem (4.42) implies (Theorem 4)

#{λj ≤ λ} ≈ µ(F )

8π
λ as λ → ∞ (4.45)

where λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · and λj is repeated according to multiplicity.
Let jk1 < jk2 < · · · < jkn

< · · · be the values of j such that ω2
jk

= 4. Then
(4.44) implies

#{λjk
≤ λ}

#{λj ≤ λ} −−−→
λ→∞

1

4

and hence by (4.45)

#{λjk
≤ λ} ≈ 1

4
· µ(F )

8π
λ

Then

∞
∑

j=1

ω2
je

−ελj = 4

∞
∑

k=1

e−ελjk ∼
ε↓0

4
1

4

µ(F )

8π

1

ε
=

µ(F )

8π

1

ε
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in agreement with (4.42). The same proof shows that we cannot have

lim inf
X→∞

#{j | 1 ≤ j ≤ X, ω2
j = 4}

X
<

1

4

so the minimal number of j with ωj 6= 0 is given by (4.44).
We have proved

Theorem 6.

lim inf
λ→∞

#{λjk
≤ λ | ωjk

6= 0}
#{λj ≤ λ} ≥ 1

4
(4.46)

where λj is repeated according to multiplicity.

Thus, for at least 1
4

of the eigenvalues λj = 1
4

+ r2
j of the automorphic

Laplacian with odd eigenfunction Φj the corresponding eigenvalue eiηj of the
exceptional Hecke operator U(2) satisfies ωj 6= 0 or eiηj 6= 2irj .

We now consider the other exceptional Hecke operators U(q) for q > 2,
q | N , N = 4N2 or N = 4N3. Here we have to establish the condition

ρj(q) 6= qirj

εq
, where ρj(q) is the eigenvalue of U(q) corresponding to the

eigenvector Φj . The parameters εq are any real numbers. We now assume
that εq 6= ±1 for all q | N , q > 2. Then we obtain from [1] (7.23), (7.24) and
Theorem 6

Theorem 7. Let the forms ω(z) be defined as in [1] Theorem 6.2 and assume
that εl 6= ±1 for l = 2, . . . , k. Then for at least 1

4
of the eigenvalues λj of

Aodd(Γ, χ) (in the sense of Theorem 6) with eigenfunctions Φj the Philips-
Sarnak integral Ij(Φj) 6= 0, where Ij(Φj) is given by [1] (7.2).

As a consequence, for each λj in the sequence of Theorem 7 at least one
eigenvector Φ in the eigenspace N(Aodd(Γ, χ)) − λj turns into a resonance
function under perturbation by the form ω(z), and the total dimension of
the eigenspace is reduced by at least one (cf. [1] Theorem 5.8).

For each eigenvalue λjk
with ωjk

6= 0 there is at least one eigenfunction Φ̃
with eigenvalue λjk

such that Φ̃ turns into a resonance function under per-
turbation. Let {Φ̃i}∞i=1 be an orthonormal sequence of all such eigenfunctions
with increasing eigenvalues λi.

Theorem 8. Assume that dim{N(Aodd − λj)} ≤ m for all eigenvalues λj.
Then

lim inf
λ→∞

#{Φ̃i | λi ≤ λ, ωi 6= 0}
#{Φj | λj ≤ λ} ≥ 1

4m
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Proof. The minimal number of eigenfunctions Φ̃i with eigenvalues λi ≤ λ
occurs if all eigenfunctions Φjk

with ωjk
6= 0 are distributed with m in each m-

dimensional eigenspace of Aodd(Γ, χ). Then each such eigenspace contributes
at least one Φ̃i, and the result follows from Theorem 7.
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A Transformation of the domain of integration

of kε(u(z, Jz)) by g ∈ PSL(2,
�

)

In (3.29)–(3.34) it was shown that F J
Y = F 0

Y =
⋃

γ∈Γ1
γFY (1), where Γ1 is

the modular group with fundamental domain F (1) and FY (1) = {z ∈ F (1) |
y ≤ Y }. Then

∫

F J
Y

kε(u(z, Jz))dµ(z) =

∫

F 0
Y

kε(u(z, Jz))dµ(z) (A.1)

Let H(Y ) = {z ∈ H | y > Y }, γ =

(

a1 b1

c1 d1

)

∈ Γ1, and for c1 6= 0 let

C(a1

c1
, 1

2Y c21
) be the circle with center (a1

c1
, 1

2Y c21
) and radius 1

2Y c21
, touching �

at a1

c1
, with interior C0(a1

c1
, 1

2Y c21
).

If c1 = 0, γ(H(Y )) = H(Y ). We now prove that for c1 6= 0, γ(H(Y )) =
C0(a1

c1
, 1

2Y c21
). We have

γ(x + iY ) =
(a1x + b1)(c1x + d1) + a1c1Y

2 + iY

(c1x + d1)2 + c2
1Y

2
= x′ + iy′

Since γ(∞) = a1

c1
, γ(H(Y )) is a circle C0(a1

c1
, R) with radius R to be deter-

mined by the equation

(x′ − a1

c1
)2 + y′2 − 2Ry′ = 0

implying

(−x − d1

c1

)2 + Y 2 = 2RY c2
1[(x +

d1

c1

)2 + Y 2]

which gives

R =
1

2Y c2
1

From this we obtain

Lemma A.1.

H \ F 0
Y = H(Y ) ∪

⋃

γ∈Γ
c1 6=0

C0(
a1

c1

,
1

2Y c2
1

)
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Proof. No point in FY (1) is mapped by γ ∈ Γ1 to a point of F (1) \ FY (1),
and hence H(Y ) ⊂ H \ Γ0

Y . Therefore, γ(HY ) = C0(a1

c1
, 1

2Y c21
) ⊂ H \ Γ0

Y for

γ ∈ Γ1, c1 6= 0, and the Lemma follows.

In order to estimate the integrals in (3.29) we also need to calculate for
γ ∈ Γ0(N)

∫

F γJ
Y

kε(u(z, γJz))dµ(z) (A.2)

in the case where tr(γJ) = 0 and the centralizer ΓγJ = {e}. Again we have

F γJ
Y = F 0

Y , and if g ∈ PSL(2,�) such that

g(γJ)g−1 = J,

we have
∫

F γJ
Y

kε(u(z, γJz))dµ(z) =

∫

F 0
Y

kε(u(gz, Jgz))dµ(z)

=

∫

gΓ0
Y

kε(u(z, Jz))dµ(z) (A.3)

By Lemma A.1

H \ gΓ0
Y = g(H \ Γ0

Y )

= g(H(Y )) ∪
⋃

γ∈Γ1
c1 6=0

g(C0(
a1

c1
,

1

2Y c2
1

))

In order to estimate the integral (A.2) we therefore need to calculate g(H(Y ))
and g(C0(a1

c1
, 1

2Y c21
)) for c1 6= 0. The set g(H(Y )) is given by the proof of

Lemma A.1 to be C0(a
c
, 1

2Y c2
) if c 6= 0, where g =

(

a b
c d

)

, and it is H(Y a2)

if c = 0.

Let γ =

(

a1 b1

c1 d1

)

∈ Γ1, c1 6= 0 and set r1 = a1

c1
. The equation of

C(a1

c1
, 1

2Y c21
) is

(x − r1)
2 + (y − 1

2Y c1

)2 = (
1

2Y c1

)2

or

x2 + y2 = 2r1x +
1

Y c2
1

y − r2
1 (A.4)

We have two cases:
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(1) a1

c1
= −d

c
. Then g(a1

c1
) = ∞, so g(C0(a1

c1
, 1

2Y c21
)) = H(Y0), Y0 to be deter-

mined.

(2) a1

c1
6= −d

c
. Then g(a1

c1
) = g(r1) = ar1+b

cr1+d
, so

g
(

C0
(a1

c1

,
1

2Y c2
1

))

= C0
(ar1 + b

cr1 + d
, R
)

,

R to be determined.

We have

g(x + iy) =
(ax + b)(cx + d) + acy2 + iy

(cx + d)2 + c2y2
= x′ + iy′ (A.5)

(1) a1

c1
= −d

c
. Then by (A.5)

y

(cx + d)2 + c2y2
= Y0

or

(x − r1)
2 + y2 = (x + d

c
)2 =

1

Y0c2
,

so by (A.4)

Y0 = Y
c2
1

c2
.

(2) a1

c1
6= −d

c
. We determine the radius R of the circle

C0(ar1+b
cr1+d

, R) = g(C(r1,
1

2Y c21
)),

where C(r1,
1

2Y c21
) is given by equation (A.4). The equation of C0(ar1+b

cr1+d
, R)

with x′ and y′ given by (A.5) is

(x′ − ar1+b
cr1+d

)2 + y′2 = 2Ry′

or

{

(ax + b)(cx + d) + acy2 − ar1 + b

cr1 + d

[

(cx + d)2 + c2y2
]

}2

+ y2

= 2Ry
{

(cx + d)2 + c2y2
}
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Using (A.4) this reduces to

{x +
ac

Y c2
1

y +
a

b
}2 + y2 = 2Ry{2 c

a
x +

c2

Y c2
1

y +
ad + bc

a2
}.

Squaring and using (A.4) again, we get

c2

(Y c2
1)

2(cr1 + d)2
y2 +

2c

Y c2
1(cr1 + d)

xy +
1

Y c2
1

d − cr1

cr1 + d
y =

2Ry
{ c2

Y c2
1

y + 2c(cr1 + d)x + d2 − c2r2
1

}

(A.6)

Equating coefficients of y2, xy and y, we get that (A.6) holds if and only
if

R =
1

2Y c2
1

1

(cr1 + d)2
=

1

2Y

1

(ca1 + dc1)2
.

We have proved

Lemma A.2. Let

g =

(

a b
c d

)

∈ PSL(2,�),

c 6= 0. Then with

γ =

(

a1 b1

c1 d1

)

∈ Γ1,

r1 = a1

c1
,

H \ gΓ0
Y = C0

(a

c
,

1

2Y c2

)

∪
⋃

γ∈Γ1
c1 6=0

r1 6=−d
c

C0
(ar1 + b

cr1 + d
,

1

2Y

1

(ca1 + dc1)2

)

∪ H
(

Y
c2
2

c2

)

where
(

a2 b2

c2 d2

)

∈ Γ1 ,
a2

c2
= −d

c
.

In particular,

g(C0(− b
a
, 1

2Y c21
)) = C0(0, 1

2Y (ca1+dc1)2
))

46



for a 6= 0, a1

c1
= − b

a
.

g(H(Y )) = C0(0, 1
2Y c2

)

for a = 0.
In order to estimate (A.3) we apply Lemma A.2 to

g =

(

a b
c d

)

∈ PSL(2,�),

where g(γ0J)g−1 = J ,

γ0 =

(

a0 b0

c0 d0

)

∈ Γ0(N)

tr(γ0J) = 0

J =

(

1 0
0 −1

)

.

We solve the equation g(γ0J)g−1 = J or

(

a0a + Nc0b −b0a − a0b
a0c + Nc0d −b0c − a0d

)

=

(

a b
−c −d

)

or the two pairs of dependent equations

(a0 − 1)a + Nc0b = 0 −b0a − (a0 + 1)b = 0

(a0 + 1)c + Nc0d = 0 −b0c − (a0 − 1)d = 0
(A.7)

Case 1: b0 6= 0, c0 6= 0, so a0 6= ±1. We find

g =

(

1−a2
0

2b0
c−1 a0−1

2
c−1

c − b0
a0−1

c

)

, c ∈ � \ {0}.

Let e0 = (1 − a0, b0) and choose c = c∗ = 1−a0

e0
. Then d = d∗ = b0

c0
,

so c∗ and d∗ are integers with (c∗, d∗) = 1.

Case 2: b0 = 0, c0 6= 0, a0 = −1. We find c∗ = 1, d∗ = 0.

Case 3: b0 6= 0, c0 = 0, a0 = −1. We find

c∗ = 2, d∗ = b0 if b0 is odd, a∗ = 0.

c∗ = 1, d∗ = b0
2

if b0 is even, a∗ = 0.
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Case 4: b0 = 0, c0 6= 0, a0 = 1. We find c∗ = −Nc0
2

, d∗ = 1, b = 0.

Case 5: b0 6= 0, c0 = 0, a0 = 1. We find c = 0, and choose d∗ = 1,

g∗ =

(

1 −b0
2

0 1

)

.

Applying Lemma A.2 to g∗ =

(

a∗ b∗

c∗ d∗

)

, we obtain

Lemma A.3. Let

γ0 =

(

a0 b0

Nc0 d0

)

∈ Γ0(N)

and g∗(γ0J)g∗−1 = J , where

g∗ =

(

a∗ b∗

c∗ d∗

)

∈ PSL(2, �)

with c∗ and d∗ integers, (c∗, d∗) = 1. Then
∫

F γ0J

kε(u(z, γ0Jz))dµ(z) =

∫

g∗Γ0
Y

kε(u(z, Jz))dµ(z)

where

{y | 1
Y

< y < Y } ⊂ g∗Γ0
Y ⊂ {y | 0 < y < Y } \ C0(0,

1

2Y c
), c ≥ 1,

and

c = (c∗a1 + d∗c1)
2,

a1

c1
= − b∗

a∗ ,

(a1, c1) = 1 for a∗ 6= 0,

c = 1 for b0 even and c = 4 for b0 odd, if a∗ = 0.

Proof. Let γ ∈ Γ1, c1 6= 0, r1 = a1

c1
6= −d∗

c∗
. Since (c∗, d∗) = 1, min(c∗a1 +

d∗c1)
2 = 1, max 1

2Y
1

(c∗a1+d∗c1)2
= 1

2Y
. Alsom a2

c2
= −d∗

c∗
in the cases 1,3,4, so

c2 = ±c∗ and H(Y
c22
c∗2 ) = H(Y ). Clearly, c = (c∗a1 + d∗c1)

2 with a1

c1
= − b∗

a∗

for a∗ 6= 0. In case 3 a∗ = 0, c = c∗2 = 1, 4.
In case 2 c∗ = 1, d∗ = 0. If a1

d1
6= −d∗

c∗
= 0, then a1 6= 0. For a1 = 0 we

have c = c∗a1 + d∗c1 = 1. Now c2 is determined by a2

c2
= −d∗

c∗
= 0, so a2 = 0.

Then c2 = 1, b2 = −1, so c2 = c∗ = 1, and H(Y
c22
c∗2 ) = H(Y ). In case 5 g∗ is

translation by −b0
2

, and the Lemma is proved.
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In order to estimate the analogous integrals from section 4 we consider
now γ0p, γ0 ∈ Γ0(N), p = p1, p2, p3, p4, Γγ0p = {e}. Let

γ0 =

(

a0 b0

Nc0 d0

)

∈ Γ0(N),

we shall find

g =

(

a b
c d

)

∈ PSL(2,�)

such that

g(γ0p)g−1 =

(

λ 0
0 λ−1

)

.

(I) γ0p1 with

p1 =

( 1√
2

q 1
sqrt2

0
√

2

)

, q = 0, 1

By Theorem 2, Γγ0p1 = {e} iff
√

2 tr(γ0p1) = 3. Then λ + λ−1 = 3√
2
,

λ =
√

2 or 1√
2
. We have

γ0p1 =

(

a0√
2

a0
q√
2

+ b0

√
2

Nc0√
2

Nc0
q√
2

+ d0

√
2

)

(A.8)

With λ =
√

2 we get the dependent equations in c and d

(a0 − 1)c + Nc0d = 0

(a0q + 2b0)c + (Nc0q + 2d0 − 1)d = 0

a0 + Nc0q + 2d0 = 3

(A.9)

(II)

γ0p2 =

( √
2a0 + 1√

2
qb0

1√
2
b0√

2Nc0 + 1√
2
qd0

1√
2
d0

)

, q = 0,−N

By Theorem 2, Γγ0p2 = {e} iff tr(γ0p2) = 3√
2
. With λ =

√
2 solution

of λ + λ−1 = 3√
2

we get the dependent equations in c and d

b0c + (d0 − 1)d = 0

(2 − d0)c + (2Nc0 + qd0)d = 0 , q = 0,−N

2a0 + qb0 + d0 = 3

(A.10)
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(III)

γ0p3 =

(

1
2
a0

1
2
qa0 + 2b0

1
2
Nc0

1
2
qNc0 + 2d0

)

, q = 0, 1, 2, 3

By Theorem 2, tr(γ0p3) = 5
2

iff Γγ0p3 = {e}. With λ = 2 solution of
λ + λ−1 = 5

2
we obtain the dependent equations for c and d

(a0 − 1)c + Nc0d = 0

(qa0 + 4b0)c + (4 − a0)d = 0 , q = 0, 1, 2, 3

a0 + qNc0 + 4d0 = 5

(A.11)

(IV)

γ0p4 =

(

2a0 + qb0
1
2
b0

2Nc0 + qd0
1
2
d0

)

, q = 0,−N

2
,−N,−3N

2

By Theorem 2, tr(γ0p4) = 5
2

iff Γγ0p4 = {e}. With λ = 2 solution of
λ + λ−1 = 5

2
we obtain the dependent equations

b0c + (d0 − 1)d = 0

(2a0 + qb0 − 1
2
)c + (2Nc0 + qd0)d = 0

4a0 + 2qb0 + d0 = 5

(A.12)

In all the cases I–IV we solve the equations (A.9)–(A.12) in the same way
as we solved the second set of equations (A.7). Similarly to Lemma A.3 we
obtain from Lemma A.2

Lemma A.4. Let γ0 ∈ Γ0(N) and
√

2 tr(γ0pi) = 3 for i = 1, 2, 2 tr(γ0pi) = 5
for i = 3, 4. Then Γγpi

= {e} and F γ0pi

Y = F 0
Y . Let g∗ be defined as in I–IV

such that

g∗(γ0pi)g
∗−1 =

(

λi 0
0 λ−1

i

)

,

where λi =
√

2 for i = 1, 2 and λi = 2 for i = 3, 4. Then
∫

F
γ0pi
Y

kε(u(z, γ0piz)) =

∫

g∗F 0
Y

kε(u(z, λ2
i z))dµ(z)

where

{z ∈ H | 1
Y

< Im z < Y } ⊂ g∗F 0
Y ⊂ {z ∈ H | 0 < y < Y } \ C0(0, 1

2Y c
) , c ≥ 1
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and

c = (c∗a1 + d∗c1)
2

a1

c1
= − b∗

a∗ for a∗ 6= 0

c ≥ 1 for a∗ = 0

We finally consider γ0piJ , γ0 ∈ Γ0(N), p = p1, p2, p3, p4, J =

(

1 0
0 −1

)

with Γγ0piJ = {e}. By Theorem 3 this holds iff
√

2 tr(γ0piJ) = 1 for i = 1, 2
and 2 tr(γ0piJ) = 3 for i = 3, 4. We find

g =

(

a b
c d

)

such that

g(γ0piJ)g−1 =

(

λ 0
0 λ−1

)

.

(I)

γ0p1J =

(

a0√
2

−(a0
q√
2

+ b0q)
Nc0√

2
−(−Nc0

q√
2

+ d0

√
2)

)

, q = 0, 1.

With the solution λ =
√

2 of λ − λ−1 = 1√
2

we get the dependent
equations fpr c and d

(a0 + 1)c + Nc0d = 0

−(a0q + 2b0 + 1)c − a0d = 0

a0 − (Nc0q + 2d0) = 1

(A.13)

(II)

γ0p2J =

(√
2a0 + 1√

2
γ0b0 − 1√

2
b0√

2Nc0 + 1√
2
qd0 − 1√

2
d0

)

, q = 0,−N , tr(γ0p2J) =
1√
2

With λ =
√

2 solution of λ − λ−1 = 1√
2

we get the two equations in c
and d

−b0c − (d0 + 1)d = 0

(d0 + 2)c + (2Nc0 + qd0)d = 0

2a0 + γ0b − d0 = 1

(A.14)
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(III)

γ0p3J =

(

1
2
a0 −(1

2
qa0 + 2b0)

1
2
Nc0 −(1

2
qNc0 + 2d0)

)

, q = 0, 1, 2, 3 , tr(γ0p3J) =
3

2

With λ = 2 solution of λ − λ−1 = 3
2

we get the equations in c and d

(a0 + 1)c + Nc0d = 0

−(qa0 + 4b0)c − (a0 − 2)d = 0

a0 − (qNc0 + 4d0) = 3

(A.15)

(IV)

γ0p4J =

(

2a0 + qb0 −1
2
b0

2Nc0 + qd0 −1
2
d0

)

, q = 0,−N

2
,−N,−3N

2
, tr(γ0p4J) =

3

2

With λ = 2 solution of λ − λ−1 = 3
2

we get the equations in c and d

b0c + (−d0 + 1)d = 0

(d0 + 4)c + (4Nc0 + 2qd0)d = 0

4a0 + 2qb0 − d0 = 3

(A.16)

In all cases I–IV we solve the equations (A.13)–(A.16) in the same way
as the equations (A.7) and (A.9)–(A.12). Then we obtain from Lemma A.2

Lemma A.5. Let γ0 ∈ Γ0(N) and
√

2 tr(γ0piJ) = 1 for i = 1, 2, 2 tr(γ0piJ) =
3 for i = 3, 4. Then Γγ0piJ = {e}, and F γ0piJ

Y = F 0
Y . Let g∗ ∈ PSL(2,�) be

defined as in I–IV such that

g∗(γ0piJ)g∗−1 =

(

λi 0
0 −λ−1

i

)

,

where λi =
√

2 for i = 1, 2 and λi = 2 for i = 3, 4. Then
∫

F
γ0piJ

Y

kε(u(z, γ0piJz))dµ(z) =

∫

g∗F 0
Y

kε(u(z, λ2
i z))dµ(z)

where

{z | 1
Y

< y < Y } ⊂ g∗F 0
Y ⊂ {z | 0 < y < Y } \ C0(0, 1

2Y c
) , c ≥ 1

and

c = (c∗a1 + d∗c1)
2

a1

c1
= − b∗

a∗ for a∗ 6= 0

c ≥ 1 for a∗ = 0
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