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Abstract

We present two relatively simple and analytically tractable diffusion models for an ex-
change rate in a target zone. One model generalize a model proposed by De Jong, Drost
& Werker (2001) to allow asymmetry between the currencies and thus obtain a better fit
to data, in which asymmetries are often an important feature. Optimal estimation of the
model parameter using eigenfunctions of the generator is investigated in detail and shown
to give well-behaved estimators that are easy to calculate. The model is demonstrated to
fit data on exchange rates in the European Monetary System well. Also an alternative
diffusion model is presented, which has similar properties in the centre of the target zone,
but with a more realistic dynamics near the boundaries of the target zone. Estimators
based on eigenfunctions work well in this case too. For both models no-arbitrage pricing
of derivative assets is discussed. Finally, problems concerning adjustments of the central
parity are discussed.

Key words: currency options, eigenfunctions, estimating functions, exchange rate target
zones, Jacobi diffusion, option pricing, realignments.
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1 Introduction

We propose and investigate two relatively simple and analytically tractable target zone models,
i.e. models for an exchange rate which the central banks involved have promised to keep within
fixed bounds. A much studied example of target zones is the European Monetary System
(EMS) that was in place in some form or another from 1979 until the introduction of the euro
on January 1, 1999. For a number of European currencies a target zone for the exchange rate
with the euro has been arranged, formally or informally. Our first model generalize the target
zone model proposed by De Jong, Drost & Werker (2001) by allowing asymmetry between the
currencies, because asymmetry is an important feature of data on exchange rates in a target
zone. We also propose an alternative model, which has a behaviour quite similar to the first
model in the central part of the target zone, but with a very different, and probably more
realistic, dynamics near the boundaries of the target zone.

Since the seminal paper by Krugman (1991), a large amount of research on target zones
has been reported in the econometric literature; for a short review, see Christensen, Lando &
Miltersen (1998) or De Jong, Drost & Werker (2001). In both of our models, the intervention
policy of the central banks and the behaviour of speculators is modelled implicitly by specifying
the drift and diffusion coefficients. Models that more explicitly describe the intervention policy
and the speculator behaviour may be seen as preferable because their economic interpretation
is more direct. However, results based on such models may depend crucially on details of the
specification, and the models may be difficult to handle in practice. Advantages of the models
presented here are that they are flexible enough to fit data on exchange rates in target zones
well, but on the other hand are simple and tractable enough that estimation of the parameters
can be done easily and as efficiently as desired. Also option pricing is easy.

We present the first model, the Jacobi diffusion, in the Section 2. For this diffusion the
eigenfunctions of the infinitesimal generator are explicitly know: They are essentially the Jacobi
polynomials. The fact that the eigenfunctions are known renders it natural and simple to
estimate the parameters of the model by means of an optimal estimating function based on
the eigenfunctions as proposed by Kessler & Sørensen (1999). These estimators are easy to
calculate as they are solutions to an explicit system of equations. The rest of the section
investigates the large sample performance of this relatively new statistical technique in the case
of the Jacobi diffusions. This is of independent statistical interest apart from the financial
context and indicates that estimators based on just two eigenfunctions can be surprisingly
efficient. The properties of the estimators in finite samples are studied in a simulation study in
Section 3. For some parameters the asymptotic results can be used for relatively small samples
of 300 observations, but at least for one parameter, the speed of mean-reversion, considerably
more observations are needed before the asymptotic theory can be used. When this happens
simulation is a useful alternative. In Section 4 weekly observations of the exchange rates of
the German mark to the Danish krone, the French franc, the Belgian franc, and the Dutch
guilder are analyzed by means of the Jacobi diffusion model. The data are from a period
in the time of the European Monetary System where no adjustments of the central parity
took place. The fit of the model to the data is investigated in a number of ways and found
to be good. In order to obtain a better fit for data points close to the boundaries of the
target zone, an alternative model is proposed in Section 5. In the centre of the target zone,
the two models have a similar behaviour. The new model is related to the Jacobi diffusion
by a simple transformation, and is hence as tractable as the Jacobi diffusion. In particular,
estimation can be done easily by means of an optimal estimating function based on the explicit
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eigenfunctions. In Section 6 no-arbitrage pricing of options and other contingent claims on the
exchange rate is considered. It is demonstrated that care must the exercised when modelling
the relation between the domestic and the foreign interest rates in order to avoid a model with
arbitrage opportunities. In the previous sections the risk of adjustments to the central parity
was ignored. This difficult problem is beyond the scope of the present paper, but is discussed
at some length in Section 7, where also the statistical problems in connection with a two-factor
model are briefly considered. Finally, the Appendix explains how to explicitly calculate the
optimal estimating functions needed to estimate the parameters of the two models.

2 The Jacobi diffusion

Let St denote the exchange rate at time t, and suppose that it has been agreed that the exchange
rate may not be more than a·100 per cent over the central parity µ for any of the two currencies,
i.e. µ/(1+a) < St < µ(1+a). Then Xt = log(St) must satisfy that m−z < Xt < m+ z, where
m = log(µ) and z = log(1 + a).

As a model for the logarithm of the exchange rate Xt, we propose the diffusion model defined
by

dXt = −β[Xt − (m + γz)]dt + σ
√

z2 − (Xt − m)2dWt, (2.1)

where β > 0, γ ∈ (−1, 1), and W is a standard Wiener process. Clearly, this process reverts
to the mean m + γz with a speed that is proportional to the deviation from this level. The
parameter γ is an asymmetry parameter that express whether one currency is stronger than
the other. When the process gets near the boundaries m− z or m + z, the diffusion coefficient
becomes small and the drift (which models the intervention of the central banks) drives the
process away from these boundaries. The drift at the upper boundary m + z is −β(1 − γ)z,
while the drift at the lower boundary m− z is β(1 + γ)z. The process (2.1) is a particular case
of the general class of mean-reverting diffusion processes with a given marginal distribution
studied in Bibby, Skovgaard & Sørensen (2003). The symmetric case γ = 0 is the target zone
model proposed by De Jong, Drost & Werker (2001). Jacobi diffusions have also been studied
by Gourieroux & Jasiak (2003), who introduced a multivariate version and presented several
applications.

Easy calculations involving the speed and scale measure shows that the diffusion is an
ergodic diffusion on the interval (m − z, m + z) if and only if κ1 = β(1 − γ)σ−2 ≥ 1 and
κ2 = β(1 + γ)σ−2 ≥ 1, or otherwise expressed β ≥ σ2 and −1 + σ2/β ≤ γ ≤ 1 − σ2/β. The
invariant distribution is a shifted and rescaled Beta-distribution on the interval (m− z, m + z)
with parameters κ1 and κ2, i.e. the distribution with probability density

π(x) = (z + m − x)(κ1−1)(z − m + x)(κ2−1)(2z)(1−κ1−κ2)/B(κ1, κ2), x ∈ (m − z, m + z), (2.2)

where B denotes the beta-function. Thus if the distribution of X0 is (2.2), then the solution
to (2.1) is stationary. If β(1 − γ)σ−2 < 1, then X can reach the boundary m + z at a finite
time point, and if β(1 + γ)σ−2 < 1, the boundary m + z can be reached in finite time. The
economic interpretation is that the intervention of the central banks must be sufficiently forceful
compared to both the marked volatility and the asymmetry between the currencies to keep the
process stationary.

The eigenfunctions of the generator of the diffusion (2.1) are explicitly known and are given
by

ϕn(x; β, γ, σ, m, z) = P (β(1−γ)σ−2
−1, β(1+γ)σ−2

−1)
n ((x − m)/z), (2.3)
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where P
(a,b)
n (x) denotes the Jacobi polynomial of order n given by

P (a,b)
n (x) =

n
∑

i=0

2−i

(

n + a

n − i

)(

a + b + n + i

i

)

(x − 1)i, (2.4)

see Abramowitz & Stegun (1964). The eigenvalue corresponding to ϕn is

λn(β, γ, σ) = n
(

β + 1
2σ

2(n − 1)
)

. (2.5)

For estimation of the parameters of the model, it is therefore natural to use one of the op-
timal estimating functions based on the eigenfunctions of the generator proposed by Kessler
& Sørensen (1999). This is particularly appealing in this case because for diffusions on a fi-
nite interval it was proved in Kessler & Sørensen (1999) that by including sufficiently many
eigenfunctions, an estimator can be obtained that is as close to being efficient as one wishes.

Assume that the process X has been observed at discrete time points, Xt0 , Xt1 , . . . , Xtn

(t0 = 0). If the target zone has been officially declared, the quantities m and z are known. This
is the case for the European Monetary System. In some cases target zones are not declared,
or the actual target zone is different from the official target zone. In such cases m and z are
parameters to be estimated. In the following θ denotes either (β, γ, σ) or (β, γ, σ, m, z). An
estimating function based on the first N eigenfunctions is given by

Gn(θ) =

n
∑

i=1

A(∆i, Xti−1
; θ)h(∆i, Xti−1

, Xti; θ), (2.6)

where ∆i = ti−ti−1, A(∆, x; θ) is a p×N -matrix, p is the dimension of θ, and h = (h1, . . . , hN)T

with
hj(∆, x, y; θ) = ϕj(y; θ) − e−λj(θ)∆ϕj(x; θ), (2.7)

j = 1, . . . , N . Conditions in Kessler & Sørensen (1999) ensuring that (2.6) is a martingale
when θ is the true parameter value are satisfied, because x 7→

√

z2 − (x − m)2 and ∂xϕj(x) are
bounded on the state space. The optimal choice in the sense of Godambe & Heyde (1987) (see
also Heyde (1997)) of the weight matrix A(∆, x; θ) can be found explicitly, see the Appendix.
Thus the estimator of θ is given as the solution to an explicit system of p equation. Kessler
& Sørensen (1999) showed that for N going to infinity the optimal estimating function of the
type (2.6) will converge to the score function.

We shall mainly be concerned with the case where θ = (β, γ, σ). In this case the conditions
in Kessler & Sørensen (1999) ensuring (asymptotic) existence, consistency and asymptotic
normality of the estimator θ̂n obtained by solving the estimating equation Gn(θ) = 0 can be
shown to hold provided that N > 1. The expression for the asymptotic covariance matrix of
θ̂n when the optimal estimating function is used can be found in the Appendix.

Let us discuss the asymptotic variance for different choices of the eigenfunctions used to
define (2.6). It was decided to use in this discussion the parametrization (α1, α2, σ

2), where
the parameters α1 = β(1− γ) and α2 = β(1 + γ) determine the drift away from the upper and
the lower boundary, respectively. One could alternatively have considered the parameters κ1

and κ2 that determine the invariant distribution, but in a study of asymptotic variance it is
advisable to choose a parametrization that separates parameters in the drift and parameters
in the diffusion coefficient as the asymptotic variances of these two types of parameters can
be quite different when ∆ is small. We shall see that this actually is the case. To simplify
the calculations we will consider the asymptotic information (inverse of asymptotic variance)
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for each of the parameters when the other parameters are fixed. These quantities are the
diagonal elements of the matrix I(α1, α2, σ

2) in the Appendix. The information quantities in
the following tables were calculated by means of Maple. We consider two parameter values
(α1, α2, σ

2) = (0.02, 0.02, 0.01) and (α1, α2, σ
2) = (0.06, 0.04, 0.02), which are of the same order

of magnitude as the estimates we obtain in Section 4 from EMS data. In both cases we take
m = 0 and z = 1 and the sampling points to be equidistant with ti − ti−1 = ∆ = 1.

First we consider the case where the estimating function is based on only one eigenfunction.
This need not be the first eigenfunction. The information quantities are calculated for the
eigenfunctions based on ϕj, j = 1, . . . , 8. The results are given in the Tables 2.1 and 2.2. When
α1 = α2, it is not difficult to see that the information for these two parameters must be the
same. That the information about σ2 is zero for ϕ1, is due to the fact that this parameter
cannot be estimated based on a linear estimating function.

Eigenfunction no. 1 2 3 4 5 6 7 8
Inf. for α̂1 and α̂2 47.7 44.8 41.6 38.7 36.1 33.6 31.2 28.6
Inf. for σ̂2 0.0 758.7 1103.4 1346.8 1538.6 1692.1 1810.3 1892.6

Table 2.1: Information for the estimating functions based on one eigenfunction and with
(α1, α2, σ

2) = (0.02, 0.02, 0.01).

Eigenfunction no. 1 2 3 4 5 6 7 8
Inf. for α̂1 12.2 10.4 9.0 8.0 7.0 6.0 5.0 4.0
Inf. for α̂2 34.1 31.7 28.7 25.8 22.9 20.0 16.9 13.9
Inf. for σ̂2 0.0 287.0 390.0 452.0 489.7 505.3 498.5 469.9

Table 2.2: Information for the estimating functions based on one eigenfunction and with
(α1, α2, σ

2) = (0.06, 0.04, 0.02).

We see that for α1 and α2 the information is largest for the first eigenfunction in both cases.
For σ2 the maximum information is obtained with the 8th and the 6th eigenfunction. As one
would expect, it is necessary to combine eigenfunctions to get a good estimating function for all
parameters. In the Tables 2.3 and 2.4 are given the information quantities for the estimating
functions based on combinations of two of the eigenfunctions ϕj, j = 1, . . . , 5.

Inf. for α̂1 and α̂2 Inf. for σ̂2

2 3 4 5 2 3 4 5
1 49.2 49.2 49.3 49.2 5016 4467 4129 3866
2 49.2 46.2 49.2 5037 4122 4319
3 49.1 49.0 5034 4456
4 48.8 5017

Table 2.3: Information for the estimating functions based on two eigenfunctions and with
(α1, α2, σ

2) = (0.02, 0.02, 0.01). The indexes of the eigenfunctions are indicated.
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Inf. for α̂1 Inf. for α̂2 Inf. for σ̂2

2 3 4 5 2 3 4 5 2 3 4 5
1 12.5 12.4 12.4 12.4 36.1 36.2 36.2 36.2 1264 1061 945 852
2 12.4 11.9 12.2 36.1 35.2 36.0 1264 1046 1005
3 12.1 11.9 35.6 35.3 1254 1039
4 11.7 34.5 1233

Table 2.4: Information for the estimating functions based on two eigenfunctions and with
(α1, α2, σ

2) = (0.06, 0.04, 0.02). The indexes of the eigenfunctions are indicated.

We see only a minor increase in the information about α1 and α2, but a dramatic increase for
σ2. Based on Tables 2.3 and 2.4 there is no reason to use anything but the simplest estimating
function based on two eigenfunctions, i.e. that based on the first two eigenfunctions. We have
also calculated the information quantities for estimating functions based on a larger number
of eigenfunctions, but it does not seem possible to increase the information quantities in this
way by more than 1 - 3 per cent. As mentioned the estimators will tend to be efficient as the
number of eigenfunctions goes to infinity, so this is a strong indication that estimators based
on the two first eigenfunctions are close to being efficient, at least for the two parameter values
considered in this study.

3 A simulation study

In this section we report a simulation study to investigate the finite sample properties of the
estimators obtained from the optimal estimating function based on the first two eigenfunctions.
The process (2.1) was simulated by means of the strong Taylor scheme of order 1.5, see Kloe-
den & Platen (1999). We consider equidistant observation times separated by ∆ = 1. The
discretization used for the simulation was much finer: The time between the simulation time
points was 0.0001. Before the first observation was made, the process was simulated for 50 time
units.

Let us first mention some general experiences obtained in the simulation study. It turned out
that the numerical problems in finding the solution to the estimating equations were least when
the estimating function was multiplied by σ2, and when the parametrization (log(β), γ, log(σ2))
was used in the numerical search procedure. In the previous section we saw that the information
about the parameters α1 and α2 (and hence β and γ) is quite high when the optimal estimating
function based only on the first eigenfunction is used. Moreover, it has turned out that estimates
of β and γ obtained from this estimating function depend only very little on the value of
σ2. Therefore the following procedure was used and turned out to work very well. First
preliminary estimates of β and γ obtained from the optimal estimating function based on the
first eigenfunction with σ2 fixed at some reasonable value. Then a preliminary estimate of σ2

was obtained from the optimal estimating function based on the first two eigenfunctions with
β and γ fixed at their preliminary estimates using bisection. Finally, the estimates of all three
parameters obtained from the optimal estimating function based on the first two eigenfunctions
was found by means of Broyden’s method with the preliminary estimates used as starting values.
For details about Broyden’s method and its implementation, see Press et al. (1992).

First the process (2.1) was simulated with the parameter values β = 0.05, γ = −0.2 and
σ2 = 0.02, for which the process is ergodic. For 250 independent time series of 300 simulated
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observations, 100 series of 600 observations, and 50 series of 1200 observations the three pa-
rameters were estimated, and for each sample size the mean and variance of the simulated
estimators were calculated. The results are given in Table 3.1.

# obs. # sim. mean β̂n SE β̂n mean γ̂n SE γ̂n mean σ̂2
n SE σ̂2

n

300 250 .0645 .0229 -.195 .148 .02015 .00184
600 100 .0547 .0117 -.195 .099 .02005 .00122

1200 50 .0516 .0077 -.193 .071 .02001 .00087

Table 3.1: Mean and standard error of the estimators of β, γ and σ2. The true parameter
values are β=0.05, γ=-0.2, and σ2=0.02.

The estimators of γ and σ2 are found to be almost unbiased, while β is somewhat overesti-
mated when there are only 300 observations, but is well estimated with 1200 observations. It
is well known that the speed of reversion is relatively difficult to estimate without bias. For
γ and σ2 the standard error times the square-root of the sample size is almost independent of
the sample size, and for σ2 this quantity is close to the value obtained from the information
calculated in Section 2. This indicates that the asymptotics work already with a sample size
of 300. For β the asymptotics clearly does not work with only 300 observations, but appears
to work well with 1200 observations. To investigate this further, normal quantile plots have
been drawn for the simulated estimators, see Figure 3.1. These plots are in accordance with
the conclusion just made: There seems to be serious problems with the normality only for β̂n

with sample size n = 300 and perhaps n = 600. Finally, the correlation between the estimators
β̂ and γ̂ was estimated and found to be small (between -0.1 and -0.17). Also the correlation
between α̂1 and α̂2 was estimated and found to be much larger (about 0.6 in all cases). This
indicates that the parametrization (β, γ, σ2) is to be preferred over (α1, α2, σ

2) for statistical
inference.

Next we consider simulations of 48 time series of 1200 observations, 96 series of 600 obser-
vations and 242 series of 300 observations. The parameter values are now β = 0.02, γ = 0 and
σ2 = 0.01, so again the process is ergodic. The results are given in Table 3.2. The tendencies
are as in Table 3.1, but the bias of β̂n is somewhat larger (note the smaller standard errors).

Finally, we consider simulations with the parameter values (β, γ, σ2) = (0.02, 0, 0.02) and
(β, γ, σ2) = (0.02, 0, 0.05), see Tables 3.3 and 3.4. For the latter set of parameter values the
process is not ergodic, and both boundaries have a positive probability of being hit at a finite
time, and the asymptotics cannot be expected to work. However, in both cases the pattern is
the same as in the Tables 3.1 and 3.2.

# obs. # sim. mean β̂n SE β̂n mean γ̂n SE γ̂n mean σ̂2
n SE σ̂2

n

300 242 .0351 .0165 .017 .239 .01012 .00081
600 96 .0253 .0079 .010 .156 .01008 .00057

1200 48 .0224 .0042 .013 .108 .01006 .00039

Table 3.2: Mean and standard error of the estimators of β, γ and σ2. The true parameter
values are β=0.02, γ=0, and σ2=0.01.
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Figure 3.1: Normal quantile plots for the simulated estimators β̂n, γ̂n, and σ̂2
n with the sample

size n equal to 300, 600, and 1200.

# obs. # sim. mean β̂n SE β̂n mean γ̂n SE γ̂n mean σ̂2
n SE σ̂2

n

300 200 .0342 .0155 .006 .312 .0199 .0018
600 100 .0266 .0086 .003 .234 .0198 .0012

1200 50 .0229 .0061 -.010 .155 .0198 .0009

Table 3.3: Mean and standard error of the estimators of β, γ and σ2. The true parameter
values are β=0.02, γ=0, and σ2=0.02.

# obs. # sim. mean β̂n SE β̂n mean γ̂n SE γ̂n mean σ̂2
n SE σ̂2

n

300 200 .0319 .0156 -.015 .336 .0499 .0047
600 100 .0247 .0085 -.014 .188 .0498 .0031

1200 50 .0224 .0024 -.024 .096 .0498 .0019

Table 3.4: Mean and standard error of the estimators of β, γ and σ2. The true parameter
values are β=0.02, γ=0, and σ2=0.05.
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4 The EMS data

In this section we estimate the parameters of the model based on time series of exchange rates
and investigate how well the model fits these data. The data are weekly observations of the
exchange rates of the German mark to the Danish krone, the French franc, the Belgian franc,
and the Dutch guilder in 298 weeks from January 1987 till August 1992. In this period the
central parity µ was not changed, and the largest allowed deviation was 2.25 per cent. Figures
4.1 – 4.4 show the observed values of Xt = 100[log(St)− log(µ)], where St denotes the exchange
rate at time t. We will model the process X by (2.1) with µ = 0 and z = 2.25.

0 50 100 150 200 250 300
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-1
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2

Figure 4.1: The Danish krone.
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Figure 4.2: The French franc.
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Figure 4.3: The Belgian franc.
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Figure 4.4: The Dutch guilder.

Estimates of the parameters β, γ and σ2 are found by the procedure described in Section
3 and are given in Table 4.1. The estimates for the Danish, French and Belgian currencies are
similar, in particular for the Danish krone and the French franc, whereas the estimates for the
Dutch guilder are quite different. For the Dutch guilder the speed of reversion is larger, the
random variation (the diffusion) is smaller, and the data are symmetric. For all the estimated
parameter vectors the process (2.1) is ergodic.

In order to get an idea about how well the parameters have been determined, a small
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β̂n γ̂n σ̂2
n

Danish krone .0467 .319 .0185
French franc .0474 .399 .0117
Belgian franc .0755 .262 .0207
Dutch guilder .2131 -.011 .0023

Table 4.1: Estimates for the 4 currencies.

simulation study was performed. For each of the estimated parameter vectors, 50 independent
time series of 300 observations each were simulated and the parameters estimated. In this way
standard errors were obtained for the estimates, and confidence intervals were calculated using
these standard errors and assuming a normal distribution, see Table 4.2. At least in the case of
the parameter β, the normal distribution is a rather dubious assumption in view of the results in
Section 3, but the intervals in Table 4.2 do give an impression of the precision of the estimates.
It can safely be concluded that the speed of mean reversion parameter β is significantly higher
for the Dutch guilder than for the Danish and French currencies. It is also quite clear that the
asymmetry parameter γ is positive for the Danish, French and Belgian currencies, while it can
safely be assumed to be zero for the Dutch guilder. On the basis of the results in Section 3
it must be expected that the speed of mean reversion is over-estimated. The small simulation
study confirmed this.

β γ σ2

Danish krone (.010;.083) (.070;.568) (.0154;.0216)
French franc (.011;.084) (.176;.622) (.0095;.0139)
Belgian franc (.020;.131) (.089;.434) (.0168;.0246)
Dutch guilder (.121;.305) (-.036;.014) (.0019;.0027)

Table 4.2: 95% confidence intervals.

Let us next investigate how well the Jacobi diffusion (2.1) fits the data. In the first plot of
the Figures 4.5 – 4.8, we compare the marginal beta distributions with the estimated parameter
values to histograms of the observations Xti for the four currencies. The second plot of the
figures are quantile plots for the estimated beta distributions. The marginal distributions
appear to be well fitted by the estimated beta distributions for the Danish krone, the French
franc and the Dutch guilder, perhaps with small problems at the lower tail of the distribution
for the Danish krone and the French franc and with a kink in the lower half of the quantile
plot for guilder. A simulation study showed that the small deviations seen for the Danish
krone and the French franc can be easily explained by sample randomness. For the Belgian
franc the marginal distribution seems to be bimodal and is thus not well modelled by a beta
distribution. The data in Figure 4.3 indicate that a regime shift took place after week number
150. A likely explanation is that a non-declared adjustment of the central parity took place
at that time. It is possible that the model would fit the two regimes separately, but this has
not been investigated. Note that in all cases, apart from the Dutch guilder, it is an important
condition for the good fit that the model allows a non-symmetric beta distribution.
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Figure 4.5: The Danish krone.
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Figure 4.6: The French franc.
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Figure 4.7: The Belgian franc.
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Figure 4.8: The Dutch guilder.
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To investigate the fit of the transition distribution, which is not explicitly known, we
use the simulated uniform residuals proposed by Pedersen (1994). These are given by Ui =
F (Xti|Xti−1

; β, γ, σ2), i = 1, . . . , 297, where F (y|x; β, γ, σ2) denotes the conditional distribution
function of Xt1 given that X0 = x, and where the data are Xti , i = 0, . . . , 297. The conditional
distribution function is easily determined by simulation. If the data have been generated by the
model (2.1) with the parameter values (β, γ, σ2), then the Ui-s are independent and uniformly
distributed in the unit interval. The simulations to determine the conditional distribution func-
tion were done using the estimated parameter values. The first two plots in the second row of
the Figures 4.5 – 4.8 show a histogram of the uniform residuals and a quantile plot comparing
their empirical distribution to the uniform distribution. The four quantile plots do not indi-
cate any systematic deviation from the identity line, whereas the histograms seem to have a
bit too many observations near 0.5. This indication of an over-fit is probably due to the fact
that the estimated parameters were used in the simulation. The graphical model diagnostics
have been supplemented by formal tests of the hypothesis that the residuals are uniformly
distributed. Three test statistics were calculated, the Kolmogorov-Smirnov test statistics, the
χ2 goodness-of-fit test statistics with the interval [0, 1] divided into ten intervals, and the test
statistic −2

∑n
i=1 log(Ui) which is χ2-distributed with 2n degrees of freedom if the residuals are

uniform and independent. The p-values are given in Table 4.3 and do not give us reason to re-
ject the model. To get an impression of possible deviations from independence of the residuals,
the two plots in the last column of the Figures 4.5 – 4.8 show the points (i, Ui), i = 1, . . . , 297
and the points (Ui, Ui+1), i = 1, . . . , 296, respectively. These plots show no particular pattern
that contradicts the independence of the residuals.

K-S χ2 −2
∑

log(Ui)
Danish krone 48.6% 28.7% 83.1%
French franc 6.7% 4.8% 68.6%
Belgian franc 27.1% 9.4% 92.2%
Dutch guilder 29.6% 11.3% 86.9%

Table 4.3: The p-values of the tests for uniformity of residuals

In conclusion, the above investigations indicate that the Jacobi diffusion (2.1) is a reasonable
model of exchange rates in a target zone between realignments of the central parity. The only
serious problem is the apparent regime change for the Belgian franc, which might well reflect a
change of policy.

5 An alternative model

In the previous section we concluded that the Jacobi diffusion (2.1) fits our data well. However,
a close look at the Figures 4.1 – 4.4 might lead one to think that the random variation in the
data is not smaller near the edge of the target zone than near the central parity, as assumed in
the Jacobi model. This has lead us to study an alternative to the Jacobi diffusion with similar
properties except that the diffusion coefficient is constant. The alternative model is given by
the stochastic differential equation

dXt = −ρ
sin

(

1
2
π(Xt − m)/z

)

− ϕ

cos
(

1
2
π(Xt − m)/z

) dt + σdWt, (5.1)
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where ρ > 0, ϕ ∈ (−1, 1), z > 0, m ∈ IR, and where W is a standard Wiener process. The state
space is (m− z, m + z). The model (5.1) is a generalization of the Ornstein-Uhlenbeck process
on (−π/2, π/2) introduced in Kessler & Sørensen (1999), which is obtained when γ = 0, m = 0,
and z = π/2. The economic interpretation of (5.1) is that the market volatility is constant,
but that the central banks intervene very forcefully when the exchange rate comes near the
boundaries to try to keep it away from them. Whether they succeed or not depends (within
the model) on the strength of the intervention as we shall now see. In the following, we will
consider mainly the natural form of (5.1), i.e. the case m = 0 and z = π/2.

The model (5.1) is very closely related to the Jacobi diffusion. To see this, suppose that
X solves the stochastic differential equation (2.1) with m = 0 and z = 1, and define Y by
Yt = sin−1(Xt). Then it follows by Ito’s formula that

dYt = −ρ
sin(Yt) − ϕ

cos(Yt)
dt + σdW̃t,

where ρ = β − 1
2σ

2, ϕ = βγ/(β − 1
2σ

2), and where W̃ is the standard Wiener process given

by dW̃t = sgn(Yt) dWt. Here sgn(x) denotes the sign of a real number x. To see that W̃ is a
standard Wiener process, consider its quadratic variation.

From the connection between the alternative model and the Jacobi diffusion it follows that
the solution to (5.1) is ergodic if and only if ρ ≥ 1

2σ
2 and −1+σ2/(2ρ) ≤ ϕ ≤ 1−σ2/(2ρ). If (5.1)

is used to model exchange rates in a target zone, ρ expresses the strength of the intervention of
the central banks, ϕ measures the asymmetry between the two currencies, while σ2 expresses the
volatility of the market. To have a stationary situation, the strength of the intervention must
be sufficiently strong compared both to the market volatility and to the asymmetry between
the currencies. If the restrictions on the parameters are not satisfied, the boundaries can be
reached in a finite time with positive probability.

The restrictions on the parameters that ensure ergodicity could, of course, also be obtained
directly by considering the scale and speed measures of the process given by (5.1). By normal-
izing the speed measure, it is seen that the invariant distribution (for m = 0 and z = π/2) has
density function

π(x; ρ, ϕ, σ2) =
(2 cos(x))2ρ/σ2

B
(

ρ(1 + ϕ)/σ2 + 1
2
, ρ(1 − ϕ)/σ2 + 1

2

)

(

1 + sin(x)

1 − sin(x)

)ρϕ/σ2

, (5.2)

−π/2 < x < π/2, where as earlier B denotes the beta-function. Note that π(−x; ρ, ϕ, σ2) =
π(x; ρ,−ϕ, σ2). The distribution given by (5.2) is of course the transformation of (2.2) by sin−1.

The fact that the model (5.1) can be obtained from the Jacobi diffusion by the transforma-
tion sin−1 makes it very likely, that (5.1) will fit the data at least as well as the Jacobi diffusion.
In the centre of the state space, the transformation sin−1 is not far from the identity so that
the two models are very similar in the part of the state space where most of the data are. Near
the boundaries the transformation is non-linear in a way that causes the diffusion coefficient of
the transformed process to be constant, which is exactly what is needed to get a better fit near
the boundaries. It would be interesting to investigate in detail how well the alternative model
fits the interest rate data, but this is beyond the scope of the present paper.

Let us end this section by noting that estimation for the alternative model is exactly as
easy as for the Jacobi diffusion. This is not surprising given the connection between the two
models. From this connection it follows that the eigenfunctions of the generator of (5.1) are

ϕn(x; ρ, ϕ, σ, m, z) = P
(ρ(1−ϕ)σ−2

−
1
2
, ρ(1+ϕ)σ−2

−
1
2
)

n

(

sin(1
2πx/z − m)

)

, (5.3)
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where P
(a,b)
n (x) denotes the Jacobi polynomial of order n, see (2.4). The eigenvalue correspond-

ing to ϕn is
λn(ρ, ϕ, σ) = n

(

ρ + 1
2nσ2

)

. (5.4)

So again it is natural to use an estimating function based on the eigenfunctions, which will
also here have the advantages discussed in Section 2. In particular, the eigenfunctions have
a form that allows explicit calculation of the optimal estimating function as explained in the
Appendix.

6 Option pricing

A main reason for developing continuous time financial models and related statistical methods
is to be able to calculate the price of derivative assets by the elegant no-arbitrage theory of
continuous trading. Classical references are Black & Scholes (1973) and Harrison & Pliska
(1981). Here we will discuss pricing of options on the exchange rate. The discussion follows
the line of arguments in De Jong, Drost & Werker (2001), so we will not go into details.

Let rt and rf
t denote the instantaneous domestic and foreign interest rates, respectively,

and let St be the exchange rate between the domestic and the foreign currency. Suppose we
have a foreign money market account with value V f

t in the foreign currency and value Vt in the

domestic currency. Then dV f
t = rf

t V f
t dt and Vt = StV

f
t . Finally let Dt = exp

(

−
∫ t

0
rsds

)

StV
f
t

be the discounted value of the account in the domestic currency. If Xt = log(St) is modelled
by (2.1), then by Ito’s formula

dDt =
{

rf
t − rt − β[Xt − (m + γz)] + 1

2σ
2
[

z2 − (Xt − m)2
]

}

Dtdt+σDt

√

z2 − (Xt − m)2dWt.

So far we have not made any assumptions about the variation of the interest rates. It seems
a reasonable assumption that the difference rf

t − rt depends on Xt in such a way that there
are no arbitrage possibilities. This is equivalent to assuming that there exists an equivalent
probability measure under which D is a martingale, see Harrison & Pliska (1981). We shall
discuss explicit specifications of rf

t − rt below. There exists a stochastic process W̃ , which is a
standard Wiener process under the equivalent martingale measure, such that

dDt = σDt

√

z2 − (Xt − m)2dW̃t,

also under this measure. Since St = Vt/V
f
t , it follows from Ito’s formula that under the risk-

neutral measure

dXt =
{

rt − rf
t − 1

2σ
2
[

z2 − (Xt − m)2
]

}

dt + σ
√

z2 − (Xt − m)2dW̃t (6.1)

and
dSt = (rt − rf

t )Stdt + σSt

√

z2 − (Xt − m)2dW̃t. (6.2)

Thus the no-arbitrage assumption implies that the “uncovered interest rate parity” holds under
the martingale measure, as also pointed out by Christensen, Lando & Miltersen (1998).

Not every specification of how rf
t − rt depends on Xt is in accordance with the assumption

of no arbitrage. For instance, if rf
t −rt equals a constant ν, it is obvious that the upper or lower

(dependent on the sign of ν) boundary of the state space can be hit by Xt in finite time with
positive probability. This claim can be substantiated by a simple calculation involving the scale
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measure. The probability measure on the canonical space corresponding to (6.1) can therefore
not be equivalent to the original measure. Also a simple economic consideration makes it clear
that there would be arbitrage opportunities if the difference between the domestic and foreign
interest rates did not depend on the exchange rate. To see what problems might occur, consider
the simple specification

rf
t − rt = β1(Xt − m1), (6.3)

where β1 > 0 and m1 ∈ (m − z, m + z). The economic interpretation is that the difference
between the two interest rates is proportional to the deviation of the exchange rate from a level
that the market considers to be reasonable. With the specification (6.3), Xt solves the equation

dXt =
{

−β1(Xt − m1) − 1
2σ

2
[

z2 − (Xt − m)2
]}

dt + σ
√

z2 − (Xt − m)2dW̃t (6.4)

under the risk-neutral measure. In analogy with the discussion in Section 2, the solution to
(6.4) is ergodic if and only if β1 ≥ σ2 and −1 + σ2/β1 ≤ (m1 − m)/z ≤ 1 − σ2/β1, as follows
from an inspection of the behaviour of the scale measure at the boundaries. If these restrictions
on β1 and m1 are not satisfied, the solution to (6.4) can hit one of the boundaries of the state
space in finite time with positive probability. Again this implies that the probability measure
corresponding to (6.4) cannot be equivalent to the original measure, so there are arbitrage
opportunities. We see that there must be a suitable balance between how far m1 is from the
central parity, the constant of proportionality β1, and the market volatility. Obviously other
specifications of rf

t − rt are possible, but it should always be ensured that the solution to (6.1)
cannot hit the boundary in finite time.

A similar discussion can be carried through if Xt = log(St) is modelled by (5.1). If the
difference rf

t − rt is specified in such a way that there is no arbitrage opportunities, then under
the risk-neutral measure

dXt =
{

rt − rf
t − 1

2σ
2
}

dt + σdW̃t (6.5)

and
dSt = (rt − rf

t )Stdt + σStdW̃t. (6.6)

In this case a constant difference between rf
t and rt would imply that X is a Brownian motion

with drift under the risk-neutral measure, so obviously equivalence does not hold. Also the
linear specification (6.3) goes wrong, as it implies that X is the Ornstein-Uhlenbeck process
on IR. The difference between the two interest rates must here necessarily go to infinity as Xt

goes to one of the boundaries to ensure equivalence and hence no-arbitrage. This might seem
extreme, but central banks have been seen to react in ways reminiscent of this when speculation
has pushed the exchange rate close to the boundary of a target zone in a situation where a
readjustment of the central parity was politically unacceptable. An example is the interest
rate of 500 per cent in Sweden in the days September 17 – 20 1992. A way to avoid that the
difference between the two interest rates must go to infinity is discussed in the next section.
One possible specification of rf

t − rt that fits well with the alternative model (5.1) is

rf
t − rt = ρ1

sin
(

1
2
π(Xt − m)/z

)

− ϕ1

cos
(

1
2
π(Xt − m)/z

) , (6.7)

where ρ1 > 0 and ϕ1 ∈ (−1, 1). The interpretation is similar to that of (6.3). The difference
rf
t − rt depends on how far Xt is from a certain level m1 = m + 2z sin−1(ϕ1)/π, but here the
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dependence is non-linear, in particular near the boundaries. With the specification (6.7), Xt

solves the equation

dXt =

{

−ρ1

sin
(

1
2
π(Xt − m)/z

)

− ϕ1

cos
(

1
2
π(Xt − m)/z

) − 1
2σ

2

}

dt + σdW̃t. (6.8)

By considering the scale measure, we see that the solution to (6.8) is ergodic and does not hit
the boundaries if and only if ρ1 ≥ 1

2σ
2 and −1 + σ2/(2ρ1) ≤ ϕ1 ≤ 1 − σ2/(2ρ1). As with the

model (2.1), there are arbitrage opportunities if there is not a suitable balance between how
far m1 is from the central parity, the constant of proportionality ρ1, and the market volatility.
Other specifications rf

t − rt = Ψ(Xt) are possible, of course, but it is necessary that Ψ(x) tends
to infinity at the boundary m + z and to minus infinity at m− z sufficiently fast that the scale
measure diverges at both boundaries.

Once a model of X1 and rf
t − rt has been chosen, the price of a derivative asset, where

the pay-off, Q, is some functional of X, can be found by calculating the expectation of the
discounted value of Q when X is given by (6.1) or (6.5). This can typically be easily done by
simulating X, for instance with one the methods in Kloeden & Platen (1999). As an example
consider a European call option on the exchange rate with maturity T and strike price K. The
domestic option price is

Ẽ

(

exp

(

−
∫ T

0

rsds

)

max{ST − K, 0}
)

,

where Ẽ denotes the expectation under the risk-neutral measure, i.e. when S is given by (6.2)
or (6.6).

As expected the price of a contingent claim on the exchange rate does not depend on the
drift of the diffusion under the “physical” probability measure. Let us therefore conclude this
section by listing two reasons why it is important to model the drift carefully. One reason is
that to obtain good estimates of the parameters in the diffusion coefficient, it is necessary to
have a realistic model of the drift and good estimators for the drift parameters. Otherwise it
would be impossible to determine with any precision what part of the random variation in the
data is due to the diffusion and what part is due to the drift. An estimator of the quadratic
variation is usually too crude, except when the sampling frequency is very high. A second
reason is that it is impossible to determine whether the martingale measure is equivalent or not
if the physical measure has not been specified. As we have seen, this can be a real problem.

7 Realignments of the central parity and two-factor mod-

els

A problem that has so far been ignored in this paper is that the central parity of the target
zone can occasionally be changed to better fit the actual relative value of the two currencies
when it becomes obviously unreasonable. Also the width of the target zone can be changed,
but this happens much more rarely.

A simple, but rather unrealistic model of realignments of the central parity was proposed
by De Jong, Drost & Werker (2001) who, following other authors, modelled the realignment
times as a Poisson process with constant intensity and equaled the new central parity to the
exchange rate at the realignment time. In this way a simple diffusion with jumps is obtained.
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It would be straightforward to similarly build realignments into our two models, but given the
lack of realism of a Poisson model, we did not find it worthwhile to do so.

Empirical evidence suggests that most realignments occur when the exchange rate is close
to one of the boundaries of the target zone, see Ball & Roma (1993). It would not be difficult
to propose other, and perhaps more realistic, specifications of the intensity λt of the counting
process of the realignment times. Obvious possibilities are λt = ν exp(ξ|Xt− − m|) or λt =
ν

∫ t

τi−1
exp(ξ1|Xs − m| − ξ2(t − s))ds, when τi−1 < t ≤ τi. Here the τi-s are the realignment

times, and the parameters ν, ξ, ξ1, and ξ2 are non-negative. In the first case a diffusion with
jumps is obtained, in the latter a non-Markovian model is obtained. Estimation of parameters
in the intensity λt is not difficult because the jump-times are observed. Statistical methods have
been available for many years, see e.g. Jacobsen (1982). It should be noted that we can avoid
the conclusion discussed in the previous section that the no-arbitrage assumption implies that
under the alternative model (5.1) the difference between the domestic and the foreign interest
rates must go to infinity when the exchange rate is near one of the boundaries of the target
zone by assuming that the realignment intensity λt goes to infinity in a suitable way when Xt

is near the boundaries. This is because when the risk of realignment is included in the model,
a term equal to the product of the realignment intensity and the jump size appears in the drift
of Xt under the martingale measure, see Christensen, Lando & Miltersen (1998).

A more realistic model should probably involve a second variable, such as the shadow
exchange rate used in the target zone models of Christensen, Lando & Miltersen (1998) and
Rangvid & Sørensen (2001). These authors include in their model a second diffusion process
Y , which represents the free floating exchange rate in the absence of a target zone (given by the
relative purchasing power parity assumption). Christensen, Lando & Miltersen (1998) specified
the intensity of the counting process of the realignment times as

λt = ν1 max

{

0,
(St− − µt−)

µt−
· (Yt− − St−)

St−

}

+ ν2, (7.1)

where µt denotes the central parity, which now depends on time, and ν1, ν2 ≥ 0. With this
specification, the probability of a realignment is increased both because of speculative pressure
when the exchange rate is far from the central parity, and because of the imbalance between
the exchange rate and fundamental macroeconomic conditions when the exchange rate is far
from the shadow exchange rate. However, if the exchange rate is not between the central parity
and the shadow exchange rate, a realignment cannot occur, which makes good economic sense.
Rangvid & Sørensen (2001) specified λt in a slightly different way. If we wish to supplement
one of our two models with a shadow exchange rate process Y , this process should be correlated
with the exchange rate process because the two processes are driven by the same fundamental
economic events. If we model this simply by assuming that the two Wiener processes that drive
the two processes Y and X are correlated (or even identical), then the results about X that we
have derived in this paper are still valid. In particular, the estimation method discussed is still
applicable. However, the parameters appearing in (7.1) and in the specification of Y cannot
be estimated from exchange rate data because Y cannot be observed. If the drift under the
martingale measure were known, we could use the fact that the uncovered interest rate parity
holds under the martingale measure to calculate Y from the exchange rate and the interest
rate difference rf

t − rt, but since the model with realignment risk is not complete, we do not
know the drift under the martingale measure. A way to estimate the remaining parameters
would be to supplement the exchange rate data with data on currency option prices. Rangvid
& Sørensen (2001) assumed that the uncovered interest rate parity holds under the physical
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probability measure too and used this assumption to calculate Y . They then estimated the
parameters in a full model of X and Y by approximate maximum likelihood estimation based
on an Euler approximation, a method that is known to be biased.

A different approach would be to let the drift of X depend on the process Y . For the model
(2.1), a natural way to do this would be to let the asymmetry parameter γ depend on Y , e.g.

γt =

(

Yt

µt

)ρ

/

(

1 +

(

Yt

µt

)ρ)

,

where ρ ≥ 0. For the model (5.1), the parameter ϕ could be assumed to depend on Yt in the
same way. These models would be particular cases of the general setup in Christensen, Lando
& Miltersen (1998), but different from the specification in their worked example. Thus their
option pricing method would apply. Unfortunately, most of the results presented in this paper
would not hold for such a model, but because the dynamics of X depends more directly on
the state of Y , it would probably be possible to estimate all the parameters of the model from
exchange rate data by means of one of the statistical methods that are generally applicable to
two-factor models such as stochastic volatility models. Examples are the method of prediction-
based estimating functions, see Sørensen (2000), Markov chain Monte Carlo methods, or one
of the indirect inference methods. However, the inclusion of a shadow exchange rate in the
model increases the necessary computational effort substantially, both when estimating the
parameters of the model and when calculating prices of contingent claims, and it should be
carefully considered whether this is justified by the implied increase in the precision of the
calculated option prices.

Option pricing is more difficult if the risk of realignments of the central parity is taken
into account, because then the model describes an incomplete market so that derivative assets
cannot be priced solely by a no-arbitrage argument (unless a further risky financial instrument
is added). Some decision must be made about how to treat the realignment risk. De Jong, Drost
& Werker (2001) chose not to put a risk-premium on the realignment risk. More specifically,
among all the possible martingale measures they chose the one that changes the diffusion in
a way similar to what was described in the previous section, while it does not change the
distribution of the realignments. In fact, there are infinitely many martingale measures under
which the intensity of the counting process of the realignment times is changed in infinitely
many ways. Christensen, Lando & Miltersen (1998) also did not discuss how to choose the
martingale measure. Instead they completed their model by adding two risky assets, e.g. two
currency options with different maturities, and discussed how to hedge the option by positions
in a domestic money market account, the foreign currency and the two options.
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Appendix: Optimal estimation

In this appendix we shall demonstrate that for diffusions models where the eigenfunctions are
polynomials of a particular fixed function, the optimal estimating function based on eigen-
functions can be found explicitly. Both of the models considered in the present paper have
eigenfunctions of this type.

Consider a diffusion model indexed by a p-dimensional parameter θ for which the eigenfunc-
tions are of the form

ϕi(x; θ) = Πi(κ(x); θ),

where Πi is a polynomial of degree i

Πi(y; θ) =
i

∑

j=0

ai,j(θ) yj,

and κ is a real function, independent of θ, defined on the state space of the diffusion. Denote
the corresponding eigenvalues by λi(θ) and the state space by (`, r). Assume that we want
to draw inference about θ from the data Xt0 , Xt1, . . . , Xtn (t0 = 0). The optimal estimating
function based on the first N eigenfunctions is (see Kessler & Sørensen (1999))

G∗

n(θ) =
n

∑

i=1

B(∆i, Xti−1
; θ)C(∆i, Xti−1

; θ)−1h(∆i, Xti−1
, Xti ; θ),

where ∆i = ti − ti−1, h = (h1, . . . , hN)T with hj(∆, x, y; θ), j = 1, . . . , N given by (2.7),
B(∆, x; θ) = {bij(∆, x, θ)} is the p × N -matrix with entries

bij(∆, x, θ) =

j
∑

k=0

∂θi
aj,k(θ)

∫ r

`

κ(y)kp(∆, x, y; θ)dy − ∂θi
(e−λj(θ)∆ϕj)(x; θ)

and C(∆, x; θ) = {cij(∆, x, θ)} is the N × N -matrix with entries

ci,j(∆, x, θ) =

i
∑

r=0

j
∑

s=0

ai,r(θ)aj,s(θ)

∫ r

`

κ(y)r+sp(∆, x, y; θ)dy − e−[λi(θ)+λj (θ)]∆ ϕi(x; θ)ϕj(x; θ).

Here y 7→ p(∆, x, y; θ) denotes the transition density, i.e. the conditional density of X∆ given
that X0 = x. Optimality is in the sense of Godambe & Heyde (1987), see also Heyde (1997).

In the expressions for the matrices B and C only the integrals
∫ r

`
κ(y)kp(∆, x, y; θ)dy, k =

1, . . . , 2N are not explicit. These integral can, however, be found by integrating both sides
of the expression for the eigenfunctions ϕi(x; θ) = Πi(κ(x); θ) with respect to p(∆, x, y; θ) for
i = 1, . . . , 2N . From the fact that the functions ϕi are eigenfunctions it follows that

e−λi(θ)ϕi(x; θ) =
i

∑

j=0

ai,j(θ)

∫ r

`

κ(y)jp(∆, x, y; θ)dy

for i = 1, . . . , 2N . From these linear equations we can obtain the integrals, and thus an explicit
expression for the optimal estimating function based on the first N eigenfunctions.

Under regularity conditions like those in Kessler & Sørensen (1999), the estimator θ̂n ob-
tained by solving the estimating equation G∗

n(θ) = 0 exists with a probability that goes to one
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as n → ∞, is consistent, and is asymptotically normal. Specifically, if θ0 denotes the true value
of θ and the sampling times are equidistant with ti − ti−1 = ∆, then

√
n(θ̂n − θ0)

D−→ N
(

0 , I(θ0)
−1

)

as n → ∞, where

I(θ) =

∫ r

`

B(∆, x; θ)C(∆, x; θ)−1B(∆, x; θ)π(x; θ)dx

with π(x; θ) denoting the density of the invariant distribution of the diffusion model.
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