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Abstract. We present a limiting absorption principle at zero en-
ergy for two-body Schrödinger operators with a long-range poten-
tial having a positive virial at infinity. Furthermore, we prove
existence of limits (in weighted spaces), as the spectral parameter
tends to zero, of all powers of the resolvent. The principal tools
of proof are absence of eigenvalue at zero, singular Mourre the-
ory and microlocal estimates. Some elements of the proof will be
explained.

1. Statement of main results

We give an account of some recent results on asymptotic expansion
at zero of the resolvent R(ζ) = (H − ζ)−1 of a two-body Schrödinger
operator H = −∆ + V on L2(Rd); see [5] for details. It is well-known,
see [18], [12] and the more recent work [13] in which further references
can be found, that if V (x) = O(|x|−(2+ε)) with ε > 0 then such an as-
ymptotic expansion exists. For the ‘long-range’ case, V (x) = O(|x|−µ)
with µ < 2, much less is known. To our knowledge, the only results on
limiting absorption principles for such potentials are [22] and [17] (and
[2] for the purely Coulombic case). In [22] only radially symmetric po-
tentials are treated, and though radial symmetry is not imposed in [17]
some of the assumptions of that paper appear unnecessarily restrictive.
Here we present a complete asymptotic expansion of the resolvent at
zero energy, for a much wider class of potentials. Our basic assumption
is a sign condition at infinity,

V (x) ≤ −ε|x|−µ; |x| > R, (1.1)

and a similar positive virial condition.
For such potentials we prove complete asymptotic expansions (in

weighted spaces)

R(λ+ (−)i0) �
∞

∑

j=0

R
+(−)
j λj for λ→ 0+; (1.2)
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here R+
0 6= R−

0 . We also show that zero is not an eigenvalue. (This
is implicit in (1.2).) We notice that there is no explicit dimension-
dependence or fractional/inverse powers in λ.

It is well-known that for ‘long-range’ potentials that are positive at
infinity, zero can indeed be an eigenvalue. This explains one aspect
of the condition (1.1). Probably the best intuitive explanation of the
result (1.2) is given in terms of the WKB-ansatz for stationary solutions
to the Schrödinger equation −ψ′′ + V ψ = Eψ in dimension d = 1

ψ ≈ C+(E − V )−
1

4 ei
∫

(E−V )
1
2 dx + C−(E − V )−

1

4e−i
∫

(E−V )
1
2 dx. (1.3)

Under the condition (1.1) the oscillatory behaviour survives for E ≈ 0,

with E > 0 (since
∫

(−V )
1

2dx ∼ |x|1−µ
2 → ∞). Moreover, (1.3) suggests

that zero is not an eigenvalue, and also indicates which weights one
needs in (1.2). We remark that indeed (1.2) can be proved for d = 1
by WKB-methods, see [22], which can also be used to prove optimality
of the weights in the results below.

Let us state our main results precisely. Let 0 < θ < π and define

Γθ = {z ∈ C \ {0}
∣

∣ |z| ≤ 1, arg z ∈ (0, θ)}. (1.4)

We have the following limiting absorption principle at zero energy
for a Schrödinger operator H = −∆ + V on H = L2(Rd) recalling the
notation R(ζ) = (H − ζ)−1. Although we shall not elaborate here, it
is enough to impose the conditions (1) and (3) near infinity.

Theorem 1.1. Let V (x) = V1(x) + V2(x), x ∈ Rd, be a real-valued
potential. Suppose there exists 0 < µ < 2 such that V satisfies the
conditions (1)–(6) below.

(1) There exists ε1 > 0 such that V1(x) ≤ −ε1〈x〉−µ; 〈x〉 =
√

1 + x2.
(2) For all α ∈ (N ∪ {0})d there exists Cα > 0 such that

〈x〉µ+|α||∂αV1(x)| ≤ Cα.

(3) There exists ε2 > 0 such that −|x|−2 (x · ∇(|x|2V1)) ≥ −ε2V1.
(4) V2(−∆ + i)−1 is a compact operator on L2(Rd).
(5) There exists δ, C,R > 0 such that

|V2(x)| ≤ C|x|−1−µ/2−δ,

for |x| > R.
(6) V satisfies unique continuation at infinity (see Assumption 2.1

in Section 2).

Then for all s ∈ (1
2

+ µ
4
, 1

2
+ µ

4
+ δ) and all 0 < θ < π the family

of operators B(ζ) = 〈x〉−sR(ζ)〈x〉−s is uniformly Hölder continuous in
2



Γθ. In particular there exists Cs,θ > 0 such that

sup
ζ∈Γθ

∥

∥〈x〉−sR(ζ)〈x〉−s
∥

∥ ≤ Cs,θ, (1.5)

and the limits

〈x〉−sR(0 + i0)〈x〉−s ≡ lim
ζ→0,ζ∈Γθ

〈x〉−sR(ζ)〈x〉−s,

〈x〉−sR(0 − i0) 〈x〉−s ≡ lim
ζ→0,ζ∈Γθ

〈x〉−sR
(

ζ̄
)

〈x〉−s

exist in B(L2(Rd)).

Next, we have existence of limits for powers of the resolvent. The as-
ymptotic expansion (1.2) is an easy consequence of Theorem 1.2 below.
Notice also that Theorem 1.1 is a particular case of Theorem 1.2.

Theorem 1.2. Let V = V1 + V2 satisfy the conditions in Theorem 1.1
with (5) replaced by: For some m0 ∈ N

(5’) V2 = O(k−m0−ε); k = k(x) = 〈x〉1+µ/2.

Let m ≤ m0, θ ∈ (0, π) and ε > 0. Then there exists C > 0 such that
∥

∥k−(m−1/2)−εR(ζ)mk−(m−1/2)−ε
∥

∥ ≤ C, (1.6)

for all ζ ∈ Γθ.
Furthermore, the function

ζ 7→ k−(m−1/2)−εR(ζ)mk−(m−1/2)−ε

is uniformly Hölder continuous in Γθ.

Using Theorem 1.1 one may define (with H1 = k−1/2−εL2(Rd), H2 =
k1/2+εL2(Rd)):

E ′(+0) =(2πi)−1 {R(0 + i0) − R(0 − i0)} ∈ B(H1,H2).

One can prove that indeed

E ′(+0) 6= 0. (1.7)

Let F (|x| < C) denote the multiplication operator by the characteristic
function of {x| |x| < C} and let κ = (1 + µ/2)−1.

Corollary 1.3. Under the conditions of Theorem 1.2 with (5’) valid
for all m0 ∈ N:

(i) For all s > 5
2
(1 + µ

2
) and f ∈ C∞

0 (R)

‖〈x〉−s
(

e−itH(f1[0,∞))(H) + it−1f(0)E ′(+0)
)

〈x〉−s‖ = O(t−2).
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(ii) For all 0 ≤ ε′ < ε ≤ 1 there exists s > 1 (depending on ε) such
that for all f ∈ C∞

0 (R)

‖F
(

|x| < t(1−ε)κ
)

e−itH(f1[0,∞))(H)〈x〉−s‖ = O(t−(1+ε′) 1

2 ). (1.8)

Remark 1.4. 1) By time reversal invariance there are similar bounds
for t→ −∞.

2) Due to (1.7) and Corollary 1.3 (i) the best one could hope for to the
right in (1.8) would be the bound O(t−1) (for f(0) 6= 0). Moreover
we would expect that tκ is indeed the borderline for this kind of low
energy, minimal velocity estimate. In fact there is a sharp analogous
bound in classical mechanics, cf. [6] and [20].

3) If V2 ∈ C∞
0 (Rd) one may take f = 1 in Corollary 1.3 (i) and (ii).

This follows readily from the given statements and well-established
high energy estimates, see [15, Theorem 1.1], [3, Theorem 1] or [11,
Theorem 1.2 (ii)], in fact some local singularities may be included.

We shall outline the proof of Theorems 1.1 and 1.2 in the following
sections. Apart from the notation 〈x〉 =

√
1 + x2, used above, we will

also need the notation p = −i∇ and A = (x · p+ p · x)/2.
The virial W of the potential V is defined by W = −2V − x · ∇V.

We recall the (formal) identity i[H,A] = 2H + W . By design of the
splitting of V , the assumptions (1) and (3) of Theorem 1.1 yield

W1(x) = −2V1(x) − x · ∇V1(x) ≥ ε1ε2〈x〉−µ,

so in particular, the virial W is positive in the case V2 = 0.

2. Absence of bound states for Schrödinger operators

In this section we present a basic result of independent interest,
namely the absence of zero-energy bound states for long range po-
tentials negative at infinity. The proof is a variation of the technique
applied in the proof of [19, Theorem XIII.58] of which the present result
is a generalization.

The conditions which exclude zero-energy eigenfunctions are given
in Assumptions 2.1 and 2.2 below. Notice that the assumptions in
Theorem 1.1 are stronger than Assumption 2.2: Take h = εr−µ/2 for a
small ε > 0 and s close to 1. Let us specify the notation x = rω ∈ Rd,
with ω ∈ Sd−1.

Assumption 2.1. The function V : Rd → R is measurable, and if
u ∈ H2(Rd), u = 0 in a neighbourhood of ∞, the product V ψ ∈ L2(Rd)
and u is a distributional solution to

−∆u + V u = 0,
4



then u = 0.

We remark that for d ≥ 3 the condition V ∈ L
d/2
loc (Rd) suffices, see

[14].

Assumption 2.2. The function V can be written as V = V1+V2, such
that: For some s ∈ [0, 1), some R,C > 0 and a positive differentiable
function h = h(r) defined on [R,∞) we have

(1) V1 and V2 are bounded on |x| > R, and V1 is negative on |x| > R.
(2) supω∈Sd−1

d
dr

(rs+1V1(rω)) ≤ −rsh2(r) when r > R.
(3) r−1 + r supω∈Sd−1 |V2(rω)| = o(h) as r → ∞.
(4) h′(r) ≤ Ch2(r) on |x| > R.

With the above assumptions we can prove the absence of zero-energy
eigenstates.

Theorem 2.3. Suppose V = V1 + V2 satisfies Assumptions 2.1 and
2.2. Suppose furthermore that ψ ∈ H2

loc(R
d) satisfies (1)–(3) below.

(1)
∫

|x|>R
h2(r)|ψ(x)|2 dx <∞ and

∫

|x|>R
|V1(x)||ψ(x)|2 dx <∞.

(2) pjψ ∈ L2(Rd); j = 1, · · · , d.
(3) The product V ψ ∈ L2

loc(R
d), and (−∆ + V )ψ = 0 in the sense of

distributions.

Then ψ = 0.

3. Extended limiting absorption principles

We introduce that following symbols:

a0(x, ξ) = fE(x)−2ξ2, b(x, ξ) =
x

〈x〉 ·
ξ

fE(x)
, (3.1)

with f = fE =
√

κ−2
0 E + (1 − µ/2)−1〈x〉−µ; κ0, E > 0, (3.2)

and where the parameters will be specified below.
Let us denote by Opw(a) the Weyl quantization of a symbol a. Ex-

plicitly Opw(a) acts as follows

(Opw(a)φ)(x) = (2π)−d

∫∫

ei(x−y)ξa((x+ y)/2, ξ)φ(y) dydξ.

Theorem 3.1. Let V (x) satisfy the conditions of Theorem 1.1 with
V2 = 0. We reformulate the assumption (3) as: For some κ0 > 0 and
2 > µ > 0,

W (x) = −2V (x) − x · ∇V (x) ≥ 2κ2
0〈x〉−µ. (3.3)

Let θ ∈ (0, π) and Γθ be as defined in (1.4). Let a0 and b be as defined
in (3.1) with E = |ζ |. Define k = k(x) = 〈x〉1+µ/2. Then the following
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conclusions, (i) - (iv), hold for H = p2+V with all bounds being uniform
in ζ ∈ Γθ:

(i) Let m ∈ N and let ε > 0 be arbitrary. Then there exists C > 0
such that

‖k−(m−1/2)−εR(ζ)mk−(m−1/2)−ε‖ ≤ C. (3.4a)

(ii) There exists C0 > 0, depending only on V , such that if supp(F+) ⊂
(C0,∞) and F ′

+ ∈ C∞
0 (R), then for all m ∈ N and all ε, t > 0

there exists C > 0 such that

‖kt−1/2−εOpw(F+(a0))R(ζ)mk−t−m+1/2−ε‖ ≤ C, (3.4b)

‖k−t−m+1/2−εR(ζ)mOpw(F+(a0))k
t−1/2−ε‖ ≤ C. (3.4c)

(iii) Let F̃+, F̃− satisfy (with κ0 from (3.3)) for some κ > 0,
• inf supp(F̃+) > −κ > −κ0, sup supp(F̃−) < κ < κ0.

• F̃ ′
−, F̃

′
+ ∈ C∞

0 (R).
Let F− ∈ C∞

0 (R). Then for all m ∈ N and all ε, t > 0 there exists
C > 0 such that

‖kt−1/2−εOpw(F−(a0)F̃−(b))R(ζ)mk−t−m+1/2−ε‖ ≤ C, (3.4d)

‖k−t−m+1/2−εR(ζ)mOpw(F−(a0)F̃+(b))kt−1/2−ε‖ ≤ C. (3.4e)

(iv) Suppose F̃+ and F̃− satisfy the assumptions from (iii), F 1
−, F

2
− ∈

C∞
0 (R) and

dist(supp(F̃+), supp(F̃−)) > 0.

Then for all m ∈ N and all t > 0 there exists C > 0 such that

‖ktOpw(F 1
−(a0)F̃−(b))R(ζ)mOpw(F 2

−(a0)F̃+(b))kt‖ ≤ C. (3.4f)

Suppose F+ is given as in (ii), some functions F̃+, F̃−, F− are
given as in (iii) and suppose dist(supp(F−), supp(F+)) > 0. Then
for all m ∈ N and all t > 0 there exists C > 0 such that

‖ktOpw(F+(a0))R(ζ)mOpw(F−(a0)F̃+(b))kt‖ ≤ C, (3.4g)

‖ktOpw(F−(a0)F̃−(b))R(ζ)mOpw(F+(a0))k
t‖ ≤ C. (3.4h)

The proof of Theorem 3.1 reduces by elementary algebra to the case
of bounds with only one resolvent i.e. m = 1, cf. [10] or [9]. The
partition of unity needed for this reduction is indicated in (4.7). In the
case m = 1, (3.4a) follows by a singular Mourre theory while (3.4d) and
(3.4e) follow by a certain modification of a method of [7]. The bounds
(3.4b) and (3.4c) may be thought of as energy localizations. Certain
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energy-dependent positivity bounds, given by the Fefferman-Phong in-
equality in a certain Hörmander-Weyl calculus, play an important role
in the proof of the bounds in (ii), (iii) and (iv) for m = 1.

4. Perturbative argument

Using Theorems 2.3 and 3.1 one may easily prove Theorems 1.1 and
1.2 by perturbative arguments. In this section we will show Theorem
1.1. Let us write for ζ ∈ Γθ

R(ζ) = (H − ζ)−1, R1(ζ) = (H1 − ζ)−1; H1 = p2 + V1. (4.1)

We shall proceed perturbatively using

R(ζ)(I + V2R1(ζ)) = R1(ζ). (4.2)

First we notice that R1(ζ) is uniformly Hölder continuous in Γθ. If
s > 3/2(1 + µ/2) this follows from (3.4a) with m = 2 (showing in
fact Lipschitz continuity in this case). If s ≤ 3/2(1 + µ/2) we may
interpolate the bounds of (3.4a) with m = 1 and m = 2.

In particular R+
1 = R1(0+ i0) = limζ→0,ζ∈Γθ

R1(ζ) and R−
1 = R1(0−

i0) = limζ→0,ζ∈Γθ
R1

(

ζ
)

are well-defined (in weighted spaces).
To show (1.5) (in the general case) it suffices to show that 〈x〉s(I +

V2R
+
1 )〈x〉−s is invertible as an operator on L2(Rd). This follows from

(4.2), the standard limiting absorption principle for positive energies
and absence of positive eigenvalues, cf. [16], [21] and [4, Section 6.5].
Since 〈x〉sV2R

+
1 〈x〉−s is compact it suffices to show that the equation

φ = −V2R
+
1 φ, (4.3)

has no nonzero solution φ ∈ 〈x〉−sL2(Rd). Let ψ = R+
1 φ (∈ 〈x〉sL2(Rd)).

Then we have in the sense of distributions

Hψ = 0 and V2ψ = −φ. (4.4)

Using that
R+

1
−R−

1

2i
≥ 0 we obtain from the calculation

0 = =〈ψ, V2ψ〉 = −=〈ψ, φ〉 = −=〈R+
1 φ, φ〉 = (2i)−1〈φ, (R+

1 − R−
1 )φ〉,

that

ψ = R+
1 φ = R−

1 φ. (4.5)

We claim that

ψ ∈ L2(Rd). (4.6)

We shall prove (4.6) using Theorem 3.1 in a bootstrap argument. (For
a similar problem for the free Laplacian see the proof of [1, Theorem
3.3].) We pick a real-valued function F+ as in Theorem 3.1 (ii) such
that F+(x) = 1 for |x| > 2C0. Let F− = 1 − F+. Pick real-valued
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functions F̃− and F̃+ as in Theorem 3.1 (iii) such that F̃− + F̃+ = 1.
Then we decompose with the symbols a0 and b being defined as in (3.1)
with E = 0 in the expression (3.2) for f

ψ = Opw(F+(a0))ψ + Opw(F−(a0)F̃−(b))ψ + Opw(F−(a0)F̃+(b))ψ.
(4.7)

By (3.4b) and (3.4d) the first two terms on the right hand side of (4.7)
belong to 〈x〉s′L2 where (assuming here φ ∈ 〈x〉−sL2)

s′ = (1 + µ
2
)(−t+ 1

2
+ ε); t =

s

1 + µ
2

− 1
2
− ε. (4.8)

We notice that the bound (3.4e) for m = 1 is equivalent to

‖kt−1/2−εOpw(F−(a0)F̃+(b))R1(ζ)
∗k−t−1/2−ε‖ ≤ C. (4.9)

Taking ζ → 0 in the sector Γθ, (4.9) leads to

‖kt−1/2−εOpw(F−(a0)F̃+(b))R−
1 k

−t−1/2−ε‖ ≤ C, (4.10)

with the same convention for a0 and b as above. We use the represen-
tation ψ = R−

1 φ of (4.5) and apply (4.10), and conclude that also the
third term on the right hand side of (4.7) belongs to 〈x〉s′L2 with s′

given by (4.8); so ψ ∈ 〈x〉s′L2.
From this and (4.4) we learn that φ ∈ 〈x〉s′−1−µ

2
−δL2 = 〈x〉−s−δ+(2+µ)εL2;

so by taking ε << (2 + µ)−1δ we improve the decay of φ by almost a
factor 〈x〉−δ. Iterating this argument leads to s′ ≤ 0 eventually. We
have proved (4.6).

Combining Theorem 2.3 and (4.6) yields ψ = φ = 0, completing the
proof of (1.5) in the general case. The Hölder continuity statement of
Theorem 1.1 in the general case follows readily by using (4.2) and the
known result for R1(ζ).
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dinger operators, Publ. RIMS, Kyoto Univ. 25 (1989), 155–167.
[12] A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-

decay of the wave functions, Duke Math. J. 46, no. 3 (1979), 583–611.
[13] A. Jensen and G. Nenciu, A unified approach to resolvent expansions at thres-

holds, Rev. Math. Physics, 13, no. 6 (2001), 717–754.
[14] D. Jerison and C.E. Kenig, Unique continuation and absence of positive eigen-

values for Schrödinger operators, Ann. of Math. (2) 121, no. 3 (1985),463–494,
With an appendix by E. M. Stein.

[15] K. Kitada, Time-decay of the high energy part of the solution for a Schrödinger

equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31, no. 1 (1984), 109–146.
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