ASYMPTOTICS OF THE QUANTUM INVARIANTS FOR SURGERIES

ON THE FIGURE 8 KNOT
JORGEN ELLEGAARD ANDERSEN AND SOREN KOLD HANSEN

ABSTRACT. We investigate the Reshetikhin—-Turaev invariants associated to sl3(C) for
the 3—manifolds obtained by doing any rational surgery along the figure 8 knot. In par-
ticular, we express these invariants in terms of certain complex double contour integrals.
These integral formulae allow us to propose a formula for the leading asymptotics of
the invariants in the limit of large quantum level. We analyze this expression using the
saddle point method. We prove that the stationary points for the relevant phase func-
tions are in one to one correspondence with flat SL(2, C)—connections on the 3—manifold
and that the values of these phase functions at the relevant stationary points equals the
classical Chern—Simons invariants of the corresponding flat SU(2)—connections. Our find-
ings are in agreement with the asymptotic expansion conjecture. Moreover, we calculate
the leading asymptotics of the colored Jones polynomial of the figure 8 knot following
Kashaev [Kash]. This leads to a slightly finer asymptotic description of the invariant
than predicted by the volume conjecture [MM].
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1. INTRODUCTION

In this paper we investigate the large level asymptotics of the Reshetikhin—Turaev invari-
ants of the 3—manifolds obtained by doing surgery on the figure 8 knot with an arbitrary
rational surgery coefficient. Let X be a closed oriented 3-manifold and let 7,.(X) be the
RT-invariant associated to slo(C) at level r, some integer > 2. The investigations of this
paper are motivated by the following conjecture.

Conjecture 1.1 (Asymptotic expansion conjecture (AEC)). There exist constants (de-
pending on X) d; € Q, I; € Q mod 8Z and v; € Ry for j = 0,1,...,n and aé» e C
for7=0,1,....n, Il =1,2,... such that the asymptotic expansion of 7.(X) in the limit
r — 00 s given by

n o
;. . PN I —
T (X) ~ E 62’T"qfrdfez4lfvj (1 + E agr l) ,
j=0 =1

where qo = 0,q1,...q, are the finitely many different values of the Chern—Simons func-
tional on the space of flat SU(2)—connections on X.

Here ~ means asymptotic expansion in the Poincaré sense, which means the follow-
ing: Let
d = max{dy,...,d,}.

Then for any non-negative integer L, there is a ¢, € R such that

n L
T (X) — E eerqﬂ'rdfe’ZIjvj <1+ E aéfr_l>
=0 1=0

for all levels r. Of course such a condition only puts limits on the large r behaviour of
7.(X).

A little simple argument gives, that if 7,.(X) has an asymptotic expansion like this, then
it is unique, that is the g;’s, the d;’s, I;’s, v;’s and the aé’s are all uniquely determined by
the sequence 7,.(X), hence they are also topological invariants of X. There are topological
formulae for the d;’s, I;’s and v;’s (see e.g. [A2] and the references given there). In this
paper we will only pay attention to the formula for the d;’s.

For a flat SU(2)—connection A on X, consider the elliptic complex d4 : Q*(X;su(2)) —
QX ;5u(2)), where daf = df + [A, f] is the covariant derivative in the adjoint rep-
resentation. Let h% be the dimension of the ith cohomology group H*(X,d,) of this
complex.

S CLT’d_L_l

Conjecture 1.2 (Topological interpretation of the d;’s). Let M be the union of compo-
nents of the moduli space of flat SU(2)—connections on X which has Chern—Simons value
qj- Then

1

dj:§jré%(h}4—hg),

where max here means the mazimum value hYyy — h% attains on a Zariski open subset of

M.

We note that H*(X;d4) = 0 if A represents an isolated point in the moduli space, and
H°(X,da) =0 if and only if A is irreducible.

In general, there should be expressions for each of the aé» in terms of sums over Feynman
diagrams of certain contributions determined by the Feynman rules of the Chern—Simons
theory. This has not yet been worked out in general, except in the case of an acyclic flat
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connection and the case of a smooth non-degenerate component of the moduli space of
flat connections by Axelrod and Singer, cf. [AS1], [AS2], [Ax].

The AEC, Conjecture 1.1, however offers in a sense a converse point of view, where
one seeks to derive the final output of perturbation theory after all cancellations have
been made (i.e. collect all terms with the same Chern—Simons value). This seems actually
rather reasonable in this case, since the exact invariant is known explicitly.

The AEC (and also Conjecture 1.2) was proved by Andersen in [A] in the case of
mapping tori of finite order diffeomorphisms of orientable surfaces of genus at least two
using the gauge-theoretic approach to the quantum invariants. Later on the AEC was
proved by Hansen in [Ha2] for all Seifert manifolds with orientable base by supplementing
the work of Rozansky [Ro] with the need analytic estimates. In [Ha3|] the AEC is futher
proved for the Seifert manifolds with nonorientable base of even genus.

Using the approach of Reshetikhin and Turaev to the quantum invariants, the AEC has
not yet been proved for any hyperbolic 3-manifold. It is therefore particular interesting to
consider surgeries on the figure 8 knot. Let M,/, be the manifold obtained by (rational)
Dehn surgery on the figure 8 knot with surgery coefficient p/q. Then M, ,, has a hyperbolic
structure if and only if |p| > 4 or |¢| > 1, see e.g. [Ra, Theorem 10.5.10] or [T]. We use
here the convention of Rolfsen for surgery coefficients, cf. [Ro, Chap. 9]. In particular
Dehn surgery on a knot K in S® with surgery coefficient f € Z is equal to the boundary
of the compact 4-manifold obtained by attaching a 2-handle to the 4-ball using the knot
K with framing f, see [Ro, p. 261]. As usual M, , is given the orientation induced by the
standard right-handed orientation of S3.

The advantage of working with surgeries on the figure 8 knot K, is that the normalized
colored Jones polynomial Jj () is known explicitly. In fact

A—1 m
T =>_ ¢ Ja - -,
m=0 =1

where £ = exp(27i/r) (and the product is 1 for m = 0). The colors A are here dimensions
of irreducible representations of the quantum group associated to sly(C) and the root of
unity &, so A = 1,2,...,r. By the above expression for J} (\) we have an explicit formula
for the quantum invariant 7,(M,/,) (see formula (6)). Although this formula is complete
explicit, it is not clear from it what the leading order asymptotics of 7,.(M, ) is. In
order to study this asymptotics, we observe (generalizing from Kashaev’s work) that the
product in the expression for the colored Jones polynomial can be expressed in terms of
a quotient of two evaluations of the Faddeev’s quantum dilogarithm S, (y = n/r):

>

C s £ S (—m+29(A—m) =)
N = L TS, Crr Ot m) 1) @

3
]

This follows directly from the functional equation

(1+ GHC)SV(C +7) = S,(C—")

which Faddeev’s S, satisfies. Recall that for Re(¢) < m + 7, we have the expression

1 et?
$(¢) = exp (Z /CR sinh(7z) sinh(yz)zdz> ’
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which together with the functional equation determines S, as a meromorphic function on
C. For the so-called top color, i.e. A = r, we obtain the sligthly simpler expression

(m+ (2m + 1)y)
Z Sy(—m+ (2m +1)y) @)

Then we simply use the residue formula to convert the sum (2) into a contour integral

J(r) = / tan(rrz)g,(x)dz, (3)
where C, is contained in the strip {z € C | 0 < Re(z) < 1} and encloses (m + 3)/r for
m = 0,...,7 — 1, and g, a holomorphic function in this strip expressed in terms of the
above quotient of S, functions (see formula (19)).

Similarly we get for the quantum invariant with the use of (1) and the residue theorem,
now a double contour integral, since the quantum invariant also involves a sum over colors:

7o (Myyg) = /C  cot(mra) tan(mrg) g (o) dady, (4)
rXCp

where we furthermore require of C, that it also encloses k/r for k = 1,...,r — 1 and
fpqnr is holomorphic on the double strip {z € C | 0 < Re(z) < 1}* and given by some
expression involving quotients of evaluations of S,—functions.

From this it is clear that we need to understand the small v asymptotics of S,. We
have that

5,(0) = exp 5Lt/ +1,0)).

where Li, is Euler’s dilogarithm function, and where we have certain analytic estimates
on I,(¢) (see Lemma 4.1).

Let us first explain how we use this to give a proof of the volume conjecture of Murakami
and Murakami [MM] for the figure 8 knot, namely that

 2rLog(J (1)

rT—00

= V01(41),

where the right-hand side is the hyperbolic volume of the figure 8 knot, i.e. the hyperbolic
volume of the complement S3\ K. The basic idea in analyzing the above contour integral
expression for Jj(r) is the following. In the upper half plane we approximate tan by i
and by —i in the lower half plane. Further we approximate S, by the above expression
involving only the dilogarithm. In Appendix B we prove the needed estimates which
allows us to do these approximations and we end up with the following formula for the
leading order asymptotics

1—e
T (1) ~roo T2/ e @dg, (5)

where

O(z) = 27“1/__1 (Li (e 27V=18) _ Liy(e 271'\/—71$)>.

Now we simply analyze the integral on the right-hand side of (5) by the saddle point
method. This consists of finding the stationary points of ® and also the so-called directions
of steepest descend, see e.g. [B]. (In this paper we use critical point and stationary
point interchangeable to mean a point in which the derivative is zero.) This analysis
leads to two interesting results. Firstly, the search for stationary points leads to the
hyperbolicity equation for the complement of the figure 8 knot in the 3—sphere. Recall
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that this complement can be decomposed into two so-called ideal hyperbolic tetrahedra
each parametrized by a certain complex number. This decomposition then defines a
hyperbolic structure on the complement exactly when the two parameters are equal and
satisfy the hyperbolicity equation.

Secondly, we find that the value of the phase function in the relevant stationary point
(there is only one such point in this case) is equal to the hyperbolic volume of the knot
complement (divided by 27), hence the leading asymptotics of Jj(r) is determined by
this volume.

These phenomena were first observed by Kashaev [Kash| and have been conjectured by
Thurston [Th]| and Yokota [Y] to be generally true for hyperbolic knots (see Remark 4.3).

Ultimately our asymptotic analysis leads to the following

Theorem 1.3. The leading order large v asymptotics of the colored Jones polynomial
evaluated at the top color is given by

T (1) ~paoo 374732 exp <2LV01(41)) .
m

As a corollary we obtain the volume conjecture for the figure 8 knot. We note that no
of the proofs so far given in the literature for the volume conjecture for the figure 8 have
been able to see the finer details of the asymptotic behaviour, namely the polynomial part
3-1/4,3/2.

Let us now return to the study of the large r asymptotics of the quantum invariant
7(Mpq). We expect that an analysis of the expression (4) paralleling our analysis of
Ji.(r) should be applicable. Le. tan and cot should be approximated by ++1/—1 depending
on the sign of Im(y) and Im(x) and fpqur(x, y) by an appropriate expression involving the
dilogarithm for some deformation of the part of C,. x C,.. We have partial analytic results
supporting this.

We propose the following analog of (5) for the quantum invariant. Let d be the inverse
of p (mod q). Let (a,b) € {0,1}? and n € Z. Define

n 1 o
(I)n(xay) = _7 — +—r—2Yy+ — 5 (L12(627”(x+y)) _ L12(62m(w y))) ’

4q q 4
and
4 (x) = alz —y) + b(z + y) + Pu(z, y).

Conjecture 1.4. There exist surfaces igb C C2? for (a,b) € {0,1}? and n € Z/|q|Z such
that the leading order large r asymptotics of the quantum invariant is given by

Ry e DT oy § S / Gu(2)e2m D dady, (6)
44/lq| n€Z/|q|Z (a,b)e{0,1}2

where g, is some simple r-independent function of x € C. Moreover, the surfaces Egb C
C? can be chosen such that they pass through the critical points of ®* with vanishing
Im(®%°). Furthermore, it can be arranged that ITm(®%*) < 0 along igb with equality only
in the critical points.

Please see Conjecture 4.4 for the more detailed version of this conjecture, including the
precise formula for g,. (We have here for sign-reasons switched to the complex conjugate
invariant 7,.(Myq) = 7-(Myq) = 7(M_p/q)-)

We now proceed by making an asymptotics analysis of the right-hand side of (6) using
the saddle point method like in our analysis of (5). Thus we need to analyze integrals of
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the form
2= [ (o) ey, (7)
25

Again we have to determine the stationary points of ®¢* and the values of ®%° in the
relevant stationary points. The main idea behind the saddle point method is to deform
igb so that it contains certain stationary points of ®%° satisfying that the leading large
r asymptotics of I¢ is determined solely by the contribution to I%* coming from small
neighborhoods of these stationary points.

If we let v = €™ and w = >, then by exponentiating the two equations for (z,y)
being a stationary point of ®%*(z,y) (see Theorem 1.5 below) we obtain the equations

= (fﬂ_ﬁ) (®)
v = (1 - vt (w0,

which are independent of the integer parameters a, b, n. To link the asymptotics to the flat
connections (as proposed by the AEC) we then have to relate the relevant stationary points
of the phase functions ®%° to the classical SU(2) Chern—Simons theory on the manifolds
M, ;. Fortunately, this Chern—Simons theory has been given a detailed description by
Kirk and Klassen [KK] using the work of Riley [R1], [R2] on the SL(2,C) representation
variety of the knot group of the figure 8 knot. According to Riley the nonabelian elements
p of this variety can be parametrized by p = p(s.u), where (s,u) € C? satisfies a certain
polynomial equation.

Using the results of Kirk and Klassen we show that p(, .,y defines a SL(2, C)-representation
of m1(M,/,) if and only if (v,w) = (s,u + 1) is a solution to (8) and v* # 1. Moreover,
this representation is conjugate to a SU(2)-representation if and only if (s,u) € ST x R.
Ultimately we arrive at

Theorem 1.5. The map
(SL’, y) = P(emiz e2miv—1) = P(v,w—1)

is a surjection from the set of critical points (x,y) of the functions ®»° (with x ¢ Z) onto

the nonabelian SL(2, C)-representations of m(M,,). Moreover, (z,y) € C* is a critical
point of ®4° if and only if

%+~ = Y+ (£ + 1) x+ lLog (1 — ety
q 2q T

%+l = Y+ (£ — 1) T — iLog (1 — e*mitz=v))
q 2q ™
Futhermore, if (x,y) is a critical point of ®*° such that P(emin e2miv_1) 1S conjugate to a
(nonabelian) SU(2)-representation p of mi (M), then
CS(p) = 3"(z,y) mod Z,
where CS is the SU(2) Chern-Simons functional.

The results of Kirk and Klassen show that the moduli space of irreducible flat SU(2)—
connections on M, , is a discrete finite set, hence the covariant derivative complex
(X (Mp/q,5u(2)),d ) is acyclic for all such connections A. If p/q # 0 the moduli space of
reducible flat SU(2)—connections is also a discrete finite set, hence hYy = 0 and kY > 0 for
such connections A (using notation from Conjecture 1.2). According to Conjecture 1.2 the
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growth rate of 7.(M,/,) in r should therefore be r° and the reducible connections should
not contribute to the leading asymptotics of 7,(M,q) for p/q # 0.

Our results so far (see Corollary 4.5) are in agreement with these observations in relation
to Conjecture 1.1 and 1.2 as far as the leading order asymptotics goes.

The invariant 7,.(My) and its full asymptotic expansion have been calculated by Jeffrey
[J]. We show (see Appendix C) that Jeffrey’s result is in agreement with the AEC. Again
we see a growth rate of ) but in this case reducible flat SU(2)-connections contribute
to the leading asymptotics. We note that the moduli space of reducible flat SU(2)—
connections on M, is topologically a closed interval, so our findings are in accordance
with Conjecture 1.2.
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hospitality during several visits, where part of this work was undertaken. The second
author thanks the Université Louis Pasteur, Strasbourg, the University of Edinburgh, and
the Max—Planck—Institut fiir Mathematik for their hospitality during this work. He was
supported by the European Commission, the Danish Natural Science Research Council
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2. THE RT-INVARIANT FOR SURGERIES ON THE FIGURE-8 KNOT

This section is primarily intended to introduce notation. Moreover, we present some
preliminary formulas for the colored Jones polynomial of the figure 8 knot and for the
RT-invariants of the 3—manifolds M), ,.

Let t = exp(2my/—1/(4r)), r an integer > 2, and let U; be the modular Hopf algebra
considered in [RT, Sect. 8], i.e. U, is a finite-dimensional factor of the quantum group
Ue(sl2(C)), £ = ¢*. (In [RT], and in most literature on the subject, £ is denoted ¢, but we
use in this paper ¢ to mean something different.) For an integer k we let

2k — 72 sin(wk/r)
2 —t=2  sin(w/r)’

sometimes called a quantum integer. For a knot K in S® we denote by K° the knot K
considered as a framed knot with framing zero. The colored Jones polynomial associated
to Uy of a framed oriented knot K with color A € {1,2,...,r} is denoted Jx(A), and for
an oriented knot K in S% we let Ji(\) = Jgo(A\)/[\]. Here the colors are the dimensions
(as complex vector spaces) of irreducible U;—modules.

Let Ny be the 3-manifold obtained by surgery on S* along K with surgery coefficient
f € Z. By [KM1] or [RT] the RT-invariant (at level r — 2) of Ny is

k] =

(Vg = a S €W DIAR I (k). ()

k=1

where K is given an arbitrary orientation. Here o = C¥8*(/)D~2 where

V=17 3(2 —
C = exp ( ™ 3( r)) .
4 r
We use here the normalization of [Tu]. This is D~! times the normalization of [KM1] and

C~NID-L times the normalization of [RT], where by(N;) is the first betti number of
Ny, see [Hal, Appendix A]. (In the notation of [Tu], C'= AD™'.)
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Let us next generalize to arbitrary rational surgery. Let p, ¢ be a pair of coprime integers
with ¢ # 0, and let N,/, be the 3-manifold obtained by surgery along K with surgery

coefficient p/q. Choose ¢, d € Z such that B = < ’Z 2 ) € SL(2,Z). Then (see e.g. [Hal,

Theorem 5.1 and the proofs of Corollary 8.3 and Theorem 8.4)),

o it ®(B)—3sign(pq) r—1
T (Npjq) = (eT exp <_2_'r)) \/jsm ( ) Z M) B,

A=1
where @ is the Rademacher Phi function, see [RG|, and * is the unitary representation of
PSL(2,7Z) given by

By = yorienld) e

V2]
X Z Z ,uexp<\/_; [pi® — 2pj(k + 2rnp) + d(k + 2rnp) ])

w=x1n€eZ/|q|Z

By evaluating the sum over p we get

7(Npg) = a(r) > exp (2mrdl) (10)

nez/lalz 1

where

2si i '
a(r) = _2sign(a) sin <E> e~ 1) oy <ﬂ [3sign(pq) ~Pisg <Z—)>}> :
v/ ldl r 2r q q

Here S is the Dedekind symbol, see e.g. [KM2]. We note that the quantum invariant 7, is
independent of the colored Jones polynomial J. (k) for the top-color k = r.

In the remaining part of this paper K will denote the figure 8 knot unless explicitly
stated otherwise. Recall that M,,, denotes the 3-manifold obtained by surgery on S?
along K with surgery coefficient p/q € Q. By an R—matrix calculation (see e.g. [Had|) we

find that
i) ZS”“H —&TH( - (11)

for A = 1,2,...,r, where [],",(1 — Sk*l)( — &M =1 for m = 0. Le and Habiro have
obtained a similar formula, cf. [Le].

Remark 2.1. Unitarity of V; implies that
T.(—M) = 7.(M) (12)

for any 3-manifold M, where ~ means complex conjugation. This formula also follows
directly from [KM1] and the remarks concerning normalization following (9).

Since the figure 8 knot is amphicheiral, M_,,, and M, ,, are orientation reversing home-
omorphic. By (12) we therefore have

Tr<Mp/q> = TV(M—p/q)- (13)
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This formula also follows directly by (10) and the facts that Jj- () is real and S(—p/q) =
—S(p/q). That Jj () is real follows by amphicheirality of K but can also be seen directly
from (11) by

J}(()\) _ A—1 ﬁé_ )\/251/2 g)\ l)é-—)\/Qé-—l/Q(]_ o é-)x-i-l)
o
— ZH —OD/2) (£ OHD/2 _ g~ (H)/2)
m=0 [=1
A—1
= mHsm A—1)/r)sin(m(A+1)/7).
m:0

3. A COMPLEX DOUBLE CONTOUR INTEGRAL FORMULA FOR 7,(M,/,)

In this section we derive a complex double contour integral formula for the RT—invariants
7.(Mp/q) by using methods similar to Kashaev [Kash]. By (10) and (11) we have

W) = S e (2 ) S - ([ <E)2_4n§]>

neZ/|q|Z
T L —(m+1/2)k ™
xsin | — [2nd — — Y 14
(& - 2]) ey HO -
When we consider the expression for the summand in this multi sum, we see that the
expression as it stands only makes sense for non-negative integers m. In order to make
sense of this expression for arbitrary complex values for m, let us consider the quantum
dilogarithm of Faddeev

() = exp G /CR sinh(ﬂz; :nh(fyz)zdz) (15)

defined on A, = {( € C | |Re(¢)] < m+ 7~ } Where v €]0,1[ and Cf is the contour
] — 00, —R] + T + [R, 00|, where Tx(t) = ReV~11 ¢ € [0, 7] and R €]0, 1].

The function S, : A, — C is holomorphic and it satlsﬁes the well-known functional
equation (see [F] or [Kash]).

Lemma 3.1. For ¢ € C with |Re(¢)| < m we have

(1+ emg)sﬂ/(c +7) = S,(C—7).

For the sake of completeness we have given a proof in Appendix A. We use Lemma 3.1
to extend S, to a meromorphic function on the complex plane C.
From now on we fix v = 7/r. By Lemma 3.1 we get that

r—1

S,(¢) = S,(¢ + 2m) H (1 + eﬁ(<+(2j+1)w/r)) .

5=0
If we write ( = —7 + 27z we get that

r—1 r—1

H (1 I 6\/—_1(C+(2j+1)7r/7")> _ H <1 _ wj627r\/—_1(ar+%)) ’

j=0 7=0
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where w = e2™V=1/" Using 1 — 2" = H;;é(l —wlz) we get that

S (=7 + 2mx) = (1 +62ﬂﬁ”) S (=7 + 2n(x + 1)) (16)
for z € C. Let
n 1
2
Then z — S,(—7 + 27z) is analytic on C\{zpln =r,r+1,...}. If m is a positive
integer then {x,|n = mr,mr+1,..., (m+1)r—1} are poles of order m, while the points
{zp|n =—mr,—mr +1,...,—mr +r — 1} are zeros of order m.

Let us use the function S, to give another expression for 7,(M,,). By Lemma 3.1 we
have that

ﬁ £kl ﬁ ~ _7T+27(k5il)—7)_
—7 4+ 2y(k+1) +7)

1=0 1=0 Si(
Therefore
ﬁ(l ekl = Sy(—=m+2v(k—m) —7)
1—0 Sy(=m + 27k + )
ﬁ(l . gk—i—l) _ S“/(_ﬂ- + 27]{; - 7) )
P Sy(=m 4+ 2y(k +m) +7)
So

Sy(=m +2y(k —m) — )

[T0-¢h0-e=0- 2

and then by (14)

r—1 r—1 k 1/9
T( p/q = Z fnr<_vm+ /)
0

nez/|q|Z k=1 m=

where

2y gt _na_sy) Sy (= + 2z — )

fur(z,y) = sin (5(90 - 2”d)) e S (=7 + 2n(z + y))

1=~ S (5 53]

Note that d is equal to the inverse of p (mod ¢) and that the functions f,, are inde-
pendent of the choice of this inverse. By the remarks following Lemma 3.1 the functions
fn,r are holomorphic on €2, x ,, where

1 1
Qs:{wEC\—4—8<Re(w)<1+4—S} (18)

for s €]0, c0]. By the residue theorem we therefore end up with
Lemma 3.2. The quantum invariants of My, are given by

> / cot(mra ( / tan(mry) for(z, y)dy)d

n€Z/|q|Z

Tr (Mp/q =




ASYMPTOTICS OF THE QUANTUM INVARIANTS FOR FIGURE-8 11

where B(r) is given by (17) and
: n 27ri7’(—d”2+£127ﬁxfmy) SV(_W + 271’(1‘ - y))
— — — 2nd q 4q q
fnﬂ’(l‘?y) sin <q(l‘ n )) € S’y(_ﬂ_+2ﬂ_(l_+y))7

and where C} is a closed curve in Q, such that the poles {k/r | k = 1,2,...,r — 1}
for x + cot(mrz) lies inside C} and all other poles for this function lies outside C}, and
C? is a closed curve in S, such that the poles {(m +1/2)/r | m = 0,1,...,r —1 } for
y — tan(wry) lies inside C? and all other poles for this function lies outside C?. Both
curves are oriented in the anti-clockwise direction.

Using the function S, we can also express Jj(r) as a contour integral. By Lemma 3.1
we get that

B (m— (2m+1)y)
Tir TZS St @2m+ 1))

We have here used that

Sy ( 7T+’y (m— (25 +1)y) _Tfl Cony T
S HS — 2]_'_1)7)—1_[(1—62 1r>_7’.

j=1
If we put
_ Sy(m —27x)
grlz) = Sy (—m + 2mx)
for x € Q%r we get
r—1
m+1/2
Jg(r) = S e
ko) =r o ()

and we can write this sum as the single contour integral

Jr(r) = \/;T /02 tan(7rax)g,(z)de, (19)

where C? is given in Lemma 3.2.

4. THE LARGE 7 ASYMPTOTICS OF Jy (1) AND 7,.(M,/q)

In this section we investigate the large r asymptotics of 7,(M,,/,) or more precisely the
leading term of this asymptotics, using the saddle point approximation method. We begin
by calculating the large r asymptotics of Jy (r) using the expression (19). This calculation
will demonstrate the use of the saddle point method and will serve as a warm up for the

more difficult considerations of the asymptotics of 7,.(M,,) in the final part of this section.

4.1. Semiclassical asymptotics of the quantum dilogarithm. It is well known that
the semiclassical asymptotics, i.e. the small v range of the quantum dilogarithm S, is

given by Euler’s dilogarithm
“ Log(1 —
Lig(z) = — / Log(l = w),, (20)
0 w

for z € C\]1, 0o[. Here and elsewhere Log denotes the principal logarithm. For |Re(¢)| < 7
or ( = £7 one can check (see Appendix A) that

1 1 et?
L= = [
2v/—1v bo(=e™) 4 Jc,, sinh(mz)yz? =
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hence we have that

5,(¢) = exp ( Lia(—eV™1) 4 uc)) (21)

1
2v/—1vy

for such (, where

1 et? 1 1
h(¢) = 4 /CR zsinh(rmz) (sinh(fyz) a %) dz.

Lemma 4.1. If |Re(¢)| < 7 then

1 1 ~1m(Q)
O <A (g + e )7+ B O

and for |Re(C)| < m we have
IL,(C)] < 24+ B (14 e ™OR) o,

where A and B are positive constants only depending on R.

A proof is given in Appendix A. On the unit circle the dilogarithm is given by Clausen’s

function Cl,, i.e.
: — sin(nd 0 t
Im (Lig(c)) = Cly(9) = 3 S200) _ / Log|2sin (5) ] dt (22)
n 0
n=1

for 6 € R. One sees that Cly is increasing on [0,7/3] U [57/3,27] and decreasing on
[7/3,57/3]. In particular, Cly attains its maximum value at 7/3 and its minimum value
at b /3. Moreover

w/6
—Cl (%ﬁ) — Cl, <g) - _2/ Log|2sin(¢)|d¢ = 2] (%) = %Vol(ﬁh), (23)
0

where J is Lobachevsky’s function and Vol(4;) is the hyperbolic volume of the complement
of the figure 8 knot, cf. [Ra, Sect. 10.4].

4.2. The large r asymptotics of Jj(r). We calculate the leading term of the large r
asymptotics of Ji(r), using the saddle point approximation method like Kashaev [Kash].
Our calculation supplements the calculation of Kashaev with the needed analytic error
estimates. Let

C?2=Ce) = [V-1+4e,~vV—T14e]+[-V-14¢1—c——1]
+l—e—V-11—e+V=-1]4+[1—-c+vV-1e+V-1],

where ¢ €]0, [, We let C'(¢) be the part of the contour C/(e) above the real axes and
C_(e) the part below the real axes. By (19) we have

Ty = Y

(‘Lr(rv 8) + J*<7,7 E)) )
where

Ji(rye) = / tan(mrx)g, (x)d.
C4(e)

The factor tan(mrz) can away from the real axis’ be approximated by ++/—1 depending
on whether we are in the upper or lower half-plane:

27r7"Im(x)
|tan(mrz) — 1] < { de Im(z) = 7

1
_27r7"Im(x)’ ,',.R ( ) i I ( ) > 0’ (24)
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and
4627r7"\/—711m(ac)7 Im< ) < —=

an(are) + V=T < { 5500 (25)

rRe(x) € Z Im(az) <0.
Therefore we write

Ji(r,e) = +V—-1 gr(x)dx + /C ( )(tan(ﬂ'r:c) FvV-1)g(z)dx

C+(e)

The estimate on tan(zwrz) £ 1/—1 can be used (see Appendix B) to prove that

Z/ (tan(rrz) — py/—1)g.(z)dz

p==x1

1
< Kl— (26)

where K7 is a constant independent of r and . Let now

b(r) = 5 (Lia(e™27) L2V 1)

Note that & is analytic on D = C\ {z € C|Re(z) € Z } but not in the points Z, so here
we see the reason for using the small deformation parameter €. We have

/ gr(x)dz = / @) dy
C+(¢) C+(e)

+/ (exp (I (7 — 27x) — L,(—7 + 27x)) — 1) e"*@da,
Cx(e)

However, as we will see in Appendix B, the estimate in Lemma 4.1 implies that

KoLog(r) +voiay)

‘ (28)

/ (exp (I, (7 — 27z) — L,(—7 + 27x)) — 1) "*@da| <
Cule)

for p = £1, where K, is a constant independent of » and €. We will see below that the
estimates (26) and (28) imply that the leading order large r asymptotics of Jy (r) is given

by
2
J}((T) ~r oo % (/ e 2(@) 4 _/ ercb(m)dx) ’ (29)
C_(e) Ci(e)

to which we can apply the saddle point method, see e.g. [B, Chap. 5]. First we determine
the stationary points of the phase function ®. On D we have

®'(z) = Log <1 27“/_”6) + Log (1 _2”\/__1$) )

If we put z = 2™V~1% then ®'(z) = 0 implies that
Z—24+1=0. (30)
The equation (30) has the solutions z = e™~1"/3. We have 1 — 2o = 1/2 Fiy/3/2 which

both have norm 1 and are each others conjugate, so

Log (1 —2;)+ Log(l—2_)=0.

We note that z4 = et2mV =15 correspond to the z—points £1/6 + Z. These points are
non-degenerate critical points. In fact,

P (z) = oy 1o

27r\/_x_'_1
627r\/_az_1
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on D, so in particular ®"(zy) = +27/3 for v+ € £1/6 + Z. The imaginary part of ®(z)
is zero for z € R and

1 N 1
@(z) = 5-Im (ng(e 20y/=T2) _ Ljy (21 )) = ——Cly(2ra),

by (22). Let z» € £1/6 + Z. By (23) we have Cly(2mz_) = —Cly(27xy) = —Cly(7/3) =
—Vol(41)/2, i.e.
1

By Cauchy’s theorem we have

/ @ dy — / @) dy = 2/ @ dy = —2/ @)y,
C-(e) Ci(e) C—(e) Ci(e)

Deform C'_(¢) to [e,1 — €] keeping the end points fixed. This does not change the integral
Jo_ e"®@dz. Let 7y = 5/6. By terminology borrowed from [B, Sect. 5.4] the axis of the
saddle point xq is the real axis (i.e. the directions of steepest descent are along the real
axis). From the analysis of [B, Sect. 5.7] it follows that we can find a § > 0 (independent
of r and ¢) such that [xo — d,z9 + 6] C [1/(4r),1 — 1/(4r)] and such that we have an
asymptotic expansion

é 00
1 r
r®(xo+t) ~ 5—Vol(41) § -n
/ el 31/4\/7_“62 1 <1+ 71dn7’ )

—0

in the limit » — oo, where d,, are certain complex numbers. Finally we note that

To—0 1—e
/ et + / "My
£ To+0

where ¢ = max{—Cly(27(xg — §))/m, —=Cla(27(x¢ + §))/7} < Vol(41)/2m, see above (23).
We have shown

rc
<e,

Lemma 4.2. The leading order large v asymptotics of Jj.(r) is given by
T (1) ~pse 3743 2 exp <2LV01(41)) : (31)
s
In fact
Jhe(r) = 37 Y432 exp (QLVOI(le)) +0 (rLog('r’) exp (QLVol(éll)))
s s

m the limit r — oo. O

In particular
2L, ;
i 2TRog(Ji (1) _ Vol(4,)
r—00 T
as predicted by the volume conjecture of Kashaev [Kash| and Murakami, Murakami [MM]
and as proven by Ekholm and others, see [M1]. However, the arguments of Ekholm and
others can’t see the finer details of the asymptotic behaviour (31), namely the polynomial

part 31/4p3/2

Remark 4.3. The complement S?\ K of the figure 8 knot can be decomposed into two
so-called ideal hyperbolic tetrahedra each parametrized by a certain complex number.
This decomposition then defines a hyperbolic structure on this complement if and only
if a certain set of conditions is satisfied. In fact, if the complex parameters for the two
tetrahedra are respectively a and b, then these conditions are equivalent to a = b and
b> — b+ 1 =0, which is equation (30) after substituting b for 2. We refer to [M2, Sect. 3]
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for more details. This phenomenon, that one finds the hyperbolicity equation for the
figure 8 knot complement as the equation for the stationary points of the phase function,
seems to be a general principal for hyperbolic knots as argued by Thurston and Yokota,
cf. [Th], [Y]. However, there are major unsolved analytic difficulties in their approach.
Basically they conjecture that one can carry out an asymptotic analysis similar to the
one we carried out above for the figure 8 knot. To prove their conjecture one first has
to show how to give an exact (multi-dimensional) contour integral formula for the Jones
polynomial of a hyperbolic knot like our (19). A main part consists of choosing a correct
(multi-dimensional) contour. Secondly, one has to carry out an asymptotic analysis similar
to the one leading to (29). This analysis is relatively simple for the figure 8 knot due to
the fact that we have a single (one-dimensional) contour in this case. In general one gets
a contour of dimension > 1 and the asymptotic analysis is expected to be harder (as also
illustrated by the asymptotic analysis of the double-contour integral expression for the
invariant 7,(M,/,) in Lemma 3.2, see next section.)

4.3. The large r asymptotics of 7,.(M, ;). In Sect. 5 we will see that the signs of the
v/a) = Tr(Mp)q) agrees with the Chern-Simons values,
hence we work with this conjugate invariant. Because of (13) we can always obtain the
asymptotic expansion of 7,(M,/,) by complex conjugation or by replacing either p by —p
or ¢ by —¢g. By Lemma 3.2 we have

phases in the asymptotics of 7,.(/,

T (Mp)q) = Ba(r) Z / cot(rrz) tan(wry) fn..(z, y)drdy, (32)
nez/lqlz” O <
where sign(q) .
isign(q)r smi mo[ . P P
Bi(r) = —= 22 i sien(pd) exp (—— {381gn pq) —=+S (—)}) : 33
=P o |ssionea) - 2 5 (2 (33)
and

I . z . 2m’r(7%74%x2+%xfmy) Sfy<—7'(' + 277'(55 - y))
fn,r(xa y) = S (q ($ 2nd)) € Sf\/(_ﬂ' + 271'(37 + y))7

where v = 7/r as usual. Let for k,l € Z
Ot = { (2,y) € C2 | Re(x) + Re(y) € [k, k + 1], Re(z) - Re(y) € [, ~L+1] }.
For (z,y) € Q,, we have by (16) and (21) that

fn,r(x,y) — sin <E<x _ 2nd)) (1 i 627ri(mfy)r)l (1 n e27ri(:v+y)r)k€27rir¢n(m,y)
q

xexp (Iy(—m+2n(zx —y+1)) — L(—7+2m(x +y — k))),

where

P, (2,y) = _dnt L Ly 1 (Lip (&™) — Liy(e*™ =) |

q 4q q A
We note that ®,, is well-defined for (z,y) € C? satisfying the condition
(Re(z) + Re(y) ¢ Z V Im(z) + Im(y) > 0) A (Re(z) — Re(y) ¢ Z V Im(x) — Im(y) > 0).
Observe that for k,l € {0,1}, which corresponds to the four different € intersec’E?rilg)

C! x C? we have that

(1 + 627ri(x—y)r)l (1 + 627ri(a:+y)7")k _ Z 627ri(a($—y)+b(x+y))r’
(a,b)€Fk,
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where Fy; = {(a,b) € {0,1}* |a <k, b <1}. Hence

farlzy) = ) sin (f(x - 2nd)) )
q

(a,b)EFy
xexp (Iy(—m+2n(x —y+1) — I, (-7 +2n(z+y — k))),
where
O (2, y) = alz — y) +b(a +y) + Pu(z, y). (35)
Let
QZ;’ = {(z,y) € Qe | plm(z) >0, vim(xz)> 0}.

Conjecture 4.4. There exists surfaces X7, C Q) for (k1) € {0,1}%, (a,b) € Fyy,
(u,v) € {£1}? and n € Z/|q|Z such that the leading order asymptotics of the quantum
mvariant s given by

%T(MP/Q) ~r—oo _ﬁl(r) Z Z Z (36>

nEZ/‘q‘Z (k71)6{071}2 (avb)EFk,l

X Z uy/ﬂ sin (z(a: — 2nd)) i (@) dy,.
SV

(uyv)e{£1)2 b q

Moreover, the surfaces Zglyfb C QZIV can be chosen such that they pass through the critical
points of ®¥° with vanishing Im(®%*) which are contained in QZ;’ Furthermore, it can
be arranged that Im(®%*) < 0 along 337, with equality only in the critical points.

The rational behind this conjecture is that we anticipate an analysis of the expression
(32) paralleling our analysis of Ji (1) should be applicable. Le. tan and cot should be
approximated by ++v/—1 depending on the signs of Im(y) and Im(x) and f,.(z,y) by

sin (%(:p — an)) e2ir®" @) for some deformation of the part of C!' x C* which is con-

tained in Q’,:l” We have partial analytic results supporting this conjecture. Let us now

compute the large r asymptotics of the right hand side of (36).
Let

I = / sin (E(x - an)) eQﬂir@%yb(x’y)dxdy, (37)
A

k,l,a,b q

where k,1 € {0,1}, (a,b) € Fyy, p,v € {1} and n € Z. By the properties of the surfaces
Zglyfb postulated in Conjecture 4.4, the large r asymptotics of I can be calculated by the
saddle point method. In order to apply this method, we need to compute the stationary
points of ®¢°. To this end, it is more convenient to work with the functions

Ut (z,y) = ax + by + O (, y), (38)
a,b,n € Z, so 0 = patbab

Let a,b,n € Z and put ¥ = U2 Let 2z = ™ and w = €*™¥. Then

ov 21
2mi—(z,y) = 2mi(a—vy) — Lomiz + 220 Log(1 — zw) — Log(1 — zw ™), (39)
q

Ox 2q
o . .
2m@—y(x’ y) = 2mi(b—x)+ Log(l — zw) + Log(1 — zw™),

where we have to assume (which we will also assume in what follows) that zw, zw™" # 1.
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We will need to specify a certain square root of z, namely let v = e™*. Then 2% (:L’ y) =10

implies that
2\ ¢
R 40
. (1_0% | (10)

(1 —v*w)(w —v?) = v’w. (41)

Both equations (40) and (41) are independent of a, b, and n. We note that (v, w) = (0,0)
is the only solution to (41) with v or w equal to zero. Note, moreover, that (v, w) is a
common solution to (40) and (41) if and only if (v, w) is a common solution to these two

equations. By writing (40) as
1 — 02w \*?
—1)¢ p+2q _
(=1)% (1 — va)

(1 —v*w)(1 —v 2w) = —w

and %—i(x, y) = 0 implies that

and (41) as

we see that (v,w) is a nonzero solution to (40) and (41) if and only if (v, w) is such a
solution.

Let us oppositely begin with a common solution (v, w) € C* x C* to (40) and (41),
where, as usual, C* = C\ {0}. Write v = €™ and w = e*™ with Re(r) €] — 1, 1] and
Re(y) €] —1/2,1/2], i.e. # = LLog(v) and y = 5-Log(w). One now easily deduce from
(41) that there exists a unique b € Z such that

0 =27i(b — x) + Log (1 — 2’”(”?/)) + Log (1 — €™~ y)) ; (42)

and from (40) we deduce that there exists a unique n € Z such that

271 .
0 = —2miy — iz + T 4 Log (1 — 2@} — Tog (1 — 2™9) . (43)
q q
That is, there exists a unique pair of integers b, n such that (x,y) is a stationary point of

WO,
Let us make a slight digression by giving some general remarks about the set of solutions
0 (41). Assume that v,w € C* and let z = v?. Then (41) can be written in the following
two ways

1
22—(w+—+1>z+1:0, (44)
w
9 1
w'—(z4+—-——1Jw+1=0.
z

It is straightforward to see that if (z, w) is a solution to (44) with w € R\ {0}, then z is real
and positive if w > 0, z is real and negative if w €] — 0o, —(3+/5)/2] U[—(3 —v/5)/2, 0],
and z € St if
_B+VE)2<w < —3-VE)2 (45)

If (z,w) is a solution to (44) with z € R\ {0}, then w is real and negative if z < 0, w is
real and positive if z €]0, (3—+/5)/2]U[(3++/5)/2, 00[, and w € S* if z € [(3—+/5)/2, (3+
Vv5)/2].

Later on we will be particularly interested in common solutions to (40) and (41) with
v e St and w € R\ {0}. Assume that (v,w) is such a solution, and write z = v? = €'
¢ €] — 7, m]. By taking absolute values we get from (40) that |1 — zw| = |w — z| and then
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from (41) that |w| = |w—2z|* = (w—2)(w—2z) = w? —2Re(2)w+1. If w < 0 this equation
is equivalent to

w® 4+ (1 —2Re(2))w +1 = 0. (46)
Since z € S! we have 1 —2Re(z) € [—1, 3] and since w is real we also have |1 —2Re(z)| > 2,
so 1 — 2Re(z) € [2, 3] or equivalently ¢ €] — m, =27 /3] U [27/3, 7]. By (46) we find that

w = cos(¢) — % + \/COSQ(¢) — cos(¢) — 2
If w > 0 we have already seen that z €]0, c0[. But then z =1 so w? —w + 1 =0 by (44)
contradicting the fact that w is real.

Let us now turn to the second derivative of W in a critical point (x¢, yo), i.e. the Hessian
H = H(zo,y0) of ¥ in (z9,y0) (which is equal to the Hessian of @, in (xg,yo)). Put
(v, wp) = (€™, e*™0) and 25 = v. By a small computation, using the fact that (vg, wp)
is a solution to (41), we find that

0? 1 P
H _ v - _ £ 47
11 922 (0, Yo) wo Wo 2 (47)
0*U 1
Hyy=Hy = m(ﬂfoayo) = ZzZo — z_7
0
0*U 1
Hy = 8—y2(x0’y0) = w wo.

Let us examine non-degeneracy of the critical point (zq, y9). We are particularly interested
in critical points where wy < 0 and z, € St. Writing 2o = €'® so 29 — 1/29 = 2isin(¢) we

Wo 2_q Wo

We see immediately from this that if wy €] — 1,0[ and p/q > 0 then det(H) > 0. If
wy €] — oo, —1[ and p/q < 0 then we also have det(H) > 0. In connection to (46) we
found that ¢ €] — m, —27/3] U [27/3,7]. If wy = —1 we see that det(H) > 0 except if
¢ =, but ¢ = 7 is excluded by (46) since wy = —1. For any critical point we have

1\? 1\*> »p 1
det(H): (w0+—) - (Zo"‘—) +—(w0——).
wWo 20 2q wWo

By (44) we have wo + 5= = 2 + ;- — 1 50

1 1
det(H) :1—2(2’0+—) + 2 (wo——).
20 2q wWo

Now assume again that wy < 0 and 29 € S*. Let a = 1 — 2Re(2g) € [2,3] and get from
(46) that 2wy = —a++/a? — 4. In particular, we have 2/wg = —aF v/ a? — 4 and therefore
wo — 1/wy = £v/a? — 4. But then

det(H) =2a— 1+ 2£\/a2 — 4.
q

We see that det(H) = 0 implies that

2 2
p 2 p
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If 4 — p?/(4¢*) = 0 or equivalently |p/q| = 4 then a = 17/4 > 4 which contradicts the fact
that @ < 3. Assume therefore that |p/q| # 4 and get that

)

q
()
Since a is real we immediately conclude that |p/q| > v/15. Assume that |p/q| € [V/15,4].
Then (49) together with a € [2, 3] leads to the condition

12——<:|: ’H ——15 <20——

Since 20 — =& is negative, we necessarily have a minus in front of

(49)

2
Z—Q — 15. Moreover,

P
q

(Zq’_Q — 15) <20 — g%z implies that

5 4 2
2 (3) _ 45 (73) 400 <0,
4 \q q

which forces p?/q¢? € [16,20] giving a contradiction.
Next assume that |p/q| > 4. Then (49) together with a € [2, 3] leads to the condition

12——>:|: ’H ——15 >20——

. 2. . . . . 2
Since 12—12—2 is negative, we necessarily have a minus (”—2 — 15). Moreover,

q

—|B
q

(Z—; — 15) > 20— 302 implies that

2q2

5 4 2
2 (B) — 45 (73) 4400 > 0,
4 \q q

which forces p?/q? < 16 or p?/q* > 20. Therefore |p/q| > v/20. We have thus shown that
if |p/q| < v/20 then (xg,yo) is non-degenerate.
By the above we have
p (1’—2 - 15) —4
q q

a=2 f;—; T (50)
for [p/q| > V20, if (zq,0) is degenerate. Assuming that (2, 1) is degenerate (so |p/q| >
v/20) we conclude that the only other solutions (z,w) € S'x]—o00, 0[ to (46) satisfying that
1—2Re(2) is equal to the right-hand side of (50) are (zo, 1/wy), (20, wo) and (2o, 1/wp). By
the remarks following (48) we get that among these three points only the point (2, wg) can
actually satisfy, that the right-hand side of (48) is zero. We expect, that these arguments
can be carried futher to show that all critical points are non-degenerate also in the case
Ip/al > v/20.

Let a, 8 € S* and let 4,73 : Is — C be given by 7,(s) = zo + as, y5(s) = yo + 3s,
where I5 = [0, d] for a sufficiently small 6 > 0. The main contributiton to the integral [
in (37) in the large 7 limit can as stated below (37) be calculated using the saddle point
method. This implies that the main contributions to I comes from integrating along the
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surface ¥ = Y7 in small neighborhoods of the critical points on this surface. (One
has also to consider boundary contributions. Except if there are saddle points on the
boundary of 3, these boundary contributions will, however, not contribute to the leading
asymptotics. Saddle points on the boundary give contributions with the same growth rate
in r as saddle points in the interior.) We are therefore lead to consider an integral of the

form
K(zo,y0) = / /sin <E(:p—2nd)) e%ir‘P(x,y)dy da
Yo B q
5 5 - |
- / (/ sin (—(rco+as—2nd>) e%mwawowwdt) s,
-6 ) q

where U = W% as above. (If (x9,%0) is a non-degenerate critical point on the boundary
of ¥, then one or both or the integrals fi; should be replaced by fO(S (or ffé) and the

contribution coming from that point in Corollary 4.5 should be multiplied by % or 1.) By
a Taylor expansion we find that

Wlaa+ s+ 00 = Waw) + 50 5 ). (] )+ htsin)

where

A = diag(«, f) Hdiag(«, ),

X1 )
: =217 +
<< " ) ( " )> T1%3 + Y1y

for (x1,91), (T9,y2) € C?, and where h(s,t) is a remainder term being a sum of terms
of the form ¢, ,,,s"t", n,m € {0,1,2,...,..}, n+m > 3, ¢,m € C. We note that x
is a saddle point of the function x — W(z, 1) and yo is a saddle point of the function
y — W(xg,y). We search for o and 3 such that there exists a 0 > 0 satisfying

Re (2mi(¥(zo + as, yo + Ot) — ¥(zo,v0))) <0 (51)
for all (s,t) € Is x Is \ {(0,0)}. This amounts to finding o and 3 such that

(i (2)- (1))

for all (s,t) € R*\ {(0,0)}. Since

w(a(3)-(1)) - (3)-(1)

this corresponds to finding o and 3 such that Im(A) is positive definite. A main part of
the process of finding surfaces Z’,:l”:b as in Conjecture 4.4 consists of finding such a and

&

and

Since A is symmetric we have Im(A);; = Im(4;;). Here A;; = o?Hyy, Ag = $?Ha,
Ay = A1p = affHyo, where H is the Hessian in (47). Let us consider a general case.

Therefore, let M = ¢ ZC)
and M is positive definite if and only if both of these eigenvalues are positive, i.e. if and

only if a and b are both positive and ab > ¢2. Now assume that M = Im(A) and that

be a real symmetric matrix. Then M has real eigenvalues,
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2o € S while wy E] —00,0[. Then Hy; and Hay are real and Hyy = Hoy is purely imaginary.
If we write a = €, 3 = e, ¢, €] — 7, 7] we have

a = Im(a2H11) = sin(2¢) H1y,
b = Im(3Has) = sin(2¢)) Ho,
¢ = Im(aBHs) = cos(¢+)C,

where Hy, = iC, C € R. We see that the inequality ab > ¢? is equivalent to

cos?(¢ + 1) < sin(2¢) sin(21)) Hléfﬂ.
There are four cases to consider depending on the signs of Hy; and Hos. If Hy; and Hoo
are both negative then a and b are positive if and only if ¢,¢ €] — 7/2,0[U]r/2,7[. In
particularly M is positive definite if we put ¢ = ¢ = —n/4. If Hy; and Hyy are both
positive, then a and b are positive if and only if ¢, €] — 7, —7/2[U]0, 7/2[. In particular
we can let ¢ = 1) = m/4 in which case (52) is obviously satisfied. Let us finally consider
the case Hyjy > 0, Hys < 0 (the case Hy; < 0, Hyy > 0 is handled the same way). Then
a and b are positive if and only if ¢ €] — 7w, —7/2[U]0, 7/2[ and ¢ €] — 7/2,0[U]7/2, 7.
If —Hy1Hy/C? > 1 we can simply let ¢ = ¢ + 7/2. The case 0 < —Hy1 Hoy/C? < 1 (or
equivalently det(H) > 0) is more difficult. We expect that either this case can be avoided
or else one can find steepest descend directions also in that case.

If o and (3 are chosen so that Im(A) is positive definite, then the main contribution to
the integral K (xo, o) in the limit of large r is given by

(52)

S

s sy [ L)
Kmain (70, o) = afsin (—(:co — Qnd)) 2 (zo.0) / e dsdt,
R2

q
and this integral can be evaluated using the results of [H, Sect. 3.4]. In fact,

ﬂiT(A( i ),( i )) 1
/ e dsdt = = (det(—iA)) "2,
R2

r

where A is independent of . Note here that the set S of complex symmetric 2 x 2-matrices
B with Re(B) positive definite is an open convex set in the 3-dimensional complex vector
space of symmetric 2 x 2-matrices. It follow that their is a unique analytic branch of
B — (det(B))"? on S such that (det(B))"? > 0 for B real. We have used that branch in
the above result. In conclusion we can state the following corollary to Conjecture 4.4.

Corollary 4.5. Assume that each of the surfaces ¥ = 7", follows the (2-dimensional)

directions of steepest descend in the critical points of U = ®%* contained in %, i.e. (51)
is satisfied in each of these critical points, and {(zo + as,yo + Bt) | (s,t) € I5 x Is} C .
Then the leading order asymptotics of the quantum invariant is given by

_ Bi(r)
Tr(Mp/q> ~r—oco T
r ne;qZ (k,l)ez{o,l}2 (a,b)g%
< 3w Y alw)iy) [det(—iAr, y)

()E{F1Y  (@y)ecty,

X sin <E(:p - an)) 62””@#(”’),
q
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where C}", is the set of non-degenerate critical points of ®5" in X577, and where a(x,y),
B(x,y) and A(x,y) are as o, 5 and A above with (xg,y0) = (z,y).

We note that the factor

a(z,y) Bz, y) (det(—iA(z,y))) "

is independent of . Moreover, the leading term in the large r» asymptotics of

r 4/l 2r q q

%e%ﬁg“(pq). This implies, that the growth rate of the quantum invariants of M,
is 7. This is in agreement with our computer studies of the quantum invariants of M,/,.
The above corrollary gives a leading asymptotics as predicted by the AEC if we can prove
that the union of the sets of critical points Cj}", corresponds to the flat (irreducible)
SU(2)—connections on M,,, and if we can prove that the values of the relevant phase
functions ®%° in these critical points are equal to the Chern-Simons invariants of these
flat connections. This we will do in section 5.3.

In Sect. 5 we will show that the moduli space of irreducible flat SU(2)-connections on
M,,, is a discrete finite set for all p/q € Q. Moreover, the set of reducible flat SU(2)-
connections on M,, is discrete, hence finite, if p/g € Q \ {0} and is a closed interval for
p/q = 0. According to the growth rate conjecture for the quantum invariants, i.e. Conjec-
ture 1.2 (together with Conjecture 1.1), the growth rate of 7, (M, /) should therefore be
r%. Moreover, the reducible connections should only contribute to the leading asymptotics
if p/¢ = 0. By the results in Appendix C, we see that the reducible connections in fact
do give a contribution to the leading asymptotics in case p/q = 0.

1S

5. CLASSICAL CHERN—SIMONS THEORY ON M, /,

In this section we will describe the classical theory, that is the classical Chern—Simons
theory on the manifolds M,/,. The SU(2) Chern—Simons functional is a map with values
in R/Z defined on the set A of gauge equivalence classes of connections in a principal
SU(2) bundle on M,, (all such bundles being trivializable). Inside A sits the moduli
space M,,/, of flat SU(2)-connections on M, 4, that is the set of classical solutions to the
SU(2) Chern—Simons field theory. Recall that

My/q = Hom(my (M), SU(2))/SU(2)

from which it is clear that M, , is a compact space. The Chern—Simons functional is con-
stant on the connected components of M,,/,, thus there are only finitely many different
values on flat connections. Let M /o be the subset of M,,/; consisting of nonabelian rep-
resentations. Recall that these representations correspond to the irreducible connections,
while the abelian representations correspond to the reducible connections.

The main results in this section are Theorem 5.8 and Theorem 5.9 which ties up the
Chern-Simons theory to the large r asymptotics of 7,.(M,,,) by showing that a certain
subset of the critical points of the phase functions ®»* are in bijection with M; Jq- Under
this bijection, the Chern—Simons functional is taken to the phase functions ®®®.

We begin by giving a description of M, , following Riley [R1], [R2] and Kirk & Klassen

KK].
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5.1. The moduli space of flat SU(2)—connections on M, .. In the following 7 =
71 (5% \ nbd(K)) denotes the knot group of the figure 8 knot. We have a presentation

™= (z,ylwr=yw), (53)

1 —1,.—1

where w = [27!,y], and where p = z and X = ya~ 'y 'z?y~lz7ly are the elements
of m corresponding to the meridian and the preferred longitude of K. The SL(2,C)
representation variety of m was analyzed by Riley [R1], [R2] relevant to our work. Consider
a group G given by a presentation

where w = x®1y*22%3 - - -y*o-1, where a is odd and ¢; = ¢_; = *1, j = 1,2,..., a0 — 1.
Such groups are denoted 2-bridge kmot groups by Riley since they generalize the 2-
bridge knot groups. Following Riley we say that a representation ¢ : G — SL(2,C) is
affine when the image of 9 fixes exactly one point in CP! and not affine when this image
has no fixed points. We note that if ) is nonabelian then ¢ is affine if and only if ¢ (x)
and ¢(y) have a common eigenvector, and ¢ is not affine if these two matrices have no
common eigenvector. Let H be some subgroup of SL(2,C). Then we will say that two
representations 91,1y : G — SL(2,C) are H—equivalent if they are conjugate to each
other by a matrix in H, i.e. if there exists a matrix U € H such that 1 (y) = Uty (7)U 1
for all v € G. In particular, we will say that ¢); and 1), are equivalent if they are SL(2, C)—-
equivalent. For (t,u) € C* x C we put

at) = (1) ptwa=( 4, 1)
Ci(t) = (é tL), Dl(t,u):<_tu tﬂ),
Colt) = (é ii) D2<t,u):<_fm tol).

We note that C,(t) and D, (t,u) are elements of SL(2,C), v = 1,2. If s is a square root
of t and V(s) = diag(s,s™!) then
V(s)Oy(t)V(s)™t = Ci(t), V(s)Dy(t,u)V(s)~™' = Di(t,u), (54)
and
Co(t) = sCy(s), Do(t,u) = sDs(s,u). (55)

Let W, (t,u) denote the matrix obtained by replacing = and y by respectively C,(¢) and
D, (t,u) in the expression for w, and let

o(t,u) = Wi + (1 — t) W,
where W = W (t,u) = Wy(t,u). We let pq.) be the assignment z — Cy(t), y — Da(t,u).
We have the following SL(2, C) version of [R1, Theorem 1].

Theorem 5.1. Let (s,u) € C* x C. None of the assignments p(s.) extend to an abelian
SL(2, C) —representation of G. The assignment p(s.) extends to a nonabelian representa-
tion psuy : G — SL(2,C) if and only if

#(s*,u) = 0. (56)

Conversely, if ¥ : G — SL(2,C) is a nonabelian representation, then there exists a pair
(s,u) € C* x C satisfying (56) such that ¥ and ps.u) are equivalent. When 1) is affine this
pair is unique, and when v is not affine the pair (s,u) can only be replaced by (s~ u).



24 JORGEN ELLEGAARD ANDERSEN AND SOREN KOLD HANSEN

Proof. The theorem follows by results of [R1], [R2]. The assignment p(,) extends to
a SL(2, C)-representation of G if and only if Wa(s,u)Cy(s,u) = Da(s,u)Ws(s,u). The
matrices Cy(s) and Dy(s,u) commute if and only if s = +1 and v = 0, and since Cy(£1) =
+C5(1) is different from Dy(41,0) = £D5(1,0) we have that the assignment p(1q0) does
not extend to a SL(2, C)-representation of G. (We note that if W = W (1,0) then Wy =0
since the matices Cy(1), Do(1,0) = I and there inverses are upper triangular. But we also
have that ¢(1,0) = 0 would imply that W;; = 0 contradicting the fact that W is invertible.
Therefore ¢(1,0) # 0.)

Let 0 = E;l;ll g;. Then s"Wy(s,u) = W(s?,u). By (the proof of) [R1, Theorem 1] we
have W (s? u)Cy(s?) = Do(s* u)W(s? u) if and only if ¢(s? u) = 0, so by (55) we find
that p(,.) extends to a (necessarily nonabelian) SL(2, C)-representation of G if and only
if ¢(s% u) = 0.

If ¢ : G — SL(2,C) is an arbitrary nonabelian representation it follows by [R2, Lemma
7] and (54) that there exists a pair (s,u) € C* x C (necessarily satisfying (56)) such that
Y and p(,.) are equivalent. By the above any such pair is different from (41,0) and by
[R2, Lemma 8] and (54) we then get the final statement of the theorem. 0

If (s,u) € C* x C with ¢(s*,u) = 0 then p( ) is affine if and only if C5(s) and Ds(s, u)
have a common eigenvector. But this happens exactly when u =0 or u = (s — s !)%
Let us now restrict to the case where G is the figure 8 knot group 7. Then

Sty =+ (3— (04 17) (u+ 1) 657)
so in particular ¢(s%,0) = 3 — s — s72 = 0 if and only if s* — 35> + 1 = 0 i.e. if and only
if s = p14/ (3 + pov/5)/2 for some gy, g € {F£1}. If u = (s — s 12 = 52+ 572 — 2 then
Pp(s*,u) =u*+ (3—u—2)(u+1) =u?+1—u?=1, so we conclude that ps ., is affine if
and only if w = 0 and s* — 352 +1 = 0. Let

N = Hom(m, SL(2,C))/SL(2,C) (58)

be the space of conjugacy classes of SL(2,C)-representations of 7 and let M., be the
subset consisting of classes represented by nonabelian SL(2, C)-representations. Moreover,
let

N ={(s,u) € C* x C|p(s*u) =0}, (59)

and let ® : N — N be the map which maps (s,u) to the class represented by p(s.). We
have shown

Corollary 5.2. The image of ® is Nypap. If we let

No = { (1) 3+ p2v/5)/2,0) [, o € {1} }
then @[, : Ny — N s injective and ®71(®(s,u)) = {(s,u), (s7,u)} for any (s,u) €
N\ N. O
Recall that M,,, denotes the closed oriented 3-manifold obtained by surgery on S®
along the figure 8 knot with rational surgery coeflicient p/q. The representation ps ),

(s,u) € N, extends to a SL(2, C)-representation of m(M,,) if and only if
Ps) ()P Pis,uy (AT = 1.

To analyse this criterion it is an advantage to diagonalize p(.)(A). Assume in the fol-
lowing that (s,u) € N. By a rather long but completely elementary and straightforward
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calculation we find that
o )\11(8, U) )\12(8, U)
Poaw(A) = ( 0 (s )

where
Ai(s,u) = —1+52 =252 +s* +u(s? — 5?)
and App(s,u) = 2u(l —u) if s> =1 and

)\11(8, U) — )\11(871, u)
s?2—1

for s* # 1. We note that A1 (s71u) = Aj1(s,u) ™t

((); aﬁ,l ) € SL(2,C), then A can be diagonalized if and only if
A is not parabolic, i.e. if and only if tr(A) # £2 or equivalently if and only if o # +1
(except, of course, if = 0). If a # £1 then (1,0) is an eigenvector with eigenvalue o and
(—=B/(a — a™1),1) is an eigenvector with eigenvalue a~!. If s> = 1 then Ay;(s,u) = —1
and Ajp(s,u) = +i2v/3. If s> # 1 then A\jj(s,u) = =£1 if and only if A\o(s,u) = 0.
Therefore p(s.)(A) is diagonalizable (or diagonal) if and only if s* # 1. In case s* # 1 and
A2(s,u) # 0 we have

)\12(8, U) =

In general, if A =

Ai2(s, u) 1 st

Mi(s,u) — A (s,u)™t 2 -1 s—s1

We conclude that if s? # 1, then C? has a basis consisting of a set of common eigenvectors
for the matrices p(s)(p) and pgs.)(A), namely u; = (1,0) and up = (—1/(s* — 1),1).
If we let pesu) : ™ — SL(2,C) be the representation pis .y (v) = U~ psu)(7)U, where
U € SL(2,C) with jth column u;, we therefore have

,5(371!)(:16) = diag (s, 5_1) , ﬁ(s,u)()\) = diag ()\11(3, u), A11(s, u)_l) ) (60)

In particular, p(s.) : ™ — SL(2,C), s* # 1, extends to a representation of w1 (M,,,) if and
only if

s = Ai(s,u)? (61)
Recall here that p(s,) and p(s-1,) are equivalent for (s, u) € N \J\~/'o, cf. Corollary 5.2. But
as noted above Ay1 (s~ u) = A1 (s, u) " in accordance with (61). For (s,u) € Ny we have
Ai(s,u) = 1 and [s| # 1, s0 p.) extends to a representation of m(M,,) if and only if
p = 0.
A direct check shows that if s> = 1 then p(s,u) does not extend to a representation of
71 (Mp/q) for any rational number p/q. In fact, if s = %1, then

Plsay ()P = (E1)P ( (1) H )

o= (- 4)) e 1%

for a e € {—1,1}. On the other hand, since Aj;(s,u) = —1, we have that (61) is satisfied
if s =1 and ¢ is even or s = —1 and both p and ¢ are odd. For the following we note that
if s2 =1 then u®> +u+ 1= ¢(1,u) = 0 so u is not real.

We are mostly interested in the SU(2)-representations of 7. Let in the following M1,
be the set of conjugacy classes of nonabelian SU(2)-representations of .

and
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Proposition 5.3. Let (s,u) € N'. The representation ps,y : ™ — SL(2,C) is SL(2,C)~
equivalent to a representation m — SU(2) if and only if |s| = 1 and w is real. If we write
s =e¥0 0 €] —1/2,1/2], then u € {us}, where ux = uy() are the two solutions to
P(e*™ u) =0, i.e.

ux(0) = cos(4ml) — g + \/c052(47r9) — cos(4mf) — %

Since u is real we have § € [—-1/3,—-1/6] U [1/6,1/3].
The representation pzmio ), 0 € [=1/3,—=1/6] U [1/6,1/3], is SL(2, C)-equivalent to a
SU(2) -representation pg+ which satisfies

ﬁai(lﬁ) = dlag (627ri€7 6727”’9) ) p@,:l:()\) = diag(Lﬂ:a Lil)a

where  and X\ are the elements of m corresponding to the meridian and the preferred
longitude of K, and

L:I: — Li(e) — )\11 (627ri9’ u:l:) = 1+ 6—47ri0 o 2647ri9 + 687ri9 + ug (6—47ri0 o 647ri0) )
We note that p_g+ and pp+ are SU(2)-equivalent. In particular, the space My, can
be parametrized by the two arcs (e*™° u,(0)), 6 € [1/6,1/3], and (> u_(0)), 0 €

[1/6,1/3]. These two arcs only coincide at the endpoints, so topologically Myap s a
circle.

This proposition follows from [R1, Proposition 4], see also [KK, Proposition 5.4]. For a
more geometric argument determining the topological type of M., see also [KI].
For 6 € [-1/3,—1/6]U[1/6,1/3], the representation py . extends to a representation of
71 (M,q) if and only if
Po,+ (1) po.+(N)! =1,
i.e. if and only if
e ™0 = [ (9)7. (62)

JFrom this (use e.g. (67)) we see that

Corollary 5.4. Let p/q € Q be arbitrary. The moduli space of irreducible flat SU(2)—
connections on M, is a finite set. 0

Let us end this section by finding the abelian SU(2)-representations of 7 (M,/,) (up to
equivalence). Therefore, let 6§ €] — 1/2,1/2] and let py be the assignment

po(p) = diag(e*™, e=2m7). (63)

By (53) this assignment extends to an abelian SU(2)-representation of 7 for any 6 €
| = 1/2,1/2] by letting pa(y) = pa(z). Moreover, any abelian SU(2)-representation of 7
is SU(2)—equivalent to py for some 6 €] — 1/2,1/2]. For any 6 €] — 1/2,1/2] we have
po(A) = 1, and py extends to a representation of m(M,/,) if and only if pg(u)? = 1, i.e.
if and only if pf € Z. If A = ? _01
that 6 € [0,1/2]. Note, moreover, that two matrices diag(e’, =) and diag(e®, e%),
¢, €] — m, 7|, are conjugate in SU(2) if and only if ¢ = ¢ or ¢ = —1h. We conclude

) then Apy(u)A=1 = p_p(n) so we can assume

Proposition 5.5. Forp # 0 the set of conjugacy classes of abelian SU(2)-representations

of m (M) is given by
{ [pj/|p|] 'jzoala"'a [gi] }7
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where [x] is the integer part of x for x > 0. For p = 0 the set of conjugacy classes of
abelian SU(2)-representations of mi(M,,,) is given by

{al o051},

so topologically this set is a closed interval. 0

5.2. Chern—Simons invariants. We begin by recalling formulas from [KK] for the
Chern-Simons invariants of the flat SU(2)-connections on M, ;. The basic tool will be
Theorem 5.6 below due to P. A. Kirk and E. P. Klassen.

Let M be a closed oriented 3-manifold with a knot K in its interior and let X be the
complement of a tubular neighborhood of K in M. Moreover, let i be a meridian of
K and X a longitude, both in 0X. Let G be SU(2) or SL(2,C). If p: m(X) — G is a
representation, then p extends to a G-representation of 7y (M) if and only if p(11) = 1. Now
assume that p, : m(X) — G is a piecewise smooth path of representations, ¢t € I = [0, 1].
Choose a piecewise smooth path g : I — G such that

gp()g; ' = diag (62’”'“(’5)’ e~ 2mia®) (64)
gp(N) g, ' = diag (62”5(’5), 6—2“6(15)) ’

for some piecewise smooth curves «, 5. If G = SU(2) this is always possible by [KK,
Lemma 3.1], and in that case « and ( are real-valued. If G = SL(2,C) the above is
possible if the path p avoids the parabolic representations (i.e. upper triangular with 1s
or —1s on the diagonal), cf. [KK, Remark p. 354]. (See the text in connection to (60) for
the case of the figure 8 knots.) In that case the curves a and [ are complex-valued. We
then have

Theorem 5.6 ( [KK, Theorem 4.2] ). Assume that po(p) = p1(n) = 1. Thinking of po
and py as flat G—connections on M, we have

1
CS (1) — CS(m) = =2 [ BBt (mod 2),
0
where CS is the Chern—-Simons functional associated to G. O

We note that in case G = SL(2,C) the Chern—Simons functional takes values in C/Z.

Next consider a knot K in S* and let X be the knot complement. Let p/q be a rational
number and let N/, be the closed oriented 3-manifold obtained by p/q surgery on S?
along K. Let p and A\ be classes in m(0X) represented by respectively a meridian and
the preferred longitude of K. Choose integers ¢, d € Z such that pd —qc = 1. Let V be a
tubular neighborhood of K considered as a subspace of N,,/,. We note that p' = pp 4 gA
and N = cu + d)\ are represented by respectively a meridian of V' and a longitude of
V. Assume that p : I — Hom(m(X), @) is a piecewise smooth curve of representations
from the trivial representation to a representation, which extends to a representation of
71 (Npyq)s ie. p(1)(p') = 1. Assume, moreover, that p avoids the parabolic representations
in case G = SL(2,C), and choose curves «, [ as in (64) with «(0) = 5(0) = 0. By
Theorem 5.6 we have

CS(5(1) = —aué (calt) + dB()) (pal (t) + B () dt (65)

= —2/0 B(t)a! (t)dt — cpa(1) — dqB*(1) — 2cqa(1)3(1)  (mod Z).
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(We have corrected a sign error in [KK, Formula (*) p. 361].) We note that this expression
is independent of the choice of ¢, d. The condition p(1)(x') = 1 is equivalent to

pa(l) +g¢B(1) € Z. (66)

Now let K be the figure 8 knot and let pg. be a SU(2)-representation of (M, ), i.e.
(62) is satisfied. Following [KK] we determine a formula for CS(py.). For later we will
here pay special attention to the branches of the logarithm. By Proposition 5.3 we have
Re(L_(0)) = Re(L.(#)) = 2cos*(4mf) — cos(470) — 2, (67)

Im (Ly(0)) = F2sin(4n6) \/0052(47T9) — cos(4mf) — Z

for all @ € [-1/3,—1/6] U [1/6,1/3]. From these identities we see that
Li(1/3)=L.(1/6)=—-1, Li(1/4)=1, (68)
and that Im(L,) < 0 and Im(L_) > 0 on |1/6,1/4[ with the opposite signs on |1/4,1/3].
We conclude that L, (6) and L_(#) run through S* both beginning and ending in —1, L, in
the anti-clockwise and L_ in the clockwise direction, as 6 runs through [1/6,1/3]. We can

therefore use the principal logarithm Log to define continuous curves g : [1/6,1/3] — R
by

5.(0) = 5 —Log(L4(0)) + [(6), (69)
where
f+(6) = { ‘f; g; Py (70)
and

(71)

We note that (35 are smooth on %, %[ but not in the end points 1/6 and 1/3. The terms

]
f+ have been chosen so that §4(1/6) = 1/2. This is needed for the proof of

Proposition 5.7 ( [KK, p. 362] ). Let 0 € [1/6,1/3] and let pg+ be as in Proposition 5.3.
If pgc extends to a representation of w (M) for a e € {£1} then

0
CS(ﬁ@,e) = _é - Cp‘92 - dqﬁf(@) o Qquﬁz-:(e) —2 /6 ﬁs(t)dt (mOd Z),

1
where By are the curves defined by (69). O

Kirk & Klassen prove the above result by explicitly constructing a piecewise smooth
path p : [0,1] — Hom(m, SL(2,C)) from the trivial representation to pr = pi_ with
piecewise smooth curves o, 3 : [0,1] — C as in (64) satisfying (1) = ¢ and (1) = 3.
Moreover, they use that fol B(t)a'(t)dt = & and the fact that y — p,., [1/6,60] —
Hom(7,SU(2)) is a path from p1 . to pg. with associated functions a(y) =y and [(y) =
B:(y). By the choice of the functions fi, these a— and S—functions are continuations of

the ones used for the path p from the trivial representation to p 1.

)

Kirk & Klassen argue that fol B(t)a’(t)dt = 35 using a comparison between a computer
calculation and the Chern—Simons invariants of flat SU(2)—connection on the Seifert man-
ifold M_3. By following Kirk & Klassen’s arguments [KK, pp. 361-362] it is actually
not hard to give an explicit calculation of this integral. Let us give some details. The
path p from the trivial connection to 1 consists of three parts, where (3 is identically
zero along the first two parts. We can therefore concentrate on the third part. Let
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a = (3++5)/2, and let o : [0,1] — C be a piecewise smooth curve from 5--Log(y/a) to
1/6. Let t(s) = ¢*™*() and choose a piecewise smooth solution u(s) to ¢(t(s),u(s)) = 0,
where ¢ is given by (57). Then s — P(e2miots) y(sy) =: Ns 15 the third piece of our curve p
(reparametrized). Assuming a(s) ¢ 17 (so as to avoid the parabolic representations) we
can diagonalize exactly as demonstrated after Corollary 5.2 and get

ﬁS(lu) = dlag(T7 T_l)v ﬁs()‘) = dlag ()\11(T7 u)7 )\11(T7 u)_l) )
where T = T(s) = €™y = u(s), Ay is as below Corollary 5.2, and where 7j,(7y) =
_ 2 _
Uln,(y)U for v € w, where U = U(s) = (1) 1/(1£ 1) . This shows that a(s)

indeed plays the role as the a—curve for our path ns. The f—curve should be a piecewise
smooth curve (3(s) starting at zero such that

627riﬁ(s) — )\11(627Ti04(8)’ U(S)) (72)

for s € [0,1]. We note that Ay (e2™M 4(1)) = —1 so we must have 3(1) € 1 + Z. Since
p1/6,+ extends to a SU(2)-representation of 7 (M_3) we get from (65) that

—2/g 5—1—12+ 1301)  (mod 2)

is a Chern—-Simons value of a flat SU(2)—connection on M_3, so fol B(s)a/(s)ds is real.

We now only have to choose a nice a—curve. Let  be a small positive parameter less
than |a(0)| < 1/6, and let & = a; + as + a3, where oy is the line segment [«(0), —id],
ag is the part of the circle with centre zero and radius 0 running from —id to 9, and
ag = [0,1/6]. Here the parameter ¢ is introduced to avoid passing through zero (so as to
avoid parabolic representations). With this choice it is not hard to show that there is a
unique continuous solution (u(s), 3(s)) to ¢(t(s),u(s)) = 0 and (72) with (0) = 0 and
B(1) = 5 and to show that fol B(s)a/(s)ds = 15 for this solution. (Use that the integral is
real and independent of ¢ and calculate its 6 — 0 limit).

Proposition 5.7 gives a formula for the Chern—Simons invariants of the irreducible flat
SU(2)—connections on M,/,. Let us also determine the Chern-Simons invariants of the
reducible flat SU(2)-connections on M,,,. Therefore let p;/, be as in Proposition 5.5,
p # 0, and let a(t) = jt/|p| and B(t) =0, t € [0, 1], and get by (65) that

CS(pj/pl) = —cpi” /p* = —cj*/p  (mod Z), (73)
where ¢ is the inverse of —¢ (mod p).

In case p = 0 the moduli space of flat reducible SU(2)-connections on M, can be
identified with a closed interval, cf. Proposition 5.5. Since the Chern—Simons functional is
constant on each of the connected components of the moduli space of flat connections, we
conclude that the Chern-Simons invariant of any of the reducible SU(2)-connections is
equal to the Chern—Simons invariant of the trivial connection, i.e. it is equal to zero. This
of course also follows from Kirk and Klassen’s result. In fact, if py denotes the abelian
representation from Proposition 5.5, then we can put a(t) = 0t and 3(t) = 0, t € [0, 1],
and get by (65) that

CS(pg) =0 (mod Z). (74)

5.3. A comparison between Chern—Simons invariants and critical values of the
phase functions ®»°. The purpose of this section is to combine the Chern—Simons
theory described in the previous two sections with the asymptotic analysis in Sect. 4.3.
First we will describe a correspondence between the critical points of the phase functions

®%® in (35) and the nonabelian SL(2, C)-representations of m (M,,). Thereafter we will
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show that the set of Chern—Simons invariants of flat irreducible SU(2)-connections on
M,y is a certain subset of the critical values of the functions ®**. Like in Sect. 4.3 we
will most of the time work with the shifted phase functions ¥%% in (38). We refer to
Remark 5.10 for a comparison between the phase functions ®»* and U®*. Recall the set

N given by (59).

Theorem 5.8. The map (x,y) > p(erin c2viv_1) gives a surjection ¢ from the set of critical

points (x,y) of the functions W% a,b,n € Z, with v ¢ Z onto the set of representations

Prswy - ™ — SL(2,C), (s,u) € N, which extend to SL(2,C)-representations of m(M,,).
If (z,y) is a critical point, let us say of WP, then (x + 2k,y + 1) is a critical point of

T for any k1 € Z, so o7 (p(x,y)) = { (x + 2k, y+1) | k,I€ L} if x ¢ L.

Proof.  The last statement follows immediately from (39), so let us concentrate on the
first part. Let ¢ : C2 — C be given by

bz w) = (1— 2w)(w = 2) — 2w,
so ¥(v? w) = 0 if and only if (v,w) is a solution to (41). Then

Y(z,u+1) = —z¢(z,u)

for (z,u) € C* x C, where ¢ is the function (57). It follows that (v,w) is a solution to
(41) if and only if either (v,w) = (0,0) or (v,w —1) € N.

Next assume that (v,u) € N and put (z,w) = (v%,u+1). Since 1)(z,w) = 0 and z # 0
we have that w # 0 and w—z # 0. Therefore 1 — zw = wz/(w—2) and (v, w) is a solution
to (40) if and only if

I (A A

wz
= (Anw,w—1)—1-22 420" +wz+2)°.

But ¢(z,w) = 0 and w # 0 implies that —1 — 2% + zw™! + wz + 2 = 0. Thus (v,w) is a
solution to (40) if and only if (s,u) = (v, u) is a solution to (61).

The above shows together with the discussion around (61) that there is a one-one
correspondence between common nonzero solutions (v,w) to (40),(41) with v* # 1 and
representations pg,,_1) : ™ — SL(2,C), (v,w — 1) € N, which extend to SL(2,C)-
representations of 7 (M,,,). By the remarks following (39) this proves the theorem. [J

Let (v,u) € N and recall that the representation Puy s equivalent to a SU(2)-
representation of m(M,,) if and only if (v,u) € S* x R and (v, u) is a solution to (61).
The remaining part of this section is devoted to the proof of the following theorem, which
is one of our main results.

Theorem 5.9. Let (x,y) € C? such that p(eriz e2niv_1 is equivalent to a nonabelian SU(2)-
representation of m(My,q) and choose in accordance with Theorem 5.8 integers a, b, n such
that (x,y) is a critical point of W&, Ifa',V/,n’ is another such set of integers, then b = b
and a' +n'/q=a+n/q. In fact we have

+n + b + !
a+— = —r+ —
q Y 2q 27

b = 7 + % (LOg (1 _ 627ri(a€+y)) + LOg (1 o eZWi(aﬁ—y))) .

(Log (1 _ 62m‘(ac+y)) — Log (1 _ 627ri(m—y))) ’
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Moreover, for any such set of integers a,b,n we have
CS(poe) = U2H(x,y)  (mod Z),

where § € [—1/3,—1/6] U[1/6,1/3] and € € {&} with €™ = ™ and 1 + u. () = >,
and pg. is a SU(2)-representation of m (My,,) equivalent to perio 2iv_1y and given by
Proposition 5.3.

Remark 5.10. In general we have % = Wa+0a=b g there is a ono to one correspondence
between the phase functions ®%’ and the phase functions ¥%¥ with o’ + &' and o’ — V/
even. (We note that a+b is even if and only if a — b is even since (a+b) + (a —b) = 2a.) If
(7,y) is a critical point of U’ with a+ b odd, then (z,y) is also a critical point of \I’f:}]’b,
by Theorem 5.9. In that way we see that any critical point of one of the functions W%? is
also a critical point of one of the functions ®®®.

The phase functions W20 Wh=1 ¥lhl and W20 are the ones entering Conjecture 4.4.
By Theorem 5.9 the parameter b is fixed by a critical point of ¥4 while a and n can be
varied as long as we keep fixed a + n/q. Because of this (see also Lemma 5.12) we only
need to consider W90 WO=1 and UOl We have the following corollary to Theorem 5.9
(the proof of this theorem and Proposition 5.3).

Corollary 5.11. Let (z,y) € C? such that Plemiz e2miv_1) 1S equivalent to a nonabelian
SU(2)-representation of m(M,,). Let (z',y') € C? such that (e, e*™W') = (e™i® e2m)
and Re(z’) €] — 1,1] and Re(y') €] —1/2,1/2]. Moreover, let

i

n = q <y/ 4 %LL’/ + 2.7T (Log (1 _ e27ri(m+y)) _ Log (1 _ eQﬂi(:}:y)))) :

b = 2+ ZL (Log (1 — 62”(x+y)) + Log (1 — eQm(x_y))) .

T

Then 0 :=2'/2 € [-1/3,—-1/6] U [1/6,1/3] and
~1, §e[-1/3,—-1/4]
b={ 0, 6] —1/4,-1/6]U[1/6,1/4]
1, 6€]1/4,1/3).
Moreover, n € Z and (2',y') is a critical point of W2 and
CS(po.c) = Up"(a",y)  (mod Z),

where ¢ € {£} with 1 + u.(0) = e*™¥, and py. is a SU(2)-representation of (M,

equivalent to p(eria c2viv_1y and given by Proposition 5.3.

We note that the first part of Theorem 5.9 is an immediate consequence of (39). To
prove the second part we start by observing that if if a,a’,n,n’,b are integers such that
a +n'/q=a+n/qthen U2 (x y) — \Ilf;,’b(a:, y) is an integer independent of (z,y) € C>.
The remaining part of the proof will consists of a series of lemmas. We start by

Lemma 5.12. Let a,b,n € Z and assume that (z,y) is a critical point of W&*. Letl k € Z
and put ' =a+1, b =b+k, and n' =n+ pk. Then (x + 2k,y + 1) is a critical point of
v and

OO (2 4+ 2k, y +1) — Uz, y) =0 (mod Z).

Proof. That (z + 2k,y + 1) is a critical point of \Iff;,’b/ is an immediate consequence of
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(39) and was already observed in Theorem 5.8. Put ' = z + 2k and ¢y = y + [. Since

2w’ = 2™ and 2™ = 2™ we get
1y n, d
VOV (@ y) = U, y) = dd + VY — oty + o — L = S
q 4q q
n d
—axr — by + xy — —x+£x2+—n2
¢ 4q q

= 2(a+ Dk + 221 — pd)k + (1 — pd)i?.
q q

Here pd-cq =1 for an integer ¢ so
\Ile,’bl(x', y) — U (2,y) = 2(a + 1 — nc)k — pck?.
0J

By Proposition 5.3 and the above lemma we are thus left with the following to prove:
Let 6 € [-1/3,—1/6] U [1/6,1/3] and assume that py. extends to a representation of
71 (M) for a e € {£}. Let b = b(f) and n = n(f) be the unique integers such that
(26,y) is a stationary point of 2% where y = z=Log(1 + u.(6)) (so Re(y) = 3) (see

around (42) and (43)). Then

CS(ps,p) = ¥,"(20,y)  (mod Z). (75)
In the course of the proof of this identity we will prove that
1 d fo
CS(Bp) = —= — 202+ 220 — Sm2—2 | B(bdt (mod Z), (76)
6 ¢ q q 1/6

for 0 € [1/6,1/3], where m = pbly + q5.(0p) € Z by (66). Unfortunately, the proof of (75)
is rather technical, but we have tried to emphasize the main ideas of the proof here, and
defer many technicalities to the appendices C and D.

The Chern—Simons invariants of SU(2)—connections are real, so we begin by investigat-
ing to what extend a general phase function W% a,b n € 7Z, is real in its critical points.

Assume that (z,y) is such a critical point and write z = €*™® and w = €*™¥ as usual.
From (39) we find that
a— Re(y) = ﬂRe(az) o iIm (Log(1 — zw) — Log(1 — zw™)) ,
2q q 27
and

1
b — Re(z) = ——Im (Log(1 — zw) 4 Log(1 — zw™"))..
2m
Moreover, we have Im(z) = —5-Log|z| and Im(y) = —5-Log|w|. By (38) we therefore get

Im (V2°(z,y)) = (a—Re(y))Im(z) + (b — Re(z))Im(y) — 2]iqhn(a:)Re(a:) + Zlm(a:)

1 . . _
+H1m (Liz(2w) — Lis(zw™)) .

This together with the above expressions for a — Re(y) and b — Re(x) leads to the formula
1
a,b _ —1
Im (0% (z,y)) = o) (Im(Log(1 — zw) — Log(1 — zw™"))Log| |
+Im(Log(1 — zw) + Log(1 — zw™"))Log|w|
+ Im (Liz(2w) — Lis(2w™1))) .
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By introducing the Bloch—Wigner dilogarithm function
D(z) = Im (Lis(2)) + Arg(1 — z)Log|z|
we obtain

Lemma 5.13. Let a,b,n € Z and let (z,y) be a critical point of V&, Then

1 | |
I (W5, )) = 15 (D (79) = D (=)

O

We note that D is analytic on C\ {0,1} and continuous on C. Moreover, D satisfies
the identities

D(z)+D(z2)=0, D(z)+D(1/z)=0 (77)
for all z € C\ {0}. From this we have

Corollary 5.14. Let a,b,n € Z and let (z,y) be a critical point of ¥¥* with ™ € S*
and ™ € R. Then
Im (V%°(z,y)) = 0.
O]

Remark 5.15. Let (v, w) be a non-zero solution to (40) and (41). Then (v, w) is also
a solution to these two equations as already observed. Let z = v? and write (z,w) =
(e*mi@ e2™W)  Then (z,w) = (e 2™% e~2W). If (x,y) is a critical point of W%’ then

(—Z,—7) is a critical point of ¥~%"". By Lemma 5.13 and (77) we have
I (5"(z,y)) = —Im (05" (=2, —p))

for any a, b, n € Z. If these values are different from zero, then either eXp(ZWiT\IIiZ’*b(:c, Y))
or exp(2mirW®*(—z, —y)) grows exponentially. By Conjecture 4.4 we claim that station-
ary points leading to such exponential growth do not contribute to the large r asymptotics
of 7.(Mp/q). In fact, we conjecture that the union of the sets of critical points C}7", in
Corollary 4.5, via the correspondence Theorem 5.8, corresponds to the set of represen-
tations p(s.) being equivalent to SU(2)-representations of m(M,/,) (except for the case
p/q = 0 where we have to include contributions from the reducible connections in the
leading order large r asymptotics, see Appendix C).

We now embark upon proving (75). We start by reducing to the case 6 € [1/6,1/3].
By Proposition 5.3 we know that the representations pg . and p_g. are SU(2)-equivalent,
so in particular they have the same Chern—Simons invariant.

Lemma 5.16. Let the situation be as in (75). Then

W00 (26, y) — 000 (<26, 5) =0 (mod Z).

To prove this and (75) we need the technical Lemma 5.17 keeping track of branches of
the logarithm in certain expressions. Let [ = [—1/3,—1/6] U [1/6,1/3] and put

Qi (0) = 1—(L+us(6) ™, (78)
Qy(0) = 1—(1+us(9)e™.
for @ € I, where uy are defined in Proposition 5.3. We also put Q3 () = 1 4+ u(6).
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Lemma 5.17. We have
Log (@7 (6)) + Log (@3 (6)) = Log (Q7 (6)Q5 ()

and

QY (0)Q3 (0) =

for all 8 € I. Moreover

Lo (QF(6)) + Lo (@3(0)) ~ Log (Q5(6)) = Los
for all 0 € I, where

Q1 (0)Q3 () .
—Qin) ) + ex(0)2mi

1, 0€]1/6,1/4
e+(0) = { 0, 6 2}1?4 1?3][

and e_(0) = 1 — e (0) for 6 €]1/6,1/3], ex(—1/4) = ex(1/4), ex(0) =1 — e (—

0el\{£1/6,£1/4,£1/3}, and er(8) =0 for 6 € {£1/6,£1/3}. Finally

QY (0)Q5 (9)
Q3 (0)

for all 6 € I, where L4 are given by Proposition 5.3.

= L+(0)

The proof of this lemma is given in Appendix D.
Proof of Lemma 5.16 By (42) and (43) we have

L (Log (@:(6)) + Log (@5(9)))

=20 —
b(0) =20 "

and
1
n(0) = b0+ qu + 05— (Log (Q5(6)) — Loz (@3(9))
By Lemma 5.17
1 30
Taking the real part of the expression for n() we get

n(6) = B + 50+ 2L (Ars (Q3(9)) — Arg (Q5(6)
By (83) we get that
b(—0) = —b(6), 6e|-1/3,—1/6]U[1/6,1/3]\ {£1/4},

and
b(—1/4)=—-1, b(1/4)=0.
By (84), (107), and (108) we get
n(—0)=q—n(0), 60¢c[-1/3,—-1/6]U[1/6,1/3]\ {x1/4},

and

n(—1/4) = n(1/4) — g.

0) for

(82)

(83)

(84)

Let b = b(#) and n = n(f). Since 1112’570()0)(29,(7;) is real by Corollary 5.14 and since

Re (Liz(2)) = Re (Liy(2)) for z € C\]1, 00| we find that
Wyl (20,y) — U (—20,y) = (b—b(—0))Re(y) — 46Re(y)
Lntn(=0),,

d(n? — n(—9)2).

q q
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(If 0 € {&£1/4}, use that Liy(e?™(*¥)) — Liy(e2™(9=¥)) is the same for § = 1/4 and
0 = —1/4.) Assume first that 6 # +1/4. Then, since Re(y) = 1/2, we get

W (20,y) — U (<20, y) = b+ dg — 2dn € Z.

Next assume that § = 1/4. Then

) I —p/2 d
U 20.9) — W) (-20) = 12— 1724 ZDPE S oy
n p
= 21 —pd) - L1 - pa).
S pd) — (1= pd)

But 1 — pd = —qc for an integer ¢ so
0,b(6 0,b(—0 D
\IIN(G())(ZQ y) — ‘I’n(ie))(—ze, y) = (Z — n) C.

By (66) p/4+ qB.(1/4) € Z. But Li(1/4) =1so0 p.(1/4) = f.(1/4) € Z, so p is divisible
by 4. O

By using that y = 5--Log (Q5(0)) together with Lemma 5.17 we obtain the alternative
formula

n(6) = pb + qe.(9) + 5Log (L.(9))

This and (69) immediately leads to

n(0) = p0 + qB:(0) + q(e=(6) — f=(0)) (85)

for § € [1/6,1/3]. In the proof of (75) we need certain symmetries for the functions L.
First we note that

1
L (3-0) = 2:0 (36)
for 6 € [1/6,1/3] by (67). Second, by the next lemma and Proposition 5.3, we have
L(6)=L,(0)" (87)

for ¢ € [-1/3,—1/6] U [1/6,1/3]. (In particular, pps extends to a representation of
71 (M,,q) if and only if py 4 extends to a representation of mi(M_,/q).)

Lemma 5.18. Let s € C* and let us be the two solutions to ¢(s*,u) = 0. Then
(+u)+u) =1,

and
)\11(8, U+))\11<8, U,) =1.

Proof. 'We have

1 1
Ltug=g(s"+ s =) g/st st =22 +572) — 1
SO
1 1
I+u)(l+u)= Z(s2 +52-1)% - 1(54 +5t=2(s*+52)—1)=1.

Moreover,

1 1 1
Ai(s,ug) = 5(54 +574 — 5(52 +53) -1+ 5(5_2 — )/t s —2(s2 4 572) — 1
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SO
Loy, —ay 1 oo o ’
Au(s,up)duls,u) = | 58" +s77) = S(s"+57) — 1
1
—Z(s2 — s (st s 2P s - 1)
By simple reductions one gets the result. 0

We are now ready to finalize the proof of (75) and thereby the proof of Theorem 5.9.

Proof of (75) By Lemma 5.16 we can assume that § € [1/6,1/3]. Write 6, for 6 in
the following. Let us first observe that formula (76) is an immediate consequence of
Proposition 5.7. In fact, by letting ¢, d be integers as in Proposition 5.7 we get

—2¢q00B:(00) = 2cpdy — 2cmby,
d
—dqB(0y) = ~ (m* — 2pmby + p*63)

and therefore

d d d
—Cp9(2) - dqﬁ?(ﬁo) — 2¢qo3:(00) = <C - gp) p9(2] —2 (c — gp) mby — 5m2.
But ¢ — dp/q = —1/q, hence (76) follows. On the other hand we have
n d L. : _
WO (26,y) = (b — 260p)y + 5290 — 398 — gnz + ) (ng(zowg) — Liy (20w, 1)) ,

where zg = €*™ and w. = 1+ u.(6y). By (83) and (85) we have b — 20, = —3=Log(2)
and n =m + q (e<(6y) — f-(6p)) so

d
\1’275’(2907 y) = —]593 + %290 - 5m2 +2 (€€<¢90) — f€<90)) Oy — 15(90)
1
+H (Log(zo)Log(wg) + Lis(zow,) — Liz(zowg_l)) ’

where 1.(6y) = 2dm (e-(6y) — f-(Ao)) + dq (e-(6o) — f-(60))” € Z. We therefore get that

1 1 ) . _
W00 (200, y) — CS(ppoc) = G + e (Log(20)Log(w.) + Liz(z0w.) — Lis(zow; 1))

L2 (ea(l0) — L6 B+ 2 [ At (mod Z).
1/6

For 6y € [1/6,1/4] we note that e.(0y) = f.(6p). We will consider the special cases
0o € {1/6,1/4,1/3} first and then handle the other cases afterwards.
The cases 0, € {1/6,1/3}. In these cases we have w. = —1 so

W (260, y) — CS(Poo.c)

) : fo
==+ LLog(zo) +2 (65(90) - fe(eo)) bo + 2 ﬁa(t)dt (mOd Z)
6 4w 1/6
If 6y = 1/6 we immmediately get that this is zero. If 6y = 1/3 we get
1 i . N, 2
' 2fo,y) = CS(Pae) = G g (4mi/3 = 2mi) + 5 (ec(bo) = £:(60)

1 (/3
+2£.(1/4)(1/3 — 1/6) + —,/ Log(L.(t))dt (mod Z).
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But if § € [1/4,1/3] then
0o 1/2—60 1/4
[ ostza@as = - [ Lop(Leyit =~ [ Log(La(t)at
1/4 1/4 1/2—6o

by (86) and (87) so

0o
/ Log(L+(0)d6 = 0. (88)
1/2—00
In particular,
0,b _ 2 1

W (2B0,9) ~ C(pu,e) = 5 — 3 L(1/3) + 5 L.(1/4) (mod 2)
where we also use that e;(1/3) = 0 by Lemma 5.17. By (70) and (71) this is zero.
The case 6y = 1/4. In this case we have zy = —1 so

U,"(200,y) — CS(pa,.c)
1 1 1/4
=z + yes (iﬁLog(we) + Lis(Jwe|) — Lig(\we\’l)) +2 Be(t)dt (mod Z).
1/6

Since (vo, w.) = (e2™% w,) is a solution to (41) we have w, € {(—3—+/5)/2, (=34++/5)/2},
and by (104) we then conclude that w, = _3%‘/5 if e =—and w. = _3’%‘/5 if e = +. By
(102) we then get

\112711(2007 ) Cs(pGO €

1 1 2
R ( E) f)ds
1 1 1\ 1 1/4
SE s ( - 55) 6f5(1/4) / |, Are(L o) (mod Z)

and this is zero by (70), (71), and (97).
The case 0 €]1/6,1/3[\{1/4}. We have

1 1
U200, y) — CS(poy) = 6t RLOg(ZO)LOg(we) + 2 (e<(0o) — f=(6h)) 0o

0o
2 [ B(t)dt + R(200,y) (mod 2),
1/6

where
1

4 A2

Let us write u for u. in the following. By definition of the dilogarithm we have

(1+u)~tetmid0 Log(l o t) 4 /(1+u)e47”'90 Log(l . t)
t 0 t

R(l‘, y) (Ll ( 27ri(m+y)) _ L12(627ri(a:—y))) )

4T R(20,y) = / dt.
0

By (104) we have 1+u_() < —1 < 1+4u4(f) < Oforalld € [1/6,1/3] and 1+uy(f) = —1
if and only if € {1/6,1/3}. Let 6, =1/61if 6, € [1/6,1/4[ and 0, = 1/3 if 6, €]1/4,1/3].
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We note that z — Log(1 — z)/z is analytic on C \ [1, oo so by Cauchy’s theorem

edmify t

7647Ti91

4n?R(200,y) — / dt
0
_64772'91

Log(1 —t (IFw)et™% 1 051 — ¢
_/ Og(t )dt _/ og( )dt
0 _

edmify t

(1+u)7le47r1'90 L 1 . t (1+u)e47r1'90 L 1 . t
- ow1=0y | os(1-1)

edmify t edmify t

The curves v.(0) = (1 + u(#))*'e!™ are smooth on ]1/6,1/3[ so

) / 0o /
e~y ([t 0 E [ =0 )

where p=11if 6 =1/6 and p = —1 if §; = 1/3. (The parameter 7 is necessary because
u is not differentiable in 1/6 and 1/3.) It follows that

47T2R(2907 y) = nh%l (47T2R1 (007 77) - Rg(eo, n)) )
—04

where

Ru(Bon) — /e " Log(Qi(6)) — Log (Q35(0)) a9,

1+pn

80 y
Ry(00,m) = /91+;m {Log (Q7(0)) + Log (Q5(0))} - +<5<)9)d9’

where the functions QF are defined above Lemma 5.17. By Lemma 5.17

6o 4wl ul
Ry(0p,m) = / Log (™) ——d6
2 0 €1+“n ( ) 1_'_ U

90 / 0 90 / 0
- 4m'/ g0 d9—2m'b(90)/ AR
14 1+ u(0) 01+ 1+ u(0)

Since u/(6)/(1 + u(f)) = < log(1 + u(f)) for any branch log of the logarithm defined on
an open section of C* containing | — oo, 0] we have

6o u/ p 6o
/@ 2 f()9>d9: 0Log(1 + u(®)))%. . — /0 Log(1 + u(0))do,

1+pun 1+un

and

0o u/(@) B .
/91+;u7 1+ u(0) df = [Log(1 + u(e))]elﬂm :

We therefore get
.. :
R(200,y) = = lim (4miR (00, n) — Ra(6, 1))

472 n—04

b(6p) 1
5 01 — 4—7T2Log(zo)Log(w5)

+2 lim (Rl(eo,n)+/

T n—04 61+un

0o

Log (Q5(6)) de) ,
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where we use that 1+ u.(0) = Q5(0) = w. and (83). By Lemma 5.17 we get

Ry(6,) + /  Log(Q50)d6= [ Log(L.(6)) + 2mie.(6)ds,

1+pn O1+un
SO
090 90
hm <R1(90, n) + / Log (Q5(9)) d9> = e-(00)2mi(6y — 61) +/ Log(L.(0))do.
n—0+ 01+un 01
But then
1 b(é
W)~ CS(pe) = -+ 2e(B0)6s — 20000000 + "2 g,
90 1 ‘90
+2 Be(t)dt — — Log(L.(0))d0 (mod Z).
1/6 T Joy
Here
6o 1 1 6o
2 [ Byt = 21.(60) (eo - ) w2 [ Logzo),
1/6 6 T Jg,
SO

Wt 0) ~ 08(ne) = ([ oste0)as - [ Los(r.)a0)

1/6 01
1 1 b(0
b 2600001 — 3 1.(00) + 2O
The subcase 6, €]1/6,1/4[. Here we have #; = 1/6 and b(fy) = 0 so the result follows
by the fact that e.(0) = f.(0) for 6 €]1/6,1/4].
The subcase 6, €]1/4,1/3[. In this case we have b(fy) = 1 and 6, = 1/3 so

W02y, y) — CS () = i.( / " Log(L.(6))d6 - / 00Log<L5<e>>de)

(mod Z).

m 1/6 1/3
L2 00 = 1h0) (mod 2)
3 3 e\Y0 3 e\Y0 .

By (88) we get
/ Y Loa(La (1))t = / o Log(La(f))dt — — / " Log(Ls G _ t))dt_

1/3 1/3 1/6
By (86) and (87) we then have

/ " Log(La(£))dt = / " Log(La(t))dt,

1/3 1/6
w0 1 2 1
\PSL’b(QeO)y) - Cs(ﬁeo,e) - g + 365(€0) 3f5(00) (mod Z),
and this is zero by Lemma 5.17, (70) and (71). O

Remark 5.19. If uy = us(v) are the two solutions to ¢(v*,u) = 0 for v € C* fixed,
then Ay (v,u_) = A1 (v, uy)~! by Lemma 5.18. By the proof of Theorem 5.8 we therefore
conclude that (v, 14wy ) is a solution to (40) and (41) if and only if (v, 1 +us) is a solution

o (41) and Ly
p_ [w—v
v <1 — va) : (89)
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If we work with the invariants 7, instead of the invariants 7., then by (13) we have to
change p/q to —p/q everywhere in the above. The equation (41) will be the same but
(40) will change to (89). If (v,u) € N then we find as in the proof of Theorem 5.8 that
(v,w) = (v,u+ 1) is a solution to (89) if and only if (v,u) is a solution to

P = A1 (v, u)

which is the “wrong” equation. This is one of the main reasons for working with 7, instead
of 7. Another reason is that one would get the wrong signs in (75).

6. APPENDICES

We have in the following appendices collected material of a technical nature.

6.1. Appendix A. Proofs of Lemma 3.1, Lemma 4.1 and (21).

Proof of Lemma 3.1 Let a > 0. Let ¢ = 1 if Im(¢) > 0 and let ¢ = —1 otherwise. Put
6, = [~a,v/—1ea] and 6 = [v/—1ca, a]. (Here, as usual, [z, 29| denotes the line segment
in C beginning at z; and ending at z;.) We have

S(C-7) 1 <*
Sty P (‘5 /c sinh(m)zdz) |

Cz

By an elementary argument one finds that the integrals | st smﬁ(iwz)z

dz converge to zero as
a — 00. Therefore

et* q (s - e’?
_ e 2 —]_ e — — Y
/CR sinh(7z)z e * nz:; ReS:—cv1n {sinh(ﬁz)z}

where by =0 and b_; = Reszzo{ e } = £ Forn € Z\ {0} we have

sinh(7z)z

es? (—1)”eﬁ<”
Res.——1n {sinh(ﬁz)z} a —1In
SO
/ - e dz = —(1 — 8)\/—_1C — 2Log (1 + eeﬁC)
oy Sinh(72)z
giving the result. O

To prove the identity (21) we use the power series expansion

n=1

zn

(90)

for the dilogarithm, valid for |z| < 1. In the course of the following proof we will establish
the identity

§_2__2_ (e VI T (—pV—IC
5 5 Lis(—e ) = Lis(—e ) (91)
valid for ( = 7 and all ¢ € C with |Re(¢)| < 7.

e¢?

Proof of (21) Note first that the integral A,(¢) := § [, O

¢ € C with |Re(¢)| < 7 since

-R et 0 e—Ct
| st [ st
_ oo Sinh(mt)t? g sinh(mt)t?

dz is convergent for all
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00 (t o8]
/ I VP / SRe©-m L gy
p sinh(mt)t?2 | T 1 —e 2R [, 12

Let b = sign(Im(()), where sign(0) can be put to both 1 and —1 in the following. Moreover,
let h be a positive parameter and let 0, (t) = (1+ib)ht+ibh for t € [—1,0] and let 5+( )=

(1 —ib)ht + ibh for t € [0,1]. It is elementary to show that the integrals f&i dz

converge to zero as h converges to infinity for |[Re(¢)| < m. By the residue "theorem we
conclude that

and

51nh(7rz)z2

es?
A =
0 = 7 2mi nz:l Res:=in {51nh(7rz) }
for Im(¢) > 0 and |Re(¢)| < 7 and
1 i e*
Av(o = —527” nz:% Res.—_in {W}

for Im(¢) < 0 and |Re(¢)| < m. Using (90) this leads directly to

V-1¢ >
A(C) = \/1— L1<22< €7T2 ) v ,Im(¢) > 0,
for |[Re(¢)| < 7. Left is to prove the identity (91). To this end, let
2 2 ‘ '
9(0) =5 — =~ Lia(e™) — Lip(~¢%)

for (€ Q:={C € C||Re(¢)| < 7}. By (20) we have
g'(¢) = ¢+ (Log(1 4 €*) — Log(1 + 7))

and therefore ¢'(©) = 1. Since Q is connected, g is C! and ¢'(0) = 0 we get that ¢ is
identically zero on €2 so g is constant on 2. Now ¢(0) = —”—2 — 2Liy(—1) and

Lia(— Z n2 -

n=1

2

so g(0) = 0. Finally we note that g is well-defined and continuous on Q U {7} so
g(£m) = 0 by continuity. O

Note that the function ¢ in the above proof is a well-defined analytic function on
W ={(¢eC|Re() ¢ m+ 27Z } and that g is continuous on W UR. As in the proof
above we find that ¢ is constant on each connected component of W. Moreover, we can
on each of these connected components choose a branch of the dilogarithm such that g
extends to a continuous (and hence a constant) function on the connected set W U R.

Proof of Lemma 4.1 The function 1/sinh(w) has a simple pole at w = 0 with principal
part 1/w, i.e.
1 1
o(w) = sinh(w) w
is holomorphic in a neighborhood of zero, in fact on the disk D(0, ) Wlth centre 0 and
radius 7. Let a > R, let Cr, = [—a, —R]UYg U [a, R|, and write L,(¢) = J,(¢) + K,(¢),
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where

(z
11,(0) = /Q ),

sinh(7z)z

—a Cz [e§) Cz
1,0) = [ et [ —tolias

~ Sinh(7z) sinh(7z)z

To estimate K, (¢) we simply use that

[p(y)] <

for t > 0 leading to the bound

sinh(7t) + vt T ot

1 &9 6Re(C)t + efRe(C)t 1
KO < 5 [ il
2y Jq sinh(7t) ¢
1 o 1
—(m—Re({))t —(m+Re(O)t) — q¢.
y(1—e2m) /a S e )%
For |Re(¢)| < m we therefore get
2 | 2
K < —dt = ————.
K01 = | = e

If |Re(¢)| < m we find that

! ~ —(mr—he —(m+Re
K5O < 7a2<1_62m)/ (e~ (T REON | o~ (rHRe(O)) gy

_ 1 L mea | L (rime(ca) |
@1 — e \ 7= Re(Q) T+ Re(Q)
Next let us estimate J, (). First we use the standard estimate

es?
J—

., sinh(7z)

< TRM(¢, R),

where M ((, R) = maX ey,

e qb(fyz)’ . We have

sinh(7z)z

|p(w)| =

Here sinh(w) — w = w3h(w) and w sinh(w) = w?k(w), where h and k are entire functions.
Note that k is different from zero on D(0, ). Since v €]0, 1] we get

M(¢, R) = 2yL(R)N(C, R),

sinh(w) —w
wsinh(w)

et?
eﬂ'Z _e—ﬂ'Z

where L(R) = max.j<g |h(2)/k(2)] and N((, R) = max.cv, . We note that

Y

N(Cu R) < Qi(R) ?é%x ‘e(fiﬂ)z
where Q+(R) = max,ev, m Put Q(R) = Q_(R) + Q. (R) and get
pu==x1 \ z€Tgr

N(¢(, R) < Q(R) min (max ‘e(“‘”)z‘) .

Since Re(z) € [—R, R] and Im(z) € [0, R] for z € T we finally get
N(¢,R) < Q(R)e™™ (1 4 e mOR)
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We have thus obtained the estimate

1 ¢z
y Jr—

—Im({)R
. sinh(7z)z <B (L4,

where B = ZRL(R)Q(R)e*™ .

a St _eg—Ct

Finally we have to estimate (~vt)dt. First observe that

R sinh(mt)t
> 2n
Y
h(y) =
£~ (2n + 3)!
and
e 2n
Ky)=>" vy
YTt )

so h(y) < k(y)/6 for y € R. Therefore

/ i e_thb(vt)dt < J / i L
r sinh(7t)t ~ 3Jr et—em

Y ¢ —(m—Re(C))t —(7+Re(0))t
< —3(1 _B%R)/R (e +e )dt.

For |Re(¢)| < m we get

@ et — em¢t 2ary
—_— tHdt| < ——.
/R sinh(7t)t o0r(t) ’ = 3(1 —e?R)

If |Re(¢) < m we get

s - e €
r sinh(7t)t ! T3 —e) g

_ gl 1 o ~(r—Re(O)a 1
= st (7o =) g O

The lemma now follows by putting a = 1/y>1> R and A = W O

_ e(w+Re(<>)a)) .

6.2. Appendix B. Proofs of the estimates (26) and (28). Let

Jo(re) = /c ( )exp (r®(z)) (exp (I,(m — 2mz) — I,(—7 + 27x)) — 1) dz,

Ji(re) = /C()(tan(ﬁrx):F\/—_l)gr(:p)dx,

where @ is given by (27). Note first that we are free to deform the contour Cy (¢) as long
as we stay inside the domain of analyticity of the integrands. For the integrals J;(r, £) we

will deform C4(g) to F[e, 1 —¢]. Since the integrand of the integrals J (r, ) is analytic on
Qi \{ (m+1/2)/r[m=0,1,...,r—1}, we can deform C(¢) to C1(0) in these integrals
without changing their sum, i.e.

T (rye) + Ji(re) = T (r) + Jo(r),
where J, () = J4(r,0). In the following calculations we will need the identity
1 .
Re (®(z)) = 27Re(z)Im(z) — nlm(z) — —Im (Li, (e’%lm(m)esze(x))) : (92)
T

valid for x € Q. This identity is an immediate consequence of (91).
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Proof of (26 Let us first estimate J;(r). We partition C\,(0) into the three pieces

)
=[v~=1,0], C? =[1 —i—\/_,\/_],andCf’r:[l,le\/—_l]. Put
I'(r)= /l (tan(rrz) — v—1)g,(z)dz.
By (24) we immediately get

1
| (r)] < 2/ e~ 2 g, (v/—1t)|dt.
0

To be able to use (21) we introduce the positive parameter ¢ again. In fact, we have by
(21), Lemma 4.1 and Lebesgue’s dominated convergence theorem that

1
|Il( )| < 2exp(2A + 2B7/r) lim o2t | o7

€—>0+ 0

O (e++/—1t) dt.

By (92) we immediately get that

1
= exp (r [27r5t — 7t — —Im (Liz (e%mae_%t)ﬂ) )
T

Now by continuity of (¢,&) + Lis <€27T\/?1€€_27Tt) on [0,1] x [0,1] we can remove the
parameter € again by using Lebusgue’s dominated convergence theorem once more. This
gives us

r®(e++/—1t)

1 1
lim 6—27rrt 67’<I>(5-l—\/—_1t) dt = / 6—37rrtdt
0

€*>0+ 0

leading to the estimate
2
|IL(r)] < - exp(2A + 2Br/r) (1 — e ™) .
r

Next we estimate 3. By (24) we get

1
10 <40 [ (VT + ol
0

Similarly to the analysis of I} we introduce the parameter ¢ and get
1—¢
|12 (r)| < 4exp(24 + 2B7/r)e > lim |er V=1 |t

€*>0+ €

Here
|6Tq>(\/jl+t)| — 6—7rr(1—2t) exp (—CIIH (Li2(6_2ﬂ62ﬂ\/j1t)>)
™

by (92), so by Lebesgue’s dominated convergence theorem we get
2 —37r ' 2mrt r : —2m 2m\/—1t
|I7(r)| < 4exp(2A+2Bm/r)e e exp (——Im ( Liz(e”*"e )) ) dt.
0 T

By definition of the dilogarithm we have

1 Arg <1 _ S€—2ﬂ€2ﬂmt)
Im <Li2(6_2”62”‘/__“)> = _/
0 S

ds,
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which is non-negative for ¢ € [0,1/2]. For ¢t € [1/2, 1] we use that

1 Arg (1 - 862Wﬁt>
Im (Lig(e*%ez”ﬁt» =Im (Lig(ezﬂﬁt» +/
1—e—27

s
where the last integral is positive. The first term is bounded from below by — >~ | n—12 =
—%2 by (22). We therefore end up with

ds,

1
II2(r)] < 4dexp(24 + 2Br/r)e”(-1/6m / Tt gy
0

2
= — exp(2A + 2B /r)e” B-1/0m (e’ —1).

Finally, we estimate I%. Simllarly to the other cases we get

1
I3 (r)| < 2exp(2A4 + 2Br/r) lim [ e 2™ e

E—>0+ 0

r®(l—e++/—1t) dt.

By (92) we have

er<1>(176+\/7_1t)

AT
leading to

[12(r)] < 2exp(2A + 2B7/r) /O1 et = % exp(24 + 2Br/r) (1— ™).
By letting O = [—v/—1,0], C2 = [1 — v/—1, —v/—1], and €% = [1,1 — v/—1] and
1) = [ (tanera) + v Tign (o)

we find an upper bound for |I” (r)| identical with the upper bound for |I’ (r)|, i = 1,2, 3,
with the exception that exp(2A+2Bw/r) should be replaced by exp(2A+4Bm/r) in these
bounds. To conclude we have shown that there exists a constant K; independent of r and
e such that

w

K
T (re) + J (r Z ) < =

for all r € Z>.. O

Proof of (28) By the remarks prior to the proof of (26) we have

1-¢
Ji(re) = :F/ exp (r®(t)) h,(t)dt,
where
h+(t) = exp (I, (7 — 2nt) — I,(—7 + 27t)) — 1.
The integrand is continuous on [0, 1]. Therefore

)| < [ exp (Re (@(0) 1y ()]

[. By (22) and (23) and the remarks prior to (23) we have

for all € €]0, -

Re (3(t)) = %Im (Lig( “2mV=Tt) Ly (e 2”ﬁt)) — —%012(27#) < %Vol(zll).
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Therefore
’ T 1
T, (r, )] < exp (%vol(zh)) /0 I (t)] dt.

By definition we have

C 1

E — (Ly(m —2mt) — L(—m+ 2mt))".
n!

n=1

From Lemma 4.1 we get
L (x — 2mt) — I(~7 + 220)| < (CJ(t) + D)
for t €]0, 1], where C' and D are positive constants independent of v and ¢, and
f) =5+
Since f :]0,1[— R is bigger than or equal to 4 we can choose C' so big that
|L,(m —2mt) — L,(—7 + 27t)| < Cf(t)y
for t €]0,1[. From Lemma 4.1 we also have
|hy ()] < exp (|Iy(m — 2nt) — I,(—m + 27t)|) < exp(4A +4B7/r)

for t € [0,1], where A and B are as in Lemma 4 1, s0 T exp(4A-+4Bm/r) is an upper bound
for both of the integrals )" |h,(t)|d¢ and f1 )|dt (for r > 4). Left is to evaluate (for

r>7)
1—vy o C"’y" 1—v
[ <> = / oR
vy i L

By using that

we get
1=y “ =71 1
n
Frde = < ) / 11 g
A kz; k) J, th(@—tn*k
n 1/2 4 1—vy 1
< (Z) 2"—’“/ —kdt+2k/ —dt
k—0 vy t 1/2 (1 - t)
n 1/2 q /2 q
n n
§22(k)(/ t—kdt+/ —_kdt>
k=0 Y Y
n 1/2 1/2
S 2n+1 ( ( n )) / ldt — 22n+1/ —dt
k=0 v v
Here
1/2 4
|yt = —Log2) ~ Log(y) < Log(r)
v
and

12 1 1 1 1
n—1

/ t"dt n—l(v"—l : ><n—17"—1

N
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for n > 2. Therefore

1—y 0
/y |, (t)|dt < (4CLog B n—1n'>

n=2
< 277r (4CLog(r) + exp(4C) —4C —1).

We conclude that there exists a constant K, independent of r» and ¢ such that
/ / L
|J (r,e) + J_(r,e)] < KQM exp <2LV01(41)) ,
r i
for all r € Z>o. O

6.3. Appendix C. The case M;. The manifold M is the mapping torus of a torus with
monodromy matrix
2 1
(11)

see [KK, p. 366]. The invariant 7,(My) has been calculated by Jeffrey [J, Theorem 4.1].
This theorem gives the large r asymptotics of the invariant as well. In fact, we have

0L o (1)) eon (D)

which at the same time can be taken as the large r asymptotics of the invariant. Let us
relate this result to our contour integral formula for the invariant 7,.(My) = 7..(My). By

Lemma 3.2
T (My) = L/ cot(mrz) (/ tan(ﬂry)fOT(:p,y)dy) dz,
4i Jey o2 ’

where
“amiray Sr/r (=T 4 27(x — y))
S,T/T<—7T + 271'(1’ —+ y))
Following the discussion in Sect. 4 the relevant (shifted) phase functions to consider are
given by

Jor(x,y) = sin(mx)e

1 ‘ .
NS b(aj y)=ar +by — vy + — (LiQ(e%Z(Hy)) _ L,l’2<e27m(:v7y)>) ’

Am

where a, b are certain integers. If we put ¥ = \Ifg’b, then by (39) (x,y) is a critical point
of ¥ if and only if

0 = 2mi(a—1y)+ Log(l — zw) — Log(1 — zw™), (94)
0 = 2mi(b— )+ Log(l — zw) + Log(1 — zw™ 1),

iz and w = €2™ as usual, and this set of equations implies that

w—z=1-zw, (95)

(1 - zw)(w—z) = 2w,

where z = ¢

compare with (40) and (41). We note that the first of these equations is equivalent to
w—1=2(1—-w)

sow=1orz=—1. Forz:—lwegetw2+3w+1:050w:%\/5. For w =1 we
find that 22 =32 +1=0s0 2z = %\/g However, only the point (z,w) = ((3 — v/5)/2,1)
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satisfies that zw, zw™! ¢ [1,00[. For this point we find that y € Z and from (94) we get
that y = a. But then

1
U(z,y) =ax + by —xy + ) (Lig(2) — Lia(2)) = yx + ba — xy = ba € Z.
7r

Let pg. be the nonabelian SU(2)-representations of 7 from Proposition 5.3, where 6 €
[—1/3,—1/6] U [1/6,1/3] and ¢ € {£}. Here pp. and p_g. are conjugate. By (62), pp.
extends to a representation of (M) if and only if

L.(6) = 1.

But this happens if and only if § = +1/4 for both ¢ = + and ¢ = —, i.e. the set of
conjugacy classes of nonabelian SU(2)-representations of 7 (Mp) is {[p1/4-], [P1/a+]}-
By (74) the flat reducible SU(2)—connections on M, all have a Chern—Simons invariant
equal to zero, so we conclude that the image set of the SU(2) Chern—Simons functional
on My has at most three elements. By [KK, Theorem 5.6 and precedent text| we can
therefore conclude that the set of Chern-Simons invariants of flat SU(2)-connections on

My is
{0 (mod Z), —é (mod Z),é (mod Z)} | (96)

In particular, the Chern-Simons invariants of [py/4,+] are {—1 (mod Z), 1 (mod Z)}. We
note that (93) and (96) prove the AEC for the invariants 7,.(Mp).

By (68) and (69) we have $.(1/4) = fi, where f_ =0 and f, = 1. By Proposition 5.7
and (69) we find

1 1 A
CS(p1/ax) = ig - —/ Arg(L4(t))dt (mod Z),
™ J1/e

where we use that L. (t) € S'. By (87) we have

1/4 1/4
/ Arg(L_(t))dt = —/ Arg(L,(t))dt
1/6 1/6

so we finally get

1/4
%@mg:i<é—§ﬂmA@w4ma> (mod 2).

Note that Im(L(t)) < 0 on |1/6,1/4] so

1 1

1[4
g =AY < [ ALy o)ar <o

Therefore
I 11
1/6- 2 [ Ang(Lo(0)d €lg 5l
™ 1/6 6 4
Since this value (mod Z) belongs to the set {+1/5 (mod Z)} we conclude that it is equal
to 1/5 so

L eaw e = <2 [ ana(r e = (7
— Arg(L_(t))dt = ——/ Arg(L(t))dt = —. 97
s 1/6 s 1/6 * 30

Let us finally calculate the value of ¥ = \Ifg’b in the critical points corresponding

to the solutions (z,w) = ((3 ++/5)/2,1) and (z,w) = (—1,%\/5) to (95). Since

the set of solutions to (95) is in one-one correspondence with the set of nonabelian
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SL(2, C)-representations of m(My) by the proof of Theorem 5.8 and since the subset
of solutions (z,w) with z € S' and w €] — 00,0][ corresponds to the set of SL(2,C)-
representations which are equivalent to SU(2)-representations we see that the points
(z,w) = (—1, %@) correspond to nonabelian SU(2)-representations of (M) while

345
2

which are not equivalent to SU(2)-representations.

For (z,w) = (2™, e*™) = ((34+/5)/2, 1) we find again that y = a and then ¥(z,y) =
ab (independent of the choice of branch of the dilogarithm along |1, co|).

Finally, let (z,w) = (¥, e2™) = (—1, #) The real values of the right-hand

sides of (94) do not depend on a and b. Taking the imaginary values of these equations
we get

the points (z, w) = ( , 1) correspond to nonabelian SL(2, C)-representations of m; (M)

0 = 2m(a—Re(y))+ Im (Log(1 + w) — Log(1 +w™)),
0 = 2m(b—x)+ Im (Log(l 4+ w) + Log(1 +w™")).

The second of these equations is equivalent to

1 1
r—b= 7 (Arg(1+w) + Arg(1 +w™)) = 3

for both w = %\/5, and the first is equivalent to
1 . 1y = =305
a— Re(y) = o (Arg(l +w ) — Arg(l+ w)) = 2 325
T 3 W= g
We have

W(r,y) = ax + by — ay + g (Lin(hw]) — Lia(1/ ).

and since this is real by Corollary 5.14, we get
1 . .
U(z,y) = az + (b — z)Re(y) + —Re (Lis(Jw]) - Lix(1/[w])).
Here
1
ar + (b—x)Re(y) = (b—z)(Re(y) —a)+ab=ab+ ) (a — Re(y))
. w= —3+5

—5

4

=

For z € C\ [0, co[ we have

T 1
Lis(2) + Lia(1/2) = e §Log (—2).
This identity e.g. follows by differentiating the difference of the two sides in the identity,
showing that this difference is constant on C\ [0, 0o, and then evaluating in z = —1 using
that Liy(—1) = —7%/12. Therefore
. 2 1 9 1

for t > 1 for a branch of Lis continuously extended across |1, 00[. Let wy = %‘/5 We

note that
wiw_ = 1. (99)



50 JORGEN ELLEGAARD ANDERSEN AND SOREN KOLD HANSEN

Moreover, by [Lew, Formula (1.20) p. 7],
3—v5\ 1++/5
Li = — — Log? . 1
2 ( 2 ) 15 8 ( 2 (100)

<1+\/5>2:3+\/5

Note also that

5 5 (101)

Assume that w =w_ = _3%‘/5 Then, by (98),

. - 2 1 9 . 1
Lis(jwl) = == — JLog"(=|wl) = Liz(|w[™),

where Log(—|w|) = Log(|w|) + i, so

7T2 2

) T 1 ) _ .
Lip(u)) =5 -5 - §L0g2(|w\) — Lig(Jw|™") — inLog(|w]).

But then
) ) _ T 1 ) _ .
Liy(Jw|) = Liy(Jw| ™) = 5 — — — §L0g2(\w|) — 2Liy(|Jw|™") — imLog(|wl)

Here |w|™! = % by (99) so by (100) and (101) we get

71_2 71_2 27'('2 2

. . _ . m .
Lip(Ju]) — Lig(ful ) = - = &= — 5 — imLog(jul) = = — inLog(|w)

By (99) we conclude that

2

. . _ ™ .
Lis(Jw|) — Lig(Jw| 1) = :Fg —irLog(|w]). (102)

For w = w4 we therefore get

1 1 1
U(z,y) =ab=+ 1720 =ab+t 1
We have thus shown that the set of values (mod Z) of \Ifg’b in its critical points is identical
with the set (96) of Chern—Simons invariants of flat SU(2)—connections on My for arbitrary
a,b € 7Z. Note here that we use the identities (97) and (102) in the proof of Theorem 5.9
to handle the cases § = £1/4, so we can not here refer to this theorem. The identity (102)
was proved by using the explicit value of the dilogarithm in (3 — v/5)/2, cf. (100). We
note that only very few explicit values of the dilogaritm are known, see [Lew, Chap 1].

6.4. Appendix D. Proof of Lemma 5.17. Let us begin by showing the identitites (80)
and (82). Let 0 € I and let u = u+(0), Q; = QF (9) and t = '™ and get

Q2 = (1-(1+uw)™)A-0+uwt)=1—t(1+u+(1+u)"")+1
= —t(l+u) (L+u)?—(t+tHu+1)+1) =t

where the last equality follows by the fact that ¢(t,u) = 0, where ¢ is given by (57).
To show (82) we observe that

QlQB o Q3Q%_ -1 2
Q0 T Q| @9

— 0 +u) (1=t +w) ) = I+ u) + (1 +u) =2
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by (80). Now ¢(t,u) = 0 implies that
tl+u) = 4+1—-t—tu+1)

leading to the identity

Q1Q3
@2

To prove the identities (79) and (81) it is necessary to examine the arguments of the
functions Q¥ (), i = 1,2. By Lemma 5.18 we note that

i

= 14t =2+ futt —t) = Lo(0).

QT (0) = Q3 () (103)
for 0 € I.
Assume first that 6 € [1/6,1/3]. An elementary calculation shows that
L+ us(®) € [-1,(vV5 - 8)/2, (104)

1+u_(0) € [-(3+V5)/2, 1]
for 0 € [1/6,1/3] and 1+u(0) = —1if and only if § € {1/6,1/3}. In particular, 1+u(6)
is negative. We therefore get
>0, 6¢€[1/6,1/4],
Im (Qy) = |1 +u| 'sin(47h) { =0, 6=1/4,
<0, 0¢€]1/4,1/3].
By (78), Re(Q1) = 1 — (1 +wu) ! cos(4mh). Since 1+ u is negative we see that Re(Q;) have

the same sign as cos(4mf) — (1 + u), where sign(0) = 0 as usual. By (104) we conclude
that

Re (Q1(9)) >0
for all § € [1/6,1/3]. Let us next consider Q. First note that

1 3
cos(4mf) —uy () — 1 = 5 \/COSQ<47T¢9) — cos(4mf) — 1
We therefore get that Re (Qf ()) has the opposite sign as cos?(4m) — cos(4rf) — 1. By

the assumption on 6 we have cos(47f) € [—1,—1/2], and we therefore get

>0, 0¢[1/6,00U]1/2 — o, 1/3],
Re (QF(0)) S =0, 6 {6,1/2— b},
<0, 6€]y,1/2— 6],

where 6 €]1/6,1/4[ is the unique element such that cos(47y) = (1—+/5)/2 €] -1, —1/2|
is the negative solution to t> —t — 1 = 0.

Let ¢ (0) €] — 7, 7] be the principal argument of QF(#). Then the above analysis
shows, also using (103), that

( 6]07 %[7 NS [%790[7
= %7 9:907
G]g,ﬂ'[, 0 E]eo,i[,
Uy (0) =y (0) ] =, =1, (105)
6] , %[7 0 6]%7%_90[7
- T — 9 — V0,
\ 6]_g,0[, 06]%2_007é]7
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and
€10, 3], 0 e [1%, L
s =viw] =0 =1 (106)
E] - gvo[v 0 E]Zv §]7
SO
]Ovﬂ-[a NS [%700[7
" + ]%737”[7 96]207%[7
% (9)+¢2 (9)6 ]gvg]v 0:1171
] - %7_3[7 9 E]Z7 2 90[7
]—7'(',0[, 96[%—90,%]
By (80) we have
VEO) + E(0) € 476 + 2rZ,
so we conclude that
U (0) + 4y (6) = 4o
for all 6 € [1/6,1/3] proving (79) for these 6.
Next assume that 6 € [—1/3,—1/6]. First observe that
QF (=0) = Qi (0), 0eI\{£1/4}, (107)
and
Qi (—1/4) = Qi (1/4) (108)

for i = 1,2. By (108) we immediately get that (79) holds for § = —1/4. For 6 €
[—1/3,—1/6] \ {—1/4}, (79) follows by (107) and the fact that Log(p) = Log(p) for
p € C\] — c0,0].

Note that (81) is true if we choose e (6) € Z such that

UE(0) + 7 — 5y (0) — es(0)2m €] — 7).

By (105) and (106) we have that 1 (0) — ¢35 () €] — 7, 7], and we conclude that we have
to put e4(f) = 0 if and only if ¥ (0) < 5 (0) and e () = 1 elsewhere. By (105) and
(106) we conclude that e_(1/4) =0 and ey (1/4) = 1.

Assume that 6 € [1/6,1/3]\{1/4}. Then i () and 15 () both belong to either | -, 0]
or to |0, w[. We use this fact together with the fact that cot :Jmm, (m+1)7[— R is strictly

decreasing for any m € Z. In fact, cot(1);) = % S0
|1+ u|
t = t(4m0
(1) () + LT
o = cot(4r —_—.
? sin(476)

By this we find that

sign (V5 (0) — 5 (0)) = sign (sin(470) (1 — (1 + u(0))?)) .
Since (1 +u,(0))?> <1 and (1+u_(0))* > 1 with equalities if and only if § € {1/6,1/3},
we get 7 (0) = 5 (#) for § € {1/6,1/3} and

$1(0) < ¥5(0)
for 6 €]1/6,1/4] and € = — or for 0 €]1/4,1/3[ and € = +. Moreover,
$1(6) > 95(0)
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for § €]1/6,1/4[ and € = + or for 6 €]1/4,1/3[ and ¢ = —. We therefore get that (81) is
true if we put e, (0) =0 for 6 € {1/6,1/3} and

1, 0€]1/6,1/4],
e (0) = { 0, 6 2}1?4,1%{

and let e_(0) =1 — e (0) for 6 €]1/6,1/3[\{1/4}.
Let us finally consider the case § € [—1/3, —1/6]. First observe that

Q3 (=0) = Q5 () (109)
for all @ € I. By this and (108) we conclude that eyr(—1/4) = e(1/4). For 6 €
[—1/3,—1/6] \ {—1/4} we get by (107) and (109) that

Log (@1 (9)) + Log (@5 (9)) — Log (@ ()
= Log (Q5(9)) — Log (Q3(6)) + Log (@7 (—0)) + Log (Q5(—0)) — Log (@3 (—0))
= 2iIm (Log (Q3(9))) + (Log ( - «9)@39)( 9)) + ei(—0)2m').

Qx (
By using that @3 is negative and that L. (0) € C\] — oo, 0] for 6 €]1/6,1/3[ we get for
0e€]—1/3,—1/6[\{—1/4} that
QT (0)Q5 (0)

Lot (QF(6)) + Log (Q5(0) — Loz (@5(0)) = Log (TB ) (1 - -2,

so we conclude that ey () = 1 — ey (—0) for these 6. Finally we get for € {—1/3,—1/6}
that Q7 (0) = Q3 (0) so (81) is satisfied for e () = 0 for these 6.
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