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Abstract

Likelihood inference for discretely observed Markov jump processes with finite state

space is investigated. The existence and uniqueness of the maximum likelihood esti-

mator of the intensity matrix are investigated. This topic is closely related to the

imbedding problem for Markov chains. It is demonstrated that the maximum likeli-

hood estimator can be found either by the EM-algorithm or by a Markov chain Monte

Carlo procedure. When the maximum likelihood estimator does not exist, an estimator

can be obtained by using a penalized likelihood function or by the MCMC-procedure

with a suitable prior. The theory is illustrated by a simulation study.
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1 Introduction

Markov jump processes with finite state space have many applications, and if a continuous
record of such a process has been observed, likelihood inference concerning the transition in-
tensities is simple and well-known, see e.g. Billingsley (1961), Jacobsen (1982), and Küchler
& Sørensen (1997). If a Markov jump process is only observed at discrete time points,
the situation is more complex. Discretely observed diffusion processes have been studied
intensively in the last decade. A few recent references are Kessler & Sørensen (1999), Hoff-
mann (1999), Äıt-Sahalia (2002), Elerian, Chib & Shepard (2001), and Bibby, Jacobsen
& Sørensen (2003). For Markov jump processes not much research has been done on the
discretely sampled case. Discretely sampled birth processes and birth-and-death processes
were investigated in Keiding (1974) and Keiding (1975). An important application of Markov
jump processes in mathematical finance is in credit risk modelling, where the transitions be-
tween different credit ratings are modelled by a Markov jump process, see Jarrow, Lando &
Turnbull (1997). This lead Israel, Rosenthal & Wei (1997) to propose a method of estimating
the jump intensities from discrete time observations. Their method is, however, not efficient
and does only after an ad hoc modification of the estimator yield an intensity matrix.

In this paper we discuss the problems related to maximum likelihood estimation of the
intensity matrix based on a discretely sampled Markov jump process and demonstrate that
the maximum likelihood estimator can be found either by the EM-algorithm or by a Markov
chain Monte Carlo procedure. It is possible that the maximum likelihood estimator does
not exist, but this problem can be overcome by using a penalized likelihood function or the
MCMC-estimator with a suitable prior.

The problems of identifiability and of existence and uniqueness of the maximum likelihood
estimator are closely related to a classical problem in probability theory, the imbedding
problem for Markov chains. This is the question whether a given discrete time Markov chain
can be obtained by discrete time sampling of a continuous-time Markov jump process. In
Section 2 we review results on the imbedding problem that we need for our discussion of
maximum likelihood estimation. We also present the various likelihood functions that are
used in later sections, give a result on existence and uniqueness of the maximum likelihood
estimator, and study in detail the instructive case of a two-state process where the problem
of possible non-existence of the maximum likelihood estimator can be discussed explicitly.
In Section 3 we demonstrate how the EM-algorithm can be implemented and give a result on
the convergence of the algorithm. The problems of non-existence of the maximum likelihood
estimator can be avoided by using the Markov chain Monte Carlo procedure presented in
Section 4. In fact, a Gibbs sampler with a conjugate prior turns out to be sufficient to solve
the problem. A numerical study in Section 5 indicate that when the maximum likelihood
estimator exists, the two methods do an equally good job.

2 The likelihood function

Let X be a Markov jump process with finite state space E = {1, . . . , m} and intensity matrix
(infinitesimal generator) Q = {qij}. If X has been observed continuously in the time interval
[0, τ ], i.e. if the data are {X(t) | 0 ≤ t ≤ τ}, maximum likelihood estimation of Q is an easy
task that has been considered by several authors (e.g. Billingsley (1961), Jacobsen (1982),
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Küchler & Sørensen (1997)). The likelihood function is given by

L(c)
τ (Q) =

m
∏

i=1

∏

j 6=i

q
Nij(τ)
ij e−qijRi(τ). (2.1)

The process Nij(t) is the number of transitions from state i to state j in the time interval
[0, t], while

Ri(t) =
∫ t

0
I{X(s) = i}ds (2.2)

is the time spent in state i before time t. For details see e.g. Jacobsen (1982). It is not
difficult to see that the maximum likelihood estimator of Q is

q̂
(c)
ij (τ) = Nij(τ)/Ri(τ), (2.3)

provided, of course, that Ri(τ) > 0. If the process has not been in state i, there is no
information about qij in the data, and the maximum likelihood estimator of qij does not
exist.

The continuous observation likelihood function will play a role in later sections, but in the
present paper we are mainly interested in inference about the intensity matrix Q based on a
sample of observations of X at discrete time points, i.e. {X(t1), . . . , X(tn)}. Also for discrete
time observations the likelihood function is in theory simple. The process Yi = X(ti) is a
discrete time Markov chain, in general time-inhomogeneous, for which the transition matrix
at time i is P∆i(Q), where ∆i = ti+1 − ti and

P t(Q) = exp(tQ), t > 0, (2.4)

with exp(·) denoting the matrix exponential function. Hence the likelihood function for the
discrete time data is given by

Ln(Q) =
n−1
∏

i=1

P∆i(Q)xixi+1
, Q ∈ Q (2.5)

where x1, . . . , xn denote the observed values of X. For a matrix A we denote the ijth entry
by Aij . The set of all intensity matrices is denoted by Q. This is the set of matrices for
which the off-diagonal entries are non-negative and the sum of the entries in each row equals
zero. In the case of equidistant observation times, i.e. when ∆i = ∆ for some ∆ > 0,
the Markov chain Y is time-homogeneous with transition matrix P∆(Q), so the likelihood
function simplifies somewhat:

Ln(Q) =
m
∏

i=1

m
∏

j=1

P∆(Q)
Kij(n)
ij , Q ∈ Q (2.6)

where Kij(n) is the number of transitions from state i to state j in the discrete time Markov
chain {X(t1), . . . , X(tn)}. We shall mainly consider the case of equidistant observation times.

For the full class of time-homogeneous Markov chains with state-space {1, . . . , m}, the
likelihood function based on observations of the state of the chain at the first n time points
is

L(P ) =
m
∏

i=1

m
∏

j=1

P
Kij(n)
ij , P ∈ P (2.7)
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where Kij(n) is again the number of transitions from i to j before time n, and where P
denotes the set of m×m transition matrices (stochastic matrices), i.e. m×m-matrices with
non-negative entries for which the sum of the entries in each row is equal to one. This
likelihood function is identical to the one for m independent multinomial distributions, so
the maximum likelihood estimator of the parameter P is

P̂ ij = Kij(n)/Ki.(n) (2.8)

where

Ki.(n) =
m
∑

j=1

Kij(n).

Define
P0 = {exp(Q) |Q ∈ Q}, (2.9)

the set of transition matrices that correspond to discrete time observation of a continuous
time Markov jump process. Now suppose we calculate P̂ by (2.8) based on our discrete time
observations of a continuous time Markov jump process. If P̂ ∈ P0, there exists a Q̂ ∈ Q
such that P∆(Q̂) = P̂ , and the likelihood function (2.6) attains its maximal value at Q̂,
which is thus the maximum likelihood estimator. There are, however, two problems here.
One is that the set P0 is very complicated (except when m = 2); the other is that the matrix
exponential function is not an injection in all parts of its domain, so Q̂ needs not be unique.
When P̂ /∈ P0 the situation is not clear due to the complicated structure of P0, but it seems
not to be an uncommon occurrence that the maximum likelihood estimator does not exist, in
particular when the time between observations ∆ is large. General results on the existence
and uniqueness of the maximum likelihood estimator are summarized in Theorem 2.1 below.
In particular, the probability that P̂ ∈ P0 goes to one as n tends to infinity. We shall give
a complete discussion of the case m = 2, where the maximum likelihood estimator does not
exist when P̂ /∈ P0.

The problem of identifying the set P0 has a long history and was first posed by Elfving
(1937). It is usually referred to as the imbedding problem for finite Markov chains. Kingman
(1962) showed that P0 = P+ when m = 2, where

P+ = {P ∈ P | det(P ) > 0},

and derived the following general results about P0. For m ≥ 3, P0 is a (relatively) closed
subset of P+ with a complex geometric shape. In particular, it is not convex. Its relative
interior as a subset of P is non-empty, so its dimension is m(m − 1). Let δP0 denote the
boundary of P0 relative to P+. Then

δP0 = (∪i6=jEij) ∪ E , (2.10)

where Eij is a non-empty subset of the set of exponentials of intensity matrices with qij = 0,
and E is a non-empty subset of the m × m transition matrices with fewer than m distinct
eigenvalues. For details see Kingman (1962). Johansen (1974) gave an explicit description
of P0 for m = 3, which already at this low dimension is somewhat involved.

The second problem is whether there are two or more intensity matrices, Q, for which the
corresponding transition matrix, exp(∆Q), is the same, i.e. do two or more continuous-time
Markov jump processes exist for which the discrete time sample (X(∆), . . . , X(n∆)) has the
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same distribution. In statistical terms this is the question whether the parametrization of the
distribution of the data X(∆), . . . , X(n∆) by Q is identifiable. Let P00 denote the subset of
P0 of transition matrices P ∈ P0, for which Q is uniquely determined by P = exp(Q). For
m = 2, P00 = P0 = P+. The characterization of the set P00 is the classical problem of when
the real logarithm of a matrix is unique, which was solved for general matrices by Culver
(1966). His general result is that P00 consists of the transition matrices P ∈ P0, for which
all eigenvalues of P are positive and no elementary divisor (Jordan block) of P belonging
to any eigenvalue appears more than once. Thus once P̂ has been calculated from (2.8),
it is in principle easy to check whether it determines an estimator of the intensity matrix
uniquely (provided that P̂ ∈ P0). If P /∈ P00, there are infinitely many solutions X to
the equation P = exp(X), not all of which belong to P0. The set of solutions is countable
if all real eigenvalues of P are positive with their Jordan blocks appearing only once and
any complex eigenvalue belongs to only one Jordan block. Otherwise the are uncountably
many solutions. Cuthbert (1973) showed that in the countable case only a finite subset of
the solutions are in P0.

Simple necessary conditions for a transition matrix P to belong to P00 were given by
Cuthbert (1972) and Cuthbert (1973). A simple, but crude, condition for P ∈ P0 to belong
to P00 is that

inf
i

P ii ≥
1
2 . (2.11)

A less crude criterion for P ∈ P0 to belong to P00 is that

(

inf
i

P ii

)

· det(P ) > e−π
∏

i

P ii, (2.12)

see Cuthbert (1973) (e−π ' 0.0432).
We can now summarize the results on existence and uniqueness of the maximum likeli-

hood estimator.

Theorem 2.1 If P̂ given by (2.8) belongs to P0, then the maximum likelihood estimator
of the intensity matrix Q̂ exists and is the solution to P̂ = exp(∆Q̂). If P̂ /∈ P0, then
either the maximum likelihood estimator Q̂ exists and satisfies that exp(∆Q̂) ∈ δP0 (given
by (2.10)), or the likelihood function (2.6) has no maximum in Q. If the true transition
matrix Q0 satisfies that exp(∆Q0) ∈ intP0, and if and the Markov process is ergodic, then
the probability that the maximum likelihood estimator exists goes to one as n → ∞, and
exp(∆Q̂) → exp(∆Q0) almost surely. Moreover, if Q0 satisfies that exp(∆Q0) ∈ intP00,
then the probability that the maximum likelihood estimator is unique goes to one and Q̂ → Q0

almost surely as n → ∞. The condition exp(∆Q0) ∈ intP00 is satisfied when ∆ is sufficiently
small.

Proof: The situation where P̂ ∈ P0 is trivial and was discussed above. Next assume
that P̂ /∈ P0 and define the set

Pc = {P ∈ P | log L(P ) ≥ −c},

where L(P ) is the likelihood function for the full class of Markov chains given by (2.7) and
c > 0. Consider the compact set Pc ∩ P̄0 for a c > 0 sufficiently large that Pc ∩ P̄0 is not
empty. Here P̄0 denotes the set P̄0 = P0 ∪ {P ∈ P | det(P ) = 0}. The continuous function
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L(P ) has a maximum P̃ in Pc ∩ P̄0, and since L(P ) increases whenever P is moved in
the direction of P̂ , P̃ is on the boundary of Pc ∩ P̄0. Thus either P̃ ∈ δP0, in which case
there exists a Q such that exp(∆Q̂) = P̃ (remember that P0 is closed relative to P+), or
det(P̃ ) = 0, in which case the likelihood function does not have a maximum in Q.

Now assume that exp(∆Q0) ∈ intP0. From well-know result for Markov processes, see
e.g. Billingsley (1961), we know that P̂ → exp(∆Q0) ∈ intP0 almost surely as n → ∞.
Therefore the probability that P̂ ∈ intP0 goes to one as n → ∞. The claim about uniqueness
and consistency of the maximum likelihood estimator is shown in the same way. That
exp(∆Q̂) ∈ intP00 when ∆ is sufficiently small follows from (2.11). 2

The situation that det(P̃ ) = 0, where the maximum likelihood estimator does not exist,
is more likely to happen when the determinant of exp(∆Q0) is close to zero. When the
Markov process is ergodic, exp(∆Q0) converges as ∆ → ∞ to the singular matrix, where all
rows are equal to the row vector π given by πQ0 = 0 (the stationary distribution). Hence
the propensity of the maximum likelihood estimator not to exist increases with ∆ (at least
when ∆ is sufficiently large).

For a finite sample size the only thing we can say for sure about uniqueness is that the
maximum likelihood estimator is unique when P̂ ∈ P00 and that the maximum likelihood
estimator is not unique when P̂ ∈ P0\P00. If P̂ /∈ P0, we cannot be sure that the maximum
likelihood estimator is unique, even when P̃ ∈ P0, because of the complicated geometric
structure of the set P0.

Example 2.2 Let us consider the case of a Markov process with two states in more detail.
This case is simpler than when m > 2 because here P0 = P+, but the statistical problems
occur at the boundary where det(P ) = 0, so the two state example is instructive.

For an intensity matrix
(

−α α
β −β

)

,

where α, β ≥ 0, the eigenvalues are 0 and −(α + β). The corresponding transition matrix is

P∆(Q) =
1

α + β







β + αe−∆(α+β) α(1 − e−∆(α+β))

β(1 − e−∆(α+β)) α + βe−∆(α+β)







with eigenvalues 1 and ρ = exp(−∆(α+β)). It is convenient to introduce a new parametriza-
tion of the model:

π11 = P∆(Q)11 = 1 − (1 − ρ)α/(α + β) and π21 = P∆(Q)21 = (1 − ρ)β/(α + β).

We ignore the trivial case where α = β = 0. The set of parameter values is

Π0 = {(π11, π21) | 0 ≤ π21 < π11 ≤ 1}.

Note that Π0 is a parametrization of P0, while P = [0, 1]2. The determinant of P∆(Q)
equals π11 − π21, so the diagonal π11 = π21 corresponds to the problematic boundary of P0,
where det(P ) = 0. The likelihood function is

L(π11, π21) = π
K11(n)
11 (1 − π11)

K12(n)π
K21(n)
21 (1 − π21)

K22(n),
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so the maximum likelihood estimator of π11 is π̂11 = K11(n)/K1.(n). If K21(n)/K2.(n) <
K11(n)/K1.(n), i.e. if P̂ ∈ P0, then π̂21 = K21(n)/K2.(n). Otherwise, the profile likelihood
L̃(π21) = L(π̂11, π21), where 0 ≤ π21 < π̂11, keeps growing as π21 approaches the boundary
point π̂11. Thus in this case the likelihood function does not have a maximum in Π0, and
maximum likelihood estimator does not exist. This situation is more likely to happen when
the true values of π21 and π11 are close, which happens when ∆(α + β) is large because
then both probabilities are close to the probability of state 1 in the stationary distribution,
β/(α + β).

Since α + β = − log(π11 − π21)/∆, we see that the likelihood function grows (slightly)
as α + β → ∞. If we have reason to believe that α + β is not large, we can get around the
problem by penalizing the likelihood with a prior, for instance

φ(α, β) ∝ αae−bαβce−dβ,

which is the conjugate prior for the continuous time model with likelihood function (2.1).
The exponential functions ensure that the posterior distribution goes to zero at the critical
boundary where π11 = π21 so that an estimator that maximizes the posterior exists also
when K21(n)/K2.(n) ≥ K11(n)/K1.(n), i.e. when P̂ /∈ P0. This estimator is not explicit, but
must be found numerically. 2

The eigenvalues of exp(∆Q) are e∆λi, i = 1, . . . , m, where {λi} are the eigenvalues of
Q. Therefore, as exp(∆Q) goes to the critical boundary, where det(exp(∆Q)) → 0, one
or more of the eigenvalues of Q must go to minus infinity (∆ is fixed). Therefore the idea
presented in Example 2.2 of penalizing the likelihood function (2.6), which is bounded, by
the conjugate prior for the continuous time likelihood function (2.1) will in general ensure
that there are no problems with existence of an estimator that maximizes the posterior. A
general MCMC method along these lines is presented in Section 4.

Asymptotic normality of the maximum likelihood estimator can be established by stan-
dard arguments, or follows from results in Billingsley (1961), provided that exp(∆Q0) ∈
intP00, that (Q0)ij > 0 for i 6= j, and that the process is ergodic. As earlier Q0 denotes the
true intensity matrix. The expression for the asymptotic variance of the maximum likelihood
estimator is very complicated and involves infinite sums. If the maximum likelihood estima-
tor is found by the EM algorithm discussed in the following section, the Fisher information
matrix can be calculated by means of a formula given by Oakes (1999). If (Q0)ij = 0 for
one or more pairs i 6= j, a result about asymptotic normality of the maximum likelihood
estimator can be obtained if the parameter space is reduced by fixing these intensities at
zero, provided that the process is still irreducible.

3 The EM algorithm

The EM algorithm is a broadly applicable method for optimizing the likelihood function
in cases where only partial information is available. The discretely observed Markov jump
process is such an example, where maximum likelihood estimation would be an easy task if
complete data X = {X(t)|0 ≤ t ≤ τ} where observed, but where only data Yi = X(ti), i =
1, ..., n are available. Here t1 = 0 and tn = τ . If Y = {Yi|i = 1, ..., n}, then Y = u(X) for a
many–to–one map, and the EM–algorithm estimates the intensity matrix Q essentially by
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iterating the following two steps: (E–step) replacing the unobserved parts by their respective
conditional expected values given data Y = y and (M–step) performing maximum likelihood
on the complete data. To be more precise, let Q0 denote any intensity matrix (initial value).
Then the EM algorithm works as follows.

(1) (E–step) Calculate the function

g : Q → IEQ
0

(log L(c)
τ (Q)|Y = y) (3.1)

(2) (M–step) Q0 = argmaxQg(Q).

(3) GO TO (1).

From (2.1) we see that

IEQ
0

(log L(c)
τ (Q)|Y = y) =

m
∑

i=1

∑

j 6=i

log(qij)IEQ
0

(Nij(τ)|Y = y)

−
m
∑

i=1

∑

j 6=i

qijIEQ
0

(Ri(τ)|Y = y).

This is the continuous time log–likelihood for data with observed statistics IEQ
0

(Nij(τ)|Y =

y) and IEQ
0

(Ri(τ)|Y = y), which is maximized (as a function of Q) by (2.3) (the M–step).

The only non–trivial task left is hence to evaluate IEQ
0

(Nij(τ)|Y = y) and IEQ
0

(Ri(τ)|Y =

y). By the Markov property and the homogeneity of the process, it is sufficient to evaluate

M̃k
ij(t) = IEQ

0

[Rk(t)|X(t) = j, X(0) = i] (3.2)

and
f̃k`

ij (t) = IEQ
0

(Nk`(t)|X(t) = j, X(0) = i) (3.3)

because

IEQ
0

(Nij(τ)|Y = y) =
n−1
∑

k=1

f̃ ij
yk,yk+1

(tk+1 − tk) (3.4)

IEQ
0

(R`(τ)|Y = y) =
n−1
∑

k=1

M̃ `
yk,yk+1

(tk+1 − tk). (3.5)

In order to calculate (3.2), it turns out to be convenient to study the related functional
(we drop the index Q0 for simplicity)

Mk
ij(t) = IE [Rk(t)I{X(t) = j}|X(0) = i] .

The following result can be found in Bladt et al. (2002).

Theorem 3.1 The function Mk
ij solves the differential equation

d

dt
Mk

ij(t) =
∑

`

Mk
i`(t)q`j + exp(tQ)ijδjk (3.6)

with initial condition Mk
ij(0) = 0.
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Define M k
i·(t) = (Mk

i1(t), ..., M
k
im(t)) (row vector). Then (3.6) may be written as

d

dt
M k

i·(t) = M k
i·(t)Q + Ak

i (t),

where Ak
i (t) = e′

i exp(Qt)eke
′
k with ei denoting the unit vector with the ith coordinate

equal to 1 and with e′
i denoting its transpose. This is a system of inhomogeneous linear

differential equations, and from the initial condition M k
i·(0) = 0 it is clear that the solution

to the system is

M k
i·(t) =

∫ ∞

0
Ak

i (s) exp((t − s)Q)ds

= e′
i

∫ ∞

0
exp(sQ) (eke

′
k) exp((t − s)Q)ds.

Thus on matrix form M k = {Mk
ij}ij∈E we have that

M k(t) =
∫ ∞

0
exp(sQ) (eke

′
k) exp((t − s)Q)ds.

Now choose λ ≥ maxi=1,..,m(−Qii) and define B = I + 1
λ
Q = 1

λ
(λI + Q). It is clear that B

is a stochastic matrix (transition matrix) and

exp(Qt) = exp(−λtI + λtB) =
∞
∑

n=0

e−λt (λt)n

n!
Bn.

Calculating matrix–exponentials in this way is referred to as the uniformization method (see
Neuts (1995) p. 232) and is known to be very efficient. Then we obtain

M k(t) =
∫ t

0
exp(sQ) (eke

′
k) exp((t − s)Q)ds

=
∫ t

0

∞
∑

i=0

e−λs (λs)i

i!
Bi (eke

′
k)

∞
∑

j=0

e−λ(t−s) (λ(t − s))j

j!
Bjds

= e−λt
∞
∑

i,j=0

∫ t

0

(λs)i(λ(t − s))j

i!j!
ds Bi (eke

′
k)Bj

= e−λt
∞
∑

i,j=0

1

λ

(λt)i+j+1

(i + j + 1)!
Bi (eke

′
k)Bj

= e−λt
∞
∑

n=0

1

λ

(λt)n+1

(n + 1)!

n
∑

`=0

B` (eke
′
k)Bn−`.

Now we can calculate the quantity (3.2) by

M̃k
ij(t) = Mk

ij(t)/ei exp(Qt)ej. (3.7)

In order to calculate the quantity (3.3), the expected number of transitions from state
k to state ` in a time interval of length t given that the process initiates in state i and
terminates in state j, we first consider

fk`
ij (t) = IE (Nk`(t)I{X(t) = j}|X(0) = i) . (3.8)

for fixed k, `.
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Theorem 3.2 The function fk`
ij given by (3.8) solves the differential equation

∂

∂t
fk`

ij (t) =
m
∑

h=1

fk`
ih qhj + qk` exp(Qt)ikδj`, (3.9)

with boundary condition fk`
ij (0) = 0 for all i, j.

Proof: In Bladt et al. (2002) the joint transform V ∗(s, Z; t) = {V ∗
ij(s, Z; t)} of holding

times Ri(t) in state i and number of transitions from state k to `, Nk`(t), is defined by

V ∗
ij(s, Z; t) = IE



exp

(

−
m
∑

h=1

shRh(t)

)

∏

a,b

zNab

ab I{X(t) = j}

∣

∣

∣

∣

∣

∣

X(0) = i



 ,

where s = (s1, ..., sm) and Z = {zab}a,b=1,...,m are variables. (Notice that the setting of Bladt
et al. (2002) is slightly more general but specialize to the above setting). Thus the transform
under consideration is a joint Laplace and generating function type of transform. In order
to get hold of the fk`

ij (t) we set s = 0, zab = 1 if (a, b) 6= (k, `) and zk` = z. In Bladt et al.
(2002) it is shown that

V ∗(s, Z; t) = exp ((Q • Z + ∆(s)I)t) ,

where I denotes the identity matrix, • denotes the Schur product (defined as a product
between two matrices A = {aij} and B = {bij} by A • B = {aijbij}), and ∆(s) is the
diagonal matrix with the numbers s1, . . . , sm as its diagonal. Specializing to our case we get
that

V ∗(0, Z; t) = exp (Q • Zt) .

It is clear from the exponential form that

∂

∂t
V ∗(0, Z; t) = V∗(0, Z; t) [Q • Z]

or

∂

∂t
V ∗

ij(0, Z; t) =
m
∑

h=1

V ∗
ih(0, Z; t)[Q • Z]hj.

Differentiating this equation with respect to z yields

∂

∂t

∂

∂z
V ∗

ij(0, Z; t) =
m
∑

h=1

∂

∂z
V ∗

ih(0, Z; t) [Q • Z]
hj

+
m
∑

h=1

V ∗
ih(0, Z; t)

∂

∂z
[Q • Z]hj ,

and by evaluating this equation at z = 1, we obtain the desired equation (3.9). The boundary
conditions fk`

ij (0) = 0 for all i, j are obvious. 2

Applying the same arguments as when solving for Mij(t), we may write the matrix
fk`(t) = {fk`

ij (t)}i,j∈E as

f k`(t) = qk`

∫ t

0
eQs (eke

′
`) eQ(t−s)ds.
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By uniformization we then obtain that

fk`(t) = qk`e
−λt

∞
∑

n=0

1

λ

(λt)n+1

(n + 1)!

n
∑

`=0

B` (eke
′
`) Bn−`.

We can now calculate the quantity f̃k`
ij (s, t) defined by (3.3):

f̃k`
ij (s, t) = fk`

ij (t − s)/ei exp(Q(t − s))ej. (3.10)

We can now sum up the EM algorithm for maximum likelihood estimation of Q̂ as follows:

Let Q0 be any intensity matrix for a Markov jump process with state–space E. Initially
set Q = Q0.

1. Calculate M̃k
yi,yi+1

(ti+1−ti) and f̃k`
yi,yi+1

(ti+1−ti) for all k, ` under the model with intensity
matrix Q by (3.7) and (3.10).

2. Calculate IEQ (Ri(τ)|Y = y) and IEQ (Nij |Y = y) by (3.4) and (3.5).

3. Calculate Q̂ by Q̂ij = IEQ (Nij|Y = y) /IEQ (Ri(τ)|Y = y) for all i, j.

4. Q := Q̂. GOTO 1.

Let Q0, Q1, Q2, ... be a sequence of intensity matrices obtained by the EM–algorithm.
Then certainly Ln(Qk+1) ≥ Ln(Qk) for k = 0, 1, 2, . . ., where Ln is the discrete time like-
lihood function (2.5), see Dempster, Laird & Rubin (1977). Regularity conditions for the
sequence to converge to a (possibly local) maximum of the likelihood function were given by
Wu (1983), see also McLachlan & Krishnan (1997). Unfortunately, one of Wu’s conditions,
condition (3.19) in McLachlan & Krishnan (1997), is not satisfied by the model treated here.
In the 2-state case considered in Example 2.2 it is obvious that there is a problem at the
boundary where π11 = π21, which does not belong to the parameter space. For general m
there is a similar problem at the boundary where det(exp(Q)) → 0. One way around this
problem is to use the slightly smaller parameter space

Qε = {Q ∈ Q | det(exp(Q)) ≥ ε}

for some small ε > 0. With this restricted parameter set, it is clear that condition (3.19)
in McLachlan & Krishnan (1997) is satisfied, because the discrete time likelihood function
Ln is essentially a multinomial likelihood with an unusual parameter space. Let us consider
the rest of the conditions (3.18)-(3.21) and (3.23) in McLachlan & Krishnan (1997), which
by Theorem 3.2 in that book would imply the convergence of the sequence {Qk}. Condition
(3.18) with d = m(m − 1) is trivial, and condition (3.20) that the function Q 7→ Ln(Q)
is continuous and differentiable in the interior of the parameter space follows from the fact
that the function Q 7→ exp(Q) is continuous on Q and differentiable on the interior of Q,
i.e. where qij > 0 for all i 6= j, see e.g. Neuts (1995). The continuity of the function

(Q, Q0) → IEQ
0

(log L(c)
τ (Q)|Y = y),
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condition (3.23), is obvious from the expressions derived previously for M̃ij(t) and f̃k`
ij (t) as

functions of the parameter Q0. Finally, condition (3.21) that Qk+1 solves

∂IEQ
k

(log L(c)
τ (Q)|Y = y)/∂Q = 0

is satisfied for the full parameter space Q, provided that the initial matrix Q0 is chosen
in the interior of Q. To see this, note that for any Q0 in the interior of Q, the expected
holding times and the expected numbers of jumps are strictly positive for all possible states.
Therefore the maximum likelihood estimator obtained by using these expected values as the
statistics in Ln have strictly positive off-diagonal elements (cf. 2.3), and hence Q1 belongs
to the interior of Q. Iteration of this argument shows that Qk belongs to the interior of
Q for all k. (Note that some (Qk)ij may well converge to zero as k → ∞). However for
the restricted parameter space Qε, it may happen that the sequence Qk converges to the
boundary where det(exp(Q)) = ε and that det(exp(Q)k) = ε for some k. Then condition
(3.21) in McLachlan & Krishnan (1997) will typically not be satisfied. In view of Theorem
3.2 in McLachlan & Krishnan (1997) we can summarize the discussion as follows.

Theorem 3.3 Suppose the initial matrix Q0 belongs to the interior of the parameter space
Q, i.e. that (Q0)ij > 0 for all i 6= j. Then the sequence {Qk} will either converge to a
stationary point of the likelihood function Ln or det(exp(Qk)) → 0.

If the latter possibility occurs, it is an indication that the maximum likelihood estimator
does not exist. Indeed, the problems with the EM algorithm are closely related to the prob-
lems with the maximum likelihood estimator discussed in the previous section. Obviously,
it is a good idea to choose the initial matrix Q0 in such a way that det(exp(Qk)) is far from
zero. If Q0 is chosen such that some (Q0)ij = 0, then the expected number of jumps from
i to j will remain zero through all iterations, i.e. all Qk will belong to the boundary of Q,
where differentiability does not make sense, and where some of the above conditions do not
hold. If it is desirable to choose Q0 such that some (Q0)ij = 0, a convergence result similar
to Theorem 3.3 can be obtained by reducing the parameter space by the restriction qij = 0.

Use of the restricted parameter space, Qε, is a rather crude way to solve the problem at
the boundary where det(exp(Q)) → 0 and is mainly a technical device to prove Theorem 3.3.
A softer approach would be to use a likelihood function that is penalized near the critical
boundary in such a way that the penalized likelihood goes to zero as det(exp(Q)) → 0.
The EM algorithm can also be applied to maximum penalized likelihood estimation, see
McLachlan & Krishnan (1997). An obvious way to penalize the likelihood is provided by the
conjugate priors discussed in the next section, where a Markov chain Monte Carlo method
is presented as an alternative to the EM algorithm.

4 Markov chain Monte Carlo estimation

In this section we present a second approach to estimating the parameters of a discretely
observed Markov jump processes which uses the methodology of Markov chain Monte Carlo.
We present this approach in a slightly more general setting than the one in the previous
sections because this can be useful and does not essentially complicate the MCMC approach.
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Consider a Markov jump process {J(t)} with p = p1+p2+...+pm states and intensity matrix
Q. A new process {X(t)} is defined in the following way:

X(t) = i ⇐⇒ J(t) ∈ {pi−1 + 1, ...., pi}, i = 1, 2, ...m,

where p0 = 0. Thus we have grouped the states of J , and X indicate which group the process
J is in at any given time. The process {X(t)} is in general not a Markov process, since the
sojourn times in states 1, 2, . . . , m are not necessarily exponentially distributed. In fact, the
time spent in a state from entrance into the state until X jumps away again is phase–type
distributed (see e.g. Neuts (1981) or Asmussen (2003)). In this section we consider discrete
time observations of X, and the purpose is to estimate the intensity matrix Q of the Markov
jump process J underlying the non–Markovian process X to the extent this is possible. If
pi = 1 for all i ∈ E, then we may estimate the parameters of Q whenever it is uniquely
determined by the distribution of the discrete time process (see Section 2 for some necessary
conditions). If some pi > 1, then Q is no longer unique (phase–type representations are
not unique), and it is not possible to estimate all parameters of Q by Markov chain Monte
Carlo, which will be apparent from the following discussion. It will, however, be possible
to estimate functionals that are invariant under the different representations. An example
is the (time–dependent) rates of transitions between the different states 1, 2, . . . , m of the
process X.

We decompose the intensity matrix Q in the following way:

Q =

















Q11 Q12 Q13 ... Q1m

Q21 Q22 Q23 ... Q2m

Q31 Q32 Q33 ... Q3m

... ... ... ... ...
Qm1 Qm2 Qm3 ... Qmm

















.

Here Qij is a pi×pj–matrix. If i = j it is the subintensity matrix generating the phase–type
distribution of the time until J first leaves the set of states {pi−1, ...., pi}. If i < j the k’th
row of Qij is proportional to the initial distribution for the phase–type distribution initiating
at state j when the previous state of the process X was i with J exiting the ith group from
the sub–state k. Similarly for i > j.

Consider the discrete time observations x = (x1, ..., xn) of the continuous time jump pro-
cess {X(t)}t≥0 observed at times t1, ..., tn up to time τ (t1 = 0 and tn = τ). The framework
is essentially Bayesian. We choose a prior φ(Q) and are interested in the conditional distri-
bution of Q given the data x. We shall, however, study the slightly more general problem
of finding the conditional distribution of (Q, J) given x, where J = {J(t)}0≤t≤τ denotes the
continuous time sample path of J .

As earlier, let Q denote the space of intensity matrices, and let EJ be the space of
continuous time sample paths of a Markov jump processes with p states observed up to time
τ . We must construct a Markov chain taking values in Q× EJ the stationary distribution
of which is equal to the conditional distribution of (Q, J) given x.

There are several ways in which one may construct such a chain, the simplest being the
Gibbs sampler. More generally one could apply a Metropolis–Hastings algorithm, which has
the Gibbs sampler as a special case. The Gibbs sampler is suitable for our purpose: we
can sample from the posterior distribution using a Gibbs sampler with two sites, Q and J .
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We sample by alternately drawing J given (Q, x) and Q given (J , x) (x is of course of no
importance when conditioning on J). Iteration of the Gibbs sampler results in a sequence
of variables (Qn, Jn). Under suitable conditions the Gibbs sampler will eventually produce
a stationary and ergodic sequence, that is, after discarding a certain burn–in period, say the
first K-1 iterations, the sequence (Qn, Jn)n≥K may be considered stationary.

If pi = 1 for all i, then by ergodicity the empirical average

1

N

N+K
∑

i=K

Qi

converges to the true mean of Q conditionally on x. Also credibility intervals based on the
empirical distribution of (Qn, Jn)n≥K may be constructed, and quantiles of the empirical
distribution may be of interest too. In situations where Q is not uniquely determine by the
distribution of the discrete time sample, the mean of the posterior distribution may not be
a meaningful quantity, but functionals of the type discussed in the case where some pi > 1
below can still be estimated. As discussed in Section 2 the set of Qs for which this happens
is complicated, so it is important to study the posterior distribution carefully for indications
that this problem has occurred, for instance by inspecting scatter plots like those in Section
5. It might seem desirable to use a prior that is concentrated on the set of Qs for which
exp(Q) ∈ P00, but since this set is very complicated, this idea would be very difficult to
implement. An easier, but less satisfactory, solution is a prior concentrated on the set of Qs
for which exp(Q) satisfies (2.12).

If some pi > 1 and the phase-type representations are no longer unique, it is not possible
to estimate Q through simple averaging of the Qi’s since the representations may switch
through the iterations. Even more, credibility intervals hardly makes sense for parameters
which are not uniquely determined. Functionals invariant under different representations
may, however, conveniently be calculated using this method. Specifically, let F (·) be some
functional which depends on the distribution of the process X(t) and is invariant under
changes of the representation Q (i.e. if Q1 and Q2 are two representations resulting in the
same distribution of the process X(t), then F (Q1) = F (Q2)). Then we can estimate F (Q)
by

1

N

N+K
∑

i=K

F (Qi).

A proper choice of prior is usually essential to ensure good mixing properties and a
posterior which is not dominated by the prior. Sometimes hyper–parameters may have to
be specified to ensure a satisfactory mixing; experience shows, however, that this is not
necessary in the present case. We choose the prior,

φ(Q) ∝
n
∏

i=1

∏

j 6=i

q
αij−1
ij e−qijβi, (4.1)

where αij > 0, i, j ∈ E and βi > 0, i ∈ E are known constants to be chosen conveniently.
Then qij ∼ Γ(1/βi, αij). In this way parameters near the critical boundary are effectively
penalized because there at least one of the qijs must go to infinity (at least one eigenvalue
goes to infinity). This family of priors is conjugate for the model for continuous observation
in the time interval [0, τ ], which is an exponential family of processes, see Küchler & Sørensen
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(1997). Indeed, the posterior is

p∗(Q) = L(c)
τ (Q) φ(Q)

∝
n
∏

i=1

∏

j 6=i

q
Nij(τ)+αij−1
ij e−qij(Ri(τ)+βi),

where the likelihood function L(c)
τ (Q) is given by (2.1). The Gibbs sampler now works as

follows.

1. Draw initial Q from the prior.

2. Simulate a Markov jump process Jt with intensity matrix Q up to time τ such that
X(ti) = xi.

3. Calculate the statistics Nij(τ) and Ri(τ) from {J(t)}0≤t≤τ .

4. Draw a new Q from the posterior distribution.

5. GO TO 2.

Remark 4.1 Simulating Markov jump processes J(t) such that J(ti) ∈ {pxi−1, ..., pxi
} can

be done in several ways. Since we do not have have detailed information about the sub–
states, we may initiate in any sub–state state k1 ∈ {px1−1+1, ..., px1

}. There are several ways
in which to proceed. The simplest is to simulate Markov jump processes Jt up to time t2
such that J(t2) ∈ {px2−1 + 1, ..., px2

}. This can be done by simple rejection if the criterion is
not met and acceptance otherwise. Observe the state k2 = J(t2). Simulate Markov processes
initiating from k2 until J(t3) ∈ {px3−1 + 1, ..., p32

} and so on.
An efficient way to simulate Markov jump processes which have to pass through sets

of possible states is to choose one particular trajectory among many possibles according to
current transition rates Q. Hence from the incomplete discrete data x1, ..., xN we construct
complete discrete data y1, .., yN in the following way. Suppose that we have chosen some state
i at time t`. The probability of J(t) being in state j at time t`+1 is e′

i exp(Q(t`+1 − t`))ej.
Since j must belong to {p`−1 +1, ..., p`}, we simply choose among the states {p`−1 +1, ..., p`}
from the corresponding conditional distribution.

5 Example

In this section we present a simulation study that compare the two methods of estimating
a discretely observed Markov jump process. We have simulated a sample path of a Markov
jump process with four states and with intensity matrix

Q =











−1.00 0.25 0.25 0.50
0.20 −1.50 0.30 1.00
0.80 0.80 −2.0 0.40
1.00 0.60 0.90 −2.50
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in the time interval [0, 250]. The data are the states of the process at 500 time points,
equidistantly displaced by 0.5. The maximum likelihood estimator of the transition matrix
of the discrete time Markov chain, given by (2.8), is

P̂ obs =











0.6546 0.0928 0.1186 0.1287
0.1466 0.5172 0.1034 0.2328
0.1905 0.2500 0.4048 0.1548
0.3113 0.1604 0.1415 0.3868











.

Since we have the full continuous time sample path, we can also calculate the maximum
likelihood estimate of the intensity matrix based on the continuous–time likelihood, cf. (2.3),

Q̂cont =











−1.084 0.2329 0.2734 0.5773
0.1352 −1.5544 0.2872 1.1320
0.7162 0.8891 −2.1734 0.5680
1.3502 0.6365 0.8487 −2.8353











.

Next we compare the EM–algorithm and the MCMC approach on the discrete time data.
The EM–algorithm converged in less than 500 iterations to the intensity matrix

Q̂EM =











−1.0258 0.1771 0.4067 0.4420
0.2037 −1.5694 0.2922 1.0734
0.5429 1.0672 −2.0759 0.4659
1.2145 0.5492 0.5848 −2.3487











.

The one–step transition probabilities of the discrete time Markov chain with step length 0.5

corresponding to Q̂EM, P̂
0.5

EM = exp(0.5ΛEM), is

P̂
0.5

EM =











0.6580 0.0933 0.1192 0.1295
0.1466 0.5172 0.1034 0.2328
0.1905 0.2500 0.4048 0.1548
0.3113 0.1604 0.1415 0.3868











.

We note that P̂
0.5

EM and P̂ obs are practically identical, the discrepancy being due to numer-
ical errors. Thus the EM–algorithm has found the maximum likelihood estimator of Q. To
check whether Q̂EM is uniquely determined by P̂ obs, we can apply the criteria in Section

2. It turns out that (2.11) is too weak in this case, but the criterion (2.12) shows that Q̂EM
is indeed unique.

Concerning the MCMC, we performed a larger experiment drawing 10,000 intensity ma-
trices including an initial burn–in of 1,000 iterations. The values of the parameters in the
prior were simply set at αij = βi = 1. The average of the 9,000 intensity matrices is

Q̂MCMC =











−1.0873 0.1905 0.4266 0.4701
0.2493 −1.6756 0.3262 1.1001
0.5690 1.1218 −2.2384 0.5476
1.2424 0.5962 0.6602 −2.4988











,

which is close to the maximum likelihood estimator Q̂EM as one would expect.
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Quantiles of the empirical distribution of the 9,000 simulated intensity matrices were
calculated and are listed in Table 5.1.

These quantiles give a good impression of how well the parameters are determined by
the data marginally. To get an idea of how dependent the MCMC-estimates of the entries
in the intensity matrix are, we made scatter plots of the values of (qi1,j1, qi2,j2) for all the
9000 matrices we have generated for each of the 66 combinations of (i1, j1), (i2, j2), i2 6= j2.
Most of these plots are similar, so we have chosen to present 6 typical examples in Figure
5.1. Of the 66 scatter plots, 28 are similar to the two plots in the first row, 21 are similar to
the plots in the second row, 9 are similar to the first plot in the last row, and 8 are similar
to the last plot. The estimates are not very dependent.

Transition 2.5 % 5 % 50 % 95 % 97.5 %

1-2 0.021 0.038 0.1832 0.3700 0.4095
1-3 0.2043 0.2356 0.4174 0.6563 0.7097
1-4 0.2247 0.2589 0.4587 0.7239 0.7864
2-1 0.0165 0.0333 0.2323 0.5272 0.5840
2-3 0.0382 0.0658 0.3066 0.6665 0.7658
2-4 0.6431 0.7033 1.0828 1.5558 1.6593
3-1 0.1493 0.2115 0.5482 0.9960 1.1045
3-2 0.5741 0.6461 1.0937 1.6863 1.8219
3-4 0.0809 0.1245 0.5045 1.1061 1.2530
4-1 0.7463 0.8137 1.2255 1.7297 1.8357
4-2 0.1544 0.2196 0.5768 1.0456 1.1444
4-3 0.1930 0.2516 0.6311 1.1623 1.3153

Table 5.1: Quantiles of the posterior distribution of the entries qij of the intensity matrix.

6 Concluding remarks

We have demonstrated that maximum likelihood estimation of the intensity matrix of a
Markov jump process with finite state space is practically feasible by means of the EM-
algorithm or a MCMC procedure. When one or more of the intensities are large, the max-
imum likelihood estimator may not exist. Essentially the problem of non-existence occurs
when the process moves too fast compared to the sampling frequency, which implies that a
lot happens between the sampling times that we do not obtain information about. Therefore
non-existence of the maximum likelihood estimator should perhaps be taken as a sign that
there is not enough information in the data to estimate the intensity matrix properly. If
the process is such that it moves fast between the states within one or more groups, but
more slowly between the groups and other states, it might be a good idea to join each of the
groups into a new single state, and then estimate only the transition intensities between the
states in this new process with reduced state space. In this way the information in the data
is used to estimate the parameters about which the data actually contain information. It is,
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Figure 5.1: Scatter plots of the MCMC-simulations from the posterior distribution of the
pairs (qi1,j1, qi2,j2) for values of i1, j1, i2, j2 that show typical patterns.

of course, not possible that both the original process and the new process are Markovian, so
the results obtained by means of the new process must be interpreted with care.

As we have seen, another way around the non-existence problem is to use a penalized
likelihood function or the MCMC-estimator with a suitable prior. Then an estimator will
always be obtained, but it is likely that, at least in extreme cases, the estimator depends
quite a bit on the prior. A more serious problem is that the MCMC approach may hide
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problems of non-existence or non-uniqueness of the maximum likelihood estimator. In the
first case, it might not be noticed that the data contain very little information on certain
parameters or that the model is perhaps not appropriate. In the second case, nonsensical
results may be obtained. Again care is required.
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