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Abstract

We present an explicit solution of the Bayesian problem of sequential testing of
two simple hypotheses about the mean value of an observed Wiener process on the
time interval with finite horizon. The method of proof is based on reducing the
initial optimal stopping problem to a parabolic free-boundary problem where the
continuation region is determined by two continuous curved boundaries. By means
of the change-of-variable formula containing the local time of a diffusion process
on curves we show that the optimal boundaries can be characterized as a unique
solution of the coupled system of two nonlinear integral equations.
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